op_param.h 81.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

408
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

410
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

H
hjchen2 已提交
418 419 420 421
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
422 423
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
424 425 426 427
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
    EXEC_GEMM_INT8,
H
hjchen2 已提交
428
    EXEC_DEPTHWISE3x3_INT8,
H
hjchen2 已提交
429 430 431 432
  };

  ExecMode &ExecMode() const { return exec_mode_; }

433
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
434

435 436 437 438 439 440 441
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
442
 public:
N
nhzlx 已提交
443
  RType *input_;
444 445
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
446
  RType *transformed_filter_;
W
wangliu 已提交
447 448 449
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
450
  mutable enum ExecMode exec_mode_;
451
  int groups;
452 453 454 455

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
456 457 458

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
459
 public:
Z
zhangyang 已提交
460 461 462 463 464 465
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
466
};
N
nhzlx 已提交
467 468
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
469

N
nhzlx 已提交
470
template <typename Dtype>
朔-望's avatar
朔-望 已提交
471
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
472 473 474
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
475
 public:
476
  ElementwiseAddParam(const VariableNameMap &inputs,
477 478
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
479 480 481
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
482 483 484
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
485
  const GType *InputX() const { return input_x_; }
486

xiebaiyuan's avatar
xiebaiyuan 已提交
487
  const GType *InputY() const { return input_y_; }
488

xiebaiyuan's avatar
xiebaiyuan 已提交
489
  GType *Out() const { return out_; }
490 491 492

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
493
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
494 495 496
  GType *input_x_;
  GType *input_y_;
  GType *out_;
497
  int axis_;
Z
zhangyang 已提交
498 499 500
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
501
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
502 503

 public:
H
hanbuhe 已提交
504 505
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
506
#endif
朔-望's avatar
朔-望 已提交
507 508
};

E
eclipsess 已提交
509
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
539
#endif
E
eclipsess 已提交
540

541
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
542 543
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
544 545
#endif

546
#ifdef ELEMENTWISESUB_OP
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
576
#endif
577

L
liuruilong 已提交
578
#ifdef MUL_OP
N
nhzlx 已提交
579
template <typename Dtype>
朔-望's avatar
朔-望 已提交
580
class MulParam : OpParam {
N
nhzlx 已提交
581 582 583
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
584
 public:
585
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
586
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
587 588 589
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
590 591 592
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
593

xiebaiyuan's avatar
xiebaiyuan 已提交
594
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
595

xiebaiyuan's avatar
xiebaiyuan 已提交
596
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
597

xiebaiyuan's avatar
xiebaiyuan 已提交
598
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
599

600
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
601

602
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
603

朔-望's avatar
朔-望 已提交
604
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
605 606 607
  GType *input_x_;
  GType *input_y_;
  GType *out_;
608 609
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
610
};
L
liuruilong 已提交
611
#endif
朔-望's avatar
朔-望 已提交
612

L
liuruilong 已提交
613
#ifdef CONCAT_OP
N
nhzlx 已提交
614
template <typename Dtype>
朔-望's avatar
朔-望 已提交
615
class ConcatParam : public OpParam {
N
nhzlx 已提交
616 617 618
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
619
 public:
620
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
621
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
622 623
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
624 625
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
626

N
nhzlx 已提交
627
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
628

xiebaiyuan's avatar
xiebaiyuan 已提交
629
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
630

631
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
632

朔-望's avatar
朔-望 已提交
633
 private:
N
nhzlx 已提交
634
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
635
  GType *out_;
636
  int axis_;
Z
zhangyang 已提交
637 638 639 640 641 642 643 644 645
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
646
};
L
liuruilong 已提交
647
#endif
朔-望's avatar
朔-望 已提交
648

