core.c 225.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
67 68 69 70 71 72 73 74 75 76 77
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
98
task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 100
{
	struct remote_function_call data = {
101 102 103
		.p	= p,
		.func	= func,
		.info	= info,
104
		.ret	= -EAGAIN,
105
	};
106
	int ret;
107

108 109 110 111 112
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
113

114
	return ret;
115 116 117 118 119 120 121 122 123 124 125
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
126
static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 128
{
	struct remote_function_call data = {
129 130 131 132
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
133 134 135 136 137 138 139
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

140 141 142 143 144 145 146 147
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
148
{
149 150 151 152 153 154 155 156 157 158 159 160 161
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

162 163 164 165
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
166
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214
		if (ctx->task != current) {
215
			ret = -ESRCH;
216 217
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278
		return;
	}

279 280 281
	if (task == TASK_TOMBSTONE)
		return;

282
again:
283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
292 293 294
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
295
	}
296 297 298 299 300
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
301 302 303
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
319
	EVENT_TIME = 0x4,
320 321 322
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
323 324 325 326
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
327 328 329 330 331 332 333

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
334
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
336

337 338 339
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
340
static atomic_t nr_freq_events __read_mostly;
341
static atomic_t nr_switch_events __read_mostly;
342

P
Peter Zijlstra 已提交
343 344 345 346
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

347
/*
348
 * perf event paranoia level:
349 350
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
351
 *   1 - disallow cpu events for unpriv
352
 *   2 - disallow kernel profiling for unpriv
353
 */
354
int sysctl_perf_event_paranoid __read_mostly = 1;
355

356 357
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 359

/*
360
 * max perf event sample rate
361
 */
362 363 364 365 366 367 368 369 370
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
371 372
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373

374
static void update_perf_cpu_limits(void)
375 376 377 378
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
379 380 381 382 383
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
384
}
P
Peter Zijlstra 已提交
385

386 387
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
388 389 390 391
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
392
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
393 394 395 396 397

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

415 416
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
417 418 419 420 421 422
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
423 424 425

	return 0;
}
426

427 428 429 430 431 432 433
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
434
static DEFINE_PER_CPU(u64, running_sample_length);
435

436 437 438
static u64 __report_avg;
static u64 __report_allowed;

439
static void perf_duration_warn(struct irq_work *w)
440
{
441
	printk_ratelimited(KERN_WARNING
442 443 444 445
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
446 447 448 449 450 451
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
452 453 454 455
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
456

457
	if (max_len == 0)
458 459
		return;

460 461 462 463 464
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
465 466

	/*
467 468
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
469 470
	 * from having to maintain a count.
	 */
471 472
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
473 474
		return;

475 476
	__report_avg = avg_len;
	__report_allowed = max_len;
477

478 479 480 481 482 483 484 485 486
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
487

488 489 490 491 492
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
493

494
	if (!irq_work_queue(&perf_duration_work)) {
495
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
496
			     "kernel.perf_event_max_sample_rate to %d\n",
497
			     __report_avg, __report_allowed,
498 499
			     sysctl_perf_event_sample_rate);
	}
500 501
}

502
static atomic64_t perf_event_id;
503

504 505 506 507
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
508 509 510 511 512
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
513

514
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
515

516
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
517
{
518
	return "pmu";
T
Thomas Gleixner 已提交
519 520
}

521 522 523 524 525
static inline u64 perf_clock(void)
{
	return local_clock();
}

526 527 528 529 530
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
555 556 557 558
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
559
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
598 599
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
600
	/*
601 602
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
603
	 */
604
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
605 606
		return;

607
	cgrp = perf_cgroup_from_task(current, event->ctx);
608 609 610 611 612
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
613 614 615
}

static inline void
616 617
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
618 619 620 621
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

622 623 624 625 626 627
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
628 629
		return;

630
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
631
	info = this_cpu_ptr(cgrp->info);
632
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
633 634 635 636 637 638 639 640 641 642 643
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
644
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
664 665
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
666 667 668 669 670 671 672 673 674

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
675 676
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
677 678 679 680 681 682 683 684 685 686 687

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
688
				WARN_ON_ONCE(cpuctx->cgrp);
689 690 691 692
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
693 694
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
695
				 */
696
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
697 698
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
699 700
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
701 702 703 704 705 706
		}
	}

	local_irq_restore(flags);
}

707 708
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
709
{
710 711 712
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

713
	rcu_read_lock();
714 715
	/*
	 * we come here when we know perf_cgroup_events > 0
716 717
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
718
	 */
719
	cgrp1 = perf_cgroup_from_task(task, NULL);
720
	cgrp2 = perf_cgroup_from_task(next, NULL);
721 722 723 724 725 726 727 728

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
729 730

	rcu_read_unlock();
S
Stephane Eranian 已提交
731 732
}

733 734
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
735
{
736 737 738
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

739
	rcu_read_lock();
740 741
	/*
	 * we come here when we know perf_cgroup_events > 0
742 743
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
744
	 */
745 746
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
747 748 749 750 751 752 753 754

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
755 756

	rcu_read_unlock();
S
Stephane Eranian 已提交
757 758 759 760 761 762 763 764
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
765 766
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
767

768
	if (!f.file)
S
Stephane Eranian 已提交
769 770
		return -EBADF;

A
Al Viro 已提交
771
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
772
					 &perf_event_cgrp_subsys);
773 774 775 776
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
790
out:
791
	fdput(f);
S
Stephane Eranian 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

865 866
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
867 868 869
{
}

870 871
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
872 873 874 875 876 877 878 879 880 881 882
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
883 884
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

915 916 917 918 919 920 921 922
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
923
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
924 925 926 927 928 929 930 931 932
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
933 934
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
935
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
936 937 938
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
939

P
Peter Zijlstra 已提交
940
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
941 942
}

943
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
944
{
945
	struct hrtimer *timer = &cpuctx->hrtimer;
946
	struct pmu *pmu = cpuctx->ctx.pmu;
947
	u64 interval;
948 949 950 951 952

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

953 954 955 956
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
957 958 959
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
960

961
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
962

P
Peter Zijlstra 已提交
963 964
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
965
	timer->function = perf_mux_hrtimer_handler;
966 967
}

968
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
969
{
970
	struct hrtimer *timer = &cpuctx->hrtimer;
971
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
972
	unsigned long flags;
973 974 975

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
976
		return 0;
977

P
Peter Zijlstra 已提交
978 979 980 981 982 983 984
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
985

986
	return 0;
987 988
}

P
Peter Zijlstra 已提交
989
void perf_pmu_disable(struct pmu *pmu)
990
{
P
Peter Zijlstra 已提交
991 992 993
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
994 995
}

P
Peter Zijlstra 已提交
996
void perf_pmu_enable(struct pmu *pmu)
997
{
P
Peter Zijlstra 已提交
998 999 1000
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1001 1002
}

1003
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1004 1005

/*
1006 1007 1008 1009
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1010
 */
1011
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1012
{
1013
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1014

1015
	WARN_ON(!irqs_disabled());
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1029 1030
}

1031
static void get_ctx(struct perf_event_context *ctx)
1032
{
1033
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1034 1035
}

1036 1037 1038 1039 1040 1041 1042 1043 1044
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1045
static void put_ctx(struct perf_event_context *ctx)
1046
{
1047 1048 1049
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1050
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1051
			put_task_struct(ctx->task);
1052
		call_rcu(&ctx->rcu_head, free_ctx);
1053
	}
1054 1055
}

P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061 1062
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1063 1064 1065 1066
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1067 1068
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1109
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1110 1111 1112
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1113
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1114 1115 1116
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1117 1118
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1131
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1141 1142 1143 1144 1145 1146
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1147 1148 1149 1150 1151 1152 1153
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1154 1155 1156 1157 1158 1159 1160
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1161
{
1162 1163 1164 1165 1166
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1167
		ctx->parent_ctx = NULL;
1168
	ctx->generation++;
1169 1170

	return parent_ctx;
1171 1172
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1195
/*
1196
 * If we inherit events we want to return the parent event id
1197 1198
 * to userspace.
 */
1199
static u64 primary_event_id(struct perf_event *event)
1200
{
1201
	u64 id = event->id;
1202

1203 1204
	if (event->parent)
		id = event->parent->id;
1205 1206 1207 1208

	return id;
}

1209
/*
1210
 * Get the perf_event_context for a task and lock it.
1211
 *
1212 1213 1214
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1215
static struct perf_event_context *
P
Peter Zijlstra 已提交
1216
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1217
{
1218
	struct perf_event_context *ctx;
1219

P
Peter Zijlstra 已提交
1220
retry:
1221 1222 1223
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1224
	 * part of the read side critical section was irqs-enabled -- see
1225 1226 1227
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1228
	 * side critical section has interrupts disabled.
1229
	 */
1230
	local_irq_save(*flags);
1231
	rcu_read_lock();
P
Peter Zijlstra 已提交
1232
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1233 1234 1235 1236
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1237
		 * perf_event_task_sched_out, though the
1238 1239 1240 1241 1242 1243
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1244
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1245
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1246
			raw_spin_unlock(&ctx->lock);
1247
			rcu_read_unlock();
1248
			local_irq_restore(*flags);
1249 1250
			goto retry;
		}
1251

1252 1253
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1254
			raw_spin_unlock(&ctx->lock);
1255
			ctx = NULL;
P
Peter Zijlstra 已提交
1256 1257
		} else {
			WARN_ON_ONCE(ctx->task != task);
1258
		}
1259 1260
	}
	rcu_read_unlock();
1261 1262
	if (!ctx)
		local_irq_restore(*flags);
1263 1264 1265 1266 1267 1268 1269 1270
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1271 1272
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1273
{
1274
	struct perf_event_context *ctx;
1275 1276
	unsigned long flags;

P
Peter Zijlstra 已提交
1277
	ctx = perf_lock_task_context(task, ctxn, &flags);
1278 1279
	if (ctx) {
		++ctx->pin_count;
1280
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1281 1282 1283 1284
	}
	return ctx;
}

1285
static void perf_unpin_context(struct perf_event_context *ctx)
1286 1287 1288
{
	unsigned long flags;

1289
	raw_spin_lock_irqsave(&ctx->lock, flags);
1290
	--ctx->pin_count;
1291
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1292 1293
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1305 1306 1307
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1308 1309 1310 1311

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1312 1313 1314
	return ctx ? ctx->time : 0;
}

1315 1316 1317 1318 1319 1320 1321 1322
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1323 1324
	lockdep_assert_held(&ctx->lock);

1325 1326 1327
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1328

S
Stephane Eranian 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1340
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1341 1342
	else if (ctx->is_active)
		run_end = ctx->time;
1343 1344 1345 1346
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1347 1348 1349 1350

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1351
		run_end = perf_event_time(event);
1352 1353

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1354

1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1369 1370 1371 1372 1373 1374 1375 1376 1377
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1378
/*
1379
 * Add a event from the lists for its context.
1380 1381
 * Must be called with ctx->mutex and ctx->lock held.
 */
1382
static void
1383
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1384
{
P
Peter Zijlstra 已提交
1385 1386
	lockdep_assert_held(&ctx->lock);

1387 1388
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1389 1390

	/*
1391 1392 1393
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1394
	 */
1395
	if (event->group_leader == event) {
1396 1397
		struct list_head *list;

1398 1399 1400
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1401 1402
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1403
	}
P
Peter Zijlstra 已提交
1404

1405
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1406 1407
		ctx->nr_cgroups++;

1408 1409 1410
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1411
		ctx->nr_stat++;
1412 1413

	ctx->generation++;
1414 1415
}

J
Jiri Olsa 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1425
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1441
		nr += nr_siblings;
1442 1443 1444 1445 1446 1447 1448
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1449
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1450 1451 1452 1453 1454 1455 1456
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1457 1458 1459 1460 1461 1462
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1463 1464 1465
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1466 1467 1468
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1469 1470 1471
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1472 1473 1474
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1475 1476 1477
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1489 1490 1491 1492 1493 1494
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1495 1496 1497 1498 1499 1500
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1501 1502 1503
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1513
	event->id_header_size = size;
1514 1515
}

P
Peter Zijlstra 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1537 1538
static void perf_group_attach(struct perf_event *event)
{
1539
	struct perf_event *group_leader = event->group_leader, *pos;
1540

P
Peter Zijlstra 已提交
1541 1542 1543 1544 1545 1546
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1547 1548 1549 1550 1551
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1552 1553
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1554 1555 1556 1557 1558 1559
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1560 1561 1562 1563 1564

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1565 1566
}

1567
/*
1568
 * Remove a event from the lists for its context.
1569
 * Must be called with ctx->mutex and ctx->lock held.
1570
 */
1571
static void
1572
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1573
{
1574
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1575 1576 1577 1578

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1579 1580 1581 1582
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1583
		return;
1584 1585 1586

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1587
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1588
		ctx->nr_cgroups--;
1589 1590 1591 1592
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1593 1594
		cpuctx = __get_cpu_context(ctx);
		/*
1595 1596
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1597 1598 1599 1600
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1601

1602 1603
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1604
		ctx->nr_stat--;
1605

1606
	list_del_rcu(&event->event_entry);
1607

1608 1609
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1610

1611
	update_group_times(event);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1622 1623

	ctx->generation++;
1624 1625
}

1626
static void perf_group_detach(struct perf_event *event)
1627 1628
{
	struct perf_event *sibling, *tmp;
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1645
		goto out;
1646 1647 1648 1649
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1650

1651
	/*
1652 1653
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1654
	 * to whatever list we are on.
1655
	 */
1656
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1657 1658
		if (list)
			list_move_tail(&sibling->group_entry, list);
1659
		sibling->group_leader = sibling;
1660 1661 1662

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1663 1664

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1665
	}
1666 1667 1668 1669 1670 1671

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1672 1673
}

1674 1675
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1676
	return event->state == PERF_EVENT_STATE_DEAD;
1677 1678
}

1679 1680 1681 1682 1683 1684
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1685 1686 1687
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1688
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1689
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1690 1691
}

1692 1693
static void
event_sched_out(struct perf_event *event,
1694
		  struct perf_cpu_context *cpuctx,
1695
		  struct perf_event_context *ctx)
1696
{
1697
	u64 tstamp = perf_event_time(event);
1698
	u64 delta;
P
Peter Zijlstra 已提交
1699 1700 1701 1702

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1711
		delta = tstamp - event->tstamp_stopped;
1712
		event->tstamp_running += delta;
1713
		event->tstamp_stopped = tstamp;
1714 1715
	}

1716
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1717
		return;
1718

1719 1720
	perf_pmu_disable(event->pmu);

1721 1722 1723
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1724 1725 1726 1727
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1728
	}
1729

1730
	if (!is_software_event(event))
1731
		cpuctx->active_oncpu--;
1732 1733
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1734 1735
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1736
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1737
		cpuctx->exclusive = 0;
1738 1739

	perf_pmu_enable(event->pmu);
1740 1741
}

1742
static void
1743
group_sched_out(struct perf_event *group_event,
1744
		struct perf_cpu_context *cpuctx,
1745
		struct perf_event_context *ctx)
1746
{
1747
	struct perf_event *event;
1748
	int state = group_event->state;
1749

1750
	event_sched_out(group_event, cpuctx, ctx);
1751 1752 1753 1754

	/*
	 * Schedule out siblings (if any):
	 */
1755 1756
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1757

