core.c 179.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148

P
Peter Zijlstra 已提交
149 150 151 152
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

153
/*
154
 * perf event paranoia level:
155 156
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
157
 *   1 - disallow cpu events for unpriv
158
 *   2 - disallow kernel profiling for unpriv
159
 */
160
int sysctl_perf_event_paranoid __read_mostly = 1;
161

162 163
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 165

/*
166
 * max perf event sample rate
167
 */
P
Peter Zijlstra 已提交
168 169 170 171 172
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

173 174
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
188

189
static atomic64_t perf_event_id;
190

191 192 193 194
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
195 196 197 198 199
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
200

201
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
202

203
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
204
{
205
	return "pmu";
T
Thomas Gleixner 已提交
206 207
}

208 209 210 211 212
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
213 214 215 216 217 218
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
235 236
#ifdef CONFIG_CGROUP_PERF

237 238 239 240 241 242 243 244 245 246 247
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
248
	struct perf_cgroup_info	__percpu *info;
249 250
};

251 252 253 254 255
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
285 286
}

287
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
288
{
289
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
338 339
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
340
	/*
341 342
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
343
	 */
344
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
345 346
		return;

347 348 349 350 351 352
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
353 354 355
}

static inline void
356 357
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
358 359 360 361
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

362 363 364 365 366 367
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
368 369 370 371
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
372
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
405 406
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
416 417
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
418 419 420 421 422 423 424 425 426 427 428

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
429
				WARN_ON_ONCE(cpuctx->cgrp);
430 431 432 433
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
434 435 436 437
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
438 439
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
440 441 442 443 444 445 446 447
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

448 449
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
450
{
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
473 474
}

475 476
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
477
{
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
496 497 498 499 500 501 502 503
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
504 505
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
506

507
	if (!f.file)
S
Stephane Eranian 已提交
508 509
		return -EBADF;

510
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
511 512 513 514
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
515 516 517 518

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

519
	/* must be done before we fput() the file */
520 521 522 523 524
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
525

S
Stephane Eranian 已提交
526 527 528 529 530 531 532 533 534
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
535
out:
536
	fdput(f);
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

610 611
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
612 613 614
{
}

615 616
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
617 618 619 620 621 622 623 624 625 626 627
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
628 629
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
723
	int timer;
724 725 726 727 728

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

729 730 731 732 733 734 735 736 737
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
760
void perf_pmu_disable(struct pmu *pmu)
761
{
P
Peter Zijlstra 已提交
762 763 764
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
765 766
}

P
Peter Zijlstra 已提交
767
void perf_pmu_enable(struct pmu *pmu)
768
{
P
Peter Zijlstra 已提交
769 770 771
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
772 773
}

774 775 776 777 778 779 780
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
781
static void perf_pmu_rotate_start(struct pmu *pmu)
782
{
P
Peter Zijlstra 已提交
783
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
784
	struct list_head *head = &__get_cpu_var(rotation_list);
785

786
	WARN_ON(!irqs_disabled());
787

788 789
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
790
		list_add(&cpuctx->rotation_list, head);
791 792 793
		if (was_empty)
			tick_nohz_full_kick();
	}
794 795
}

796
static void get_ctx(struct perf_event_context *ctx)
797
{
798
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
799 800
}

801
static void put_ctx(struct perf_event_context *ctx)
802
{
803 804 805
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
806 807
		if (ctx->task)
			put_task_struct(ctx->task);
808
		kfree_rcu(ctx, rcu_head);
809
	}
810 811
}

812
static void unclone_ctx(struct perf_event_context *ctx)
813 814 815 816 817 818 819
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

842
/*
843
 * If we inherit events we want to return the parent event id
844 845
 * to userspace.
 */
846
static u64 primary_event_id(struct perf_event *event)
847
{
848
	u64 id = event->id;
849