E
eclipsess 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
680
#ifdef LRN_OP
N
nhzlx 已提交
681
template <typename Dtype>
E
eclipsess 已提交
682
class LrnParam : public OpParam {
N
nhzlx 已提交
683 684 685
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
686
 public:
687
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
688
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
689 690 691
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
692 693 694 695
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
696
    data_format_ = GetStringAttr("data_format", attrs);
697
  }
E
eclipsess 已提交
698

N
nhzlx 已提交
699
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
700

N
nhzlx 已提交
701
  RType *Out() const { return out_; }
E
eclipsess 已提交
702

N
nhzlx 已提交
703
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
704

705
  const int &N() const { return n_; }
E
eclipsess 已提交
706

707
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
708

709
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
710

711
  const float &K() const { return k_; }
E
eclipsess 已提交
712

W
wangliu 已提交
713
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
714

朔-望's avatar
朔-望 已提交
715
 private:
N
nhzlx 已提交
716 717 718
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
719 720 721 722
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
723
  string data_format_;
E
eclipsess 已提交
724
};
L
liuruilong 已提交
725 726 727
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
728
template <typename Dtype>
E
eclipsess 已提交
729
class BatchNormParam : OpParam {
N
nhzlx 已提交
730 731 732
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
733
 public:
734
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
735
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
736 737 738 739 740 741
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
742 743
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
744
    //    is_test_ = GetAttr<bool>("is_test", attrs);
745
  }
E
eclipsess 已提交
746

N
nhzlx 已提交
747
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
748

N
nhzlx 已提交
749
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
750

N
nhzlx 已提交
751
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
752

N
nhzlx 已提交
753
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
754

N
nhzlx 已提交
755
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
756

N
nhzlx 已提交
757
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
758

759
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
760

761
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
762

763
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
764

W
wangliu 已提交
765
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
766

767 768 769 770 771 772 773 774
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
775
 private:
N
nhzlx 已提交
776 777 778 779 780 781
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
782 783 784
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
785
  string data_format_;
786 787
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
788
};
L
liuruilong 已提交
789 790 791
#endif

#ifdef POOL_OP
N
nhzlx 已提交
792
template <typename Dtype>
793
class PoolParam : public OpParam {
N
nhzlx 已提交
794 795 796
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
797
 public:
798
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
799
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
800
    input_ = InputXFrom<GType>(inputs, scope);
801

N
nhzlx 已提交
802
    output_ = OutFrom<GType>(outputs, scope);
803
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
804 805 806
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
807
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
808
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
809
  }
810

N
nhzlx 已提交
811
  const RType *Input() const { return input_; }
812

N
nhzlx 已提交
813
  RType *Output() const { return output_; }
814

W
wangliu 已提交
815
  const string &PoolingType() const { return pooling_type_; }
816

W
wangliu 已提交
817
  const vector<int> &Ksize() const { return ksize_; }
818

W
wangliu 已提交
819
  const vector<int> &Strides() const { return strides_; }
820

W
wangliu 已提交
821
  const vector<int> &Paddings() const { return paddings_; }
822

823
  bool isCeilMode() const { return ceil_mode_; }
824

Z
zhangyang 已提交
825
  bool isGlobalPooling() const { return global_pooling_; }
826

朔-望's avatar
朔-望 已提交
827
 private:
N
nhzlx 已提交
828 829
  RType *input_;
  RType *output_;
W
wangliu 已提交
830 831 832 833
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
834
  bool ceil_mode_;
835
  bool global_pooling_ = false;
Z
zhangyang 已提交
836
#ifdef PADDLE_MOBILE_FPGA
837 838

 private:
H
hanbuhe 已提交
839
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
840 841

 public:
H
hanbuhe 已提交
842 843
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
844
#endif
845
};
L
liuruilong 已提交
846 847 848
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
849
template <typename Dtype>
E
eclipsess 已提交
850
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
851 852 853
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
854 855
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
856
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
857 858 859 860
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
861 862 863 864
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
865 866 867 868