1758
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1759 1760 1761
		cpuctx->exclusive = 0;
}

1762
#define DETACH_GROUP	0x01UL
1763

T
Thomas Gleixner 已提交
1764
/*
1765
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1766
 *
1767
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1768 1769
 * remove it from the context list.
 */
1770 1771 1772 1773 1774
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1775
{
1776
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1777

1778
	event_sched_out(event, cpuctx, ctx);
1779
	if (flags & DETACH_GROUP)
1780
		perf_group_detach(event);
1781
	list_del_event(event, ctx);
1782 1783

	if (!ctx->nr_events && ctx->is_active) {
1784
		ctx->is_active = 0;
1785 1786 1787 1788
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1789
	}
T
Thomas Gleixner 已提交
1790 1791 1792
}

/*
1793
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1794
 *
1795 1796
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1797 1798
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1799
 * When called from perf_event_exit_task, it's OK because the
1800
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1801
 */
1802
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1803
{
1804
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1805

1806
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1807 1808
}

1809
/*
1810
 * Cross CPU call to disable a performance event
1811
 */
1812 1813 1814 1815
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1816
{
1817 1818
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1819

1820 1821 1822 1823 1824 1825 1826 1827
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1828 1829
}

1830
/*
1831
 * Disable a event.
1832
 *
1833 1834
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1835
 * remains valid.  This condition is satisifed when called through
1836 1837
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1838 1839
 * goes to exit will block in perf_event_exit_event().
 *
1840
 * When called from perf_pending_event it's OK because event->ctx
1841
 * is the current context on this CPU and preemption is disabled,
1842
 * hence we can't get into perf_event_task_sched_out for this context.
1843
 */
P
Peter Zijlstra 已提交
1844
static void _perf_event_disable(struct perf_event *event)
1845
{
1846
	struct perf_event_context *ctx = event->ctx;
1847

1848
	raw_spin_lock_irq(&ctx->lock);
1849
	if (event->state <= PERF_EVENT_STATE_OFF) {
1850
		raw_spin_unlock_irq(&ctx->lock);
1851
		return;
1852
	}
1853
	raw_spin_unlock_irq(&ctx->lock);
1854

1855 1856 1857 1858 1859 1860
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1861
}
P
Peter Zijlstra 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1875
EXPORT_SYMBOL_GPL(perf_event_disable);
1876

S
Stephane Eranian 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1912 1913 1914
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1915
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1916

1917
static int
1918
event_sched_in(struct perf_event *event,
1919
		 struct perf_cpu_context *cpuctx,
1920
		 struct perf_event_context *ctx)
1921
{
1922
	u64 tstamp = perf_event_time(event);
1923
	int ret = 0;
1924

1925 1926
	lockdep_assert_held(&ctx->lock);

1927
	if (event->state <= PERF_EVENT_STATE_OFF)
1928 1929
		return 0;

1930
	event->state = PERF_EVENT_STATE_ACTIVE;
1931
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1943 1944 1945 1946 1947
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1948 1949
	perf_pmu_disable(event->pmu);

1950 1951
	perf_set_shadow_time(event, ctx, tstamp);

1952 1953
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1954
	if (event->pmu->add(event, PERF_EF_START)) {
1955 1956
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1957 1958
		ret = -EAGAIN;
		goto out;
1959 1960
	}

1961 1962
	event->tstamp_running += tstamp - event->tstamp_stopped;

1963
	if (!is_software_event(event))
1964
		cpuctx->active_oncpu++;
1965 1966
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1967 1968
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1969

1970
	if (event->attr.exclusive)
1971 1972
		cpuctx->exclusive = 1;

1973 1974 1975 1976
out:
	perf_pmu_enable(event->pmu);

	return ret;
1977 1978
}

1979
static int
1980
group_sched_in(struct perf_event *group_event,
1981
	       struct perf_cpu_context *cpuctx,
1982
	       struct perf_event_context *ctx)
1983
{
1984
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1985
	struct pmu *pmu = ctx->pmu;
1986 1987
	u64 now = ctx->time;
	bool simulate = false;
1988

1989
	if (group_event->state == PERF_EVENT_STATE_OFF)
1990 1991
		return 0;

1992
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1993

1994
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1995
		pmu->cancel_txn(pmu);
1996
		perf_mux_hrtimer_restart(cpuctx);
1997
		return -EAGAIN;
1998
	}
1999 2000 2001 2002

	/*
	 * Schedule in siblings as one group (if any):
	 */
2003
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2004
		if (event_sched_in(event, cpuctx, ctx)) {
2005
			partial_group = event;
2006 2007 2008 2009
			goto group_error;
		}
	}

2010
	if (!pmu->commit_txn(pmu))
2011
		return 0;
2012

2013 2014 2015 2016
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2027
	 */
2028 2029
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2030 2031 2032 2033 2034 2035 2036 2037
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2038
	}
2039
	event_sched_out(group_event, cpuctx, ctx);
2040

P
Peter Zijlstra 已提交
2041
	pmu->cancel_txn(pmu);
2042

2043
	perf_mux_hrtimer_restart(cpuctx);
2044

2045 2046 2047
	return -EAGAIN;
}

2048
/*
2049
 * Work out whether we can put this event group on the CPU now.
2050
 */
2051
static int group_can_go_on(struct perf_event *event,
2052 2053 2054 2055
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2056
	 * Groups consisting entirely of software events can always go on.
2057
	 */
2058
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2059 2060 2061
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2062
	 * events can go on.
2063 2064 2065 2066 2067
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2068
	 * events on the CPU, it can't go on.
2069
	 */
2070
	if (event->attr.exclusive && cpuctx->active_oncpu)
2071 2072 2073 2074 2075 2076 2077 2078
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2079 2080
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2081
{
2082 2083
	u64 tstamp = perf_event_time(event);

2084
	list_add_event(event, ctx);
2085
	perf_group_attach(event);
2086 2087 2088
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2089 2090
}

2091 2092 2093
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2094 2095 2096 2097 2098
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2124 2125
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2126
{
2127 2128 2129 2130 2131 2132
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2133 2134
}

T
Thomas Gleixner 已提交
2135
/*
2136
 * Cross CPU call to install and enable a performance event
2137
 *
2138 2139
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2140
 */
2141
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2142
{
2143 2144
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2145
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2146
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2147 2148
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2149

2150
	raw_spin_lock(&cpuctx->ctx.lock);
2151
	if (ctx->task) {
2152 2153
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2154 2155 2156 2157

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2158
			goto unlock;
2159
		}
2160

2161
		/*
2162 2163 2164
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2165
		 */
2166 2167 2168 2169 2170
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2171 2172
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2173
	}
2174

2175 2176 2177 2178 2179 2180 2181 2182
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2183
unlock:
2184
	perf_ctx_unlock(cpuctx, task_ctx);
2185

2186
	return ret;
T
Thomas Gleixner 已提交
2187 2188 2189
}

/*
2190 2191 2192
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2193 2194
 */
static void
2195 2196
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2197 2198
			int cpu)
{
2199
	struct task_struct *task = READ_ONCE(ctx->task);
2200

2201 2202
	lockdep_assert_held(&ctx->mutex);

2203
	event->ctx = ctx;
2204 2205
	if (event->cpu != -1)
		event->cpu = cpu;
2206

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2218 2219 2220 2221
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2222
again:
2223
	/*
2224 2225
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2226
	 */
2227 2228 2229 2230 2231
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2232
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2233 2234 2235 2236 2237
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2238 2239 2240
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2241 2242
	raw_spin_unlock_irq(&ctx->lock);
	/*
2243 2244
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2245
	 */
2246
	goto again;
T
Thomas Gleixner 已提交
2247 2248
}

2249
/*
2250
 * Put a event into inactive state and update time fields.
2251 2252 2253 2254 2255 2256
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2257
static void __perf_event_mark_enabled(struct perf_event *event)
2258
{
2259
	struct perf_event *sub;
2260
	u64 tstamp = perf_event_time(event);
2261

2262
	event->state = PERF_EVENT_STATE_INACTIVE;
2263
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2264
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2265 2266
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2267
	}
2268 2269
}

2270
/*
2271
 * Cross CPU call to enable a performance event
2272
 */
2273 2274 2275 2276
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2277
{
2278
	struct perf_event *leader = event->group_leader;
2279
	struct perf_event_context *task_ctx;
2280

P
Peter Zijlstra 已提交
2281 2282
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2283
		return;
2284

2285 2286 2287
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2288
	__perf_event_mark_enabled(event);
2289

2290 2291 2292
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2293
	if (!event_filter_match(event)) {
2294
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2295
			perf_cgroup_defer_enabled(event);
2296
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2297
		return;
S
Stephane Eranian 已提交
2298
	}
2299

2300
	/*
2301
	 * If the event is in a group and isn't the group leader,
2302
	 * then don't put it on unless the group is on.
2303
	 */
2304 2305
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2306
		return;
2307
	}
2308

2309 2310 2311
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2312

2313
	ctx_resched(cpuctx, task_ctx);
2314 2315
}

2316
/*
2317
 * Enable a event.
2318
 *
2319 2320
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2321
 * remains valid.  This condition is satisfied when called through
2322 2323
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2324
 */
P
Peter Zijlstra 已提交
2325
static void _perf_event_enable(struct perf_event *event)
2326
{
2327
	struct perf_event_context *ctx = event->ctx;
2328

2329
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2330 2331
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2332
		raw_spin_unlock_irq(&ctx->lock);
2333 2334 2335 2336
		return;
	}

	/*
2337
	 * If the event is in error state, clear that first.
2338 2339 2340 2341
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2342
	 */
2343 2344
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2345
	raw_spin_unlock_irq(&ctx->lock);
2346

2347
	event_function_call(event, __perf_event_enable, NULL);
2348
}
P
Peter Zijlstra 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2361
EXPORT_SYMBOL_GPL(perf_event_enable);
2362

P
Peter Zijlstra 已提交
2363
static int _perf_event_refresh(struct perf_event *event, int refresh)
2364
{
2365
	/*
2366
	 * not supported on inherited events
2367
	 */
2368
	if (event->attr.inherit || !is_sampling_event(event))
2369 2370
		return -EINVAL;

2371
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2372
	_perf_event_enable(event);
2373 2374

	return 0;
2375
}
P
Peter Zijlstra 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2391
EXPORT_SYMBOL_GPL(perf_event_refresh);
2392

2393 2394 2395
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2396
{
2397
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2398
	struct perf_event *event;
2399

P
Peter Zijlstra 已提交
2400
	lockdep_assert_held(&ctx->lock);
2401

2402 2403 2404 2405 2406 2407 2408
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2409
		return;
2410 2411
	}

2412
	ctx->is_active &= ~event_type;
2413 2414 2415
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2416 2417 2418 2419 2420
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2421

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2432 2433 2434 2435 2436 2437
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2438 2439
	is_active ^= ctx->is_active; /* changed bits */

2440
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2441
		return;
2442

P
Peter Zijlstra 已提交
2443
	perf_pmu_disable(ctx->pmu);
2444
	if (is_active & EVENT_PINNED) {
2445 2446
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2447
	}
2448

2449
	if (is_active & EVENT_FLEXIBLE) {
2450
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2451
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2452
	}
P
Peter Zijlstra 已提交
2453
	perf_pmu_enable(ctx->pmu);
2454 2455
}

2456
/*
2457 2458 2459 2460 2461 2462
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2463
 */
2464 2465
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2466
{
2467 2468 2469
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2492 2493
}

2494 2495
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2496 2497 2498
{
	u64 value;

2499
	if (!event->attr.inherit_stat)
2500 2501 2502
		return;

	/*
2503
	 * Update the event value, we cannot use perf_event_read()
2504 2505
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2506
	 * we know the event must be on the current CPU, therefore we
2507 2508
	 * don't need to use it.
	 */
2509 2510
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2511 2512
		event->pmu->read(event);
		/* fall-through */
2513

2514 2515
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2516 2517 2518 2519 2520 2521 2522
		break;

	default:
		break;
	}

	/*
2523
	 * In order to keep per-task stats reliable we need to flip the event
2524 2525
	 * values when we flip the contexts.
	 */
2526 2527 2528
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2529

2530 2531
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2532

2533
	/*
2534
	 * Since we swizzled the values, update the user visible data too.
2535
	 */
2536 2537
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2538 2539
}

2540 2541
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2542
{
2543
	struct perf_event *event, *next_event;
2544 2545 2546 2547

	if (!ctx->nr_stat)
		return;

2548 2549
	update_context_time(ctx);

2550 2551
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2552

2553 2554
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2555

2556 2557
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2558

2559
		__perf_event_sync_stat(event, next_event);
2560

2561 2562
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2563 2564 2565
	}
}

2566 2567
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2568
{
P
Peter Zijlstra 已提交
2569
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2570
	struct perf_event_context *next_ctx;
2571
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2572
	struct perf_cpu_context *cpuctx;
2573
	int do_switch = 1;
T
Thomas Gleixner 已提交
2574

P
Peter Zijlstra 已提交
2575 2576
	if (likely(!ctx))
		return;
2577

P
Peter Zijlstra 已提交
2578 2579
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2580 2581
		return;

2582
	rcu_read_lock();
P
Peter Zijlstra 已提交
2583
	next_ctx = next->perf_event_ctxp[ctxn];
2584 2585 2586 2587 2588 2589 2590
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2591
	if (!parent && !next_parent)
2592 2593 2594
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2595 2596 2597 2598 2599 2600 2601 2602 2603
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2604 2605
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2606
		if (context_equiv(ctx, next_ctx)) {
2607 2608
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2609 2610 2611

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2622
			do_switch = 0;
2623

2624
			perf_event_sync_stat(ctx, next_ctx);
2625
		}
2626 2627
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2628
	}
2629
unlock:
2630
	rcu_read_unlock();
2631

2632
	if (do_switch) {
2633
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2634
		task_ctx_sched_out(cpuctx, ctx);
2635
		raw_spin_unlock(&ctx->lock);
2636
	}
T
Thomas Gleixner 已提交
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2689 2690 2691
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2706 2707
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2708 2709 2710
{
	int ctxn;

2711 2712 2713
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2714 2715 2716
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2717 2718
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2719 2720 2721 2722 2723 2724

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2725
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2726
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2727 2728
}

2729 2730 2731 2732 2733 2734 2735
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2736 2737
}

2738
static void
2739
ctx_pinned_sched_in(struct perf_event_context *ctx,
2740
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2741
{
2742
	struct perf_event *event;
T
Thomas Gleixner 已提交
2743

2744 2745
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2746
			continue;
2747
		if (!event_filter_match(event))
2748 2749
			continue;

S
Stephane Eranian 已提交
2750 2751 2752 2753
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2754
		if (group_can_go_on(event, cpuctx, 1))
2755
			group_sched_in(event, cpuctx, ctx);
2756 2757 2758 2759 2760

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2761 2762 2763
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2764
		}
2765
	}
2766 2767 2768 2769
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2770
		      struct perf_cpu_context *cpuctx)
2771 2772 2773
{
	struct perf_event *event;
	int can_add_hw = 1;
2774

2775 2776 2777
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2778
			continue;
2779 2780
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2781
		 * of events:
2782
		 */
2783
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2784 2785
			continue;

