core.c 161.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
131
struct jump_label_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
132 133
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

134 135 136
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
137

P
Peter Zijlstra 已提交
138 139 140 141
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

142
/*
143
 * perf event paranoia level:
144 145
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
146
 *   1 - disallow cpu events for unpriv
147
 *   2 - disallow kernel profiling for unpriv
148
 */
149
int sysctl_perf_event_paranoid __read_mostly = 1;
150

151 152
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 154

/*
155
 * max perf event sample rate
156
 */
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
175

176
static atomic64_t perf_event_id;
177

178 179 180 181
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
182 183 184 185 186
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
187

188 189 190
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

191
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
192

193
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
194
{
195
	return "pmu";
T
Thomas Gleixner 已提交
196 197
}

198 199 200 201 202
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
203 204 205 206 207 208
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
225 226
#ifdef CONFIG_CGROUP_PERF

227 228 229 230 231
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
299 300
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
301
	/*
302 303
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
304
	 */
305
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
306 307
		return;

308 309 310 311 312 313
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
314 315 316
}

static inline void
317 318
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
319 320 321 322
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

323 324 325 326 327 328
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
329 330 331 332
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
333
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
375 376
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384 385 386 387

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
388
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
389 390 391 392 393 394 395
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
396 397
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
398 399 400 401 402 403 404 405
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

406 407
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
408
{
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
431 432
}

433 434
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
470 471 472 473
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
474 475 476 477

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

478 479 480
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
481 482 483 484 485 486 487 488 489
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
490
out:
S
Stephane Eranian 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

565 566
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
567 568 569
{
}

570 571
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
572 573 574 575 576 577 578 579 580 581 582
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
583 584
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
615
void perf_pmu_disable(struct pmu *pmu)
616
{
P
Peter Zijlstra 已提交
617 618 619
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
620 621
}

P
Peter Zijlstra 已提交
622
void perf_pmu_enable(struct pmu *pmu)
623
{
P
Peter Zijlstra 已提交
624 625 626
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
627 628
}

629 630 631 632 633 634 635
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
636
static void perf_pmu_rotate_start(struct pmu *pmu)
637
{
P
Peter Zijlstra 已提交
638
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639
	struct list_head *head = &__get_cpu_var(rotation_list);
640

641
	WARN_ON(!irqs_disabled());
642

643 644
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
645 646
}

647
static void get_ctx(struct perf_event_context *ctx)
648
{
649
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 651
}

652
static void put_ctx(struct perf_event_context *ctx)
653
{
654 655 656
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
657 658
		if (ctx->task)
			put_task_struct(ctx->task);
659
		kfree_rcu(ctx, rcu_head);
660
	}
661 662
}

663
static void unclone_ctx(struct perf_event_context *ctx)
664 665 666 667 668 669 670
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

693
/*
694
 * If we inherit events we want to return the parent event id
695 696
 * to userspace.
 */
697
static u64 primary_event_id(struct perf_event *event)
698
{
699
	u64 id = event->id;
700

701 702
	if (event->parent)
		id = event->parent->id;
703 704 705 706

	return id;
}

707
/*
708
 * Get the perf_event_context for a task and lock it.
709 710 711
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
712
static struct perf_event_context *
P
Peter Zijlstra 已提交
713
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714
{
715
	struct perf_event_context *ctx;
716 717

	rcu_read_lock();
P
Peter Zijlstra 已提交
718
retry:
P
Peter Zijlstra 已提交
719
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 721 722 723
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
724
		 * perf_event_task_sched_out, though the
725 726 727 728 729 730
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
731
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
732
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 735
			goto retry;
		}
736 737

		if (!atomic_inc_not_zero(&ctx->refcount)) {
738
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 740
			ctx = NULL;
		}
741 742 743 744 745 746 747 748 749 750
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
751 752
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
753
{
754
	struct perf_event_context *ctx;
755 756
	unsigned long flags;

P
Peter Zijlstra 已提交
757
	ctx = perf_lock_task_context(task, ctxn, &flags);
758 759
	if (ctx) {
		++ctx->pin_count;
760
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 762 763 764
	}
	return ctx;
}

765
static void perf_unpin_context(struct perf_event_context *ctx)
766 767 768
{
	unsigned long flags;

769
	raw_spin_lock_irqsave(&ctx->lock, flags);
770
	--ctx->pin_count;
771
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 773
}

774 775 776 777 778 779 780 781 782 783 784
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

785 786 787
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
788 789 790 791

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

792 793 794
	return ctx ? ctx->time : 0;
}

795 796
/*
 * Update the total_time_enabled and total_time_running fields for a event.
797
 * The caller of this function needs to hold the ctx->lock.
798 799 800 801 802 803 804 805 806
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
807 808 809 810 811 812 813 814 815 816 817
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
818
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
819 820
	else if (ctx->is_active)
		run_end = ctx->time;
821 822 823 824
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
825 826 827 828

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
829
		run_end = perf_event_time(event);
830 831

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
832

833 834
}

835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

847 848 849 850 851 852 853 854 855
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

856
/*
857
 * Add a event from the lists for its context.
858 859
 * Must be called with ctx->mutex and ctx->lock held.
 */
860
static void
861
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862
{
863 864
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
865 866

	/*
867 868 869
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
870
	 */
871
	if (event->group_leader == event) {
872 873
		struct list_head *list;

874 875 876
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

877 878
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
879
	}
P
Peter Zijlstra 已提交
880

881
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
882 883
		ctx->nr_cgroups++;

884
	list_add_rcu(&event->event_entry, &ctx->event_list);
885
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
886
		perf_pmu_rotate_start(ctx->pmu);
887 888
	ctx->nr_events++;
	if (event->attr.inherit_stat)
889
		ctx->nr_stat++;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

964
	event->id_header_size = size;
965 966
}

967 968
static void perf_group_attach(struct perf_event *event)
{
969
	struct perf_event *group_leader = event->group_leader, *pos;
970

P
Peter Zijlstra 已提交
971 972 973 974 975 976
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

977 978 979 980 981 982 983 984 985 986 987
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
988 989 990 991 992

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
993 994
}

995
/*
996
 * Remove a event from the lists for its context.
997
 * Must be called with ctx->mutex and ctx->lock held.
998
 */
999
static void
1000
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001
{
1002
	struct perf_cpu_context *cpuctx;
1003 1004 1005 1006
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007
		return;
1008 1009 1010

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1011
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1012
		ctx->nr_cgroups--;
1013 1014 1015 1016 1017 1018 1019 1020 1021
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1022

1023 1024
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1025
		ctx->nr_stat--;
1026

1027
	list_del_rcu(&event->event_entry);
1028

1029 1030
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1031

1032
	update_group_times(event);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1043 1044
}

1045
static void perf_group_detach(struct perf_event *event)
1046 1047
{
	struct perf_event *sibling, *tmp;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1064
		goto out;
1065 1066 1067 1068
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1069

1070
	/*
1071 1072
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1073
	 * to whatever list we are on.
1074
	 */
1075
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 1077
		if (list)
			list_move_tail(&sibling->group_entry, list);
1078
		sibling->group_leader = sibling;
1079 1080 1081

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1082
	}
1083 1084 1085 1086 1087 1088

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1089 1090
}

1091 1092 1093
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1094 1095
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1096 1097
}

1098 1099
static void
event_sched_out(struct perf_event *event,
1100
		  struct perf_cpu_context *cpuctx,
1101
		  struct perf_event_context *ctx)
1102
{
1103
	u64 tstamp = perf_event_time(event);
1104 1105 1106 1107 1108 1109 1110 1111 1112
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1113
		delta = tstamp - event->tstamp_stopped;
1114
		event->tstamp_running += delta;
1115
		event->tstamp_stopped = tstamp;
1116 1117
	}

1118
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1119
		return;
1120

1121 1122 1123 1124
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1125
	}
1126
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1127
	event->pmu->del(event, 0);
1128
	event->oncpu = -1;
1129

1130
	if (!is_software_event(event))
1131 1132
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1133 1134
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1135
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 1137 1138
		cpuctx->exclusive = 0;
}

1139
static void
1140
group_sched_out(struct perf_event *group_event,
1141
		struct perf_cpu_context *cpuctx,
1142
		struct perf_event_context *ctx)
1143
{
1144
	struct perf_event *event;
1145
	int state = group_event->state;
1146

1147
	event_sched_out(group_event, cpuctx, ctx);
1148 1149 1150 1151

	/*
	 * Schedule out siblings (if any):
	 */
1152 1153
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1154

1155
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 1157 1158
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1159
/*
1160
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1161
 *
1162
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1163 1164
 * remove it from the context list.
 */
1165
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1166
{
1167 1168
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1169
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1170

1171
	raw_spin_lock(&ctx->lock);
1172 1173
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1174 1175 1176 1177
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1178
	raw_spin_unlock(&ctx->lock);
1179 1180

	return 0;
T
Thomas Gleixner 已提交
1181 1182 1183 1184
}


/*
1185
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1186
 *
1187
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1188
 * call when the task is on a CPU.
1189
 *
1190 1191
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1192 1193
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1194
 * When called from perf_event_exit_task, it's OK because the
1195
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1196
 */
1197
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1198
{
1199
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1200 1201
	struct task_struct *task = ctx->task;

1202 1203
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1204 1205
	if (!task) {
		/*
1206
		 * Per cpu events are removed via an smp call and
1207
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1208
		 */
1209
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1210 1211 1212 1213
		return;
	}

retry:
1214 1215
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1216

1217
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1218
	/*
1219 1220
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1221
	 */
1222
	if (ctx->is_active) {
1223
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1224 1225 1226 1227
		goto retry;
	}

	/*
1228 1229
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1230
	 */
1231
	list_del_event(event, ctx);
1232
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1233 1234
}

1235
/*
1236
 * Cross CPU call to disable a performance event
1237
 */
1238
static int __perf_event_disable(void *info)
1239
{
1240 1241
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1242
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243 1244

	/*
1245 1246
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1247 1248 1249
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1250
	 */
1251
	if (ctx->task && cpuctx->task_ctx != ctx)
1252
		return -EINVAL;
1253

1254
	raw_spin_lock(&ctx->lock);
1255 1256

	/*
1257
	 * If the event is on, turn it off.
1258 1259
	 * If it is in error state, leave it in error state.
	 */
1260
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261
		update_context_time(ctx);
S
Stephane Eranian 已提交
1262
		update_cgrp_time_from_event(event);
1263 1264 1265
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1266
		else
1267 1268
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1269 1270
	}

1271
	raw_spin_unlock(&ctx->lock);
1272 1273

	return 0;
1274 1275 1276
}

/*
1277
 * Disable a event.
1278
 *
1279 1280
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1281
 * remains valid.  This condition is satisifed when called through
1282 1283 1284 1285
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1286
 * is the current context on this CPU and preemption is disabled,
1287
 * hence we can't get into perf_event_task_sched_out for this context.
1288
 */
1289
void perf_event_disable(struct perf_event *event)
1290
{
1291
	struct perf_event_context *ctx = event->ctx;
1292 1293 1294 1295
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1296
		 * Disable the event on the cpu that it's on
1297
		 */
1298
		cpu_function_call(event->cpu, __perf_event_disable, event);
1299 1300 1301
		return;
	}

P
Peter Zijlstra 已提交
1302
retry:
1303 1304
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1305

1306
	raw_spin_lock_irq(&ctx->lock);
1307
	/*
1308
	 * If the event is still active, we need to retry the cross-call.
1309
	 */
1310
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311
		raw_spin_unlock_irq(&ctx->lock);
1312 1313 1314 1315 1316
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1317 1318 1319 1320 1321 1322 1323
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1324 1325 1326
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1327
	}
1328
	raw_spin_unlock_irq(&ctx->lock);
1329
}
1330
EXPORT_SYMBOL_GPL(perf_event_disable);
1331

S
Stephane Eranian 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1367 1368 1369 1370
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1371
static int
1372
event_sched_in(struct perf_event *event,
1373
		 struct perf_cpu_context *cpuctx,
1374
		 struct perf_event_context *ctx)
1375
{
1376 1377
	u64 tstamp = perf_event_time(event);

1378
	if (event->state <= PERF_EVENT_STATE_OFF)
1379 1380
		return 0;

1381
	event->state = PERF_EVENT_STATE_ACTIVE;
1382
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1394 1395 1396 1397 1398
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1399
	if (event->pmu->add(event, PERF_EF_START)) {
1400 1401
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1402 1403 1404
		return -EAGAIN;
	}

1405
	event->tstamp_running += tstamp - event->tstamp_stopped;
1406

S
Stephane Eranian 已提交
1407
	perf_set_shadow_time(event, ctx, tstamp);
1408

1409
	if (!is_software_event(event))
1410
		cpuctx->active_oncpu++;
1411
	ctx->nr_active++;
1412 1413
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1414