850 851
	if (event->parent)
		id = event->parent->id;
852 853 854 855

	return id;
}

856
/*
857
 * Get the perf_event_context for a task and lock it.
858 859 860
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
861
static struct perf_event_context *
P
Peter Zijlstra 已提交
862
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
863
{
864
	struct perf_event_context *ctx;
865 866

	rcu_read_lock();
P
Peter Zijlstra 已提交
867
retry:
P
Peter Zijlstra 已提交
868
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
869 870 871 872
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
873
		 * perf_event_task_sched_out, though the
874 875 876 877 878 879
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
880
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
881
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
882
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
883 884
			goto retry;
		}
885 886

		if (!atomic_inc_not_zero(&ctx->refcount)) {
887
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
888 889
			ctx = NULL;
		}
890 891 892 893 894 895 896 897 898 899
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
900 901
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
902
{
903
	struct perf_event_context *ctx;
904 905
	unsigned long flags;

P
Peter Zijlstra 已提交
906
	ctx = perf_lock_task_context(task, ctxn, &flags);
907 908
	if (ctx) {
		++ctx->pin_count;
909
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
910 911 912 913
	}
	return ctx;
}

914
static void perf_unpin_context(struct perf_event_context *ctx)
915 916 917
{
	unsigned long flags;

918
	raw_spin_lock_irqsave(&ctx->lock, flags);
919
	--ctx->pin_count;
920
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
921 922
}

923 924 925 926 927 928 929 930 931 932 933
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

934 935 936
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
937 938 939 940

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

941 942 943
	return ctx ? ctx->time : 0;
}

944 945
/*
 * Update the total_time_enabled and total_time_running fields for a event.
946
 * The caller of this function needs to hold the ctx->lock.
947 948 949 950 951 952 953 954 955
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
956 957 958 959 960 961 962 963 964 965 966
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
967
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
968 969
	else if (ctx->is_active)
		run_end = ctx->time;
970 971 972 973
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
974 975 976 977

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
978
		run_end = perf_event_time(event);
979 980

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
981

982 983
}

984 985 986 987 988 989 990 991 992 993 994 995
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

996 997 998 999 1000 1001 1002 1003 1004
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1005
/*
1006
 * Add a event from the lists for its context.
1007 1008
 * Must be called with ctx->mutex and ctx->lock held.
 */
1009
static void
1010
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1011
{
1012 1013
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1014 1015

	/*
1016 1017 1018
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1019
	 */
1020
	if (event->group_leader == event) {
1021 1022
		struct list_head *list;

1023 1024 1025
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1026 1027
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1028
	}
P
Peter Zijlstra 已提交
1029

1030
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1031 1032
		ctx->nr_cgroups++;

1033 1034 1035
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1036
	list_add_rcu(&event->event_entry, &ctx->event_list);
1037
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1038
		perf_pmu_rotate_start(ctx->pmu);
1039 1040
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1041
		ctx->nr_stat++;
1042 1043
}

J
Jiri Olsa 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1092 1093 1094 1095 1096 1097
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1098 1099 1100
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1101 1102 1103
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1104 1105 1106
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1107 1108 1109 1110 1111 1112 1113 1114 1115
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1131
	event->id_header_size = size;
1132 1133
}

1134 1135
static void perf_group_attach(struct perf_event *event)
{
1136
	struct perf_event *group_leader = event->group_leader, *pos;
1137

P
Peter Zijlstra 已提交
1138 1139 1140 1141 1142 1143
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1155 1156 1157 1158 1159

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1160 1161
}

1162
/*
1163
 * Remove a event from the lists for its context.
1164
 * Must be called with ctx->mutex and ctx->lock held.
1165
 */
1166
static void
1167
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1168
{
1169
	struct perf_cpu_context *cpuctx;
1170 1171 1172 1173
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1174
		return;
1175 1176 1177

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1178
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1179
		ctx->nr_cgroups--;
1180 1181 1182 1183 1184 1185 1186 1187 1188
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1189

1190 1191 1192
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1193 1194
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1195
		ctx->nr_stat--;
1196

1197
	list_del_rcu(&event->event_entry);
1198

1199 1200
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1201

1202
	update_group_times(event);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1213 1214
}