S
Stephane Eranian 已提交
2786 2787 2788 2789
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2790
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2791
			if (group_sched_in(event, cpuctx, ctx))
2792
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2793
		}
T
Thomas Gleixner 已提交
2794
	}
2795 2796 2797 2798 2799
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2800 2801
	     enum event_type_t event_type,
	     struct task_struct *task)
2802
{
2803
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2804 2805 2806
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2807

2808
	if (likely(!ctx->nr_events))
2809
		return;
2810

2811
	ctx->is_active |= (event_type | EVENT_TIME);
2812 2813 2814 2815 2816 2817 2818
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

2819 2820 2821 2822 2823 2824 2825 2826 2827
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

2828 2829 2830 2831
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2832
	if (is_active & EVENT_PINNED)
2833
		ctx_pinned_sched_in(ctx, cpuctx);
2834 2835

	/* Then walk through the lower prio flexible groups */
2836
	if (is_active & EVENT_FLEXIBLE)
2837
		ctx_flexible_sched_in(ctx, cpuctx);
2838 2839
}

2840
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2841 2842
			     enum event_type_t event_type,
			     struct task_struct *task)
2843 2844 2845
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2846
	ctx_sched_in(ctx, cpuctx, event_type, task);
2847 2848
}

S
Stephane Eranian 已提交
2849 2850
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2851
{
P
Peter Zijlstra 已提交
2852
	struct perf_cpu_context *cpuctx;
2853

P
Peter Zijlstra 已提交
2854
	cpuctx = __get_cpu_context(ctx);
2855 2856 2857
	if (cpuctx->task_ctx == ctx)
		return;

2858
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2859
	perf_pmu_disable(ctx->pmu);
2860 2861 2862 2863 2864 2865
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2866
	perf_event_sched_in(cpuctx, ctx, task);
2867 2868
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2869 2870
}

P
Peter Zijlstra 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2882 2883
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2884 2885 2886 2887
{
	struct perf_event_context *ctx;
	int ctxn;

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2898 2899 2900 2901 2902
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2903
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2904
	}
2905

2906 2907 2908
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2909 2910
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2911 2912
}

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2940
#define REDUCE_FLS(a, b)		\
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2980 2981 2982
	if (!divisor)
		return dividend;

2983 2984 2985
	return div64_u64(dividend, divisor);
}

2986 2987 2988
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2989
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2990
{
2991
	struct hw_perf_event *hwc = &event->hw;
2992
	s64 period, sample_period;
2993 2994
	s64 delta;

2995
	period = perf_calculate_period(event, nsec, count);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3006

3007
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3008 3009 3010
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3011
		local64_set(&hwc->period_left, 0);
3012 3013 3014

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3015
	}
3016 3017
}

3018 3019 3020 3021 3022 3023 3024
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3025
{
3026 3027
	struct perf_event *event;
	struct hw_perf_event *hwc;
3028
	u64 now, period = TICK_NSEC;
3029
	s64 delta;
3030

3031 3032 3033 3034 3035 3036
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3037 3038
		return;

3039
	raw_spin_lock(&ctx->lock);
3040
	perf_pmu_disable(ctx->pmu);
3041

3042
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3043
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3044 3045
			continue;

3046
		if (!event_filter_match(event))
3047 3048
			continue;

3049 3050
		perf_pmu_disable(event->pmu);

3051
		hwc = &event->hw;
3052

3053
		if (hwc->interrupts == MAX_INTERRUPTS) {
3054
			hwc->interrupts = 0;
3055
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3056
			event->pmu->start(event, 0);
3057 3058
		}

3059
		if (!event->attr.freq || !event->attr.sample_freq)
3060
			goto next;
3061

3062 3063 3064 3065 3066
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3067
		now = local64_read(&event->count);
3068 3069
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3070

3071 3072 3073
		/*
		 * restart the event
		 * reload only if value has changed
3074 3075 3076
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3077
		 */
3078
		if (delta > 0)
3079
			perf_adjust_period(event, period, delta, false);
3080 3081

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3082 3083
	next:
		perf_pmu_enable(event->pmu);
3084
	}
3085

3086
	perf_pmu_enable(ctx->pmu);
3087
	raw_spin_unlock(&ctx->lock);
3088 3089
}

3090
/*
3091
 * Round-robin a context's events:
3092
 */
3093
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3094
{
3095 3096 3097 3098 3099 3100
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3101 3102
}

3103
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3104
{
P
Peter Zijlstra 已提交
3105
	struct perf_event_context *ctx = NULL;
3106
	int rotate = 0;
3107

3108 3109 3110 3111
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3112

P
Peter Zijlstra 已提交
3113
	ctx = cpuctx->task_ctx;
3114 3115 3116 3117
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3118

3119
	if (!rotate)
3120 3121
		goto done;

3122
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3123
	perf_pmu_disable(cpuctx->ctx.pmu);
3124

3125 3126 3127
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3128

3129 3130 3131
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3132

3133
	perf_event_sched_in(cpuctx, ctx, current);
3134

3135 3136
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3137
done:
3138 3139

	return rotate;
3140 3141 3142 3143
}

void perf_event_task_tick(void)
{
3144 3145
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3146
	int throttled;
3147

3148 3149
	WARN_ON(!irqs_disabled());

3150 3151
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3152
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3153

3154
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3155
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3156 3157
}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3168
	__perf_event_mark_enabled(event);
3169 3170 3171 3172

	return 1;
}

3173
/*
3174
 * Enable all of a task's events that have been marked enable-on-exec.
3175 3176
 * This expects task == current.
 */
3177
static void perf_event_enable_on_exec(int ctxn)
3178
{
3179
	struct perf_event_context *ctx, *clone_ctx = NULL;
3180
	struct perf_cpu_context *cpuctx;
3181
	struct perf_event *event;
3182 3183 3184 3185
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3186
	ctx = current->perf_event_ctxp[ctxn];
3187
	if (!ctx || !ctx->nr_events)
3188 3189
		goto out;

3190 3191
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3192
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3193 3194
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3195 3196

	/*
3197
	 * Unclone and reschedule this context if we enabled any event.
3198
	 */
3199
	if (enabled) {
3200
		clone_ctx = unclone_ctx(ctx);
3201 3202 3203
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3204

P
Peter Zijlstra 已提交
3205
out:
3206
	local_irq_restore(flags);
3207 3208 3209

	if (clone_ctx)
		put_ctx(clone_ctx);
3210 3211
}

3212 3213 3214 3215 3216
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3217 3218
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3219 3220 3221
	rcu_read_unlock();
}

3222 3223 3224
struct perf_read_data {
	struct perf_event *event;
	bool group;
3225
	int ret;
3226 3227
};

T
Thomas Gleixner 已提交
3228
/*
3229
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3230
 */
3231
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3232
{
3233 3234
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3235
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3236
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3238

3239 3240 3241 3242
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3243 3244
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3245 3246 3247 3248
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3249
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3250
	if (ctx->is_active) {
3251
		update_context_time(ctx);
S
Stephane Eranian 已提交
3252 3253
		update_cgrp_time_from_event(event);
	}
3254

3255
	update_event_times(event);
3256 3257
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3258

3259 3260 3261
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3262
		goto unlock;
3263 3264 3265 3266 3267
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3268 3269 3270

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3271 3272 3273 3274 3275
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3276
			sub->pmu->read(sub);
3277
		}
3278
	}
3279 3280

	data->ret = pmu->commit_txn(pmu);
3281 3282

unlock:
3283
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3284 3285
}

P
Peter Zijlstra 已提交
3286 3287
static inline u64 perf_event_count(struct perf_event *event)
{
3288 3289 3290 3291
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3292 3293
}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3347
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3348
{
3349 3350
	int ret = 0;

T
Thomas Gleixner 已提交
3351
	/*
3352 3353
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3354
	 */
3355
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356 3357 3358
		struct perf_read_data data = {
			.event = event,
			.group = group,
3359
			.ret = 0,
3360
		};
3361
		smp_call_function_single(event->oncpu,
3362
					 __perf_event_read, &data, 1);
3363
		ret = data.ret;
3364
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3365 3366 3367
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3368
		raw_spin_lock_irqsave(&ctx->lock, flags);
3369 3370 3371 3372 3373
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3374
		if (ctx->is_active) {
3375
			update_context_time(ctx);
S
Stephane Eranian 已提交
3376 3377
			update_cgrp_time_from_event(event);
		}
3378 3379 3380 3381
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3382
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3383
	}
3384 3385

	return ret;
T
Thomas Gleixner 已提交
3386 3387
}

3388
/*
3389
 * Initialize the perf_event context in a task_struct:
3390
 */
3391
static void __perf_event_init_context(struct perf_event_context *ctx)
3392
{
3393
	raw_spin_lock_init(&ctx->lock);
3394
	mutex_init(&ctx->mutex);
3395
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3396 3397
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3398 3399
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3415
	}
3416 3417 3418
	ctx->pmu = pmu;

	return ctx;
3419 3420
}

3421 3422 3423 3424
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3425 3426

	rcu_read_lock();
3427
	if (!vpid)
T
Thomas Gleixner 已提交
3428 3429
		task = current;
	else
3430
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3431 3432 3433 3434 3435 3436 3437
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3438 3439 3440
	return task;
}

3441 3442 3443
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3444
static struct perf_event_context *
3445 3446
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3447
{
3448
	struct perf_event_context *ctx, *clone_ctx = NULL;
3449
	struct perf_cpu_context *cpuctx;
3450
	void *task_ctx_data = NULL;
3451
	unsigned long flags;
P
Peter Zijlstra 已提交
3452
	int ctxn, err;
3453
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3454

3455
	if (!task) {
3456
		/* Must be root to operate on a CPU event: */
3457
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3458 3459 3460
			return ERR_PTR(-EACCES);

		/*
3461
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3462 3463 3464
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3465
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3466 3467
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3468
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3469
		ctx = &cpuctx->ctx;
3470
		get_ctx(ctx);
3471
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3472 3473 3474 3475

		return ctx;
	}

P
Peter Zijlstra 已提交
3476 3477 3478 3479 3480
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3481 3482 3483 3484 3485 3486 3487 3488
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3489
retry:
P
Peter Zijlstra 已提交
3490
	ctx = perf_lock_task_context(task, ctxn, &flags);
3491
	if (ctx) {
3492
		clone_ctx = unclone_ctx(ctx);
3493
		++ctx->pin_count;
3494 3495 3496 3497 3498

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3499
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3500 3501 3502

		if (clone_ctx)
			put_ctx(clone_ctx);
3503
	} else {
3504
		ctx = alloc_perf_context(pmu, task);
3505 3506 3507
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3508

3509 3510 3511 3512 3513
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3524
		else {
3525
			get_ctx(ctx);
3526
			++ctx->pin_count;
3527
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3528
		}
3529 3530 3531
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3532
			put_ctx(ctx);
3533 3534 3535 3536

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3537 3538 3539
		}
	}

3540
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3541
	return ctx;
3542

P
Peter Zijlstra 已提交
3543
errout:
3544
	kfree(task_ctx_data);
3545
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3546 3547
}

L
Li Zefan 已提交
3548
static void perf_event_free_filter(struct perf_event *event);
3549
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3550

3551
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3552
{
3553
	struct perf_event *event;
P
Peter Zijlstra 已提交
3554

3555 3556 3557
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3558
	perf_event_free_filter(event);
3559
	kfree(event);
P
Peter Zijlstra 已提交
3560 3561
}

3562 3563
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3564

3565
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3566
{
3567 3568 3569 3570 3571 3572
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3573

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3596 3597
static void unaccount_event(struct perf_event *event)
{
3598 3599
	bool dec = false;

3600 3601 3602 3603
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3604
		dec = true;
3605 3606 3607 3608 3609 3610
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3611
	if (event->attr.freq)
3612
		unaccount_freq_event();
3613
	if (event->attr.context_switch) {
3614
		dec = true;
3615 3616
		atomic_dec(&nr_switch_events);
	}
3617
	if (is_cgroup_event(event))
3618
		dec = true;
3619
	if (has_branch_stack(event))
3620 3621
		dec = true;

3622 3623 3624 3625
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3626 3627 3628

	unaccount_event_cpu(event, event->cpu);
}
3629

3630 3631 3632 3633 3634 3635 3636 3637
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3648
 * _free_event()), the latter -- before the first perf_install_in_context().
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3723
static void _free_event(struct perf_event *event)
3724
{
3725
	irq_work_sync(&event->pending);
3726

3727
	unaccount_event(event);
3728

3729
	if (event->rb) {
3730 3731 3732 3733 3734 3735 3736
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3737
		ring_buffer_attach(event, NULL);
3738
		mutex_unlock(&event->mmap_mutex);
3739 3740
	}

S
Stephane Eranian 已提交
3741 3742 3743
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3763 3764
}

P
Peter Zijlstra 已提交
3765 3766 3767 3768 3769
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3770
{
P
Peter Zijlstra 已提交
3771 3772 3773 3774 3775 3776
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3777

P
Peter Zijlstra 已提交
3778
	_free_event(event);
T
Thomas Gleixner 已提交
3779 3780
}

3781
/*
3782
 * Remove user event from the owner task.
3783
 */
3784
static void perf_remove_from_owner(struct perf_event *event)
3785
{
P
Peter Zijlstra 已提交
3786
	struct task_struct *owner;
3787

P
Peter Zijlstra 已提交
3788 3789
	rcu_read_lock();
	/*
3790 3791 3792
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3793 3794
	 * owner->perf_event_mutex.
	 */
3795
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3817 3818 3819 3820 3821 3822
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3823
		if (event->owner) {
P
Peter Zijlstra 已提交
3824
			list_del_init(&event->owner_entry);
3825 3826
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3827 3828 3829
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3830 3831 3832 3833 3834 3835 3836
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
3847
	struct perf_event_context *ctx = event->ctx;
3848 3849
	struct perf_event *child, *tmp;

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

3860 3861
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3862

3863
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3864
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3865
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
3866

P
Peter Zijlstra 已提交
3867
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
3868
	/*
P
Peter Zijlstra 已提交
3869 3870
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
3871
	 *
P
Peter Zijlstra 已提交
3872 3873 3874
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
3875
	 *
3876 3877
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3878
	 */
P
Peter Zijlstra 已提交
3879 3880 3881 3882
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3883

3884 3885 3886
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3887

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

3937 3938
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
3939 3940 3941 3942
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3943 3944 3945
/*
 * Called when the last reference to the file is gone.
 */
3946 3947
static int perf_release(struct inode *inode, struct file *file)
{
3948
	perf_event_release_kernel(file->private_data);
3949
	return 0;
3950 3951
}

3952
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3953
{
3954
	struct perf_event *child;
3955 3956
	u64 total = 0;

3957 3958 3959
	*enabled = 0;
	*running = 0;

3960
	mutex_lock(&event->child_mutex);
3961

3962
	(void)perf_event_read(event, false);
3963 3964
	total += perf_event_count(event);

3965 3966 3967 3968 3969 3970
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3971
		(void)perf_event_read(child, false);
3972
		total += perf_event_count(child);
3973 3974 3975
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3976
	mutex_unlock(&event->child_mutex);
3977 3978 3979

	return total;
}
3980
EXPORT_SYMBOL_GPL(perf_event_read_value);
3981

3982
static int __perf_read_group_add(struct perf_event *leader,
3983
					u64 read_format, u64 *values)
3984
{
3985 3986
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3987
	int ret;
P
Peter Zijlstra 已提交
3988