1415
	if (event->attr.exclusive)
1416 1417
		cpuctx->exclusive = 1;

1418 1419 1420
	return 0;
}

1421
static int
1422
group_sched_in(struct perf_event *group_event,
1423
	       struct perf_cpu_context *cpuctx,
1424
	       struct perf_event_context *ctx)
1425
{
1426
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1427
	struct pmu *pmu = group_event->pmu;
1428 1429
	u64 now = ctx->time;
	bool simulate = false;
1430

1431
	if (group_event->state == PERF_EVENT_STATE_OFF)
1432 1433
		return 0;

P
Peter Zijlstra 已提交
1434
	pmu->start_txn(pmu);
1435

1436
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1437
		pmu->cancel_txn(pmu);
1438
		return -EAGAIN;
1439
	}
1440 1441 1442 1443

	/*
	 * Schedule in siblings as one group (if any):
	 */
1444
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445
		if (event_sched_in(event, cpuctx, ctx)) {
1446
			partial_group = event;
1447 1448 1449 1450
			goto group_error;
		}
	}

1451
	if (!pmu->commit_txn(pmu))
1452
		return 0;
1453

1454 1455 1456 1457
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1468
	 */
1469 1470
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1471 1472 1473 1474 1475 1476 1477 1478
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1479
	}
1480
	event_sched_out(group_event, cpuctx, ctx);
1481

P
Peter Zijlstra 已提交
1482
	pmu->cancel_txn(pmu);
1483

1484 1485 1486
	return -EAGAIN;
}

1487
/*
1488
 * Work out whether we can put this event group on the CPU now.
1489
 */
1490
static int group_can_go_on(struct perf_event *event,
1491 1492 1493 1494
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1495
	 * Groups consisting entirely of software events can always go on.
1496
	 */
1497
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 1499 1500
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1501
	 * events can go on.
1502 1503 1504 1505 1506
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1507
	 * events on the CPU, it can't go on.
1508
	 */
1509
	if (event->attr.exclusive && cpuctx->active_oncpu)
1510 1511 1512 1513 1514 1515 1516 1517
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1518 1519
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1520
{
1521 1522
	u64 tstamp = perf_event_time(event);

1523
	list_add_event(event, ctx);
1524
	perf_group_attach(event);
1525 1526 1527
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1528 1529
}

1530 1531 1532 1533 1534 1535
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1549
/*
1550
 * Cross CPU call to install and enable a performance event
1551 1552
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1553
 */
1554
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1555
{
1556 1557
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1558
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 1560 1561
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1562
	perf_ctx_lock(cpuctx, task_ctx);
1563
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1564 1565

	/*
1566
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1567
	 */
1568
	if (task_ctx)
1569
		task_ctx_sched_out(task_ctx);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1584 1585
		task = task_ctx->task;
	}
1586

1587
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1588

1589
	update_context_time(ctx);
S
Stephane Eranian 已提交
1590 1591 1592 1593 1594 1595
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1596

1597
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1598

1599
	/*
1600
	 * Schedule everything back in
1601
	 */
1602
	perf_event_sched_in(cpuctx, task_ctx, task);
1603 1604 1605

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1606 1607

	return 0;
T
Thomas Gleixner 已提交
1608 1609 1610
}

/*
1611
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1612
 *
1613 1614
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1615
 *
1616
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1617 1618 1619 1620
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1621 1622
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1623 1624 1625 1626
			int cpu)
{
	struct task_struct *task = ctx->task;

1627 1628
	lockdep_assert_held(&ctx->mutex);

1629 1630
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1631 1632
	if (!task) {
		/*
1633
		 * Per cpu events are installed via an smp call and
1634
		 * the install is always successful.
T
Thomas Gleixner 已提交
1635
		 */
1636
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1637 1638 1639 1640
		return;
	}

retry:
1641 1642
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1643

1644
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1645
	/*
1646 1647
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1648
	 */
1649
	if (ctx->is_active) {
1650
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1651 1652 1653 1654
		goto retry;
	}

	/*
1655 1656
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1657
	 */
1658
	add_event_to_ctx(event, ctx);
1659
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1660 1661
}

1662
/*
1663
 * Put a event into inactive state and update time fields.
1664 1665 1666 1667 1668 1669
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1670
static void __perf_event_mark_enabled(struct perf_event *event)
1671
{
1672
	struct perf_event *sub;
1673
	u64 tstamp = perf_event_time(event);
1674

1675
	event->state = PERF_EVENT_STATE_INACTIVE;
1676
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1677
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 1679
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1680
	}
1681 1682
}

1683
/*
1684
 * Cross CPU call to enable a performance event
1685
 */
1686
static int __perf_event_enable(void *info)
1687
{
1688 1689 1690
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1691
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692
	int err;
1693

1694 1695
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1696

1697
	raw_spin_lock(&ctx->lock);
1698
	update_context_time(ctx);
1699

1700
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701
		goto unlock;
S
Stephane Eranian 已提交
1702 1703 1704 1705

	/*
	 * set current task's cgroup time reference point
	 */
1706
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1707

1708
	__perf_event_mark_enabled(event);
1709

S
Stephane Eranian 已提交
1710 1711 1712
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1713
		goto unlock;
S
Stephane Eranian 已提交
1714
	}
1715

1716
	/*
1717
	 * If the event is in a group and isn't the group leader,
1718
	 * then don't put it on unless the group is on.
1719
	 */
1720
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721
		goto unlock;
1722

1723
	if (!group_can_go_on(event, cpuctx, 1)) {
1724
		err = -EEXIST;
1725
	} else {
1726
		if (event == leader)
1727
			err = group_sched_in(event, cpuctx, ctx);
1728
		else
1729
			err = event_sched_in(event, cpuctx, ctx);
1730
	}
1731 1732 1733

	if (err) {
		/*
1734
		 * If this event can't go on and it's part of a
1735 1736
		 * group, then the whole group has to come off.
		 */
1737
		if (leader != event)
1738
			group_sched_out(leader, cpuctx, ctx);
1739
		if (leader->attr.pinned) {
1740
			update_group_times(leader);
1741
			leader->state = PERF_EVENT_STATE_ERROR;
1742
		}
1743 1744
	}

P
Peter Zijlstra 已提交
1745
unlock:
1746
	raw_spin_unlock(&ctx->lock);
1747 1748

	return 0;
1749 1750 1751
}

/*
1752
 * Enable a event.
1753
 *
1754 1755
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1756
 * remains valid.  This condition is satisfied when called through
1757 1758
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1759
 */
1760
void perf_event_enable(struct perf_event *event)
1761
{
1762
	struct perf_event_context *ctx = event->ctx;
1763 1764 1765 1766
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1767
		 * Enable the event on the cpu that it's on
1768
		 */
1769
		cpu_function_call(event->cpu, __perf_event_enable, event);
1770 1771 1772
		return;
	}

1773
	raw_spin_lock_irq(&ctx->lock);
1774
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 1776 1777
		goto out;

	/*
1778 1779
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1780 1781 1782 1783
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1784 1785
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1786

P
Peter Zijlstra 已提交
1787
retry:
1788
	if (!ctx->is_active) {
1789
		__perf_event_mark_enabled(event);
1790 1791 1792
		goto out;
	}

1793
	raw_spin_unlock_irq(&ctx->lock);
1794 1795 1796

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1797

1798
	raw_spin_lock_irq(&ctx->lock);
1799 1800

	/*
1801
	 * If the context is active and the event is still off,
1802 1803
	 * we need to retry the cross-call.
	 */
1804 1805 1806 1807 1808 1809
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1810
		goto retry;
1811
	}
1812

P
Peter Zijlstra 已提交
1813
out:
1814
	raw_spin_unlock_irq(&ctx->lock);
1815
}
1816
EXPORT_SYMBOL_GPL(perf_event_enable);
1817

1818
int perf_event_refresh(struct perf_event *event, int refresh)
1819
{
1820
	/*
1821
	 * not supported on inherited events
1822
	 */
1823
	if (event->attr.inherit || !is_sampling_event(event))
1824 1825
		return -EINVAL;

1826 1827
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1828 1829

	return 0;
1830
}
1831
EXPORT_SYMBOL_GPL(perf_event_refresh);
1832

1833 1834 1835
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1836
{
1837
	struct perf_event *event;
1838
	int is_active = ctx->is_active;
1839

1840
	ctx->is_active &= ~event_type;
1841
	if (likely(!ctx->nr_events))
1842 1843
		return;

1844
	update_context_time(ctx);
S
Stephane Eranian 已提交
1845
	update_cgrp_time_from_cpuctx(cpuctx);
1846
	if (!ctx->nr_active)
1847
		return;
1848

P
Peter Zijlstra 已提交
1849
	perf_pmu_disable(ctx->pmu);
1850
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 1852
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1853
	}
1854

1855
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1858
	}
P
Peter Zijlstra 已提交
1859
	perf_pmu_enable(ctx->pmu);
1860 1861
}

1862 1863 1864
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1865 1866 1867 1868
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1869
 * in them directly with an fd; we can only enable/disable all
1870
 * events via prctl, or enable/disable all events in a family
1871 1872
 * via ioctl, which will have the same effect on both contexts.
 */
1873 1874
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1875 1876
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877
		&& ctx1->parent_gen == ctx2->parent_gen
1878
		&& !ctx1->pin_count && !ctx2->pin_count;
1879 1880
}

1881 1882
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1883 1884 1885
{
	u64 value;

1886
	if (!event->attr.inherit_stat)
1887 1888 1889
		return;

	/*
1890
	 * Update the event value, we cannot use perf_event_read()
1891 1892
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1893
	 * we know the event must be on the current CPU, therefore we
1894 1895
	 * don't need to use it.
	 */
1896 1897
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1898 1899
		event->pmu->read(event);
		/* fall-through */
1900

1901 1902
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1903 1904 1905 1906 1907 1908 1909
		break;

	default:
		break;
	}

	/*
1910
	 * In order to keep per-task stats reliable we need to flip the event
1911 1912
	 * values when we flip the contexts.
	 */
1913 1914 1915
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1916

1917 1918
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1919

1920
	/*
1921
	 * Since we swizzled the values, update the user visible data too.
1922
	 */
1923 1924
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1925 1926 1927 1928 1929
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1930 1931
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1932
{
1933
	struct perf_event *event, *next_event;
1934 1935 1936 1937

	if (!ctx->nr_stat)
		return;

1938 1939
	update_context_time(ctx);

1940 1941
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1942

1943 1944
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1945

1946 1947
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1948

1949
		__perf_event_sync_stat(event, next_event);
1950

1951 1952
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1953 1954 1955
	}
}

1956 1957
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1958
{
P
Peter Zijlstra 已提交
1959
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 1961
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1962
	struct perf_cpu_context *cpuctx;
1963
	int do_switch = 1;
T
Thomas Gleixner 已提交
1964

P
Peter Zijlstra 已提交
1965 1966
	if (likely(!ctx))
		return;
1967

P
Peter Zijlstra 已提交
1968 1969
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1970 1971
		return;

1972 1973
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1974
	next_ctx = next->perf_event_ctxp[ctxn];
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1986 1987
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988
		if (context_equiv(ctx, next_ctx)) {
1989 1990
			/*
			 * XXX do we need a memory barrier of sorts
1991
			 * wrt to rcu_dereference() of perf_event_ctxp
1992
			 */
P
Peter Zijlstra 已提交
1993 1994
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1995 1996 1997
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1998

1999
			perf_event_sync_stat(ctx, next_ctx);
2000
		}
2001 2002
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2003
	}
2004
	rcu_read_unlock();
2005

2006
	if (do_switch) {
2007
		raw_spin_lock(&ctx->lock);
2008
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009
		cpuctx->task_ctx = NULL;
2010
		raw_spin_unlock(&ctx->lock);
2011
	}
T
Thomas Gleixner 已提交
2012 2013
}

P
Peter Zijlstra 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2028 2029
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2030 2031 2032 2033 2034
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2035 2036 2037 2038 2039 2040 2041

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2043 2044
}

2045
static void task_ctx_sched_out(struct perf_event_context *ctx)
2046
{
P
Peter Zijlstra 已提交
2047
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048

2049 2050
	if (!cpuctx->task_ctx)
		return;
2051 2052 2053 2054

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2055
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 2057 2058
	cpuctx->task_ctx = NULL;
}

2059 2060 2061 2062 2063 2064 2065
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 2067
}

2068
static void
2069
ctx_pinned_sched_in(struct perf_event_context *ctx,
2070
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2071
{
2072
	struct perf_event *event;
T
Thomas Gleixner 已提交
2073

2074 2075
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2076
			continue;
2077
		if (!event_filter_match(event))
2078 2079
			continue;