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
869 870
    } else {
      min_max_aspect_ratios_order_ = false;
871
    }
E
eclipsess 已提交
872 873 874 875 876 877
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
878
  const RType *Input() const { return input_; }
E
eclipsess 已提交
879

N
nhzlx 已提交
880
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
881

N
nhzlx 已提交
882
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
883

N
nhzlx 已提交
884
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
885

W
wangliu 已提交
886
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
887

W
wangliu 已提交
888
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
889

W
wangliu 已提交
890
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
891

W
wangliu 已提交
892
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
893 894 895 896 897 898 899 900 901 902 903

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

904 905 906 907
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
908
 private:
N
nhzlx 已提交
909 910 911 912
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
913 914 915 916
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
917 918 919 920 921
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
922
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
923
};
L
liuruilong 已提交
924
#endif
E
eclipsess 已提交
925

L
liuruilong 已提交
926
#ifdef BOXCODER_OP
N
nhzlx 已提交
927
template <typename Dtype>
E
eclipsess 已提交
928
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
929 930 931
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
932 933
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
934
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
935 936 937 938
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
939
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
940
  }
N
nhzlx 已提交
941
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
942

N
nhzlx 已提交
943
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
944

N
nhzlx 已提交
945
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
946

N
nhzlx 已提交
947
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
948 949 950 951

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
952 953 954 955
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
956 957
  std::string code_type_;
};
L
liuruilong 已提交
958
#endif
W
wangliu 已提交
959

L
liuruilong 已提交
960
#ifdef SOFTMAX_OP
N
nhzlx 已提交
961
template <typename Dtype>
W
wangliu 已提交
962
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
963 964 965
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
966 967
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
968
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
969 970
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
971
  }
N
nhzlx 已提交
972 973
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
974 975

 private:
N
nhzlx 已提交
976 977
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
978 979 980 981

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
982
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
983 984 985
  fpga::BypassArgs fpga_bypass_args;

 public:
986
  RType *FloatInput() const {
H
hanbuhe 已提交
987 988 989 990 991 992
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
993
};
L
liuruilong 已提交
994
#endif
W
wangliu 已提交
995

L
liuruilong 已提交
996
#ifdef SIGMOID_OP
N
nhzlx 已提交
997
template <typename Dtype>
W
wangliu 已提交
998
class SigmoidParam : public OpParam {
N
nhzlx 已提交
999 1000 1001
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1002 1003
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1004
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1005 1006
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1007
  }
N
nhzlx 已提交
1008 1009
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1010 1011

 private:
N
nhzlx 已提交
1012 1013
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
1014
};
L
liuruilong 已提交
1015 1016 1017
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1018
template <typename Dtype>
E
eclipsess 已提交
1019
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1020 1021 1022
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1023 1024 1025 1026
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1027 1028 1029
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1030 1031 1032 1033 1034 1035 1036 1037
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1038
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1039

Y
yangfei 已提交
1040
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1041

N
nhzlx 已提交
1042
  RType *Out() const { return out_; }
E
eclipsess 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1057 1058 1059
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1060 1061 1062 1063 1064 1065 1066
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1067
#endif
W
wangliu 已提交
1068

L
lijiancheng0614 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1091
template <typename Dtype>
L
liuruilong 已提交
1092
class FeedParam : public OpParam {
N
nhzlx 已提交
1093 1094 1095
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1096 1097
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1098 1099 1100 1101
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1102
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1103
  }
Y
yangfei 已提交
1104
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1105
  GType *Out() const { return out_; }
W
wangliu 已提交
1106
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1107

L
liuruilong 已提交
1108
 private:
Y
yangfei 已提交
1109
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1110
  GType *out_;
W
wangliu 已提交
1111
  int batch_size;
L
liuruilong 已提交
1112 1113
};