3989 3990 3991
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3992

3993 3994 3995 3996 3997 3998 3999 4000 4001
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4002

4003 4004 4005 4006 4007 4008 4009 4010 4011
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4012 4013
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4014

4015 4016 4017 4018 4019
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4020 4021

	return 0;
4022
}
4023

4024 4025 4026 4027 4028
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4029
	int ret;
4030
	u64 *values;
4031

4032
	lockdep_assert_held(&ctx->mutex);
4033

4034 4035 4036
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4037

4038 4039 4040 4041 4042 4043 4044
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4055

4056
	mutex_unlock(&leader->child_mutex);
4057

4058
	ret = event->read_size;
4059 4060
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4061
	goto out;
4062

4063 4064 4065
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4066
	kfree(values);
4067
	return ret;
4068 4069
}

4070
static int perf_read_one(struct perf_event *event,
4071 4072
				 u64 read_format, char __user *buf)
{
4073
	u64 enabled, running;
4074 4075 4076
	u64 values[4];
	int n = 0;

4077 4078 4079 4080 4081
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4082
	if (read_format & PERF_FORMAT_ID)
4083
		values[n++] = primary_event_id(event);
4084 4085 4086 4087 4088 4089 4090

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4091 4092 4093 4094
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4095
	if (event->state > PERF_EVENT_STATE_EXIT)
4096 4097 4098 4099 4100 4101 4102 4103
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4104
/*
4105
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4106 4107
 */
static ssize_t
4108
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4109
{
4110
	u64 read_format = event->attr.read_format;
4111
	int ret;
T
Thomas Gleixner 已提交
4112

4113
	/*
4114
	 * Return end-of-file for a read on a event that is in
4115 4116 4117
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4118
	if (event->state == PERF_EVENT_STATE_ERROR)
4119 4120
		return 0;

4121
	if (count < event->read_size)
4122 4123
		return -ENOSPC;

4124
	WARN_ON_ONCE(event->ctx->parent_ctx);
4125
	if (read_format & PERF_FORMAT_GROUP)
4126
		ret = perf_read_group(event, read_format, buf);
4127
	else
4128
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4129

4130
	return ret;
T
Thomas Gleixner 已提交
4131 4132 4133 4134 4135
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4136
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4137 4138
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4139

P
Peter Zijlstra 已提交
4140
	ctx = perf_event_ctx_lock(event);
4141
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4142 4143 4144
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4145 4146 4147 4148
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4149
	struct perf_event *event = file->private_data;
4150
	struct ring_buffer *rb;
4151
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4152

4153
	poll_wait(file, &event->waitq, wait);
4154

4155
	if (is_event_hup(event))
4156
		return events;
P
Peter Zijlstra 已提交
4157

4158
	/*
4159 4160
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4161 4162
	 */
	mutex_lock(&event->mmap_mutex);
4163 4164
	rb = event->rb;
	if (rb)
4165
		events = atomic_xchg(&rb->poll, 0);
4166
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4167 4168 4169
	return events;
}

P
Peter Zijlstra 已提交
4170
static void _perf_event_reset(struct perf_event *event)
4171
{
4172
	(void)perf_event_read(event, false);
4173
	local64_set(&event->count, 0);
4174
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4175 4176
}

4177
/*
4178 4179
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4180
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4181
 * task existence requirements of perf_event_enable/disable.
4182
 */
4183 4184
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4185
{
4186
	struct perf_event *child;
P
Peter Zijlstra 已提交
4187

4188
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4189

4190 4191 4192
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4193
		func(child);
4194
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4195 4196
}

4197 4198
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4199
{
4200 4201
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4202

P
Peter Zijlstra 已提交
4203 4204
	lockdep_assert_held(&ctx->mutex);

4205
	event = event->group_leader;
4206

4207 4208
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4209
		perf_event_for_each_child(sibling, func);
4210 4211
}

4212 4213 4214 4215
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4216
{
4217
	u64 value = *((u64 *)info);
4218
	bool active;
4219

4220 4221
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4222
	} else {
4223 4224
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4225
	}
4226 4227 4228 4229

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4230 4231 4232 4233 4234 4235 4236 4237
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4238 4239 4240 4241 4242 4243 4244 4245 4246
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4265
	event_function_call(event, __perf_event_period, &value);
4266

4267
	return 0;
4268 4269
}

4270 4271
static const struct file_operations perf_fops;

4272
static inline int perf_fget_light(int fd, struct fd *p)
4273
{
4274 4275 4276
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4277

4278 4279 4280
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4281
	}
4282 4283
	*p = f;
	return 0;
4284 4285 4286 4287
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4288
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4289
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4290

P
Peter Zijlstra 已提交
4291
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4292
{
4293
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4294
	u32 flags = arg;
4295 4296

	switch (cmd) {
4297
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4298
		func = _perf_event_enable;
4299
		break;
4300
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4301
		func = _perf_event_disable;
4302
		break;
4303
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4304
		func = _perf_event_reset;
4305
		break;
P
Peter Zijlstra 已提交
4306

4307
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4308
		return _perf_event_refresh(event, arg);
4309

4310 4311
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4312

4313 4314 4315 4316 4317 4318 4319 4320 4321
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4322
	case PERF_EVENT_IOC_SET_OUTPUT:
4323 4324 4325
	{
		int ret;
		if (arg != -1) {
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4336 4337 4338
		}
		return ret;
	}
4339

L
Li Zefan 已提交
4340 4341 4342
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4343 4344 4345
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4346
	default:
P
Peter Zijlstra 已提交
4347
		return -ENOTTY;
4348
	}
P
Peter Zijlstra 已提交
4349 4350

	if (flags & PERF_IOC_FLAG_GROUP)
4351
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4352
	else
4353
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4354 4355

	return 0;
4356 4357
}

P
Peter Zijlstra 已提交
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4391
int perf_event_task_enable(void)
4392
{
P
Peter Zijlstra 已提交
4393
	struct perf_event_context *ctx;
4394
	struct perf_event *event;
4395

4396
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4397 4398 4399 4400 4401
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4402
	mutex_unlock(&current->perf_event_mutex);
4403 4404 4405 4406

	return 0;
}

4407
int perf_event_task_disable(void)
4408
{
P
Peter Zijlstra 已提交
4409
	struct perf_event_context *ctx;
4410
	struct perf_event *event;
4411

4412
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4413 4414 4415 4416 4417
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4418
	mutex_unlock(&current->perf_event_mutex);
4419 4420 4421 4422

	return 0;
}

4423
static int perf_event_index(struct perf_event *event)
4424
{
P
Peter Zijlstra 已提交
4425 4426 4427
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4428
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4429 4430
		return 0;

4431
	return event->pmu->event_idx(event);
4432 4433
}

4434
static void calc_timer_values(struct perf_event *event,
4435
				u64 *now,
4436 4437
				u64 *enabled,
				u64 *running)
4438
{
4439
	u64 ctx_time;
4440

4441 4442
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4443 4444 4445 4446
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4462 4463
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4464 4465 4466 4467 4468

unlock:
	rcu_read_unlock();
}

4469 4470
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4471 4472 4473
{
}

4474 4475 4476 4477 4478
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4479
void perf_event_update_userpage(struct perf_event *event)
4480
{
4481
	struct perf_event_mmap_page *userpg;
4482
	struct ring_buffer *rb;
4483
	u64 enabled, running, now;
4484 4485

	rcu_read_lock();
4486 4487 4488 4489
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4490 4491 4492 4493 4494 4495 4496 4497 4498
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4499
	calc_timer_values(event, &now, &enabled, &running);
4500

4501
	userpg = rb->user_page;
4502 4503 4504 4505 4506
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4507
	++userpg->lock;
4508
	barrier();
4509
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4510
	userpg->offset = perf_event_count(event);
4511
	if (userpg->index)
4512
		userpg->offset -= local64_read(&event->hw.prev_count);
4513

4514
	userpg->time_enabled = enabled +
4515
			atomic64_read(&event->child_total_time_enabled);
4516

4517
	userpg->time_running = running +
4518
			atomic64_read(&event->child_total_time_running);
4519

4520
	arch_perf_update_userpage(event, userpg, now);
4521

4522
	barrier();
4523
	++userpg->lock;
4524
	preempt_enable();
4525
unlock:
4526
	rcu_read_unlock();
4527 4528
}

4529 4530 4531
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4532
	struct ring_buffer *rb;
4533 4534 4535 4536 4537 4538 4539 4540 4541
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4542 4543
	rb = rcu_dereference(event->rb);
	if (!rb)
4544 4545 4546 4547 4548
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4549
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4564 4565 4566
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4567
	struct ring_buffer *old_rb = NULL;
4568 4569
	unsigned long flags;

4570 4571 4572 4573 4574 4575
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4576

4577 4578 4579 4580
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4581

4582 4583
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4584
	}
4585

4586
	if (rb) {
4587 4588 4589 4590 4591
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4608 4609 4610 4611 4612 4613 4614 4615
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4616 4617 4618 4619
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4620 4621 4622
	rcu_read_unlock();
}

4623
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4624
{
4625
	struct ring_buffer *rb;
4626

4627
	rcu_read_lock();
4628 4629 4630 4631
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4632 4633 4634
	}
	rcu_read_unlock();

4635
	return rb;
4636 4637
}

4638
void ring_buffer_put(struct ring_buffer *rb)
4639
{
4640
	if (!atomic_dec_and_test(&rb->refcount))
4641
		return;
4642

4643
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4644

4645
	call_rcu(&rb->rcu_head, rb_free_rcu);
4646 4647 4648 4649
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4650
	struct perf_event *event = vma->vm_file->private_data;
4651

4652
	atomic_inc(&event->mmap_count);
4653
	atomic_inc(&event->rb->mmap_count);
4654

4655 4656 4657
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4658 4659
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4660 4661
}

4662 4663 4664 4665 4666 4667 4668 4669
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4670 4671
static void perf_mmap_close(struct vm_area_struct *vma)
{
4672
	struct perf_event *event = vma->vm_file->private_data;
4673

4674
	struct ring_buffer *rb = ring_buffer_get(event);
4675 4676 4677
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4678

4679 4680 4681
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4696 4697 4698
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4699
		goto out_put;
4700

4701
	ring_buffer_attach(event, NULL);
4702 4703 4704
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4705 4706
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4707

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4724

4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4736 4737 4738
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4739
		mutex_unlock(&event->mmap_mutex);
4740
		put_event(event);
4741

4742 4743 4744 4745 4746
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4747
	}
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4763
out_put:
4764
	ring_buffer_put(rb); /* could be last */
4765 4766
}

4767
static const struct vm_operations_struct perf_mmap_vmops = {
4768
	.open		= perf_mmap_open,
4769
	.close		= perf_mmap_close, /* non mergable */
4770 4771
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4772 4773 4774 4775
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4776
	struct perf_event *event = file->private_data;
4777
	unsigned long user_locked, user_lock_limit;
4778
	struct user_struct *user = current_user();
4779
	unsigned long locked, lock_limit;
4780
	struct ring_buffer *rb = NULL;
4781 4782
	unsigned long vma_size;
	unsigned long nr_pages;
4783
	long user_extra = 0, extra = 0;
4784
	int ret = 0, flags = 0;
4785

4786 4787 4788
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4789
	 * same rb.
4790 4791 4792 4793
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4794
	if (!(vma->vm_flags & VM_SHARED))
4795
		return -EINVAL;
4796 4797

	vma_size = vma->vm_end - vma->vm_start;
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4858

4859
	/*
4860
	 * If we have rb pages ensure they're a power-of-two number, so we
4861 4862
	 * can do bitmasks instead of modulo.
	 */
4863
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4864 4865
		return -EINVAL;

4866
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4867 4868
		return -EINVAL;

4869
	WARN_ON_ONCE(event->ctx->parent_ctx);
4870
again:
4871
	mutex_lock(&event->mmap_mutex);
4872
	if (event->rb) {
4873
		if (event->rb->nr_pages != nr_pages) {
4874
			ret = -EINVAL;
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4888 4889 4890
		goto unlock;
	}

4891
	user_extra = nr_pages + 1;
4892 4893

accounting:
4894
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4895 4896 4897 4898 4899 4900

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4901
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4902

4903 4904
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4905

4906
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4907
	lock_limit >>= PAGE_SHIFT;
4908
	locked = vma->vm_mm->pinned_vm + extra;
4909

4910 4911
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4912 4913 4914
		ret = -EPERM;
		goto unlock;
	}
4915

4916
	WARN_ON(!rb && event->rb);
4917

4918
	if (vma->vm_flags & VM_WRITE)
4919
		flags |= RING_BUFFER_WRITABLE;
4920

4921
	if (!rb) {
4922 4923 4924
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4925

4926 4927 4928 4929
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4930

4931 4932 4933
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4934

4935
		ring_buffer_attach(event, rb);
4936

4937 4938 4939
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4940 4941
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4942 4943 4944
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4945

4946
unlock:
4947 4948 4949 4950
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4951
		atomic_inc(&event->mmap_count);
4952 4953 4954 4955
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4956
	mutex_unlock(&event->mmap_mutex);
4957

4958 4959 4960 4961
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4962
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4963
	vma->vm_ops = &perf_mmap_vmops;
4964

4965 4966 4967
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4968
	return ret;
4969 4970
}

P
Peter Zijlstra 已提交
4971 4972
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4973
	struct inode *inode = file_inode(filp);
4974
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4975 4976
	int retval;

A
Al Viro 已提交
4977
	inode_lock(inode);
4978
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
4979
	inode_unlock(inode);
P
Peter Zijlstra 已提交
4980 4981 4982 4983 4984 4985 4986

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4987
static const struct file_operations perf_fops = {
4988
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4989 4990 4991
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4992
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4993
	.compat_ioctl		= perf_compat_ioctl,
4994
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4995
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4996 4997
};

4998
/*
4999
 * Perf event wakeup
5000 5001 5002 5003 5004
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5005 5006 5007 5008 5009 5010 5011 5012
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5013
void perf_event_wakeup(struct perf_event *event)
5014
{
5015
	ring_buffer_wakeup(event);
5016

5017
	if (event->pending_kill) {
5018
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5019
		event->pending_kill = 0;
5020
	}
5021 5022
}

5023
static void perf_pending_event(struct irq_work *entry)
5024
{
5025 5026
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5027 5028 5029 5030 5031 5032 5033
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5034

5035 5036
	if (event->pending_disable) {
		event->pending_disable = 0;
5037
		perf_event_disable_local(event);
5038 5039
	}

5040 5041 5042
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5043
	}
5044 5045 5046

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5047 5048
}

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5085
static void perf_sample_regs_user(struct perf_regs *regs_user,
5086 5087
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5088
{
5089 5090
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5091
		regs_user->regs = regs;
5092 5093
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5094 5095 5096
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5097 5098 5099
	}
}

5100 5101 5102 5103 5104 5105 5106 5107
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5203 5204 5205
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5219
		data->time = perf_event_clock(event);
5220

5221
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5233 5234 5235
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5260 5261 5262