S
Stephane Eranian 已提交
2080 2081 2082 2083
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2084
		if (group_can_go_on(event, cpuctx, 1))
2085
			group_sched_in(event, cpuctx, ctx);
2086 2087 2088 2089 2090

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2091 2092 2093
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2094
		}
2095
	}
2096 2097 2098 2099
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2100
		      struct perf_cpu_context *cpuctx)
2101 2102 2103
{
	struct perf_event *event;
	int can_add_hw = 1;
2104

2105 2106 2107
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2108
			continue;
2109 2110
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2111
		 * of events:
2112
		 */
2113
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2114 2115
			continue;

S
Stephane Eranian 已提交
2116 2117 2118 2119
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2120
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121
			if (group_sched_in(event, cpuctx, ctx))
2122
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2123
		}
T
Thomas Gleixner 已提交
2124
	}
2125 2126 2127 2128 2129
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2130 2131
	     enum event_type_t event_type,
	     struct task_struct *task)
2132
{
S
Stephane Eranian 已提交
2133
	u64 now;
2134
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2135

2136
	ctx->is_active |= event_type;
2137
	if (likely(!ctx->nr_events))
2138
		return;
2139

S
Stephane Eranian 已提交
2140 2141
	now = perf_clock();
	ctx->timestamp = now;
2142
	perf_cgroup_set_timestamp(task, ctx);
2143 2144 2145 2146
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2147
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148
		ctx_pinned_sched_in(ctx, cpuctx);
2149 2150

	/* Then walk through the lower prio flexible groups */
2151
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152
		ctx_flexible_sched_in(ctx, cpuctx);
2153 2154
}

2155
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2156 2157
			     enum event_type_t event_type,
			     struct task_struct *task)
2158 2159 2160
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2161
	ctx_sched_in(ctx, cpuctx, event_type, task);
2162 2163
}

S
Stephane Eranian 已提交
2164 2165
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2166
{
P
Peter Zijlstra 已提交
2167
	struct perf_cpu_context *cpuctx;
2168

P
Peter Zijlstra 已提交
2169
	cpuctx = __get_cpu_context(ctx);
2170 2171 2172
	if (cpuctx->task_ctx == ctx)
		return;

2173
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2174
	perf_pmu_disable(ctx->pmu);
2175 2176 2177 2178 2179 2180 2181
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2182 2183
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2184

2185 2186
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2187 2188 2189
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2190 2191 2192 2193
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2194
	perf_pmu_rotate_start(ctx->pmu);
2195 2196
}

P
Peter Zijlstra 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2208 2209
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2219
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2220
	}
S
Stephane Eranian 已提交
2221 2222 2223 2224 2225 2226
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227
		perf_cgroup_sched_in(prev, task);
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2257
#define REDUCE_FLS(a, b)		\
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2297 2298 2299
	if (!divisor)
		return dividend;

2300 2301 2302
	return div64_u64(dividend, divisor);
}

2303 2304 2305
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2306
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2307
{
2308
	struct hw_perf_event *hwc = &event->hw;
2309
	s64 period, sample_period;
2310 2311
	s64 delta;

2312
	period = perf_calculate_period(event, nsec, count);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2323

2324
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2325
		event->pmu->stop(event, PERF_EF_UPDATE);
2326
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2327
		event->pmu->start(event, PERF_EF_RELOAD);
2328
	}
2329 2330
}

2331 2332 2333 2334 2335 2336 2337
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2338
{
2339 2340
	struct perf_event *event;
	struct hw_perf_event *hwc;
2341
	u64 now, period = TICK_NSEC;
2342
	s64 delta;
2343

2344 2345 2346 2347 2348 2349
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2350 2351
		return;

2352 2353
	raw_spin_lock(&ctx->lock);

2354
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2355
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2356 2357
			continue;

2358
		if (!event_filter_match(event))
2359 2360
			continue;

2361
		hwc = &event->hw;
2362

2363 2364
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2365
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2366
			event->pmu->start(event, 0);
2367 2368
		}

2369
		if (!event->attr.freq || !event->attr.sample_freq)
2370 2371
			continue;

2372 2373 2374 2375 2376
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2377
		now = local64_read(&event->count);
2378 2379
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2380

2381 2382 2383 2384
		/*
		 * restart the event
		 * reload only if value has changed
		 */
2385
		if (delta > 0)
2386
			perf_adjust_period(event, period, delta);
2387 2388

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2389
	}
2390 2391

	raw_spin_unlock(&ctx->lock);
2392 2393
}

2394
/*
2395
 * Round-robin a context's events:
2396
 */
2397
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2398
{
2399 2400 2401 2402 2403 2404
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2405 2406
}

2407
/*
2408 2409 2410
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2411
 */
2412
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2413
{
P
Peter Zijlstra 已提交
2414
	struct perf_event_context *ctx = NULL;
2415
	int rotate = 0, remove = 1;
2416

2417
	if (cpuctx->ctx.nr_events) {
2418
		remove = 0;
2419 2420 2421
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2422

P
Peter Zijlstra 已提交
2423
	ctx = cpuctx->task_ctx;
2424
	if (ctx && ctx->nr_events) {
2425
		remove = 0;
2426 2427 2428
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2429

2430
	if (!rotate)
2431 2432
		goto done;

2433
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2434
	perf_pmu_disable(cpuctx->ctx.pmu);
2435

2436 2437 2438
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2439

2440 2441 2442
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2443

2444
	perf_event_sched_in(cpuctx, ctx, current);
2445

2446 2447
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2448
done:
2449 2450 2451 2452 2453 2454 2455 2456
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2457 2458
	struct perf_event_context *ctx;
	int throttled;
2459

2460 2461
	WARN_ON(!irqs_disabled());

2462 2463 2464
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2465
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2466 2467 2468 2469 2470 2471 2472
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2473 2474 2475 2476
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2477 2478
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2489
	__perf_event_mark_enabled(event);
2490 2491 2492 2493

	return 1;
}

2494
/*
2495
 * Enable all of a task's events that have been marked enable-on-exec.
2496 2497
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2498
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2499
{
2500
	struct perf_event *event;
2501 2502
	unsigned long flags;
	int enabled = 0;
2503
	int ret;
2504 2505

	local_irq_save(flags);
2506
	if (!ctx || !ctx->nr_events)
2507 2508
		goto out;

2509 2510 2511 2512 2513 2514 2515
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2516
	perf_cgroup_sched_out(current, NULL);
2517

2518
	raw_spin_lock(&ctx->lock);
2519
	task_ctx_sched_out(ctx);
2520

2521
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2522 2523 2524
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2525 2526 2527
	}

	/*
2528
	 * Unclone this context if we enabled any event.
2529
	 */
2530 2531
	if (enabled)
		unclone_ctx(ctx);
2532

2533
	raw_spin_unlock(&ctx->lock);
2534

2535 2536 2537
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2538
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2539
out:
2540 2541 2542
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2543
/*
2544
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2545
 */
2546
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2547
{
2548 2549
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2550
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2551

2552 2553 2554 2555
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2556 2557
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2558 2559 2560 2561
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2562
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2563
	if (ctx->is_active) {
2564
		update_context_time(ctx);
S
Stephane Eranian 已提交
2565 2566
		update_cgrp_time_from_event(event);
	}
2567
	update_event_times(event);
2568 2569
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2570
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2571 2572
}

P
Peter Zijlstra 已提交
2573 2574
static inline u64 perf_event_count(struct perf_event *event)
{
2575
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2576 2577
}

2578
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2579 2580
{
	/*
2581 2582
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2583
	 */
2584 2585 2586 2587
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2588 2589 2590
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2591
		raw_spin_lock_irqsave(&ctx->lock, flags);
2592 2593 2594 2595 2596
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2597
		if (ctx->is_active) {
2598
			update_context_time(ctx);
S
Stephane Eranian 已提交
2599 2600
			update_cgrp_time_from_event(event);
		}
2601
		update_event_times(event);
2602
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2603 2604
	}

P
Peter Zijlstra 已提交
2605
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2606 2607
}

2608
/*
2609
 * Initialize the perf_event context in a task_struct:
2610
 */
2611
static void __perf_event_init_context(struct perf_event_context *ctx)
2612
{
2613
	raw_spin_lock_init(&ctx->lock);
2614
	mutex_init(&ctx->mutex);
2615 2616
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2617 2618
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2634
	}
2635 2636 2637
	ctx->pmu = pmu;

	return ctx;
2638 2639
}

2640 2641 2642 2643 2644
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2645 2646

	rcu_read_lock();
2647
	if (!vpid)
T
Thomas Gleixner 已提交
2648 2649
		task = current;
	else
2650
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2651 2652 2653 2654 2655 2656 2657 2658
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2659 2660 2661 2662
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2663 2664 2665 2666 2667 2668 2669
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2670 2671 2672
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2673
static struct perf_event_context *
M
Matt Helsley 已提交
2674
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2675
{
2676
	struct perf_event_context *ctx;
2677
	struct perf_cpu_context *cpuctx;
2678
	unsigned long flags;
P
Peter Zijlstra 已提交
2679
	int ctxn, err;
T
Thomas Gleixner 已提交
2680

2681
	if (!task) {
2682
		/* Must be root to operate on a CPU event: */
2683
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2684 2685 2686
			return ERR_PTR(-EACCES);

		/*
2687
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2688 2689 2690
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2691
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2692 2693
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2694
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2695
		ctx = &cpuctx->ctx;
2696
		get_ctx(ctx);
2697
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2698 2699 2700 2701

		return ctx;
	}

P
Peter Zijlstra 已提交
2702 2703 2704 2705 2706
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2707
retry:
P
Peter Zijlstra 已提交
2708
	ctx = perf_lock_task_context(task, ctxn, &flags);
2709
	if (ctx) {
2710
		unclone_ctx(ctx);
2711
		++ctx->pin_count;
2712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2713
	} else {
2714
		ctx = alloc_perf_context(pmu, task);
2715 2716 2717
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2718

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2729
		else {
2730
			get_ctx(ctx);
2731
			++ctx->pin_count;
2732
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2733
		}
2734 2735 2736
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2737
			put_ctx(ctx);
2738 2739 2740 2741

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2742 2743 2744
		}
	}

T
Thomas Gleixner 已提交
2745
	return ctx;
2746

P
Peter Zijlstra 已提交
2747
errout:
2748
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2749 2750
}

L
Li Zefan 已提交
2751 2752
static void perf_event_free_filter(struct perf_event *event);

2753
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2754
{
2755
	struct perf_event *event;
P
Peter Zijlstra 已提交
2756

2757 2758 2759
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2760
	perf_event_free_filter(event);
2761
	kfree(event);
P
Peter Zijlstra 已提交
2762 2763
}

2764
static void ring_buffer_put(struct ring_buffer *rb);
2765

2766
static void free_event(struct perf_event *event)
2767
{
2768
	irq_work_sync(&event->pending);
2769

2770
	if (!event->parent) {
2771
		if (event->attach_state & PERF_ATTACH_TASK)
2772
			jump_label_dec_deferred(&perf_sched_events);
2773
		if (event->attr.mmap || event->attr.mmap_data)
2774 2775 2776 2777 2778
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2779 2780
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2781 2782
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2783
			jump_label_dec_deferred(&perf_sched_events);
2784
		}
2785
	}
2786

2787 2788 2789
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2790 2791
	}

S
Stephane Eranian 已提交
2792 2793 2794
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2795 2796
	if (event->destroy)
		event->destroy(event);
2797

P
Peter Zijlstra 已提交
2798 2799 2800
	if (event->ctx)
		put_ctx(event->ctx);

2801
	call_rcu(&event->rcu_head, free_event_rcu);
2802 2803
}

2804
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2805
{
2806
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2807

2808
	WARN_ON_ONCE(ctx->parent_ctx);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2822
	raw_spin_lock_irq(&ctx->lock);
2823
	perf_group_detach(event);
2824
	raw_spin_unlock_irq(&ctx->lock);
2825
	perf_remove_from_context(event);
2826
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2827

2828
	free_event(event);
T
Thomas Gleixner 已提交
2829 2830 2831

	return 0;
}
2832
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2833

2834 2835 2836 2837
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2838
{
2839
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2840
	struct task_struct *owner;
2841

2842
	file->private_data = NULL;
2843

P
Peter Zijlstra 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2877
	return perf_event_release_kernel(event);
2878 2879
}

2880
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2881
{
2882
	struct perf_event *child;
2883 2884
	u64 total = 0;

2885 2886 2887
	*enabled = 0;
	*running = 0;