1215
static void perf_group_detach(struct perf_event *event)
1216 1217
{
	struct perf_event *sibling, *tmp;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1234
		goto out;
1235 1236 1237 1238
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1239

1240
	/*
1241 1242
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1243
	 * to whatever list we are on.
1244
	 */
1245
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1246 1247
		if (list)
			list_move_tail(&sibling->group_entry, list);
1248
		sibling->group_leader = sibling;
1249 1250 1251

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1252
	}
1253 1254 1255 1256 1257 1258

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1259 1260
}

1261 1262 1263
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1264 1265
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1266 1267
}

1268 1269
static void
event_sched_out(struct perf_event *event,
1270
		  struct perf_cpu_context *cpuctx,
1271
		  struct perf_event_context *ctx)
1272
{
1273
	u64 tstamp = perf_event_time(event);
1274 1275 1276 1277 1278 1279 1280 1281 1282
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1283
		delta = tstamp - event->tstamp_stopped;
1284
		event->tstamp_running += delta;
1285
		event->tstamp_stopped = tstamp;
1286 1287
	}

1288
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1289
		return;
1290

1291 1292 1293 1294
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1295
	}
1296
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1297
	event->pmu->del(event, 0);
1298
	event->oncpu = -1;
1299

1300
	if (!is_software_event(event))
1301 1302
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1303 1304
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1305
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1306 1307 1308
		cpuctx->exclusive = 0;
}

1309
static void
1310
group_sched_out(struct perf_event *group_event,
1311
		struct perf_cpu_context *cpuctx,
1312
		struct perf_event_context *ctx)
1313
{
1314
	struct perf_event *event;
1315
	int state = group_event->state;
1316

1317
	event_sched_out(group_event, cpuctx, ctx);
1318 1319 1320 1321

	/*
	 * Schedule out siblings (if any):
	 */
1322 1323
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1324

1325
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1326 1327 1328
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1329
/*
1330
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1331
 *
1332
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1333 1334
 * remove it from the context list.
 */
1335
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1336
{
1337 1338
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1339
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1340

1341
	raw_spin_lock(&ctx->lock);
1342 1343
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1344 1345 1346 1347
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1348
	raw_spin_unlock(&ctx->lock);
1349 1350

	return 0;
T
Thomas Gleixner 已提交
1351 1352 1353 1354
}


/*
1355
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1356
 *
1357
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1358
 * call when the task is on a CPU.
1359
 *
1360 1361
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1362 1363
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1364
 * When called from perf_event_exit_task, it's OK because the
1365
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1366
 */
1367
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1368
{
1369
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1370 1371
	struct task_struct *task = ctx->task;

1372 1373
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1374 1375
	if (!task) {
		/*
1376
		 * Per cpu events are removed via an smp call and
1377
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1378
		 */
1379
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1380 1381 1382 1383
		return;
	}

retry:
1384 1385
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1386

1387
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1388
	/*
1389 1390
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1391
	 */
1392
	if (ctx->is_active) {
1393
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1394 1395 1396 1397
		goto retry;
	}

	/*
1398 1399
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1400
	 */
1401
	list_del_event(event, ctx);
1402
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1403 1404
}

1405
/*
1406
 * Cross CPU call to disable a performance event
1407
 */
1408
int __perf_event_disable(void *info)
1409
{
1410 1411
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1412
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1413 1414

	/*
1415 1416
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1417 1418 1419
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1420
	 */
1421
	if (ctx->task && cpuctx->task_ctx != ctx)
1422
		return -EINVAL;
1423

1424
	raw_spin_lock(&ctx->lock);
1425 1426

	/*
1427
	 * If the event is on, turn it off.
1428 1429
	 * If it is in error state, leave it in error state.
	 */
1430
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1431
		update_context_time(ctx);
S
Stephane Eranian 已提交
1432
		update_cgrp_time_from_event(event);
1433 1434 1435
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1436
		else
1437 1438
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1439 1440
	}