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5263 5264
}

5265 5266 5267
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5268 5269 5270 5271 5272
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5273
static void perf_output_read_one(struct perf_output_handle *handle,
5274 5275
				 struct perf_event *event,
				 u64 enabled, u64 running)
5276
{
5277
	u64 read_format = event->attr.read_format;
5278 5279 5280
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5281
	values[n++] = perf_event_count(event);
5282
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5283
		values[n++] = enabled +
5284
			atomic64_read(&event->child_total_time_enabled);
5285 5286
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5287
		values[n++] = running +
5288
			atomic64_read(&event->child_total_time_running);
5289 5290
	}
	if (read_format & PERF_FORMAT_ID)
5291
		values[n++] = primary_event_id(event);
5292

5293
	__output_copy(handle, values, n * sizeof(u64));
5294 5295 5296
}

/*
5297
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5298 5299
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5300 5301
			    struct perf_event *event,
			    u64 enabled, u64 running)
5302
{
5303 5304
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5305 5306 5307 5308 5309 5310
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5311
		values[n++] = enabled;
5312 5313

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5314
		values[n++] = running;
5315

5316
	if (leader != event)
5317 5318
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5319
	values[n++] = perf_event_count(leader);
5320
	if (read_format & PERF_FORMAT_ID)
5321
		values[n++] = primary_event_id(leader);
5322

5323
	__output_copy(handle, values, n * sizeof(u64));
5324

5325
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5326 5327
		n = 0;

5328 5329
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5330 5331
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5332
		values[n++] = perf_event_count(sub);
5333
		if (read_format & PERF_FORMAT_ID)
5334
			values[n++] = primary_event_id(sub);
5335

5336
		__output_copy(handle, values, n * sizeof(u64));
5337 5338 5339
	}
}

5340 5341 5342
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5343
static void perf_output_read(struct perf_output_handle *handle,
5344
			     struct perf_event *event)
5345
{
5346
	u64 enabled = 0, running = 0, now;
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5358
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5359
		calc_timer_values(event, &now, &enabled, &running);
5360

5361
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5362
		perf_output_read_group(handle, event, enabled, running);
5363
	else
5364
		perf_output_read_one(handle, event, enabled, running);
5365 5366
}

5367 5368 5369
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5370
			struct perf_event *event)
5371 5372 5373 5374 5375
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5376 5377 5378
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5404
		perf_output_read(handle, event);
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5415
			__output_copy(handle, data->callchain, size);
5416 5417 5418 5419 5420 5421 5422 5423
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5424 5425 5426 5427 5428 5429 5430 5431 5432
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5444

5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5479

5480
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5481 5482 5483
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5484
	}
A
Andi Kleen 已提交
5485 5486 5487

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5488 5489 5490

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5491

A
Andi Kleen 已提交
5492 5493 5494
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5525 5526 5527 5528
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5529
			 struct perf_event *event,
5530
			 struct pt_regs *regs)
5531
{
5532
	u64 sample_type = event->attr.sample_type;
5533

5534
	header->type = PERF_RECORD_SAMPLE;
5535
	header->size = sizeof(*header) + event->header_size;
5536 5537 5538

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5539

5540
	__perf_event_header__init_id(header, data, event);
5541

5542
	if (sample_type & PERF_SAMPLE_IP)
5543 5544
		data->ip = perf_instruction_pointer(regs);

5545
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5546
		int size = 1;
5547

5548
		data->callchain = perf_callchain(event, regs);
5549 5550 5551 5552 5553

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5554 5555
	}

5556
	if (sample_type & PERF_SAMPLE_RAW) {
5557 5558 5559 5560 5561 5562 5563
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5564
		header->size += round_up(size, sizeof(u64));
5565
	}
5566 5567 5568 5569 5570 5571 5572 5573 5574

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5575

5576
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5577 5578
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5579

5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5603
						     data->regs_user.regs);
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5631
}
5632

5633 5634 5635
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5636 5637 5638
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5639

5640 5641 5642
	/* protect the callchain buffers */
	rcu_read_lock();

5643
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5644

5645
	if (perf_output_begin(&handle, event, header.size))
5646
		goto exit;
5647

5648
	perf_output_sample(&handle, &header, data, event);
5649

5650
	perf_output_end(&handle);
5651 5652 5653

exit:
	rcu_read_unlock();
5654 5655
}

5656
/*
5657
 * read event_id
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5668
perf_event_read_event(struct perf_event *event,
5669 5670 5671
			struct task_struct *task)
{
	struct perf_output_handle handle;
5672
	struct perf_sample_data sample;
5673
	struct perf_read_event read_event = {
5674
		.header = {
5675
			.type = PERF_RECORD_READ,
5676
			.misc = 0,
5677
			.size = sizeof(read_event) + event->read_size,
5678
		},
5679 5680
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5681
	};
5682
	int ret;
5683

5684
	perf_event_header__init_id(&read_event.header, &sample, event);
5685
	ret = perf_output_begin(&handle, event, read_event.header.size);
5686 5687 5688
	if (ret)
		return;

5689
	perf_output_put(&handle, read_event);
5690
	perf_output_read(&handle, event);
5691
	perf_event__output_id_sample(event, &handle, &sample);
5692

5693 5694 5695
	perf_output_end(&handle);
}

5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5710
		output(event, data);
5711 5712 5713
	}
}

J
Jiri Olsa 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5725
static void
5726
perf_event_aux(perf_event_aux_output_cb output, void *data,
5727 5728 5729 5730 5731 5732 5733
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5745 5746 5747 5748 5749
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5750
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5751 5752 5753 5754 5755
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5756
			perf_event_aux_ctx(ctx, output, data);
5757 5758 5759 5760 5761 5762
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5763
/*
P
Peter Zijlstra 已提交
5764 5765
 * task tracking -- fork/exit
 *
5766
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5767 5768
 */

P
Peter Zijlstra 已提交
5769
struct perf_task_event {
5770
	struct task_struct		*task;
5771
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5772 5773 5774 5775 5776 5777

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5778 5779
		u32				tid;
		u32				ptid;
5780
		u64				time;
5781
	} event_id;
P
Peter Zijlstra 已提交
5782 5783
};

5784 5785
static int perf_event_task_match(struct perf_event *event)
{
5786 5787 5788
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5789 5790
}

5791
static void perf_event_task_output(struct perf_event *event,
5792
				   void *data)
P
Peter Zijlstra 已提交
5793
{
5794
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5795
	struct perf_output_handle handle;
5796
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5797
	struct task_struct *task = task_event->task;
5798
	int ret, size = task_event->event_id.header.size;
5799

5800 5801 5802
	if (!perf_event_task_match(event))
		return;

5803
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5804

5805
	ret = perf_output_begin(&handle, event,
5806
				task_event->event_id.header.size);
5807
	if (ret)
5808
		goto out;
P
Peter Zijlstra 已提交
5809

5810 5811
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5812

5813 5814
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5815

5816 5817
	task_event->event_id.time = perf_event_clock(event);

5818
	perf_output_put(&handle, task_event->event_id);
5819

5820 5821
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5822
	perf_output_end(&handle);
5823 5824
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5825 5826
}

5827 5828
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5829
			      int new)
P
Peter Zijlstra 已提交
5830
{
P
Peter Zijlstra 已提交
5831
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5832

5833 5834 5835
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5836 5837
		return;

P
Peter Zijlstra 已提交
5838
	task_event = (struct perf_task_event){
5839 5840
		.task	  = task,
		.task_ctx = task_ctx,
5841
		.event_id    = {
P
Peter Zijlstra 已提交
5842
			.header = {
5843
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5844
				.misc = 0,
5845
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5846
			},
5847 5848
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5849 5850
			/* .tid  */
			/* .ptid */
5851
			/* .time */
P
Peter Zijlstra 已提交
5852 5853 5854
		},
	};

5855
	perf_event_aux(perf_event_task_output,
5856 5857
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5858 5859
}

5860
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5861
{
5862
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5863 5864
}

5865 5866 5867 5868 5869
/*
 * comm tracking
 */

struct perf_comm_event {
5870 5871
	struct task_struct	*task;
	char			*comm;
5872 5873 5874 5875 5876 5877 5878
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5879
	} event_id;
5880 5881
};

5882 5883 5884 5885 5886
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5887
static void perf_event_comm_output(struct perf_event *event,
5888
				   void *data)
5889
{
5890
	struct perf_comm_event *comm_event = data;
5891
	struct perf_output_handle handle;
5892
	struct perf_sample_data sample;
5893
	int size = comm_event->event_id.header.size;
5894 5895
	int ret;

5896 5897 5898
	if (!perf_event_comm_match(event))
		return;

5899 5900
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5901
				comm_event->event_id.header.size);
5902 5903

	if (ret)
5904
		goto out;
5905

5906 5907
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5908

5909
	perf_output_put(&handle, comm_event->event_id);
5910
	__output_copy(&handle, comm_event->comm,
5911
				   comm_event->comm_size);
5912 5913 5914

	perf_event__output_id_sample(event, &handle, &sample);

5915
	perf_output_end(&handle);
5916 5917
out:
	comm_event->event_id.header.size = size;
5918 5919
}

5920
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5921
{
5922
	char comm[TASK_COMM_LEN];
5923 5924
	unsigned int size;

5925
	memset(comm, 0, sizeof(comm));
5926
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5927
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5928 5929 5930 5931

	comm_event->comm = comm;
	comm_event->comm_size = size;

5932
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5933

5934
	perf_event_aux(perf_event_comm_output,
5935 5936
		       comm_event,
		       NULL);
5937 5938
}

5939
void perf_event_comm(struct task_struct *task, bool exec)
5940
{
5941 5942
	struct perf_comm_event comm_event;

5943
	if (!atomic_read(&nr_comm_events))
5944
		return;
5945

5946
	comm_event = (struct perf_comm_event){
5947
		.task	= task,
5948 5949
		/* .comm      */
		/* .comm_size */
5950
		.event_id  = {
5951
			.header = {
5952
				.type = PERF_RECORD_COMM,
5953
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5954 5955 5956 5957
				/* .size */
			},
			/* .pid */
			/* .tid */
5958 5959 5960
		},
	};

5961
	perf_event_comm_event(&comm_event);
5962 5963
}

5964 5965 5966 5967 5968
/*
 * mmap tracking
 */

struct perf_mmap_event {
5969 5970 5971 5972
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5973 5974 5975
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5976
	u32			prot, flags;
5977 5978 5979 5980 5981 5982 5983 5984 5985

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5986
	} event_id;
5987 5988
};

5989 5990 5991 5992 5993 5994 5995 5996
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5997
	       (executable && (event->attr.mmap || event->attr.mmap2));
5998 5999
}

6000
static void perf_event_mmap_output(struct perf_event *event,
6001
				   void *data)
6002
{
6003
	struct perf_mmap_event *mmap_event = data;
6004
	struct perf_output_handle handle;
6005
	struct perf_sample_data sample;
6006
	int size = mmap_event->event_id.header.size;
6007
	int ret;
6008

6009 6010 6011
	if (!perf_event_mmap_match(event, data))
		return;

6012 6013 6014 6015 6016
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6017
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6018 6019
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6020 6021
	}

6022 6023
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6024
				mmap_event->event_id.header.size);
6025
	if (ret)
6026
		goto out;
6027

6028 6029
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6030

6031
	perf_output_put(&handle, mmap_event->event_id);
6032 6033 6034 6035 6036 6037

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6038 6039
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6040 6041
	}

6042
	__output_copy(&handle, mmap_event->file_name,
6043
				   mmap_event->file_size);
6044 6045 6046

	perf_event__output_id_sample(event, &handle, &sample);

6047
	perf_output_end(&handle);
6048 6049
out:
	mmap_event->event_id.header.size = size;
6050 6051
}

6052
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6053
{
6054 6055
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6056 6057
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6058
	u32 prot = 0, flags = 0;
6059 6060 6061
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6062
	char *name;
6063

6064
	if (file) {
6065 6066
		struct inode *inode;
		dev_t dev;
6067

6068
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6069
		if (!buf) {
6070 6071
			name = "//enomem";
			goto cpy_name;
6072
		}
6073
		/*
6074
		 * d_path() works from the end of the rb backwards, so we
6075 6076 6077
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6078
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6079
		if (IS_ERR(name)) {
6080 6081
			name = "//toolong";
			goto cpy_name;
6082
		}
6083 6084 6085 6086 6087 6088
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6111
		goto got_name;
6112
	} else {
6113 6114 6115 6116 6117 6118
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6119
		name = (char *)arch_vma_name(vma);
6120 6121
		if (name)
			goto cpy_name;
6122

6123
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6124
				vma->vm_end >= vma->vm_mm->brk) {
6125 6126
			name = "[heap]";
			goto cpy_name;
6127 6128
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6129
				vma->vm_end >= vma->vm_mm->start_stack) {
6130 6131
			name = "[stack]";
			goto cpy_name;
6132 6133
		}

6134 6135
		name = "//anon";
		goto cpy_name;
6136 6137
	}

6138 6139 6140
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6141
got_name:
6142 6143 6144 6145 6146 6147 6148 6149
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6150 6151 6152

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6153 6154 6155 6156
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6157 6158
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6159

6160 6161 6162
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6163
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6164

6165
	perf_event_aux(perf_event_mmap_output,
6166 6167
		       mmap_event,
		       NULL);
6168

6169 6170 6171
	kfree(buf);
}

6172
void perf_event_mmap(struct vm_area_struct *vma)
6173
{
6174 6175
	struct perf_mmap_event mmap_event;

6176
	if (!atomic_read(&nr_mmap_events))
6177 6178 6179
		return;

	mmap_event = (struct perf_mmap_event){
6180
		.vma	= vma,
6181 6182
		/* .file_name */
		/* .file_size */
6183
		.event_id  = {
6184
			.header = {
6185
				.type = PERF_RECORD_MMAP,
6186
				.misc = PERF_RECORD_MISC_USER,
6187 6188 6189 6190
				/* .size */
			},
			/* .pid */
			/* .tid */
6191 6192
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6193
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6194
		},
6195 6196 6197 6198
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6199 6200
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6201 6202
	};

6203
	perf_event_mmap_event(&mmap_event);
6204 6205
}

A
Alexander Shishkin 已提交
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6358 6359 6360 6361
/*
 * IRQ throttle logging
 */

6362
static void perf_log_throttle(struct perf_event *event, int enable)
6363 6364
{
	struct perf_output_handle handle;
6365
	struct perf_sample_data sample;
6366 6367 6368 6369 6370
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6371
		u64				id;
6372
		u64				stream_id;
6373 6374
	} throttle_event = {
		.header = {
6375
			.type = PERF_RECORD_THROTTLE,
6376 6377 6378
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6379
		.time		= perf_event_clock(event),
6380 6381
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6382 6383
	};

6384
	if (enable)
6385
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6386

6387 6388 6389
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6390
				throttle_event.header.size);
6391 6392 6393 6394
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6395
	perf_event__output_id_sample(event, &handle, &sample);
6396 6397 6398
	perf_output_end(&handle);
}

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6435
/*
6436
 * Generic event overflow handling, sampling.
6437 6438
 */

6439
static int __perf_event_overflow(struct perf_event *event,
6440 6441
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6442
{
6443 6444
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6445
	u64 seq;
6446 6447
	int ret = 0;