2888
	mutex_lock(&event->child_mutex);
2889
	total += perf_event_read(event);
2890 2891 2892 2893 2894 2895
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2896
		total += perf_event_read(child);
2897 2898 2899
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2900
	mutex_unlock(&event->child_mutex);
2901 2902 2903

	return total;
}
2904
EXPORT_SYMBOL_GPL(perf_event_read_value);
2905

2906
static int perf_event_read_group(struct perf_event *event,
2907 2908
				   u64 read_format, char __user *buf)
{
2909
	struct perf_event *leader = event->group_leader, *sub;
2910 2911
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2912
	u64 values[5];
2913
	u64 count, enabled, running;
2914

2915
	mutex_lock(&ctx->mutex);
2916
	count = perf_event_read_value(leader, &enabled, &running);
2917 2918

	values[n++] = 1 + leader->nr_siblings;
2919 2920 2921 2922
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2923 2924 2925
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2926 2927 2928 2929

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2930
		goto unlock;
2931

2932
	ret = size;
2933

2934
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2935
		n = 0;
2936

2937
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2938 2939 2940 2941 2942
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2943
		if (copy_to_user(buf + ret, values, size)) {
2944 2945 2946
			ret = -EFAULT;
			goto unlock;
		}
2947 2948

		ret += size;
2949
	}
2950 2951
unlock:
	mutex_unlock(&ctx->mutex);
2952

2953
	return ret;
2954 2955
}

2956
static int perf_event_read_one(struct perf_event *event,
2957 2958
				 u64 read_format, char __user *buf)
{
2959
	u64 enabled, running;
2960 2961 2962
	u64 values[4];
	int n = 0;

2963 2964 2965 2966 2967
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2968
	if (read_format & PERF_FORMAT_ID)
2969
		values[n++] = primary_event_id(event);
2970 2971 2972 2973 2974 2975 2976

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2977
/*
2978
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2979 2980
 */
static ssize_t
2981
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2982
{
2983
	u64 read_format = event->attr.read_format;
2984
	int ret;
T
Thomas Gleixner 已提交
2985

2986
	/*
2987
	 * Return end-of-file for a read on a event that is in
2988 2989 2990
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2991
	if (event->state == PERF_EVENT_STATE_ERROR)
2992 2993
		return 0;

2994
	if (count < event->read_size)
2995 2996
		return -ENOSPC;

2997
	WARN_ON_ONCE(event->ctx->parent_ctx);
2998
	if (read_format & PERF_FORMAT_GROUP)
2999
		ret = perf_event_read_group(event, read_format, buf);
3000
	else
3001
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3002

3003
	return ret;
T
Thomas Gleixner 已提交
3004 3005 3006 3007 3008
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3009
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3010

3011
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3012 3013 3014 3015
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3016
	struct perf_event *event = file->private_data;
3017
	struct ring_buffer *rb;
3018
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3019

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3037
	rcu_read_lock();
3038
	rb = rcu_dereference(event->rb);
3039 3040
	if (rb) {
		ring_buffer_attach(event, rb);
3041
		events = atomic_xchg(&rb->poll, 0);
3042
	}
P
Peter Zijlstra 已提交
3043
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3044

3045 3046
	mutex_unlock(&event->mmap_mutex);

3047
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3048 3049 3050 3051

	return events;
}

3052
static void perf_event_reset(struct perf_event *event)
3053
{
3054
	(void)perf_event_read(event);
3055
	local64_set(&event->count, 0);
3056
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3057 3058
}

3059
/*
3060 3061 3062 3063
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3064
 */
3065 3066
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3067
{
3068
	struct perf_event *child;
P
Peter Zijlstra 已提交
3069

3070 3071 3072 3073
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3074
		func(child);
3075
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3076 3077
}

3078 3079
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3080
{
3081 3082
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3083

3084 3085
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3086
	event = event->group_leader;
3087

3088 3089 3090 3091
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3092
	mutex_unlock(&ctx->mutex);
3093 3094
}

3095
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3096
{
3097
	struct perf_event_context *ctx = event->ctx;
3098 3099 3100
	int ret = 0;
	u64 value;

3101
	if (!is_sampling_event(event))
3102 3103
		return -EINVAL;

3104
	if (copy_from_user(&value, arg, sizeof(value)))
3105 3106 3107 3108 3109
		return -EFAULT;

	if (!value)
		return -EINVAL;

3110
	raw_spin_lock_irq(&ctx->lock);
3111 3112
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3113 3114 3115 3116
			ret = -EINVAL;
			goto unlock;
		}

3117
		event->attr.sample_freq = value;
3118
	} else {
3119 3120
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3121 3122
	}
unlock:
3123
	raw_spin_unlock_irq(&ctx->lock);
3124 3125 3126 3127

	return ret;
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3149
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3150

3151 3152
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3153 3154
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3155
	u32 flags = arg;
3156 3157

	switch (cmd) {
3158 3159
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3160
		break;
3161 3162
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3163
		break;
3164 3165
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3166
		break;
P
Peter Zijlstra 已提交
3167

3168 3169
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3170

3171 3172
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3173

3174
	case PERF_EVENT_IOC_SET_OUTPUT:
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3192

L
Li Zefan 已提交
3193 3194 3195
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3196
	default:
P
Peter Zijlstra 已提交
3197
		return -ENOTTY;
3198
	}
P
Peter Zijlstra 已提交
3199 3200

	if (flags & PERF_IOC_FLAG_GROUP)
3201
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3202
	else
3203
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3204 3205

	return 0;
3206 3207
}

3208
int perf_event_task_enable(void)
3209
{
3210
	struct perf_event *event;
3211

3212 3213 3214 3215
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3216 3217 3218 3219

	return 0;
}

3220
int perf_event_task_disable(void)
3221
{
3222
	struct perf_event *event;
3223

3224 3225 3226 3227
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3228 3229 3230 3231

	return 0;
}

3232 3233
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3234 3235
#endif

3236
static int perf_event_index(struct perf_event *event)
3237
{
P
Peter Zijlstra 已提交
3238 3239 3240
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3241
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3242 3243
		return 0;

3244
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3245 3246
}

3247
static void calc_timer_values(struct perf_event *event,
3248 3249
				u64 *enabled,
				u64 *running)
3250 3251 3252 3253 3254 3255 3256 3257 3258
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3259 3260 3261 3262 3263
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3264
void perf_event_update_userpage(struct perf_event *event)
3265
{
3266
	struct perf_event_mmap_page *userpg;
3267
	struct ring_buffer *rb;
3268
	u64 enabled, running;
3269 3270

	rcu_read_lock();
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3281 3282
	rb = rcu_dereference(event->rb);
	if (!rb)
3283 3284
		goto unlock;

3285
	userpg = rb->user_page;
3286

3287 3288 3289 3290 3291
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3292
	++userpg->lock;
3293
	barrier();
3294
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3295
	userpg->offset = perf_event_count(event);
3296
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3297
		userpg->offset -= local64_read(&event->hw.prev_count);
3298

3299
	userpg->time_enabled = enabled +
3300
			atomic64_read(&event->child_total_time_enabled);
3301

3302
	userpg->time_running = running +
3303
			atomic64_read(&event->child_total_time_running);
3304

3305
	barrier();
3306
	++userpg->lock;
3307
	preempt_enable();
3308
unlock:
3309
	rcu_read_unlock();
3310 3311
}

3312 3313 3314
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3315
	struct ring_buffer *rb;
3316 3317 3318 3319 3320 3321 3322 3323 3324
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3325 3326
	rb = rcu_dereference(event->rb);
	if (!rb)
3327 3328 3329 3330 3331
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3332
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3384 3385 3386 3387
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3388
		wake_up_all(&event->waitq);
3389 3390

unlock:
3391 3392 3393
	rcu_read_unlock();
}

3394
static void rb_free_rcu(struct rcu_head *rcu_head)
3395
{
3396
	struct ring_buffer *rb;
3397

3398 3399
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3400 3401
}

3402
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3403
{
3404
	struct ring_buffer *rb;
3405

3406
	rcu_read_lock();
3407 3408 3409 3410
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3411 3412 3413
	}
	rcu_read_unlock();

3414
	return rb;
3415 3416
}

3417
static void ring_buffer_put(struct ring_buffer *rb)
3418
{
3419 3420 3421
	struct perf_event *event, *n;
	unsigned long flags;

3422
	if (!atomic_dec_and_test(&rb->refcount))
3423
		return;
3424

3425 3426 3427 3428 3429 3430 3431
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3432
	call_rcu(&rb->rcu_head, rb_free_rcu);
3433 3434 3435 3436
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3437
	struct perf_event *event = vma->vm_file->private_data;
3438

3439
	atomic_inc(&event->mmap_count);
3440 3441 3442 3443
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3444
	struct perf_event *event = vma->vm_file->private_data;
3445

3446
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3447
		unsigned long size = perf_data_size(event->rb);
3448
		struct user_struct *user = event->mmap_user;
3449
		struct ring_buffer *rb = event->rb;
3450

3451
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3452
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3453
		rcu_assign_pointer(event->rb, NULL);
3454
		ring_buffer_detach(event, rb);
3455
		mutex_unlock(&event->mmap_mutex);
3456

3457
		ring_buffer_put(rb);
3458
		free_uid(user);
3459
	}
3460 3461
}

3462
static const struct vm_operations_struct perf_mmap_vmops = {
3463 3464 3465 3466
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3467 3468 3469 3470
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3471
	struct perf_event *event = file->private_data;
3472
	unsigned long user_locked, user_lock_limit;
3473
	struct user_struct *user = current_user();
3474
	unsigned long locked, lock_limit;
3475
	struct ring_buffer *rb;
3476 3477
	unsigned long vma_size;
	unsigned long nr_pages;
3478
	long user_extra, extra;
3479
	int ret = 0, flags = 0;
3480

3481 3482 3483
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3484
	 * same rb.
3485 3486 3487 3488
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3489
	if (!(vma->vm_flags & VM_SHARED))
3490
		return -EINVAL;
3491 3492 3493 3494

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3495
	/*
3496
	 * If we have rb pages ensure they're a power-of-two number, so we
3497 3498 3499
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3500 3501
		return -EINVAL;

3502
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3503 3504
		return -EINVAL;

3505 3506
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3507

3508 3509
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3510 3511 3512
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3513
		else
3514 3515 3516 3517
			ret = -EINVAL;
		goto unlock;
	}

3518
	user_extra = nr_pages + 1;
3519
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3520 3521 3522 3523 3524 3525

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3526
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3527

3528 3529 3530
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3531

3532
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3533
	lock_limit >>= PAGE_SHIFT;
3534
	locked = vma->vm_mm->pinned_vm + extra;
3535

3536 3537
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3538 3539 3540
		ret = -EPERM;
		goto unlock;
	}
3541

3542
	WARN_ON(event->rb);
3543

3544
	if (vma->vm_flags & VM_WRITE)
3545
		flags |= RING_BUFFER_WRITABLE;
3546

3547 3548 3549 3550
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3551
	if (!rb) {
3552
		ret = -ENOMEM;
3553
		goto unlock;
3554
	}
3555
	rcu_assign_pointer(event->rb, rb);
3556

3557 3558 3559
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3560
	vma->vm_mm->pinned_vm += event->mmap_locked;
3561

3562
unlock:
3563 3564
	if (!ret)
		atomic_inc(&event->mmap_count);
3565
	mutex_unlock(&event->mmap_mutex);
3566 3567 3568

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3569 3570

	return ret;
3571 3572
}

P
Peter Zijlstra 已提交
3573 3574 3575
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3576
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3577 3578 3579
	int retval;

	mutex_lock(&inode->i_mutex);
3580
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3581 3582 3583 3584 3585 3586 3587 3588
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3589
static const struct file_operations perf_fops = {
3590
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3591 3592 3593
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3594 3595
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3596
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3597
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3598 3599
};

3600
/*
3601
 * Perf event wakeup
3602 3603 3604 3605 3606
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3607
void perf_event_wakeup(struct perf_event *event)
3608
{
3609
	ring_buffer_wakeup(event);
3610

3611 3612 3613
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3614
	}
3615 3616
}

3617
static void perf_pending_event(struct irq_work *entry)
3618
{
3619 3620
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3621

3622 3623 3624
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3625 3626
	}

3627 3628 3629
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3630 3631 3632
	}
}

3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3654 3655 3656
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3684 3685 3686
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3713 3714 3715
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3716 3717 3718 3719 3720
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3721
static void perf_output_read_one(struct perf_output_handle *handle,
3722 3723
				 struct perf_event *event,
				 u64 enabled, u64 running)
3724
{
3725
	u64 read_format = event->attr.read_format;
3726 3727 3728
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3729
	values[n++] = perf_event_count(event);
3730
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3731
		values[n++] = enabled +
3732
			atomic64_read(&event->child_total_time_enabled);
3733 3734
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3735
		values[n++] = running +
3736
			atomic64_read(&event->child_total_time_running);
3737 3738
	}
	if (read_format & PERF_FORMAT_ID)
3739
		values[n++] = primary_event_id(event);
3740