N
nhzlx 已提交
1114
template <typename Dtype>
L
liuruilong 已提交
1115
class FetchParam : public OpParam {
N
nhzlx 已提交
1116 1117 1118
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1119 1120
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1121
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1122
    input_x_ = InputXFrom<GType>(inputs, scope);
1123
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1124
  }
L
liuruilong 已提交
1125

N
nhzlx 已提交
1126
  const RType *InputX() const { return input_x_; }
1127 1128 1129
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1130
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1131
  }
L
liuruilong 已提交
1132

L
liuruilong 已提交
1133
 private:
N
nhzlx 已提交
1134
  RType *input_x_;
Y
yangfei 已提交
1135
  Tensor *out_;
L
liuruilong 已提交
1136 1137
};

L
lijiancheng0614 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1174
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1175
template <typename Dtype>
E
eclipsess 已提交
1176
class TransposeParam : public OpParam {
N
nhzlx 已提交
1177 1178 1179
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1180 1181 1182
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1183 1184
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1185 1186 1187
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1188
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1189

N
nhzlx 已提交
1190
  RType *Out() const { return out_; }
E
eclipsess 已提交
1191 1192 1193 1194

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1195 1196
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1197 1198
  vector<int> axis_;
};
L
liuruilong 已提交
1199
#endif
E
eclipsess 已提交
1200

L
lijiancheng0614 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1298
#ifdef RESHAPE_OP
N
nhzlx 已提交
1299
template <typename Dtype>
E
eclipsess 已提交
1300
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1301 1302 1303
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1304 1305 1306
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1307 1308 1309
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1310
    shape_ = GetAttr<vector<int>>("shape", attrs);
1311 1312 1313 1314 1315 1316 1317

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1318 1319
  }

N
nhzlx 已提交
1320
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1321

N
nhzlx 已提交
1322
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1323

N
nhzlx 已提交
1324
  RType *Out() const { return out_; }
E
eclipsess 已提交
1325 1326 1327 1328 1329 1330

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1331 1332 1333
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1334 1335 1336
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1337
#endif
E
eclipsess 已提交
1338

L
lijiancheng0614 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1360
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1361

E
eclipsess 已提交
1362
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1363

E
eclipsess 已提交
1364
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1365

E
eclipsess 已提交
1366
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1367 1368 1369 1370 1371 1372

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1373 1374 1375 1376
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1377 1378 1379 1380 1381
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1382
#ifdef SCALE_OP
N
nhzlx 已提交
1383
template <typename Dtype>
I
itminner 已提交
1384
class ScaleParam : public OpParam {
N
nhzlx 已提交
1385 1386 1387
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1388 1389 1390
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1391 1392 1393
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1394 1395 1396 1397 1398 1399
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1400
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1401

N
nhzlx 已提交
1402
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1403

N
nhzlx 已提交
1404
  RType *Out() const { return out_; }
I
itminner 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1415 1416 1417
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1418 1419 1420 1421 1422
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1423 1424 1425
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1426
template <typename Dtype>
I
itminner 已提交
1427
class SliceParam : public OpParam {
N
nhzlx 已提交
1428 1429 1430
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1431 1432 1433
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1434 1435 1436
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1437 1438 1439 1440 1441
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1442
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1443

N
nhzlx 已提交
1444
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1445

N
nhzlx 已提交
1446
  RType *Out() const { return out_; }
I
itminner 已提交
1447 1448 1449 1450 1451 1452 1453 1454

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1455 1456 1457
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1458 1459 1460 1461
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1462 1463 1464
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1465
template <typename Dtype>
T
Tian 已提交
1466
class ResizeParam : public OpParam {
N
nhzlx 已提交
1467 1468 1469
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1470 1471 1472
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1473 1474 1475
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1476 1477 1478 1479 1480 1481
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1482

N
nhzlx 已提交
1483
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1484

N
nhzlx 已提交
1485
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1486

N
nhzlx 已提交
1487
  RType *Out() const { return out_; }
T
Tian 已提交
1488

I
itminner 已提交
1489
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1490

I
itminner 已提交
1491
  const int &Height() const { return height_; }
T
Tian 已提交
1492