6448 6449 6450 6451 6452 6453 6454
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6455 6456 6457 6458 6459 6460 6461 6462 6463
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
6464
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
6465 6466
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6467 6468
			ret = 1;
		}
6469
	}
6470

6471
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6472
		u64 now = perf_clock();
6473
		s64 delta = now - hwc->freq_time_stamp;
6474

6475
		hwc->freq_time_stamp = now;
6476

6477
		if (delta > 0 && delta < 2*TICK_NSEC)
6478
			perf_adjust_period(event, delta, hwc->last_period, true);
6479 6480
	}

6481 6482
	/*
	 * XXX event_limit might not quite work as expected on inherited
6483
	 * events
6484 6485
	 */

6486 6487
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6488
		ret = 1;
6489
		event->pending_kill = POLL_HUP;
6490 6491
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6492 6493
	}

6494
	if (event->overflow_handler)
6495
		event->overflow_handler(event, data, regs);
6496
	else
6497
		perf_event_output(event, data, regs);
6498

6499
	if (*perf_event_fasync(event) && event->pending_kill) {
6500 6501
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6502 6503
	}

6504
	return ret;
6505 6506
}

6507
int perf_event_overflow(struct perf_event *event,
6508 6509
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6510
{
6511
	return __perf_event_overflow(event, 1, data, regs);
6512 6513
}

6514
/*
6515
 * Generic software event infrastructure
6516 6517
 */

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6529
/*
6530 6531
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6532 6533 6534 6535
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6536
u64 perf_swevent_set_period(struct perf_event *event)
6537
{
6538
	struct hw_perf_event *hwc = &event->hw;
6539 6540 6541 6542 6543
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6544 6545

again:
6546
	old = val = local64_read(&hwc->period_left);
6547 6548
	if (val < 0)
		return 0;
6549

6550 6551 6552
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6553
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6554
		goto again;
6555

6556
	return nr;
6557 6558
}

6559
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6560
				    struct perf_sample_data *data,
6561
				    struct pt_regs *regs)
6562
{
6563
	struct hw_perf_event *hwc = &event->hw;
6564
	int throttle = 0;
6565

6566 6567
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6568

6569 6570
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6571

6572
	for (; overflow; overflow--) {
6573
		if (__perf_event_overflow(event, throttle,
6574
					    data, regs)) {
6575 6576 6577 6578 6579 6580
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6581
		throttle = 1;
6582
	}
6583 6584
}

P
Peter Zijlstra 已提交
6585
static void perf_swevent_event(struct perf_event *event, u64 nr,
6586
			       struct perf_sample_data *data,
6587
			       struct pt_regs *regs)
6588
{
6589
	struct hw_perf_event *hwc = &event->hw;
6590

6591
	local64_add(nr, &event->count);
6592

6593 6594 6595
	if (!regs)
		return;

6596
	if (!is_sampling_event(event))
6597
		return;
6598

6599 6600 6601 6602 6603 6604
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6605
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6606
		return perf_swevent_overflow(event, 1, data, regs);
6607

6608
	if (local64_add_negative(nr, &hwc->period_left))
6609
		return;
6610

6611
	perf_swevent_overflow(event, 0, data, regs);
6612 6613
}

6614 6615 6616
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6617
	if (event->hw.state & PERF_HES_STOPPED)
6618
		return 1;
P
Peter Zijlstra 已提交
6619

6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6631
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6632
				enum perf_type_id type,
L
Li Zefan 已提交
6633 6634 6635
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6636
{
6637
	if (event->attr.type != type)
6638
		return 0;
6639

6640
	if (event->attr.config != event_id)
6641 6642
		return 0;

6643 6644
	if (perf_exclude_event(event, regs))
		return 0;
6645 6646 6647 6648

	return 1;
}

6649 6650 6651 6652 6653 6654 6655
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6656 6657
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6658
{
6659 6660 6661 6662
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6663

6664 6665
/* For the read side: events when they trigger */
static inline struct hlist_head *
6666
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6667 6668
{
	struct swevent_hlist *hlist;
6669

6670
	hlist = rcu_dereference(swhash->swevent_hlist);
6671 6672 6673
	if (!hlist)
		return NULL;

6674 6675 6676 6677 6678
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6679
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6690
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6691 6692 6693 6694 6695
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6696 6697 6698
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6699
				    u64 nr,
6700 6701
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6702
{
6703
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6704
	struct perf_event *event;
6705
	struct hlist_head *head;
6706

6707
	rcu_read_lock();
6708
	head = find_swevent_head_rcu(swhash, type, event_id);
6709 6710 6711
	if (!head)
		goto end;

6712
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6713
		if (perf_swevent_match(event, type, event_id, data, regs))
6714
			perf_swevent_event(event, nr, data, regs);
6715
	}
6716 6717
end:
	rcu_read_unlock();
6718 6719
}

6720 6721
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6722
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6723
{
6724
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6725

6726
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6727
}
I
Ingo Molnar 已提交
6728
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6729

6730
inline void perf_swevent_put_recursion_context(int rctx)
6731
{
6732
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6733

6734
	put_recursion_context(swhash->recursion, rctx);
6735
}
6736

6737
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6738
{
6739
	struct perf_sample_data data;
6740

6741
	if (WARN_ON_ONCE(!regs))
6742
		return;
6743

6744
	perf_sample_data_init(&data, addr, 0);
6745
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6758 6759

	perf_swevent_put_recursion_context(rctx);
6760
fail:
6761
	preempt_enable_notrace();
6762 6763
}

6764
static void perf_swevent_read(struct perf_event *event)
6765 6766 6767
{
}

P
Peter Zijlstra 已提交
6768
static int perf_swevent_add(struct perf_event *event, int flags)
6769
{
6770
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6771
	struct hw_perf_event *hwc = &event->hw;
6772 6773
	struct hlist_head *head;

6774
	if (is_sampling_event(event)) {
6775
		hwc->last_period = hwc->sample_period;
6776
		perf_swevent_set_period(event);
6777
	}
6778

P
Peter Zijlstra 已提交
6779 6780
	hwc->state = !(flags & PERF_EF_START);

6781
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6782
	if (WARN_ON_ONCE(!head))
6783 6784 6785
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6786
	perf_event_update_userpage(event);
6787

6788 6789 6790
	return 0;
}

P
Peter Zijlstra 已提交
6791
static void perf_swevent_del(struct perf_event *event, int flags)
6792
{
6793
	hlist_del_rcu(&event->hlist_entry);
6794 6795
}

P
Peter Zijlstra 已提交
6796
static void perf_swevent_start(struct perf_event *event, int flags)
6797
{
P
Peter Zijlstra 已提交
6798
	event->hw.state = 0;
6799
}
I
Ingo Molnar 已提交
6800

P
Peter Zijlstra 已提交
6801
static void perf_swevent_stop(struct perf_event *event, int flags)
6802
{
P
Peter Zijlstra 已提交
6803
	event->hw.state = PERF_HES_STOPPED;
6804 6805
}

6806 6807
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6808
swevent_hlist_deref(struct swevent_htable *swhash)
6809
{
6810 6811
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6812 6813
}

6814
static void swevent_hlist_release(struct swevent_htable *swhash)
6815
{
6816
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6817

6818
	if (!hlist)
6819 6820
		return;

6821
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6822
	kfree_rcu(hlist, rcu_head);
6823 6824
}

6825
static void swevent_hlist_put_cpu(int cpu)
6826
{
6827
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6828

6829
	mutex_lock(&swhash->hlist_mutex);
6830

6831 6832
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6833

6834
	mutex_unlock(&swhash->hlist_mutex);
6835 6836
}

6837
static void swevent_hlist_put(void)
6838 6839 6840 6841
{
	int cpu;

	for_each_possible_cpu(cpu)
6842
		swevent_hlist_put_cpu(cpu);
6843 6844
}

6845
static int swevent_hlist_get_cpu(int cpu)
6846
{
6847
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6848 6849
	int err = 0;

6850 6851
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6852 6853 6854 6855 6856 6857 6858
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6859
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6860
	}
6861
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6862
exit:
6863
	mutex_unlock(&swhash->hlist_mutex);
6864 6865 6866 6867

	return err;
}

6868
static int swevent_hlist_get(void)
6869
{
6870
	int err, cpu, failed_cpu;
6871 6872 6873

	get_online_cpus();
	for_each_possible_cpu(cpu) {
6874
		err = swevent_hlist_get_cpu(cpu);
6875 6876 6877 6878 6879 6880 6881 6882
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6883
fail:
6884 6885 6886
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
6887
		swevent_hlist_put_cpu(cpu);
6888 6889 6890 6891 6892 6893
	}

	put_online_cpus();
	return err;
}

6894
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6895

6896 6897 6898
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6899

6900 6901
	WARN_ON(event->parent);

6902
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6903
	swevent_hlist_put();
6904 6905 6906 6907
}

static int perf_swevent_init(struct perf_event *event)
{
6908
	u64 event_id = event->attr.config;
6909 6910 6911 6912

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6913 6914 6915 6916 6917 6918
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6919 6920 6921 6922 6923 6924 6925 6926 6927
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6928
	if (event_id >= PERF_COUNT_SW_MAX)
6929 6930 6931 6932 6933
		return -ENOENT;

	if (!event->parent) {
		int err;

6934
		err = swevent_hlist_get();
6935 6936 6937
		if (err)
			return err;

6938
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6939 6940 6941 6942 6943 6944 6945
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6946
	.task_ctx_nr	= perf_sw_context,
6947

6948 6949
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6950
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6951 6952 6953 6954
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6955 6956 6957
	.read		= perf_swevent_read,
};

6958 6959
#ifdef CONFIG_EVENT_TRACING

6960 6961 6962 6963 6964
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6965 6966 6967 6968
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6969 6970 6971 6972 6973 6974 6975 6976 6977
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6978 6979
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6980 6981 6982 6983
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6984 6985 6986 6987 6988 6989 6990 6991 6992
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6993 6994
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6995 6996
{
	struct perf_sample_data data;
6997 6998
	struct perf_event *event;

6999 7000 7001 7002 7003
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

7004
	perf_sample_data_init(&data, addr, 0);
7005 7006
	data.raw = &raw;

7007
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7008
		if (perf_tp_event_match(event, &data, regs))
7009
			perf_swevent_event(event, count, &data, regs);
7010
	}
7011

7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7037
	perf_swevent_put_recursion_context(rctx);
7038 7039 7040
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7041
static void tp_perf_event_destroy(struct perf_event *event)
7042
{
7043
	perf_trace_destroy(event);
7044 7045
}

7046
static int perf_tp_event_init(struct perf_event *event)
7047
{
7048 7049
	int err;

7050 7051 7052
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7053 7054 7055 7056 7057 7058
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7059 7060
	err = perf_trace_init(event);
	if (err)
7061
		return err;
7062

7063
	event->destroy = tp_perf_event_destroy;
7064

7065 7066 7067 7068
	return 0;
}

static struct pmu perf_tracepoint = {
7069 7070
	.task_ctx_nr	= perf_sw_context,

7071
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7072 7073 7074 7075
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7076 7077 7078 7079 7080
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7081
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7082
}
L
Li Zefan 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7117 7118
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7119 7120 7121 7122 7123 7124
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7125
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7150
#else
L
Li Zefan 已提交
7151

7152
static inline void perf_tp_register(void)
7153 7154
{
}
L
Li Zefan 已提交
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7165 7166 7167 7168 7169 7170 7171 7172
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7173
#endif /* CONFIG_EVENT_TRACING */
7174

7175
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7176
void perf_bp_event(struct perf_event *bp, void *data)
7177
{
7178 7179 7180
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7181
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7182

P
Peter Zijlstra 已提交
7183
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7184
		perf_swevent_event(bp, 1, &sample, regs);
7185 7186 7187
}
#endif

7188 7189 7190
/*
 * hrtimer based swevent callback
 */
7191

7192
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7193
{
7194 7195 7196 7197 7198
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7199

7200
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7201 7202 7203 7204

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7205
	event->pmu->read(event);
7206

7207
	perf_sample_data_init(&data, 0, event->hw.last_period);
7208 7209 7210
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7211
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7212
			if (__perf_event_overflow(event, 1, &data, regs))
7213 7214
				ret = HRTIMER_NORESTART;
	}
7215

7216 7217
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7218

7219
	return ret;
7220 7221
}

7222
static void perf_swevent_start_hrtimer(struct perf_event *event)
7223
{
7224
	struct hw_perf_event *hwc = &event->hw;
7225 7226 7227 7228
	s64 period;

	if (!is_sampling_event(event))
		return;
7229

7230 7231 7232 7233
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7234

7235 7236 7237 7238
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7239 7240
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7241
}
7242 7243

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7244
{
7245 7246
	struct hw_perf_event *hwc = &event->hw;

7247
	if (is_sampling_event(event)) {
7248
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7249
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7250 7251 7252

		hrtimer_cancel(&hwc->hrtimer);
	}
7253 7254
}

P
Peter Zijlstra 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7275
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7276 7277 7278 7279
		event->attr.freq = 0;
	}
}

7280 7281 7282 7283 7284
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7285
{
7286 7287 7288
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7289
	now = local_clock();
7290 7291
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7292 7293
}

P
Peter Zijlstra 已提交
7294
static void cpu_clock_event_start(struct perf_event *event, int flags)
7295
{
P
Peter Zijlstra 已提交
7296
	local64_set(&event->hw.prev_count, local_clock());
7297 7298 7299
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7300
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7301
{
7302 7303 7304
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7305

P
Peter Zijlstra 已提交
7306 7307 7308 7309
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7310
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7311 7312 7313 7314 7315 7316 7317 7318 7319

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7320 7321 7322 7323
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7324

7325 7326 7327 7328 7329 7330 7331 7332
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7333 7334 7335 7336 7337 7338
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7339 7340
	perf_swevent_init_hrtimer(event);

7341
	return 0;
7342 7343
}

7344
static struct pmu perf_cpu_clock = {
7345 7346
	.task_ctx_nr	= perf_sw_context,

7347 7348
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7349
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7350 7351 7352 7353
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7354 7355 7356 7357 7358 7359 7360 7361
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7362
{
7363 7364
	u64 prev;
	s64 delta;
7365

7366 7367 7368 7369
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7370

P
Peter Zijlstra 已提交
7371
static void task_clock_event_start(struct perf_event *event, int flags)
7372
{
P
Peter Zijlstra 已提交
7373
	local64_set(&event->hw.prev_count, event->ctx->time);
7374 7375 7376
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7377
static void task_clock_event_stop(struct perf_event *event, int flags)
7378 7379 7380
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7381 7382 7383 7384 7385 7386
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7387
	perf_event_update_userpage(event);
7388

P
Peter Zijlstra 已提交
7389 7390 7391 7392 7393 7394
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7395 7396 7397 7398
}

static void task_clock_event_read(struct perf_event *event)
{
7399 7400 7401
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7402 7403 7404 7405 7406

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7407
{
7408 7409 7410 7411 7412 7413
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7414 7415 7416 7417 7418 7419
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7420 7421
	perf_swevent_init_hrtimer(event);

7422
	return 0;
L
Li Zefan 已提交
7423 7424
}

7425
static struct pmu perf_task_clock = {
7426 7427
	.task_ctx_nr	= perf_sw_context,

7428 7429
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7430
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7431 7432 7433 7434
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7435 7436
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7437