3741
	__output_copy(handle, values, n * sizeof(u64));
3742 3743 3744
}

/*
3745
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3746 3747
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3748 3749
			    struct perf_event *event,
			    u64 enabled, u64 running)
3750
{
3751 3752
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3753 3754 3755 3756 3757 3758
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3759
		values[n++] = enabled;
3760 3761

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3762
		values[n++] = running;
3763

3764
	if (leader != event)
3765 3766
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3767
	values[n++] = perf_event_count(leader);
3768
	if (read_format & PERF_FORMAT_ID)
3769
		values[n++] = primary_event_id(leader);
3770

3771
	__output_copy(handle, values, n * sizeof(u64));
3772

3773
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3774 3775
		n = 0;

3776
		if (sub != event)
3777 3778
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3779
		values[n++] = perf_event_count(sub);
3780
		if (read_format & PERF_FORMAT_ID)
3781
			values[n++] = primary_event_id(sub);
3782

3783
		__output_copy(handle, values, n * sizeof(u64));
3784 3785 3786
	}
}

3787 3788 3789
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3790
static void perf_output_read(struct perf_output_handle *handle,
3791
			     struct perf_event *event)
3792
{
3793
	u64 enabled = 0, running = 0;
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3805 3806
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3807

3808
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3809
		perf_output_read_group(handle, event, enabled, running);
3810
	else
3811
		perf_output_read_one(handle, event, enabled, running);
3812 3813
}

3814 3815 3816
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3817
			struct perf_event *event)
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3848
		perf_output_read(handle, event);
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3859
			__output_copy(handle, data->callchain, size);
3860 3861 3862 3863 3864 3865 3866 3867 3868
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3869 3870
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3896 3897 3898 3899
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3900
			 struct perf_event *event,
3901
			 struct pt_regs *regs)
3902
{
3903
	u64 sample_type = event->attr.sample_type;
3904

3905
	header->type = PERF_RECORD_SAMPLE;
3906
	header->size = sizeof(*header) + event->header_size;
3907 3908 3909

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3910

3911
	__perf_event_header__init_id(header, data, event);
3912

3913
	if (sample_type & PERF_SAMPLE_IP)
3914 3915
		data->ip = perf_instruction_pointer(regs);

3916
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3917
		int size = 1;
3918

3919 3920 3921 3922 3923 3924
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3925 3926
	}

3927
	if (sample_type & PERF_SAMPLE_RAW) {
3928 3929 3930 3931 3932 3933 3934 3935
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3936
		header->size += size;
3937
	}
3938
}
3939

3940
static void perf_event_output(struct perf_event *event,
3941 3942 3943 3944 3945
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3946

3947 3948 3949
	/* protect the callchain buffers */
	rcu_read_lock();

3950
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3951

3952
	if (perf_output_begin(&handle, event, header.size))
3953
		goto exit;
3954

3955
	perf_output_sample(&handle, &header, data, event);
3956

3957
	perf_output_end(&handle);
3958 3959 3960

exit:
	rcu_read_unlock();
3961 3962
}

3963
/*
3964
 * read event_id
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3975
perf_event_read_event(struct perf_event *event,
3976 3977 3978
			struct task_struct *task)
{
	struct perf_output_handle handle;
3979
	struct perf_sample_data sample;
3980
	struct perf_read_event read_event = {
3981
		.header = {
3982
			.type = PERF_RECORD_READ,
3983
			.misc = 0,
3984
			.size = sizeof(read_event) + event->read_size,
3985
		},
3986 3987
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3988
	};
3989
	int ret;
3990

3991
	perf_event_header__init_id(&read_event.header, &sample, event);
3992
	ret = perf_output_begin(&handle, event, read_event.header.size);
3993 3994 3995
	if (ret)
		return;

3996
	perf_output_put(&handle, read_event);
3997
	perf_output_read(&handle, event);
3998
	perf_event__output_id_sample(event, &handle, &sample);
3999

4000 4001 4002
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4003
/*
P
Peter Zijlstra 已提交
4004 4005
 * task tracking -- fork/exit
 *
4006
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4007 4008
 */

P
Peter Zijlstra 已提交
4009
struct perf_task_event {
4010
	struct task_struct		*task;
4011
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4012 4013 4014 4015 4016 4017

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4018 4019
		u32				tid;
		u32				ptid;
4020
		u64				time;
4021
	} event_id;
P
Peter Zijlstra 已提交
4022 4023
};

4024
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4025
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4026 4027
{
	struct perf_output_handle handle;
4028
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4029
	struct task_struct *task = task_event->task;
4030
	int ret, size = task_event->event_id.header.size;
4031

4032
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4033

4034
	ret = perf_output_begin(&handle, event,
4035
				task_event->event_id.header.size);
4036
	if (ret)
4037
		goto out;
P
Peter Zijlstra 已提交
4038

4039 4040
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4041

4042 4043
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4044

4045
	perf_output_put(&handle, task_event->event_id);
4046

4047 4048
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4049
	perf_output_end(&handle);
4050 4051
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4052 4053
}

4054
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4055
{
P
Peter Zijlstra 已提交
4056
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4057 4058
		return 0;

4059
	if (!event_filter_match(event))
4060 4061
		return 0;

4062 4063
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4064 4065 4066 4067 4068
		return 1;

	return 0;
}

4069
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4070
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4071
{
4072
	struct perf_event *event;
P
Peter Zijlstra 已提交
4073

4074 4075 4076
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4077 4078 4079
	}
}

4080
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4081 4082
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4083
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4084
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4085
	int ctxn;
P
Peter Zijlstra 已提交
4086

4087
	rcu_read_lock();
P
Peter Zijlstra 已提交
4088
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4089
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4090 4091
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4092
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4093 4094 4095 4096 4097

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4098
				goto next;
P
Peter Zijlstra 已提交
4099 4100 4101 4102
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4103 4104
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4105
	}
P
Peter Zijlstra 已提交
4106 4107 4108
	rcu_read_unlock();
}

4109 4110
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4111
			      int new)
P
Peter Zijlstra 已提交
4112
{
P
Peter Zijlstra 已提交
4113
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4114

4115 4116 4117
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4118 4119
		return;

P
Peter Zijlstra 已提交
4120
	task_event = (struct perf_task_event){
4121 4122
		.task	  = task,
		.task_ctx = task_ctx,
4123
		.event_id    = {
P
Peter Zijlstra 已提交
4124
			.header = {
4125
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4126
				.misc = 0,
4127
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4128
			},
4129 4130
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4131 4132
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4133
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4134 4135 4136
		},
	};

4137
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4138 4139
}

4140
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4141
{
4142
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4143 4144
}

4145 4146 4147 4148 4149
/*
 * comm tracking
 */

struct perf_comm_event {
4150 4151
	struct task_struct	*task;
	char			*comm;
4152 4153 4154 4155 4156 4157 4158
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4159
	} event_id;
4160 4161
};

4162
static void perf_event_comm_output(struct perf_event *event,
4163 4164 4165
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4166
	struct perf_sample_data sample;
4167
	int size = comm_event->event_id.header.size;
4168 4169 4170 4171
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4172
				comm_event->event_id.header.size);
4173 4174

	if (ret)
4175
		goto out;
4176

4177 4178
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4179

4180
	perf_output_put(&handle, comm_event->event_id);
4181
	__output_copy(&handle, comm_event->comm,
4182
				   comm_event->comm_size);
4183 4184 4185

	perf_event__output_id_sample(event, &handle, &sample);

4186
	perf_output_end(&handle);
4187 4188
out:
	comm_event->event_id.header.size = size;
4189 4190
}

4191
static int perf_event_comm_match(struct perf_event *event)
4192
{
P
Peter Zijlstra 已提交
4193
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4194 4195
		return 0;

4196
	if (!event_filter_match(event))
4197 4198
		return 0;

4199
	if (event->attr.comm)
4200 4201 4202 4203 4204
		return 1;

	return 0;
}

4205
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4206 4207
				  struct perf_comm_event *comm_event)
{
4208
	struct perf_event *event;
4209

4210 4211 4212
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4213 4214 4215
	}
}

4216
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4217 4218
{
	struct perf_cpu_context *cpuctx;
4219
	struct perf_event_context *ctx;
4220
	char comm[TASK_COMM_LEN];
4221
	unsigned int size;
P
Peter Zijlstra 已提交
4222
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4223
	int ctxn;
4224

4225
	memset(comm, 0, sizeof(comm));
4226
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4227
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4228 4229 4230 4231

	comm_event->comm = comm;
	comm_event->comm_size = size;

4232
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4233
	rcu_read_lock();
P
Peter Zijlstra 已提交
4234
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4235
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4236 4237
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4238
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4239 4240 4241

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4242
			goto next;
P
Peter Zijlstra 已提交
4243 4244 4245 4246

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4247 4248
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4249
	}
4250
	rcu_read_unlock();
4251 4252
}

4253
void perf_event_comm(struct task_struct *task)
4254
{
4255
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4256 4257
	struct perf_event_context *ctx;
	int ctxn;
4258

P
Peter Zijlstra 已提交
4259 4260 4261 4262
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4263

P
Peter Zijlstra 已提交
4264 4265
		perf_event_enable_on_exec(ctx);
	}
4266

4267
	if (!atomic_read(&nr_comm_events))
4268
		return;
4269

4270
	comm_event = (struct perf_comm_event){
4271
		.task	= task,
4272 4273
		/* .comm      */
		/* .comm_size */
4274
		.event_id  = {
4275
			.header = {
4276
				.type = PERF_RECORD_COMM,
4277 4278 4279 4280 4281
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4282 4283 4284
		},
	};

4285
	perf_event_comm_event(&comm_event);
4286 4287
}

4288 4289 4290 4291 4292
/*
 * mmap tracking
 */

struct perf_mmap_event {
4293 4294 4295 4296
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4297 4298 4299 4300 4301 4302 4303 4304 4305

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4306
	} event_id;
4307 4308
};

4309
static void perf_event_mmap_output(struct perf_event *event,
4310 4311 4312
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4313
	struct perf_sample_data sample;
4314
	int size = mmap_event->event_id.header.size;
4315
	int ret;
4316

4317 4318
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4319
				mmap_event->event_id.header.size);
4320
	if (ret)
4321
		goto out;
4322

4323 4324
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4325

4326
	perf_output_put(&handle, mmap_event->event_id);
4327
	__output_copy(&handle, mmap_event->file_name,
4328
				   mmap_event->file_size);
4329 4330 4331

	perf_event__output_id_sample(event, &handle, &sample);

4332
	perf_output_end(&handle);
4333 4334
out:
	mmap_event->event_id.header.size = size;
4335 4336
}

4337
static int perf_event_mmap_match(struct perf_event *event,
4338 4339
				   struct perf_mmap_event *mmap_event,
				   int executable)
4340
{
P
Peter Zijlstra 已提交
4341
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4342 4343
		return 0;

4344
	if (!event_filter_match(event))
4345 4346
		return 0;

4347 4348
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4349 4350 4351 4352 4353
		return 1;

	return 0;
}

4354
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4355 4356
				  struct perf_mmap_event *mmap_event,
				  int executable)
4357
{
4358
	struct perf_event *event;
4359

4360
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4361
		if (perf_event_mmap_match(event, mmap_event, executable))
4362
			perf_event_mmap_output(event, mmap_event);
4363 4364 4365
	}
}

4366
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4367 4368
{
	struct perf_cpu_context *cpuctx;
4369
	struct perf_event_context *ctx;
4370 4371
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4372 4373 4374
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4375
	const char *name;
P
Peter Zijlstra 已提交
4376
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4377
	int ctxn;
4378

4379 4380
	memset(tmp, 0, sizeof(tmp));

4381
	if (file) {
4382
		/*
4383
		 * d_path works from the end of the rb backwards, so we
4384 4385 4386 4387
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4388 4389 4390 4391
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4392
		name = d_path(&file->f_path, buf, PATH_MAX);
4393 4394 4395 4396 4397
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4398 4399 4400
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4401
			goto got_name;
4402
		}
4403 4404 4405 4406

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4407 4408 4409 4410 4411 4412 4413 4414
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4415 4416
		}

4417 4418 4419 4420 4421
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4422
	size = ALIGN(strlen(name)+1, sizeof(u64));
4423 4424 4425 4426

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4427
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4428

4429
	rcu_read_lock();
P
Peter Zijlstra 已提交
4430
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4431
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4432 4433
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4434 4435
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4436 4437 4438

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4439
			goto next;
P
Peter Zijlstra 已提交
4440 4441 4442 4443 4444 4445

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4446 4447
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4448
	}
4449 4450
	rcu_read_unlock();