I
itminner 已提交
1493
  const int &Width() const { return width_; }
T
Tian 已提交
1494

I
itminner 已提交
1495
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1496

I
itminner 已提交
1497
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1498

I
itminner 已提交
1499
 private:
N
nhzlx 已提交
1500 1501 1502
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1503 1504 1505 1506 1507
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1508 1509 1510
};
#endif

L
liuruilong 已提交
1511
#ifdef RELU_OP
L
liuruilong 已提交
1512 1513 1514
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1515
template <typename Dtype>
D
relu  
dolphin8 已提交
1516
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1517 1518 1519
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1520
 public:
D
relu  
dolphin8 已提交
1521
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1522
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1523 1524
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1525 1526
  }

N
nhzlx 已提交
1527
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1528

N
nhzlx 已提交
1529
  RType *Out() const { return out_; }
E
eclipsess 已提交
1530 1531

 private:
N
nhzlx 已提交
1532 1533
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1534
};
D
relu  
dolphin8 已提交
1535 1536 1537

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1538
 public:
D
relu  
dolphin8 已提交
1539 1540 1541
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1542
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1543 1544
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1545
 public:
D
relu  
dolphin8 已提交
1546
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1547 1548 1549
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1550 1551
  framework::CLImage midImage;
};
Y
yangfei 已提交
1552
#endif
D
relu  
dolphin8 已提交
1553

L
liuruilong 已提交
1554
#endif
E
eclipsess 已提交
1555

Z
zhangyang 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1588
};
L
liuruilong 已提交
1589
#endif
E
eclipsess 已提交
1590

T
Tian 已提交
1591
#ifdef PRELU_OP
N
nhzlx 已提交
1592
template <typename Dtype>
T
Tian 已提交
1593
class PReluParam : public OpParam {
N
nhzlx 已提交
1594 1595 1596
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1597 1598 1599
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1600
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1601
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1602
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1603
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1604
    out_ = OutFrom<GType>(outputs, scope);
1605
    mode_ = GetStringAttr("mode", attrs);
1606
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1607
  }
N
nhzlx 已提交
1608
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1609
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1610
  RType *Out() const { return out_; }
1611
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1612

I
itminner 已提交
1613
 private:
N
nhzlx 已提交
1614 1615
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1616
  RType *alpha_;
1617
  std::string mode_;
T
Tian 已提交
1618 1619 1620
};
#endif

N
nhzlx 已提交
1621
template <typename Dtype>
L
liuruilong 已提交
1622
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1623 1624 1625
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1626
 public:
L
liuruilong 已提交
1627
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1628
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1629 1630 1631 1632
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1633 1634 1635 1636
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1637
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1638

Y
yangfei 已提交
1639
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1640

Y
yangfei 已提交
1641
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1642

xiebaiyuan's avatar
xiebaiyuan 已提交
1643
  GType *Out() const { return out_; }
E
eclipsess 已提交
1644 1645 1646 1647 1648 1649 1650 1651

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1652
  GType *input_x_;
N
nhzlx 已提交
1653 1654
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1655
  GType *out_;
E
eclipsess 已提交
1656 1657 1658
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1659

Z
ZhenWang 已提交
1660
#ifdef PADDLE_MOBILE_FPGA
1661
 private:  // NOLINT
Z
zhangyang 已提交
1662
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1663 1664

 public:
Z
zhangyang 已提交
1665 1666
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1667
#endif
E
eclipsess 已提交
1668
};
1669 1670

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1671 1672
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1673
#endif
E
eclipsess 已提交
1674

N
nhzlx 已提交
1675
template <typename Dtype>
1676
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1677 1678 1679
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1680
 public:
L
liuruilong 已提交
1681
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1682
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1683 1684 1685 1686 1687
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1688
  }
N
nhzlx 已提交
1689
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1690 1691 1692