P
Peter Zijlstra 已提交
7438
static void perf_pmu_nop_void(struct pmu *pmu)
7439 7440
{
}
L
Li Zefan 已提交
7441

7442 7443 7444 7445
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7446
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7447
{
P
Peter Zijlstra 已提交
7448
	return 0;
L
Li Zefan 已提交
7449 7450
}

7451
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7452 7453

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7454
{
7455 7456 7457 7458 7459
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7460
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7461 7462
}

P
Peter Zijlstra 已提交
7463 7464
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7465 7466 7467 7468 7469 7470 7471
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7472 7473 7474
	perf_pmu_enable(pmu);
	return 0;
}
7475

P
Peter Zijlstra 已提交
7476
static void perf_pmu_cancel_txn(struct pmu *pmu)
7477
{
7478 7479 7480 7481 7482 7483 7484
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7485
	perf_pmu_enable(pmu);
7486 7487
}

7488 7489
static int perf_event_idx_default(struct perf_event *event)
{
7490
	return 0;
7491 7492
}

P
Peter Zijlstra 已提交
7493 7494 7495 7496
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7497
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7498
{
P
Peter Zijlstra 已提交
7499
	struct pmu *pmu;
7500

P
Peter Zijlstra 已提交
7501 7502
	if (ctxn < 0)
		return NULL;
7503

P
Peter Zijlstra 已提交
7504 7505 7506 7507
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7508

P
Peter Zijlstra 已提交
7509
	return NULL;
7510 7511
}

7512
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7513
{
7514 7515 7516 7517 7518 7519 7520
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7521 7522
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7523 7524 7525 7526 7527 7528
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7529

P
Peter Zijlstra 已提交
7530
	mutex_lock(&pmus_lock);
7531
	/*
P
Peter Zijlstra 已提交
7532
	 * Like a real lame refcount.
7533
	 */
7534 7535 7536
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7537
			goto out;
7538
		}
P
Peter Zijlstra 已提交
7539
	}
7540

7541
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7542 7543
out:
	mutex_unlock(&pmus_lock);
7544
}
P
Peter Zijlstra 已提交
7545
static struct idr pmu_idr;
7546

P
Peter Zijlstra 已提交
7547 7548 7549 7550 7551 7552 7553
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7554
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7555

7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7566 7567
static DEFINE_MUTEX(mux_interval_mutex);

7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7587
	mutex_lock(&mux_interval_mutex);
7588 7589 7590
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7591 7592
	get_online_cpus();
	for_each_online_cpu(cpu) {
7593 7594 7595 7596
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7597 7598
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7599
	}
7600 7601
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7602 7603 7604

	return count;
}
7605
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7606

7607 7608 7609 7610
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7611
};
7612
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7613 7614 7615 7616

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7617
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7633
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7654
static struct lock_class_key cpuctx_mutex;
7655
static struct lock_class_key cpuctx_lock;
7656

7657
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7658
{
P
Peter Zijlstra 已提交
7659
	int cpu, ret;
7660

7661
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7662 7663 7664 7665
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7666

P
Peter Zijlstra 已提交
7667 7668 7669 7670 7671 7672
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7673 7674 7675
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7676 7677 7678 7679 7680
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7681 7682 7683 7684 7685 7686
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7687
skip_type:
P
Peter Zijlstra 已提交
7688 7689 7690
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7691

W
Wei Yongjun 已提交
7692
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7693 7694
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7695
		goto free_dev;
7696

P
Peter Zijlstra 已提交
7697 7698 7699 7700
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7701
		__perf_event_init_context(&cpuctx->ctx);
7702
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7703
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7704
		cpuctx->ctx.pmu = pmu;
7705

7706
		__perf_mux_hrtimer_init(cpuctx, cpu);
7707

7708
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7709
	}
7710

P
Peter Zijlstra 已提交
7711
got_cpu_context:
P
Peter Zijlstra 已提交
7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7723
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7724 7725
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7726
		}
7727
	}
7728

P
Peter Zijlstra 已提交
7729 7730 7731 7732 7733
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7734 7735 7736
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7737
	list_add_rcu(&pmu->entry, &pmus);
7738
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7739 7740
	ret = 0;
unlock:
7741 7742
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7743
	return ret;
P
Peter Zijlstra 已提交
7744

P
Peter Zijlstra 已提交
7745 7746 7747 7748
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7749 7750 7751 7752
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7753 7754 7755
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7756
}
7757
EXPORT_SYMBOL_GPL(perf_pmu_register);
7758

7759
void perf_pmu_unregister(struct pmu *pmu)
7760
{
7761 7762 7763
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7764

7765
	/*
P
Peter Zijlstra 已提交
7766 7767
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7768
	 */
7769
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7770
	synchronize_rcu();
7771

P
Peter Zijlstra 已提交
7772
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7773 7774
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7775 7776
	device_del(pmu->dev);
	put_device(pmu->dev);
7777
	free_pmu_context(pmu);
7778
}
7779
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7780

7781 7782
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7783
	struct perf_event_context *ctx = NULL;
7784 7785 7786 7787
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7788 7789

	if (event->group_leader != event) {
7790 7791 7792 7793 7794 7795
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7796 7797 7798
		BUG_ON(!ctx);
	}

7799 7800
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7801 7802 7803 7804

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7805 7806 7807 7808 7809 7810
	if (ret)
		module_put(pmu->module);

	return ret;
}

7811
static struct pmu *perf_init_event(struct perf_event *event)
7812 7813 7814
{
	struct pmu *pmu = NULL;
	int idx;
7815
	int ret;
7816 7817

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7818 7819 7820 7821

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7822
	if (pmu) {
7823
		ret = perf_try_init_event(pmu, event);
7824 7825
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7826
		goto unlock;
7827
	}
P
Peter Zijlstra 已提交
7828

7829
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7830
		ret = perf_try_init_event(pmu, event);
7831
		if (!ret)
P
Peter Zijlstra 已提交
7832
			goto unlock;
7833

7834 7835
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7836
			goto unlock;
7837
		}
7838
	}
P
Peter Zijlstra 已提交
7839 7840
	pmu = ERR_PTR(-ENOENT);
unlock:
7841
	srcu_read_unlock(&pmus_srcu, idx);
7842

7843
	return pmu;
7844 7845
}

7846 7847 7848 7849 7850 7851 7852 7853 7854
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


7876 7877
static void account_event(struct perf_event *event)
{
7878 7879
	bool inc = false;

7880 7881 7882
	if (event->parent)
		return;

7883
	if (event->attach_state & PERF_ATTACH_TASK)
7884
		inc = true;
7885 7886 7887 7888 7889 7890
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7891 7892
	if (event->attr.freq)
		account_freq_event();
7893 7894
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7895
		inc = true;
7896
	}
7897
	if (has_branch_stack(event))
7898
		inc = true;
7899
	if (is_cgroup_event(event))
7900 7901
		inc = true;

7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
7924 7925

	account_event_cpu(event, event->cpu);
7926 7927
}

T
Thomas Gleixner 已提交
7928
/*
7929
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7930
 */
7931
static struct perf_event *
7932
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7933 7934 7935
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7936
		 perf_overflow_handler_t overflow_handler,
7937
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7938
{
P
Peter Zijlstra 已提交
7939
	struct pmu *pmu;
7940 7941
	struct perf_event *event;
	struct hw_perf_event *hwc;
7942
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7943

7944 7945 7946 7947 7948
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7949
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7950
	if (!event)
7951
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7952

7953
	/*
7954
	 * Single events are their own group leaders, with an
7955 7956 7957
	 * empty sibling list:
	 */
	if (!group_leader)
7958
		group_leader = event;
7959

7960 7961
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7962

7963 7964 7965
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7966
	INIT_LIST_HEAD(&event->rb_entry);
7967
	INIT_LIST_HEAD(&event->active_entry);
7968 7969
	INIT_HLIST_NODE(&event->hlist_entry);

7970

7971
	init_waitqueue_head(&event->waitq);
7972
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7973

7974
	mutex_init(&event->mmap_mutex);
7975

7976
	atomic_long_set(&event->refcount, 1);
7977 7978 7979 7980 7981
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7982

7983
	event->parent		= parent_event;
7984

7985
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7986
	event->id		= atomic64_inc_return(&perf_event_id);
7987

7988
	event->state		= PERF_EVENT_STATE_INACTIVE;
7989

7990 7991 7992
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7993 7994 7995
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7996
		 */
7997
		event->hw.target = task;
7998 7999
	}

8000 8001 8002 8003
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

8004
	if (!overflow_handler && parent_event) {
8005
		overflow_handler = parent_event->overflow_handler;
8006 8007
		context = parent_event->overflow_handler_context;
	}
8008

8009
	event->overflow_handler	= overflow_handler;
8010
	event->overflow_handler_context = context;
8011

J
Jiri Olsa 已提交
8012
	perf_event__state_init(event);
8013

8014
	pmu = NULL;
8015

8016
	hwc = &event->hw;
8017
	hwc->sample_period = attr->sample_period;
8018
	if (attr->freq && attr->sample_freq)
8019
		hwc->sample_period = 1;
8020
	hwc->last_period = hwc->sample_period;
8021

8022
	local64_set(&hwc->period_left, hwc->sample_period);
8023

8024
	/*
8025
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8026
	 */
8027
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8028
		goto err_ns;
8029 8030 8031

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
8032

8033 8034 8035 8036 8037 8038
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

8039
	pmu = perf_init_event(event);
8040
	if (!pmu)
8041 8042
		goto err_ns;
	else if (IS_ERR(pmu)) {
8043
		err = PTR_ERR(pmu);
8044
		goto err_ns;
I
Ingo Molnar 已提交
8045
	}
8046

8047 8048 8049 8050
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

8051
	if (!event->parent) {
8052 8053
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
8054
			if (err)
8055
				goto err_per_task;
8056
		}
8057
	}
8058

8059 8060 8061
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

8062
	return event;
8063

8064 8065 8066
err_per_task:
	exclusive_event_destroy(event);

8067 8068 8069
err_pmu:
	if (event->destroy)
		event->destroy(event);
8070
	module_put(pmu->module);
8071
err_ns:
8072 8073
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
8074 8075 8076 8077 8078
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
8079 8080
}

8081 8082
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
8083 8084
{
	u32 size;
8085
	int ret;
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8110 8111 8112
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8113 8114
	 */
	if (size > sizeof(*attr)) {
8115 8116 8117
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8118

8119 8120
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8121

8122
		for (; addr < end; addr++) {
8123 8124 8125 8126 8127 8128
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8129
		size = sizeof(*attr);
8130 8131 8132 8133 8134 8135
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8136
	if (attr->__reserved_1)
8137 8138 8139 8140 8141 8142 8143 8144
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8173 8174
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8175 8176
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8177
	}
8178

8179
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8180
		ret = perf_reg_validate(attr->sample_regs_user);
8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8199

8200 8201
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8202 8203 8204 8205 8206 8207 8208 8209 8210
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8211 8212
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8213
{
8214
	struct ring_buffer *rb = NULL;
8215 8216
	int ret = -EINVAL;

8217
	if (!output_event)
8218 8219
		goto set;

8220 8221
	/* don't allow circular references */
	if (event == output_event)
8222 8223
		goto out;

8224 8225 8226 8227 8228 8229 8230
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8231
	 * If its not a per-cpu rb, it must be the same task.
8232 8233 8234 8235
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8236 8237 8238 8239 8240 8241
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8242 8243 8244 8245 8246 8247 8248
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8249
set:
8250
	mutex_lock(&event->mmap_mutex);
8251 8252 8253
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8254

8255
	if (output_event) {
8256 8257 8258
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8259
			goto unlock;
8260 8261
	}

8262
	ring_buffer_attach(event, rb);
8263

8264
	ret = 0;
8265 8266 8267
unlock:
	mutex_unlock(&event->mmap_mutex);

8268 8269 8270 8271
out:
	return ret;
}

P
Peter Zijlstra 已提交
8272 8273 8274 8275 8276 8277 8278 8279 8280
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8318
/**
8319
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8320
 *
8321
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8322
 * @pid:		target pid
I
Ingo Molnar 已提交
8323
 * @cpu:		target cpu
8324
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8325
 */
8326 8327
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8328
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8329
{
8330 8331
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8332
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8333
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8334
	struct file *event_file = NULL;
8335
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8336
	struct task_struct *task = NULL;
8337
	struct pmu *pmu;
8338
	int event_fd;
8339
	int move_group = 0;
8340
	int err;
8341
	int f_flags = O_RDWR;
8342
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8343

8344
	/* for future expandability... */
S
Stephane Eranian 已提交
8345
	if (flags & ~PERF_FLAG_ALL)
8346 8347
		return -EINVAL;

8348 8349 8350
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8351

8352 8353 8354 8355 8356
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8357
	if (attr.freq) {
8358
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8359
			return -EINVAL;
8360 8361 8362
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8363 8364
	}

S
Stephane Eranian 已提交
8365 8366 8367 8368 8369 8370 8371 8372 8373
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8374 8375 8376 8377
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8378 8379 8380
	if (event_fd < 0)
		return event_fd;

8381
	if (group_fd != -1) {
8382 8383
		err = perf_fget_light(group_fd, &group);
		if (err)
8384
			goto err_fd;
8385
		group_leader = group.file->private_data;
8386 8387 8388 8389 8390 8391
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8392
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8393 8394 8395 8396 8397 8398 8399
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8400 8401 8402 8403 8404 8405
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8406 8407
	get_online_cpus();

8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

8426 8427 8428
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8429
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8430
				 NULL, NULL, cgroup_fd);
8431 8432
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8433
		goto err_cred;
8434 8435
	}

8436 8437 8438 8439 8440 8441 8442
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8443 8444 8445 8446 8447
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8448

8449 8450 8451 8452 8453 8454
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8477 8478 8479 8480

	/*
	 * Get the target context (task or percpu):
	 */
8481
	ctx = find_get_context(pmu, task, event);
8482 8483
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8484
		goto err_alloc;
8485 8486
	}

8487 8488 8489 8490 8491
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
8492
	/*
8493
	 * Look up the group leader (we will attach this event to it):
8494
	 */
8495
	if (group_leader) {
8496
		err = -EINVAL;
8497 8498

		/*
I
Ingo Molnar 已提交
8499 8500 8501 8502
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8503
			goto err_context;
8504 8505 8506 8507 8508

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8509 8510 8511
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8512
		 */
8513
		if (move_group) {
8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8527 8528 8529 8530 8531 8532
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8533 8534 8535
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8536
		if (attr.exclusive || attr.pinned)
8537
			goto err_context;
8538 8539 8540 8541 8542
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8543
			goto err_context;
8544
	}
T
Thomas Gleixner 已提交
8545

8546 8547
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8548 8549
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8550
		event_file = NULL;
8551
		goto err_context;
8552
	}
8553

8554
	if (move_group) {
P
Peter Zijlstra 已提交
8555
		gctx = group_leader->ctx;
8556
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8557 8558 8559 8560
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
8561 8562 8563 8564
	} else {
		mutex_lock(&ctx->mutex);
	}

8565 8566 8567 8568 8569
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
8570 8571 8572 8573 8574
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8575 8576 8577 8578 8579 8580 8581
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8582