4451 4452 4453
	kfree(buf);
}

4454
void perf_event_mmap(struct vm_area_struct *vma)
4455
{
4456 4457
	struct perf_mmap_event mmap_event;

4458
	if (!atomic_read(&nr_mmap_events))
4459 4460 4461
		return;

	mmap_event = (struct perf_mmap_event){
4462
		.vma	= vma,
4463 4464
		/* .file_name */
		/* .file_size */
4465
		.event_id  = {
4466
			.header = {
4467
				.type = PERF_RECORD_MMAP,
4468
				.misc = PERF_RECORD_MISC_USER,
4469 4470 4471 4472
				/* .size */
			},
			/* .pid */
			/* .tid */
4473 4474
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4475
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4476 4477 4478
		},
	};

4479
	perf_event_mmap_event(&mmap_event);
4480 4481
}

4482 4483 4484 4485
/*
 * IRQ throttle logging
 */

4486
static void perf_log_throttle(struct perf_event *event, int enable)
4487 4488
{
	struct perf_output_handle handle;
4489
	struct perf_sample_data sample;
4490 4491 4492 4493 4494
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4495
		u64				id;
4496
		u64				stream_id;
4497 4498
	} throttle_event = {
		.header = {
4499
			.type = PERF_RECORD_THROTTLE,
4500 4501 4502
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4503
		.time		= perf_clock(),
4504 4505
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4506 4507
	};

4508
	if (enable)
4509
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4510

4511 4512 4513
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4514
				throttle_event.header.size);
4515 4516 4517 4518
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4519
	perf_event__output_id_sample(event, &handle, &sample);
4520 4521 4522
	perf_output_end(&handle);
}

4523
/*
4524
 * Generic event overflow handling, sampling.
4525 4526
 */

4527
static int __perf_event_overflow(struct perf_event *event,
4528 4529
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4530
{
4531 4532
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4533
	u64 seq;
4534 4535
	int ret = 0;

4536 4537 4538 4539 4540 4541 4542
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4543 4544 4545 4546 4547 4548 4549 4550 4551
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4552 4553
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4554 4555
			ret = 1;
		}
4556
	}
4557

4558
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4559
		u64 now = perf_clock();
4560
		s64 delta = now - hwc->freq_time_stamp;
4561

4562
		hwc->freq_time_stamp = now;
4563

4564 4565
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4566 4567
	}

4568 4569
	/*
	 * XXX event_limit might not quite work as expected on inherited
4570
	 * events
4571 4572
	 */

4573 4574
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4575
		ret = 1;
4576
		event->pending_kill = POLL_HUP;
4577 4578
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4579 4580
	}

4581
	if (event->overflow_handler)
4582
		event->overflow_handler(event, data, regs);
4583
	else
4584
		perf_event_output(event, data, regs);
4585

P
Peter Zijlstra 已提交
4586
	if (event->fasync && event->pending_kill) {
4587 4588
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4589 4590
	}

4591
	return ret;
4592 4593
}

4594
int perf_event_overflow(struct perf_event *event,
4595 4596
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4597
{
4598
	return __perf_event_overflow(event, 1, data, regs);
4599 4600
}

4601
/*
4602
 * Generic software event infrastructure
4603 4604
 */

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4616
/*
4617 4618
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4619 4620 4621 4622
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4623
static u64 perf_swevent_set_period(struct perf_event *event)
4624
{
4625
	struct hw_perf_event *hwc = &event->hw;
4626 4627 4628 4629 4630
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4631 4632

again:
4633
	old = val = local64_read(&hwc->period_left);
4634 4635
	if (val < 0)
		return 0;
4636

4637 4638 4639
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4640
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4641
		goto again;
4642

4643
	return nr;
4644 4645
}

4646
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4647
				    struct perf_sample_data *data,
4648
				    struct pt_regs *regs)
4649
{
4650
	struct hw_perf_event *hwc = &event->hw;
4651
	int throttle = 0;
4652

4653 4654
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4655

4656 4657
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4658

4659
	for (; overflow; overflow--) {
4660
		if (__perf_event_overflow(event, throttle,
4661
					    data, regs)) {
4662 4663 4664 4665 4666 4667
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4668
		throttle = 1;
4669
	}
4670 4671
}

P
Peter Zijlstra 已提交
4672
static void perf_swevent_event(struct perf_event *event, u64 nr,
4673
			       struct perf_sample_data *data,
4674
			       struct pt_regs *regs)
4675
{
4676
	struct hw_perf_event *hwc = &event->hw;
4677

4678
	local64_add(nr, &event->count);
4679

4680 4681 4682
	if (!regs)
		return;

4683
	if (!is_sampling_event(event))
4684
		return;
4685

4686 4687 4688 4689 4690 4691
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

4692
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4693
		return perf_swevent_overflow(event, 1, data, regs);
4694

4695
	if (local64_add_negative(nr, &hwc->period_left))
4696
		return;
4697

4698
	perf_swevent_overflow(event, 0, data, regs);
4699 4700
}

4701 4702 4703
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4704
	if (event->hw.state & PERF_HES_STOPPED)
4705
		return 1;
P
Peter Zijlstra 已提交
4706

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4718
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4719
				enum perf_type_id type,
L
Li Zefan 已提交
4720 4721 4722
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4723
{
4724
	if (event->attr.type != type)
4725
		return 0;
4726

4727
	if (event->attr.config != event_id)
4728 4729
		return 0;

4730 4731
	if (perf_exclude_event(event, regs))
		return 0;
4732 4733 4734 4735

	return 1;
}

4736 4737 4738 4739 4740 4741 4742
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4743 4744
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4745
{
4746 4747 4748 4749
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4750

4751 4752
/* For the read side: events when they trigger */
static inline struct hlist_head *
4753
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4754 4755
{
	struct swevent_hlist *hlist;
4756

4757
	hlist = rcu_dereference(swhash->swevent_hlist);
4758 4759 4760
	if (!hlist)
		return NULL;

4761 4762 4763 4764 4765
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4766
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4777
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4778 4779 4780 4781 4782
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4783 4784 4785
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4786
				    u64 nr,
4787 4788
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4789
{
4790
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4791
	struct perf_event *event;
4792 4793
	struct hlist_node *node;
	struct hlist_head *head;
4794

4795
	rcu_read_lock();
4796
	head = find_swevent_head_rcu(swhash, type, event_id);
4797 4798 4799 4800
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4801
		if (perf_swevent_match(event, type, event_id, data, regs))
4802
			perf_swevent_event(event, nr, data, regs);
4803
	}
4804 4805
end:
	rcu_read_unlock();
4806 4807
}

4808
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4809
{
4810
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4811

4812
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4813
}
I
Ingo Molnar 已提交
4814
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4815

4816
inline void perf_swevent_put_recursion_context(int rctx)
4817
{
4818
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4819

4820
	put_recursion_context(swhash->recursion, rctx);
4821
}
4822

4823
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4824
{
4825
	struct perf_sample_data data;
4826 4827
	int rctx;

4828
	preempt_disable_notrace();
4829 4830 4831
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4832

4833
	perf_sample_data_init(&data, addr);
4834

4835
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4836 4837

	perf_swevent_put_recursion_context(rctx);
4838
	preempt_enable_notrace();
4839 4840
}

4841
static void perf_swevent_read(struct perf_event *event)
4842 4843 4844
{
}

P
Peter Zijlstra 已提交
4845
static int perf_swevent_add(struct perf_event *event, int flags)
4846
{
4847
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4848
	struct hw_perf_event *hwc = &event->hw;
4849 4850
	struct hlist_head *head;

4851
	if (is_sampling_event(event)) {
4852
		hwc->last_period = hwc->sample_period;
4853
		perf_swevent_set_period(event);
4854
	}
4855

P
Peter Zijlstra 已提交
4856 4857
	hwc->state = !(flags & PERF_EF_START);

4858
	head = find_swevent_head(swhash, event);
4859 4860 4861 4862 4863
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4864 4865 4866
	return 0;
}

P
Peter Zijlstra 已提交
4867
static void perf_swevent_del(struct perf_event *event, int flags)
4868
{
4869
	hlist_del_rcu(&event->hlist_entry);
4870 4871
}

P
Peter Zijlstra 已提交
4872
static void perf_swevent_start(struct perf_event *event, int flags)
4873
{
P
Peter Zijlstra 已提交
4874
	event->hw.state = 0;
4875
}
I
Ingo Molnar 已提交
4876

P
Peter Zijlstra 已提交
4877
static void perf_swevent_stop(struct perf_event *event, int flags)
4878
{
P
Peter Zijlstra 已提交
4879
	event->hw.state = PERF_HES_STOPPED;
4880 4881
}

4882 4883
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4884
swevent_hlist_deref(struct swevent_htable *swhash)
4885
{
4886 4887
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4888 4889
}

4890
static void swevent_hlist_release(struct swevent_htable *swhash)
4891
{
4892
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4893

4894
	if (!hlist)
4895 4896
		return;

4897
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4898
	kfree_rcu(hlist, rcu_head);
4899 4900 4901 4902
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4903
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4904

4905
	mutex_lock(&swhash->hlist_mutex);
4906

4907 4908
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4909

4910
	mutex_unlock(&swhash->hlist_mutex);
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4928
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4929 4930
	int err = 0;

4931
	mutex_lock(&swhash->hlist_mutex);
4932

4933
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4934 4935 4936 4937 4938 4939 4940
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4941
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4942
	}
4943
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4944
exit:
4945
	mutex_unlock(&swhash->hlist_mutex);
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4969
fail:
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4980
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4981

4982 4983 4984
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4985

4986 4987
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4988
	jump_label_dec(&perf_swevent_enabled[event_id]);
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5008
	if (event_id >= PERF_COUNT_SW_MAX)
5009 5010 5011 5012 5013 5014 5015 5016 5017
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5018
		jump_label_inc(&perf_swevent_enabled[event_id]);
5019 5020 5021 5022 5023 5024 5025
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5026
	.task_ctx_nr	= perf_sw_context,
5027

5028
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5029 5030 5031 5032
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5033 5034 5035
	.read		= perf_swevent_read,
};

5036 5037
#ifdef CONFIG_EVENT_TRACING

5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5052 5053
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5054 5055 5056 5057
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5058 5059 5060 5061 5062 5063 5064 5065 5066
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5067
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5068 5069
{
	struct perf_sample_data data;
5070 5071 5072
	struct perf_event *event;
	struct hlist_node *node;

5073 5074 5075 5076 5077 5078 5079 5080
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5081 5082
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5083
			perf_swevent_event(event, count, &data, regs);
5084
	}
5085 5086

	perf_swevent_put_recursion_context(rctx);
5087 5088 5089
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5090
static void tp_perf_event_destroy(struct perf_event *event)
5091
{
5092
	perf_trace_destroy(event);
5093 5094
}

5095
static int perf_tp_event_init(struct perf_event *event)
5096
{
5097 5098
	int err;

5099 5100 5101
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5102 5103
	err = perf_trace_init(event);
	if (err)
5104
		return err;
5105

5106
	event->destroy = tp_perf_event_destroy;
5107

5108 5109 5110 5111
	return 0;
}

static struct pmu perf_tracepoint = {
5112 5113
	.task_ctx_nr	= perf_sw_context,

5114
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5115 5116 5117 5118
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5119 5120 5121 5122 5123
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5124
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5125
}
L
Li Zefan 已提交
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5150
#else
L
Li Zefan 已提交
5151

5152
static inline void perf_tp_register(void)
5153 5154
{
}
L
Li Zefan 已提交
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5165
#endif /* CONFIG_EVENT_TRACING */
5166

5167
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5168
void perf_bp_event(struct perf_event *bp, void *data)
5169
{
5170 5171 5172
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5173
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5174

P
Peter Zijlstra 已提交
5175
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5176
		perf_swevent_event(bp, 1, &sample, regs);
5177 5178 5179
}
#endif

5180 5181 5182
/*
 * hrtimer based swevent callback
 */
5183

5184
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5185
{
5186 5187 5188 5189 5190
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5191

5192
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5193 5194 5195 5196

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5197
	event->pmu->read(event);
5198

5199 5200 5201 5202 5203
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5204
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5205
			if (perf_event_overflow(event, &data, regs))
5206 5207
				ret = HRTIMER_NORESTART;
	}
5208

5209 5210
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5211

5212
	return ret;
5213 5214
}

5215
static void perf_swevent_start_hrtimer(struct perf_event *event)
5216
{
5217
	struct hw_perf_event *hwc = &event->hw;
5218 5219 5220 5221
	s64 period;

	if (!is_sampling_event(event))
		return;
5222

5223 5224 5225 5226
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5227

5228 5229 5230 5231 5232
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5233
				ns_to_ktime(period), 0,
5234
				HRTIMER_MODE_REL_PINNED, 0);
5235
}
5236 5237