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1693
  RType *Output() const { return output_; }
W
wangliu 已提交
1694

L
liuruilong 已提交
1695
 protected:
N
nhzlx 已提交
1696
  RType *bias_;
W
wangliu 已提交
1697
  int axis_;
N
nhzlx 已提交
1698
  RType *output_;
W
wangliu 已提交
1699 1700
};

N
nhzlx 已提交
1701 1702
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1703

Z
zhangyang 已提交
1704
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1705 1706
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1707
 public:
L
liuruilong 已提交
1708
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1709 1710
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1711
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1712 1713 1714
};
#endif

1715
#ifdef FUSION_CONVADDPRELU_OP
1716 1717 1718 1719
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1720 1721 1722 1723

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1724 1725 1726
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1727
    mode_ = OpParam::GetStringAttr("mode", attrs);
1728
    framework::DDim dims = alpha_->dims();
1729 1730 1731
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1749 1750 1751 1752
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1753 1754 1755 1756

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1757 1758 1759 1760
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1761
    mode_ = OpParam::GetStringAttr("mode", attrs);
1762
    framework::DDim dims = alpha_->dims();
1763 1764 1765 1766 1767 1768
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1769
    if (keyX1_ == keyOutput_) {
1770
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1771
    } else if (keyY1_ == keyOutput_) {
1772
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1797
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1798
template <typename Dtype>
1799
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1800 1801 1802
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1803 1804 1805
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1818
  }
N
nhzlx 已提交
1819
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1820 1821 1822

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1823
  RType *Output() const { return output_; }
E
eclipsess 已提交
1824

N
nhzlx 已提交
1825
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1826

N
nhzlx 已提交
1827
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1828

N
nhzlx 已提交
1829
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1830

N
nhzlx 已提交
1831
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1832 1833 1834 1835 1836 1837 1838

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1839
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1840

N
nhzlx 已提交
1841
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1842

N
nhzlx 已提交
1843
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1844

N
nhzlx 已提交
1845
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1846 1847

 protected:
N
nhzlx 已提交
1848
  RType *bias_;
E
eclipsess 已提交
1849
  int axis_;
N
nhzlx 已提交
1850 1851 1852 1853 1854
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1855 1856 1857
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1858 1859
  RType *new_bias_;
  RType *new_scale_;
1860 1861 1862 1863 1864
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1865
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1866 1867 1868 1869 1870 1871
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1886
    if (keyX_ == keyBNY_) {
1887
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1888
    } else if (keyY_ == keyBNY_) {
1889
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1890
    }
1891
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1937
};
1938
#endif
E
eclipsess 已提交
1939

Z
zhangyang 已提交
1940
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1941
template <typename Dtype>
1942
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1943 1944 1945
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1946 1947 1948
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1959
  }
N
nhzlx 已提交
1960
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1961

N
nhzlx 已提交
1962
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1963

N
nhzlx 已提交
1964
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1965

N
nhzlx 已提交
1966
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1967

N
nhzlx 已提交
1968
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1969 1970 1971 1972 1973 1974 1975

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1976
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1977

N
nhzlx 已提交
1978
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1979

N
nhzlx 已提交
1980
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1981

N
nhzlx 已提交
1982
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1983 1984

 protected:
N
nhzlx 已提交
1985 1986 1987 1988 1989
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1990 1991 1992
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1993 1994
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1995 1996 1997
};
#endif

1998
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1999
template <typename Dtype>
2000
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2001 2002 2003
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2004 2005 2006
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2019
  }
N
nhzlx 已提交
2020
  RType *Bias() const { return bias_; }
2021 2022 2023

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2024
  RType *Output() const { return output_y_; }
2025