8583 8584 8585
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8586

8587 8588
	WARN_ON_ONCE(ctx->parent_ctx);

8589 8590 8591 8592 8593
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

8594
	if (move_group) {
P
Peter Zijlstra 已提交
8595 8596 8597 8598
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8599
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8600

8601 8602
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8603
			perf_remove_from_context(sibling, 0);
8604 8605 8606
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8607 8608 8609 8610
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8611
		synchronize_rcu();
P
Peter Zijlstra 已提交
8612

8613 8614 8615 8616 8617 8618 8619 8620 8621 8622
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8623 8624
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8625
			perf_event__state_init(sibling);
8626
			perf_install_in_context(ctx, sibling, sibling->cpu);
8627 8628
			get_ctx(ctx);
		}
8629 8630 8631 8632 8633 8634 8635 8636 8637

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8638

8639 8640 8641 8642 8643 8644
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8645 8646
	}

8647 8648 8649 8650 8651 8652 8653 8654 8655
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8656 8657
	event->owner = current;

8658
	perf_install_in_context(ctx, event, event->cpu);
8659
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8660

8661
	if (move_group)
P
Peter Zijlstra 已提交
8662
		mutex_unlock(&gctx->mutex);
8663
	mutex_unlock(&ctx->mutex);
8664

8665 8666 8667 8668 8669
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

8670 8671
	put_online_cpus();

8672 8673 8674
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8675

8676 8677 8678 8679 8680 8681
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8682
	fdput(group);
8683 8684
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8685

8686 8687 8688 8689 8690 8691
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8692
err_context:
8693
	perf_unpin_context(ctx);
8694
	put_ctx(ctx);
8695
err_alloc:
P
Peter Zijlstra 已提交
8696 8697 8698 8699 8700 8701
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
8702 8703 8704
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
8705
err_cpus:
8706
	put_online_cpus();
8707
err_task:
P
Peter Zijlstra 已提交
8708 8709
	if (task)
		put_task_struct(task);
8710
err_group_fd:
8711
	fdput(group);
8712 8713
err_fd:
	put_unused_fd(event_fd);
8714
	return err;
T
Thomas Gleixner 已提交
8715 8716
}

8717 8718 8719 8720 8721
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8722
 * @task: task to profile (NULL for percpu)
8723 8724 8725
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8726
				 struct task_struct *task,
8727 8728
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8729 8730
{
	struct perf_event_context *ctx;
8731
	struct perf_event *event;
8732
	int err;
8733

8734 8735 8736
	/*
	 * Get the target context (task or percpu):
	 */
8737

8738
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8739
				 overflow_handler, context, -1);
8740 8741 8742 8743
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8744

8745
	/* Mark owner so we could distinguish it from user events. */
8746
	event->owner = TASK_TOMBSTONE;
8747

8748
	ctx = find_get_context(event->pmu, task, event);
8749 8750
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8751
		goto err_free;
8752
	}
8753 8754 8755

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8756 8757 8758 8759 8760
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

8761 8762
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
8763
		goto err_unlock;
8764 8765
	}

8766
	perf_install_in_context(ctx, event, cpu);
8767
	perf_unpin_context(ctx);
8768 8769 8770 8771
	mutex_unlock(&ctx->mutex);

	return event;

8772 8773 8774 8775
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
8776 8777 8778
err_free:
	free_event(event);
err:
8779
	return ERR_PTR(err);
8780
}
8781
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8782

8783 8784 8785 8786 8787 8788 8789 8790 8791 8792
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8793 8794 8795 8796 8797
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8798 8799
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8800
		perf_remove_from_context(event, 0);
8801
		unaccount_event_cpu(event, src_cpu);
8802
		put_ctx(src_ctx);
8803
		list_add(&event->migrate_entry, &events);
8804 8805
	}

8806 8807 8808
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8809 8810
	synchronize_rcu();

8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8835 8836
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8837 8838
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8839
		account_event_cpu(event, dst_cpu);
8840 8841 8842 8843
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8844
	mutex_unlock(&src_ctx->mutex);
8845 8846 8847
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8848
static void sync_child_event(struct perf_event *child_event,
8849
			       struct task_struct *child)
8850
{
8851
	struct perf_event *parent_event = child_event->parent;
8852
	u64 child_val;
8853

8854 8855
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8856

P
Peter Zijlstra 已提交
8857
	child_val = perf_event_count(child_event);
8858 8859 8860 8861

	/*
	 * Add back the child's count to the parent's count:
	 */
8862
	atomic64_add(child_val, &parent_event->child_count);
8863 8864 8865 8866
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8867 8868
}

8869
static void
8870 8871 8872
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8873
{
8874 8875
	struct perf_event *parent_event = child_event->parent;

8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8888 8889 8890
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8891
	if (parent_event)
8892 8893
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
8894
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8895
	raw_spin_unlock_irq(&child_ctx->lock);
8896

8897
	/*
8898
	 * Parent events are governed by their filedesc, retain them.
8899
	 */
8900
	if (!parent_event) {
8901
		perf_event_wakeup(child_event);
8902
		return;
8903
	}
8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8924 8925
}

P
Peter Zijlstra 已提交
8926
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8927
{
8928
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8929 8930 8931
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8932

8933
	child_ctx = perf_pin_task_context(child, ctxn);
8934
	if (!child_ctx)
8935 8936
		return;

8937
	/*
8938 8939 8940 8941 8942 8943 8944 8945
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
8946
	 */
8947
	mutex_lock(&child_ctx->mutex);
8948 8949

	/*
8950 8951 8952
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
8953
	 */
8954
	raw_spin_lock_irq(&child_ctx->lock);
8955
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8956

8957
	/*
8958 8959
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8960
	 */
8961 8962 8963 8964
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8965

8966
	clone_ctx = unclone_ctx(child_ctx);
8967
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8968

8969 8970
	if (clone_ctx)
		put_ctx(clone_ctx);
8971

P
Peter Zijlstra 已提交
8972
	/*
8973 8974 8975
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8976
	 */
8977
	perf_event_task(child, child_ctx, 0);
8978

8979
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8980
		perf_event_exit_event(child_event, child_ctx, child);
8981

8982 8983 8984
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8985 8986
}

P
Peter Zijlstra 已提交
8987 8988
/*
 * When a child task exits, feed back event values to parent events.
8989 8990 8991
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
8992 8993 8994
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8995
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8996 8997
	int ctxn;

P
Peter Zijlstra 已提交
8998 8999 9000 9001 9002 9003 9004 9005 9006 9007
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
9008
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
9009 9010 9011
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
9012 9013
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
9014 9015 9016 9017 9018 9019 9020 9021

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
9022 9023
}

9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

9036
	put_event(parent);
9037

P
Peter Zijlstra 已提交
9038
	raw_spin_lock_irq(&ctx->lock);
9039
	perf_group_detach(event);
9040
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
9041
	raw_spin_unlock_irq(&ctx->lock);
9042 9043 9044
	free_event(event);
}

9045
/*
P
Peter Zijlstra 已提交
9046
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
9047
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
9048 9049 9050
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
9051
 */
9052
void perf_event_free_task(struct task_struct *task)
9053
{
P
Peter Zijlstra 已提交
9054
	struct perf_event_context *ctx;
9055
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
9056
	int ctxn;
9057

P
Peter Zijlstra 已提交
9058 9059 9060 9061
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
9062

P
Peter Zijlstra 已提交
9063
		mutex_lock(&ctx->mutex);
9064
again:
P
Peter Zijlstra 已提交
9065 9066 9067
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
9068

P
Peter Zijlstra 已提交
9069 9070 9071
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
9072

P
Peter Zijlstra 已提交
9073 9074 9075
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
9076

P
Peter Zijlstra 已提交
9077
		mutex_unlock(&ctx->mutex);
9078

P
Peter Zijlstra 已提交
9079 9080
		put_ctx(ctx);
	}
9081 9082
}

9083 9084 9085 9086 9087 9088 9089 9090
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

9091
struct file *perf_event_get(unsigned int fd)
9092
{
9093
	struct file *file;
9094

9095 9096 9097
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
9098

9099 9100 9101 9102
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
9103

9104
	return file;
9105 9106 9107 9108 9109 9110 9111 9112 9113 9114
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
9126
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
9127
	struct perf_event *child_event;
9128
	unsigned long flags;
P
Peter Zijlstra 已提交
9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9141
					   child,
P
Peter Zijlstra 已提交
9142
					   group_leader, parent_event,
9143
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9144 9145
	if (IS_ERR(child_event))
		return child_event;
9146

9147 9148 9149 9150 9151 9152 9153
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
9154 9155
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9156
		mutex_unlock(&parent_event->child_mutex);
9157 9158 9159 9160
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9161 9162 9163 9164 9165 9166 9167
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9168
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9185 9186
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9187

9188 9189 9190 9191
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9192
	perf_event__id_header_size(child_event);
9193

P
Peter Zijlstra 已提交
9194 9195 9196
	/*
	 * Link it up in the child's context:
	 */
9197
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9198
	add_event_to_ctx(child_event, child_ctx);
9199
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9231 9232 9233 9234 9235
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9236
		   struct task_struct *child, int ctxn,
9237 9238 9239
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9240
	struct perf_event_context *child_ctx;
9241 9242 9243 9244

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9245 9246
	}

9247
	child_ctx = child->perf_event_ctxp[ctxn];
9248 9249 9250 9251 9252 9253 9254
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9255

9256
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9257 9258
		if (!child_ctx)
			return -ENOMEM;
9259

P
Peter Zijlstra 已提交
9260
		child->perf_event_ctxp[ctxn] = child_ctx;
9261 9262 9263 9264 9265 9266 9267 9268 9269
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9270 9271
}

9272
/*
9273
 * Initialize the perf_event context in task_struct
9274
 */
9275
static int perf_event_init_context(struct task_struct *child, int ctxn)
9276
{
9277
	struct perf_event_context *child_ctx, *parent_ctx;
9278 9279
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9280
	struct task_struct *parent = current;
9281
	int inherited_all = 1;
9282
	unsigned long flags;
9283
	int ret = 0;
9284

P
Peter Zijlstra 已提交
9285
	if (likely(!parent->perf_event_ctxp[ctxn]))
9286 9287
		return 0;

9288
	/*
9289 9290
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9291
	 */
P
Peter Zijlstra 已提交
9292
	parent_ctx = perf_pin_task_context(parent, ctxn);
9293 9294
	if (!parent_ctx)
		return 0;
9295

9296 9297 9298 9299 9300 9301 9302
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9303 9304 9305 9306
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9307
	mutex_lock(&parent_ctx->mutex);
9308 9309 9310 9311 9312

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9313
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9314 9315
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9316 9317 9318
		if (ret)
			break;
	}
9319

9320 9321 9322 9323 9324 9325 9326 9327 9328
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9329
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9330 9331
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9332
		if (ret)
9333
			break;
9334 9335
	}

9336 9337 9338
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9339
	child_ctx = child->perf_event_ctxp[ctxn];
9340

9341
	if (child_ctx && inherited_all) {
9342 9343 9344
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9345 9346 9347
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9348
		 */
P
Peter Zijlstra 已提交
9349
		cloned_ctx = parent_ctx->parent_ctx;
9350 9351
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9352
			child_ctx->parent_gen = parent_ctx->parent_gen;
9353 9354 9355 9356 9357
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9358 9359
	}

P
Peter Zijlstra 已提交
9360
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9361
	mutex_unlock(&parent_ctx->mutex);
9362

9363
	perf_unpin_context(parent_ctx);
9364
	put_ctx(parent_ctx);
9365

9366
	return ret;
9367 9368
}

P
Peter Zijlstra 已提交
9369 9370 9371 9372 9373 9374 9375
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9376 9377 9378 9379
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9380 9381
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9382 9383
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9384
			return ret;
P
Peter Zijlstra 已提交
9385
		}
P
Peter Zijlstra 已提交
9386 9387 9388 9389 9390
	}

	return 0;
}

9391 9392
static void __init perf_event_init_all_cpus(void)
{
9393
	struct swevent_htable *swhash;
9394 9395 9396
	int cpu;

	for_each_possible_cpu(cpu) {
9397 9398
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9399
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9400 9401 9402
	}
}

9403
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9404
{
P
Peter Zijlstra 已提交
9405
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9406

9407
	mutex_lock(&swhash->hlist_mutex);
9408
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9409 9410
		struct swevent_hlist *hlist;

9411 9412 9413
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9414
	}
9415
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9416 9417
}

9418
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9419
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9420
{
P
Peter Zijlstra 已提交
9421
	struct perf_event_context *ctx = __info;
9422 9423
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9424

9425 9426
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9427
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9428
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9429
}
P
Peter Zijlstra 已提交
9430 9431 9432 9433 9434 9435 9436 9437 9438

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9439
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9440 9441 9442 9443 9444 9445 9446 9447

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9448
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9449
{
P
Peter Zijlstra 已提交
9450
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9451 9452
}
#else
9453
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9454 9455
#endif

P
Peter Zijlstra 已提交
9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9476
static int
T
Thomas Gleixner 已提交
9477 9478 9479 9480
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9481
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9482 9483

	case CPU_UP_PREPARE:
9484 9485 9486 9487 9488 9489 9490
		/*
		 * This must be done before the CPU comes alive, because the
		 * moment we can run tasks we can encounter (software) events.
		 *
		 * Specifically, someone can have inherited events on kthreadd
		 * or a pre-existing worker thread that gets re-bound.
		 */
9491
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9492 9493 9494
		break;

	case CPU_DOWN_PREPARE:
9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506
		/*
		 * This must be done before the CPU dies because after that an
		 * active event might want to IPI the CPU and that'll not work
		 * so great for dead CPUs.
		 *
		 * XXX smp_call_function_single() return -ENXIO without a warn
		 * so we could possibly deal with this.
		 *
		 * This is safe against new events arriving because
		 * sys_perf_event_open() serializes against hotplug using
		 * get_online_cpus().
		 */
9507
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9508 9509 9510 9511 9512 9513 9514 9515
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9516
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9517
{
9518 9519
	int ret;

P
Peter Zijlstra 已提交
9520 9521
	idr_init(&pmu_idr);

9522
	perf_event_init_all_cpus();
9523
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9524 9525 9526
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9527 9528
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9529
	register_reboot_notifier(&perf_reboot_notifier);
9530 9531 9532

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9533

9534 9535 9536 9537 9538 9539
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9540
}
P
Peter Zijlstra 已提交
9541

9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
9553
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9554

P
Peter Zijlstra 已提交
9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9582 9583

#ifdef CONFIG_CGROUP_PERF
9584 9585
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9586 9587 9588
{
	struct perf_cgroup *jc;

9589
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9602
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9603
{
9604 9605
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9606 9607 9608 9609 9610 9611 9612
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9613
	rcu_read_lock();
S
Stephane Eranian 已提交
9614
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9615
	rcu_read_unlock();
S
Stephane Eranian 已提交
9616 9617 9618
	return 0;
}

9619
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9620
{
9621
	struct task_struct *task;
9622
	struct cgroup_subsys_state *css;
9623

9624
	cgroup_taskset_for_each(task, css, tset)
9625
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9626 9627
}

9628
struct cgroup_subsys perf_event_cgrp_subsys = {
9629 9630
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9631
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9632 9633
};
#endif /* CONFIG_CGROUP_PERF */