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5238
{
5239 5240
	struct hw_perf_event *hwc = &event->hw;

5241
	if (is_sampling_event(event)) {
5242
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5243
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5244 5245 5246

		hrtimer_cancel(&hwc->hrtimer);
	}
5247 5248
}

P
Peter Zijlstra 已提交
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5273 5274 5275 5276 5277
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5278
{
5279 5280 5281
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5282
	now = local_clock();
5283 5284
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5285 5286
}

P
Peter Zijlstra 已提交
5287
static void cpu_clock_event_start(struct perf_event *event, int flags)
5288
{
P
Peter Zijlstra 已提交
5289
	local64_set(&event->hw.prev_count, local_clock());
5290 5291 5292
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5293
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5294
{
5295 5296 5297
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5298

P
Peter Zijlstra 已提交
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5312 5313 5314 5315
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5316

5317 5318 5319 5320 5321 5322 5323 5324
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5325 5326
	perf_swevent_init_hrtimer(event);

5327
	return 0;
5328 5329
}

5330
static struct pmu perf_cpu_clock = {
5331 5332
	.task_ctx_nr	= perf_sw_context,

5333
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5334 5335 5336 5337
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5338 5339 5340 5341 5342 5343 5344 5345
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5346
{
5347 5348
	u64 prev;
	s64 delta;
5349

5350 5351 5352 5353
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5354

P
Peter Zijlstra 已提交
5355
static void task_clock_event_start(struct perf_event *event, int flags)
5356
{
P
Peter Zijlstra 已提交
5357
	local64_set(&event->hw.prev_count, event->ctx->time);
5358 5359 5360
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5361
static void task_clock_event_stop(struct perf_event *event, int flags)
5362 5363 5364
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5365 5366 5367 5368 5369 5370
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5371

P
Peter Zijlstra 已提交
5372 5373 5374 5375 5376 5377
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5378 5379 5380 5381
}

static void task_clock_event_read(struct perf_event *event)
{
5382 5383 5384
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5385 5386 5387 5388 5389

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5390
{
5391 5392 5393 5394 5395 5396
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5397 5398
	perf_swevent_init_hrtimer(event);

5399
	return 0;
L
Li Zefan 已提交
5400 5401
}

5402
static struct pmu perf_task_clock = {
5403 5404
	.task_ctx_nr	= perf_sw_context,

5405
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5406 5407 5408 5409
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5410 5411
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5412

P
Peter Zijlstra 已提交
5413
static void perf_pmu_nop_void(struct pmu *pmu)
5414 5415
{
}
L
Li Zefan 已提交
5416

P
Peter Zijlstra 已提交
5417
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5418
{
P
Peter Zijlstra 已提交
5419
	return 0;
L
Li Zefan 已提交
5420 5421
}

P
Peter Zijlstra 已提交
5422
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5423
{
P
Peter Zijlstra 已提交
5424
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5425 5426
}

P
Peter Zijlstra 已提交
5427 5428 5429 5430 5431
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5432

P
Peter Zijlstra 已提交
5433
static void perf_pmu_cancel_txn(struct pmu *pmu)
5434
{
P
Peter Zijlstra 已提交
5435
	perf_pmu_enable(pmu);
5436 5437
}

P
Peter Zijlstra 已提交
5438 5439 5440 5441 5442
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5443
{
P
Peter Zijlstra 已提交
5444
	struct pmu *pmu;
5445

P
Peter Zijlstra 已提交
5446 5447
	if (ctxn < 0)
		return NULL;
5448

P
Peter Zijlstra 已提交
5449 5450 5451 5452
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5453

P
Peter Zijlstra 已提交
5454
	return NULL;
5455 5456
}

5457
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5458
{
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5474

P
Peter Zijlstra 已提交
5475
	mutex_lock(&pmus_lock);
5476
	/*
P
Peter Zijlstra 已提交
5477
	 * Like a real lame refcount.
5478
	 */
5479 5480 5481
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5482
			goto out;
5483
		}
P
Peter Zijlstra 已提交
5484
	}
5485

5486
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5487 5488
out:
	mutex_unlock(&pmus_lock);
5489
}
P
Peter Zijlstra 已提交
5490
static struct idr pmu_idr;
5491

P
Peter Zijlstra 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5544
static struct lock_class_key cpuctx_mutex;
5545
static struct lock_class_key cpuctx_lock;
5546

P
Peter Zijlstra 已提交
5547
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5548
{
P
Peter Zijlstra 已提交
5549
	int cpu, ret;
5550

5551
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5552 5553 5554 5555
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5556

P
Peter Zijlstra 已提交
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5575 5576 5577 5578 5579 5580
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5581
skip_type:
P
Peter Zijlstra 已提交
5582 5583 5584
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5585

P
Peter Zijlstra 已提交
5586 5587
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5588
		goto free_dev;
5589

P
Peter Zijlstra 已提交
5590 5591 5592 5593
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5594
		__perf_event_init_context(&cpuctx->ctx);
5595
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5596
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5597
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5598
		cpuctx->ctx.pmu = pmu;
5599 5600
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5601
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5602
	}
5603

P
Peter Zijlstra 已提交
5604
got_cpu_context:
P
Peter Zijlstra 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5619
		}
5620
	}
5621

P
Peter Zijlstra 已提交
5622 5623 5624 5625 5626
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5627
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5628 5629
	ret = 0;
unlock:
5630 5631
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5632
	return ret;
P
Peter Zijlstra 已提交
5633

P
Peter Zijlstra 已提交
5634 5635 5636 5637
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5638 5639 5640 5641
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5642 5643 5644
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5645 5646
}

5647
void perf_pmu_unregister(struct pmu *pmu)
5648
{
5649 5650 5651
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5652

5653
	/*
P
Peter Zijlstra 已提交
5654 5655
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5656
	 */
5657
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5658
	synchronize_rcu();
5659

P
Peter Zijlstra 已提交
5660
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5661 5662
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5663 5664
	device_del(pmu->dev);
	put_device(pmu->dev);
5665
	free_pmu_context(pmu);
5666
}
5667

5668 5669 5670 5671
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5672
	int ret;
5673 5674

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5675 5676 5677 5678

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5679
	if (pmu) {
5680
		event->pmu = pmu;
5681 5682 5683
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5684
		goto unlock;
5685
	}
P
Peter Zijlstra 已提交
5686

5687
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5688
		event->pmu = pmu;
5689
		ret = pmu->event_init(event);
5690
		if (!ret)
P
Peter Zijlstra 已提交
5691
			goto unlock;
5692

5693 5694
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5695
			goto unlock;
5696
		}
5697
	}
P
Peter Zijlstra 已提交
5698 5699
	pmu = ERR_PTR(-ENOENT);
unlock:
5700
	srcu_read_unlock(&pmus_srcu, idx);
5701

5702
	return pmu;
5703 5704
}

T
Thomas Gleixner 已提交
5705
/*
5706
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5707
 */
5708
static struct perf_event *
5709
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5710 5711 5712
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5713 5714
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5715
{
P
Peter Zijlstra 已提交
5716
	struct pmu *pmu;
5717 5718
	struct perf_event *event;
	struct hw_perf_event *hwc;
5719
	long err;
T
Thomas Gleixner 已提交
5720

5721 5722 5723 5724 5725
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5726
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5727
	if (!event)
5728
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5729

5730
	/*
5731
	 * Single events are their own group leaders, with an
5732 5733 5734
	 * empty sibling list:
	 */
	if (!group_leader)
5735
		group_leader = event;
5736

5737 5738
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5739

5740 5741 5742
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
5743 5744
	INIT_LIST_HEAD(&event->rb_entry);

5745
	init_waitqueue_head(&event->waitq);
5746
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5747

5748
	mutex_init(&event->mmap_mutex);
5749

5750 5751 5752 5753 5754
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5755

5756
	event->parent		= parent_event;
5757

5758 5759
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5760

5761
	event->state		= PERF_EVENT_STATE_INACTIVE;
5762

5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5774
	if (!overflow_handler && parent_event) {
5775
		overflow_handler = parent_event->overflow_handler;
5776 5777
		context = parent_event->overflow_handler_context;
	}
5778

5779
	event->overflow_handler	= overflow_handler;
5780
	event->overflow_handler_context = context;
5781

5782
	if (attr->disabled)
5783
		event->state = PERF_EVENT_STATE_OFF;
5784

5785
	pmu = NULL;
5786

5787
	hwc = &event->hw;
5788
	hwc->sample_period = attr->sample_period;
5789
	if (attr->freq && attr->sample_freq)
5790
		hwc->sample_period = 1;
5791
	hwc->last_period = hwc->sample_period;
5792

5793
	local64_set(&hwc->period_left, hwc->sample_period);
5794

5795
	/*
5796
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5797
	 */
5798
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5799 5800
		goto done;

5801
	pmu = perf_init_event(event);
5802

5803 5804
done:
	err = 0;
5805
	if (!pmu)
5806
		err = -EINVAL;
5807 5808
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5809

5810
	if (err) {
5811 5812 5813
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5814
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5815
	}
5816

5817
	if (!event->parent) {
5818
		if (event->attach_state & PERF_ATTACH_TASK)
5819
			jump_label_inc(&perf_sched_events.key);
5820
		if (event->attr.mmap || event->attr.mmap_data)
5821 5822 5823 5824 5825
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5826 5827 5828 5829 5830 5831 5832
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5833
	}
5834

5835
	return event;
T
Thomas Gleixner 已提交
5836 5837
}

5838 5839
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5840 5841
{
	u32 size;
5842
	int ret;
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5867 5868 5869
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5870 5871
	 */
	if (size > sizeof(*attr)) {
5872 5873 5874
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5875

5876 5877
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5878

5879
		for (; addr < end; addr++) {
5880 5881 5882 5883 5884 5885
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5886
		size = sizeof(*attr);
5887 5888 5889 5890 5891 5892
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5893
	if (attr->__reserved_1)
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5911 5912
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5913
{
5914
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5915 5916
	int ret = -EINVAL;

5917
	if (!output_event)
5918 5919
		goto set;

5920 5921
	/* don't allow circular references */
	if (event == output_event)
5922 5923
		goto out;

5924 5925 5926 5927 5928 5929 5930
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
5931
	 * If its not a per-cpu rb, it must be the same task.
5932 5933 5934 5935
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5936
set:
5937
	mutex_lock(&event->mmap_mutex);
5938 5939 5940
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5941

5942
	if (output_event) {
5943 5944 5945
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
5946
			goto unlock;
5947 5948
	}

5949 5950
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
5951 5952
	if (old_rb)
		ring_buffer_detach(event, old_rb);
5953
	ret = 0;
5954 5955 5956
unlock:
	mutex_unlock(&event->mmap_mutex);

5957 5958
	if (old_rb)
		ring_buffer_put(old_rb);
5959 5960 5961 5962
out:
	return ret;
}

T
Thomas Gleixner 已提交
5963
/**
5964
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5965
 *
5966
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5967
 * @pid:		target pid
I
Ingo Molnar 已提交
5968
 * @cpu:		target cpu
5969
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5970
 */
5971 5972
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5973
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5974
{
5975 5976
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5977 5978 5979
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5980
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5981
	struct task_struct *task = NULL;
5982
	struct pmu *pmu;
5983
	int event_fd;
5984
	int move_group = 0;
5985
	int fput_needed = 0;
5986
	int err;
T
Thomas Gleixner 已提交
5987

5988
	/* for future expandability... */
S
Stephane Eranian 已提交
5989
	if (flags & ~PERF_FLAG_ALL)
5990 5991
		return -EINVAL;

5992 5993 5994
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5995

5996 5997 5998 5999 6000
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6001
	if (attr.freq) {
6002
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6003 6004 6005
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6015 6016 6017 6018
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6019 6020 6021 6022
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6023
			goto err_fd;
6024 6025 6026 6027 6028 6029 6030 6031
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6032
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6033 6034 6035 6036 6037 6038 6039
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6040 6041
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6042 6043
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6044
		goto err_task;
6045 6046
	}

S
Stephane Eranian 已提交
6047 6048 6049 6050
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6051 6052 6053 6054 6055 6056
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6057
		jump_label_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6058 6059
	}

6060 6061 6062 6063 6064
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6088 6089 6090 6091

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6092
	ctx = find_get_context(pmu, task, cpu);
6093 6094
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6095
		goto err_alloc;
6096 6097
	}

6098 6099 6100 6101 6102
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6103
	/*
6104
	 * Look up the group leader (we will attach this event to it):
6105
	 */
6106
	if (group_leader) {
6107
		err = -EINVAL;
6108 6109