N
nhzlx 已提交
2026
  const RType *InputBias() const { return input_bias_; }
2027

N
nhzlx 已提交
2028
  const RType *InputMean() const { return input_mean_; }
2029

N
nhzlx 已提交
2030
  const RType *InputScale() const { return input_scale_; }
2031

N
nhzlx 已提交
2032
  const RType *InputVariance() const { return input_variance_; }
2033 2034 2035 2036 2037 2038 2039

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2040
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2041

N
nhzlx 已提交
2042
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2043

N
nhzlx 已提交
2044
  const RType *NewScale() const { return new_scale_; }
2045

N
nhzlx 已提交
2046
  const RType *NewBias() const { return new_bias_; }
2047 2048

 protected:
N
nhzlx 已提交
2049
  RType *bias_;
2050
  int axis_;
N
nhzlx 已提交
2051 2052 2053 2054 2055
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2056 2057 2058
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2059 2060
  RType *new_bias_;
  RType *new_scale_;
2061
};
E
eclipsess 已提交
2062
#endif
Y
Yao,kun 已提交
2063

E
eclipsess 已提交
2064
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2065
template <typename Dtype>
2066
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2067 2068 2069
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2070 2071 2072
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2083
  }
N
nhzlx 已提交
2084
  RType *Output() const { return output_; }
E
eclipsess 已提交
2085

N
nhzlx 已提交
2086
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2087

N
nhzlx 已提交
2088
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2089

N
nhzlx 已提交
2090
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2091

N
nhzlx 已提交
2092
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2093 2094 2095 2096 2097 2098 2099

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2100
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2101

N
nhzlx 已提交
2102
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2103

N
nhzlx 已提交
2104
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2105

N
nhzlx 已提交
2106
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2107 2108

 protected:
N
nhzlx 已提交
2109 2110 2111 2112 2113
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2114 2115 2116
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2117 2118
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2119 2120 2121 2122
};

#endif

2123
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2124
template <typename Dtype>
2125
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2126 2127 2128
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2129 2130 2131
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2142
  }
N
nhzlx 已提交
2143
  RType *Output() const { return output_; }
2144

N
nhzlx 已提交
2145
  const RType *InputBias() const { return input_bias_; }
2146

N
nhzlx 已提交
2147
  const RType *InputMean() const { return input_mean_; }
2148

N
nhzlx 已提交
2149
  const RType *InputScale() const { return input_scale_; }
2150

N
nhzlx 已提交
2151
  const RType *InputVariance() const { return input_variance_; }
2152 2153 2154 2155 2156 2157 2158

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2159
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2160

N
nhzlx 已提交
2161
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2162

N
nhzlx 已提交
2163
  const RType *NewScale() const { return new_scale_; }
2164

N
nhzlx 已提交
2165
  const RType *NewBias() const { return new_bias_; }
2166 2167

 protected:
N
nhzlx 已提交
2168 2169 2170 2171 2172
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2173 2174 2175
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2176 2177
  RType *new_bias_;
  RType *new_scale_;
2178 2179 2180
};
#endif

Y
Yao,kun 已提交
2181
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2182
template <typename Dtype>
Y
Yao,kun 已提交
2183
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2184 2185 2186
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2187 2188 2189 2190
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2191 2192
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2193 2194 2195 2196 2197
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2198
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2199

E
eclipsess 已提交
2200
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2201 2202 2203 2204 2205 2206 2207 2208

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2209 2210
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2211 2212 2213 2214
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2215
#endif
Y
Yao,kun 已提交
2216

2217
#ifdef DROPOUT_OP
N
nhzlx 已提交
2218
template <typename Dtype>
Y
Yao,kun 已提交
2219
class DropoutParam : public OpParam {
N
nhzlx 已提交
2220 2221 2222
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2223 2224 2225
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2226 2227
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2228 2229