		/*
I
Ingo Molnar 已提交
6110 6111 6112 6113
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6114
			goto err_context;
I
Ingo Molnar 已提交
6115 6116 6117
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6118
		 */
6119 6120 6121 6122 6123 6124 6125 6126
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6127 6128 6129
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6130
		if (attr.exclusive || attr.pinned)
6131
			goto err_context;
6132 6133 6134 6135 6136
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6137
			goto err_context;
6138
	}
T
Thomas Gleixner 已提交
6139

6140 6141 6142
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6143
		goto err_context;
6144
	}
6145

6146 6147 6148 6149
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6150
		perf_remove_from_context(group_leader);
6151 6152
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6153
			perf_remove_from_context(sibling);
6154 6155 6156 6157
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6158
	}
6159

6160
	event->filp = event_file;
6161
	WARN_ON_ONCE(ctx->parent_ctx);
6162
	mutex_lock(&ctx->mutex);
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6174
	perf_install_in_context(ctx, event, cpu);
6175
	++ctx->generation;
6176
	perf_unpin_context(ctx);
6177
	mutex_unlock(&ctx->mutex);
6178

6179
	event->owner = current;
P
Peter Zijlstra 已提交
6180

6181 6182 6183
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6184

6185 6186 6187 6188
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6189
	perf_event__id_header_size(event);
6190

6191 6192 6193 6194 6195 6196
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6197 6198 6199
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6200

6201
err_context:
6202
	perf_unpin_context(ctx);
6203
	put_ctx(ctx);
6204
err_alloc:
6205
	free_event(event);
P
Peter Zijlstra 已提交
6206 6207 6208
err_task:
	if (task)
		put_task_struct(task);
6209
err_group_fd:
6210
	fput_light(group_file, fput_needed);
6211 6212
err_fd:
	put_unused_fd(event_fd);
6213
	return err;
T
Thomas Gleixner 已提交
6214 6215
}

6216 6217 6218 6219 6220
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6221
 * @task: task to profile (NULL for percpu)
6222 6223 6224
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6225
				 struct task_struct *task,
6226 6227
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6228 6229
{
	struct perf_event_context *ctx;
6230
	struct perf_event *event;
6231
	int err;
6232

6233 6234 6235
	/*
	 * Get the target context (task or percpu):
	 */
6236

6237 6238
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6239 6240 6241 6242
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6243

M
Matt Helsley 已提交
6244
	ctx = find_get_context(event->pmu, task, cpu);
6245 6246
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6247
		goto err_free;
6248
	}
6249 6250 6251 6252 6253 6254

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6255
	perf_unpin_context(ctx);
6256 6257 6258 6259
	mutex_unlock(&ctx->mutex);

	return event;

6260 6261 6262
err_free:
	free_event(event);
err:
6263
	return ERR_PTR(err);
6264
}
6265
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6266

6267
static void sync_child_event(struct perf_event *child_event,
6268
			       struct task_struct *child)
6269
{
6270
	struct perf_event *parent_event = child_event->parent;
6271
	u64 child_val;
6272

6273 6274
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6275

P
Peter Zijlstra 已提交
6276
	child_val = perf_event_count(child_event);
6277 6278 6279 6280

	/*
	 * Add back the child's count to the parent's count:
	 */
6281
	atomic64_add(child_val, &parent_event->child_count);
6282 6283 6284 6285
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6286 6287

	/*
6288
	 * Remove this event from the parent's list
6289
	 */
6290 6291 6292 6293
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6294 6295

	/*
6296
	 * Release the parent event, if this was the last
6297 6298
	 * reference to it.
	 */
6299
	fput(parent_event->filp);
6300 6301
}

6302
static void
6303 6304
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6305
			 struct task_struct *child)
6306
{
6307 6308 6309 6310 6311
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6312

6313
	perf_remove_from_context(child_event);
6314

6315
	/*
6316
	 * It can happen that the parent exits first, and has events
6317
	 * that are still around due to the child reference. These
6318
	 * events need to be zapped.
6319
	 */
6320
	if (child_event->parent) {
6321 6322
		sync_child_event(child_event, child);
		free_event(child_event);
6323
	}
6324 6325
}

P
Peter Zijlstra 已提交
6326
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6327
{
6328 6329
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6330
	unsigned long flags;
6331

P
Peter Zijlstra 已提交
6332
	if (likely(!child->perf_event_ctxp[ctxn])) {
6333
		perf_event_task(child, NULL, 0);
6334
		return;
P
Peter Zijlstra 已提交
6335
	}
6336

6337
	local_irq_save(flags);
6338 6339 6340 6341 6342 6343
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6344
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6345 6346 6347

	/*
	 * Take the context lock here so that if find_get_context is
6348
	 * reading child->perf_event_ctxp, we wait until it has
6349 6350
	 * incremented the context's refcount before we do put_ctx below.
	 */
6351
	raw_spin_lock(&child_ctx->lock);
6352
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6353
	child->perf_event_ctxp[ctxn] = NULL;
6354 6355 6356
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6357
	 * the events from it.
6358 6359
	 */
	unclone_ctx(child_ctx);
6360
	update_context_time(child_ctx);
6361
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6362 6363

	/*
6364 6365 6366
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6367
	 */
6368
	perf_event_task(child, child_ctx, 0);
6369

6370 6371 6372
	/*
	 * We can recurse on the same lock type through:
	 *
6373 6374 6375
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6376 6377 6378 6379 6380
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6381
	mutex_lock(&child_ctx->mutex);
6382

6383
again:
6384 6385 6386 6387 6388
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6389
				 group_entry)
6390
		__perf_event_exit_task(child_event, child_ctx, child);
6391 6392

	/*
6393
	 * If the last event was a group event, it will have appended all
6394 6395 6396
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6397 6398
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6399
		goto again;
6400 6401 6402 6403

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6404 6405
}

P
Peter Zijlstra 已提交
6406 6407 6408 6409 6410
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6411
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6412 6413
	int ctxn;

P
Peter Zijlstra 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6429 6430 6431 6432
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6447
	perf_group_detach(event);
6448 6449 6450 6451
	list_del_event(event, ctx);
	free_event(event);
}

6452 6453
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6454
 * perf_event_init_task below, used by fork() in case of fail.
6455
 */
6456
void perf_event_free_task(struct task_struct *task)
6457
{
P
Peter Zijlstra 已提交
6458
	struct perf_event_context *ctx;
6459
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6460
	int ctxn;
6461

P
Peter Zijlstra 已提交
6462 6463 6464 6465
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6466

P
Peter Zijlstra 已提交
6467
		mutex_lock(&ctx->mutex);
6468
again:
P
Peter Zijlstra 已提交
6469 6470 6471
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6472

P
Peter Zijlstra 已提交
6473 6474 6475
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6476

P
Peter Zijlstra 已提交
6477 6478 6479
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6480

P
Peter Zijlstra 已提交
6481
		mutex_unlock(&ctx->mutex);
6482

P
Peter Zijlstra 已提交
6483 6484
		put_ctx(ctx);
	}
6485 6486
}

6487 6488 6489 6490 6491 6492 6493 6494
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6507
	unsigned long flags;
P
Peter Zijlstra 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6520
					   child,
P
Peter Zijlstra 已提交
6521
					   group_leader, parent_event,
6522
				           NULL, NULL);
P
Peter Zijlstra 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6549 6550
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6551

6552 6553 6554 6555
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6556
	perf_event__id_header_size(child_event);
6557

P
Peter Zijlstra 已提交
6558 6559 6560
	/*
	 * Link it up in the child's context:
	 */
6561
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6562
	add_event_to_ctx(child_event, child_ctx);
6563
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6605 6606 6607 6608 6609
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6610
		   struct task_struct *child, int ctxn,
6611 6612 6613
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6614
	struct perf_event_context *child_ctx;
6615 6616 6617 6618

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6619 6620
	}

6621
	child_ctx = child->perf_event_ctxp[ctxn];
6622 6623 6624 6625 6626 6627 6628
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6629

6630
		child_ctx = alloc_perf_context(event->pmu, child);
6631 6632
		if (!child_ctx)
			return -ENOMEM;
6633

P
Peter Zijlstra 已提交
6634
		child->perf_event_ctxp[ctxn] = child_ctx;
6635 6636 6637 6638 6639 6640 6641 6642 6643
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6644 6645
}

6646
/*
6647
 * Initialize the perf_event context in task_struct
6648
 */
P
Peter Zijlstra 已提交
6649
int perf_event_init_context(struct task_struct *child, int ctxn)
6650
{
6651
	struct perf_event_context *child_ctx, *parent_ctx;
6652 6653
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6654
	struct task_struct *parent = current;
6655
	int inherited_all = 1;
6656
	unsigned long flags;
6657
	int ret = 0;
6658

P
Peter Zijlstra 已提交
6659
	if (likely(!parent->perf_event_ctxp[ctxn]))
6660 6661
		return 0;

6662
	/*
6663 6664
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6665
	 */
P
Peter Zijlstra 已提交
6666
	parent_ctx = perf_pin_task_context(parent, ctxn);
6667

6668 6669 6670 6671 6672 6673 6674
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6675 6676 6677 6678
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6679
	mutex_lock(&parent_ctx->mutex);
6680 6681 6682 6683 6684

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6685
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6686 6687
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6688 6689 6690
		if (ret)
			break;
	}
6691

6692 6693 6694 6695 6696 6697 6698 6699 6700
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6701
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6702 6703
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6704
		if (ret)
6705
			break;
6706 6707
	}

6708 6709 6710
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6711
	child_ctx = child->perf_event_ctxp[ctxn];
6712

6713
	if (child_ctx && inherited_all) {
6714 6715 6716
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6717 6718 6719
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6720
		 */
P
Peter Zijlstra 已提交
6721
		cloned_ctx = parent_ctx->parent_ctx;
6722 6723
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6724
			child_ctx->parent_gen = parent_ctx->parent_gen;
6725 6726 6727 6728 6729
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6730 6731
	}

P
Peter Zijlstra 已提交
6732
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6733
	mutex_unlock(&parent_ctx->mutex);
6734

6735
	perf_unpin_context(parent_ctx);
6736
	put_ctx(parent_ctx);
6737

6738
	return ret;
6739 6740
}

P
Peter Zijlstra 已提交
6741 6742 6743 6744 6745 6746 6747
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6748 6749 6750 6751
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6752 6753 6754 6755 6756 6757 6758 6759 6760
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6761 6762
static void __init perf_event_init_all_cpus(void)
{
6763
	struct swevent_htable *swhash;
6764 6765 6766
	int cpu;

	for_each_possible_cpu(cpu) {
6767 6768
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6769
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6770 6771 6772
	}
}

6773
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6774
{
P
Peter Zijlstra 已提交
6775
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6776

6777
	mutex_lock(&swhash->hlist_mutex);
6778
	if (swhash->hlist_refcount > 0) {
6779 6780
		struct swevent_hlist *hlist;

6781 6782 6783
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6784
	}
6785
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6786 6787
}

P
Peter Zijlstra 已提交
6788
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6789
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6790
{
6791 6792 6793 6794 6795 6796 6797
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6798
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6799
{
P
Peter Zijlstra 已提交
6800
	struct perf_event_context *ctx = __info;
6801
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6802

P
Peter Zijlstra 已提交
6803
	perf_pmu_rotate_stop(ctx->pmu);
6804

6805
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6806
		__perf_remove_from_context(event);
6807
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6808
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6809
}
P
Peter Zijlstra 已提交
6810 6811 6812 6813 6814 6815 6816 6817 6818

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6819
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6820 6821 6822 6823 6824 6825 6826 6827

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6828
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6829
{
6830
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6831

6832 6833 6834
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6835

P
Peter Zijlstra 已提交
6836
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6837 6838
}
#else
6839
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6840 6841
#endif

P
Peter Zijlstra 已提交
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6862 6863 6864 6865 6866
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

6867
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6868 6869

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6870
	case CPU_DOWN_FAILED:
6871
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6872 6873
		break;

P
Peter Zijlstra 已提交
6874
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6875
	case CPU_DOWN_PREPARE:
6876
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6877 6878 6879 6880 6881 6882 6883 6884 6885
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6886
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6887
{
6888 6889
	int ret;

P
Peter Zijlstra 已提交
6890 6891
	idr_init(&pmu_idr);

6892
	perf_event_init_all_cpus();
6893
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6894 6895 6896
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6897 6898
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6899
	register_reboot_notifier(&perf_reboot_notifier);
6900 6901 6902

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6903 6904 6905

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
T
Thomas Gleixner 已提交
6906
}
P
Peter Zijlstra 已提交
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
6935 6936 6937 6938 6939 6940 6941

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

6942
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

6972 6973
static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
6974
{
6975 6976 6977 6978
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

6992
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
6993 6994 6995
}

struct cgroup_subsys perf_subsys = {
6996 6997 6998 6999 7000
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7001
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7002 7003
};
#endif /* CONFIG_CGROUP_PERF */