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2230 2231
  }

N
nhzlx 已提交
2232
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2233

N
nhzlx 已提交
2234
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2235

Y
yangfei 已提交
2236 2237
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2238
 private:
N
nhzlx 已提交
2239 2240
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2241
  float dropout_prob_;
Y
Yao,kun 已提交
2242
};
2243
#endif
Y
Yao,kun 已提交
2244

N
nhzlx 已提交
2245
template <typename Dtype>
L
liuruilong 已提交
2246
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2247 2248 2249
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2250 2251 2252 2253
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2254 2255
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2256
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2257
    if (outputs.count("Output")) {
2258
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2259
    }
L
liuruilong 已提交
2260 2261 2262 2263 2264 2265
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2266
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2267

N
nhzlx 已提交
2268
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2269

N
nhzlx 已提交
2270
  RType *Output() const { return output_; }
L
liuruilong 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2281 2282 2283
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2284 2285 2286 2287
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
#endif
L
liuruilong 已提交
2298
};
Z
zhangyang 已提交
2299

qnqinan's avatar
qnqinan 已提交
2300 2301 2302 2303 2304
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2305 2306

 public:
qnqinan's avatar
qnqinan 已提交
2307
  FusionDeconvAddParam(const VariableNameMap &inputs,
2308 2309 2310
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2332

Z
zhangyang 已提交
2333 2334 2335 2336 2337
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2363 2364
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2409
    axis = GetAttr<int>("axis", attrs);
2410 2411 2412
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2413
  const int &Axis() const { return axis; }
2414 2415 2416 2417

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2418
  int axis;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2432
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2433
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2434 2435 2436 2437 2438 2439
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2440 2441
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2442 2443 2444 2445 2446
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2447 2448 2449

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2450
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2451
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2452 2453 2454
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2455 2456 2457 2458 2459 2460 2461 2462 2463
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2480 2481
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2482 2483
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2484
  const RType *InputOutPutSize() const { return input_outsize_; }
2485
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2486 2487
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2488 2489 2490 2491 2492

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2493 2494
  int out_h_;
  int out_w_;
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2510
  const RType *Input() const { return input_; }
2511 2512 2513 2514 2515 2516 2517 2518
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2565
#ifdef QUANT_OP
2566
template <typename Dtype>
2567 2568 2569 2570 2571
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2572 2573
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2574
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2575
    output_ = OutFrom<GType>(outputs, scope);
2576 2577
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2578
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2579
    // offline
2580
    if (inputs.count("InScale")) {
2581 2582
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2583 2584
    }
    // x = round(scale * x)
2585 2586
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2587
    }
2588 2589 2590 2591
  }

 public:
  // op input
2592
  GType *input_;
2593
  // op output
2594
  GType *output_;
2595
  RType *online_scale_;
2596 2597 2598 2599
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2600
  // round method type
H
hjchen2 已提交
2601 2602
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2603
};
2604
#endif
2605

2606
#ifdef DEQUANT_OP
2607
template <typename Dtype>
2608 2609 2610 2611 2612
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2613 2614
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2615
    input_ = InputXFrom<GType>(inputs, scope);
2616
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2617
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2618
    // dequantization is performed as x = x / static_scale / online_scale
2619 2620
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2621
    } else {
2622
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2623 2624 2625 2626 2627
    }
  }

 public:
  // op input
2628
  GType *input_;
2629
  // op output
2630
  GType *output_;
2631 2632 2633
  RType *activation_scale_;
  float weight_scale_;
};
2634
#endif
2635

2636 2637 2638 2639
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2640
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2641
template <typename Dtype>
2642
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2643 2644 2645 2646
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2647 2648 2649
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
2666 2667 2668
};
#endif

2669 2670 2671 2672
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2709 2710 2711
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2712 2713 2714 2715 2716 2717 2718 2719 2720
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
2721 2722 2723 2724
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2725 2726 2727 2728 2729 2730
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

朔-望's avatar
朔-望 已提交
2731 2732
}  // namespace operators
}  // namespace paddle_mobile