1441
	raw_spin_unlock(&ctx->lock);
1442 1443

	return 0;
1444 1445 1446
}

/*
1447
 * Disable a event.
1448
 *
1449 1450
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1451
 * remains valid.  This condition is satisifed when called through
1452 1453 1454 1455
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1456
 * is the current context on this CPU and preemption is disabled,
1457
 * hence we can't get into perf_event_task_sched_out for this context.
1458
 */
1459
void perf_event_disable(struct perf_event *event)
1460
{
1461
	struct perf_event_context *ctx = event->ctx;
1462 1463 1464 1465
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1466
		 * Disable the event on the cpu that it's on
1467
		 */
1468
		cpu_function_call(event->cpu, __perf_event_disable, event);
1469 1470 1471
		return;
	}

P
Peter Zijlstra 已提交
1472
retry:
1473 1474
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1475

1476
	raw_spin_lock_irq(&ctx->lock);
1477
	/*
1478
	 * If the event is still active, we need to retry the cross-call.
1479
	 */
1480
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1481
		raw_spin_unlock_irq(&ctx->lock);
1482 1483 1484 1485 1486
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1487 1488 1489 1490 1491 1492 1493
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1494 1495 1496
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1497
	}
1498
	raw_spin_unlock_irq(&ctx->lock);
1499
}
1500
EXPORT_SYMBOL_GPL(perf_event_disable);
1501

S
Stephane Eranian 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1537 1538 1539 1540
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1541
static int
1542
event_sched_in(struct perf_event *event,
1543
		 struct perf_cpu_context *cpuctx,
1544
		 struct perf_event_context *ctx)
1545
{
1546 1547
	u64 tstamp = perf_event_time(event);

1548
	if (event->state <= PERF_EVENT_STATE_OFF)
1549 1550
		return 0;

1551
	event->state = PERF_EVENT_STATE_ACTIVE;
1552
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1564 1565 1566 1567 1568
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1569
	if (event->pmu->add(event, PERF_EF_START)) {
1570 1571
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1572 1573 1574
		return -EAGAIN;
	}

1575
	event->tstamp_running += tstamp - event->tstamp_stopped;
1576

S
Stephane Eranian 已提交
1577
	perf_set_shadow_time(event, ctx, tstamp);
1578

1579
	if (!is_software_event(event))
1580
		cpuctx->active_oncpu++;
1581
	ctx->nr_active++;
1582 1583
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1584

1585
	if (event->attr.exclusive)
1586 1587
		cpuctx->exclusive = 1;

1588 1589 1590
	return 0;
}

1591
static int
1592
group_sched_in(struct perf_event *group_event,
1593
	       struct perf_cpu_context *cpuctx,
1594
	       struct perf_event_context *ctx)
1595
{
1596
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1597
	struct pmu *pmu = group_event->pmu;
1598 1599
	u64 now = ctx->time;
	bool simulate = false;
1600

1601
	if (group_event->state == PERF_EVENT_STATE_OFF)
1602 1603
		return 0;

P
Peter Zijlstra 已提交
1604
	pmu->start_txn(pmu);
1605

1606
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1607
		pmu->cancel_txn(pmu);
1608
		perf_cpu_hrtimer_restart(cpuctx);
1609
		return -EAGAIN;
1610
	}
1611 1612 1613 1614

	/*
	 * Schedule in siblings as one group (if any):
	 */
1615
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1616
		if (event_sched_in(event, cpuctx, ctx)) {
1617
			partial_group = event;
1618 1619 1620 1621
			goto group_error;
		}
	}

1622
	if (!pmu->commit_txn(pmu))
1623
		return 0;
1624

1625 1626 1627 1628
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1639
	 */
1640 1641
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1642 1643 1644 1645 1646 1647 1648 1649
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1650
	}
1651
	event_sched_out(group_event, cpuctx, ctx);
1652

P
Peter Zijlstra 已提交
1653
	pmu->cancel_txn(pmu);
1654

1655 1656
	perf_cpu_hrtimer_restart(cpuctx);

1657 1658 1659
	return -EAGAIN;
}

1660
/*
1661
 * Work out whether we can put this event group on the CPU now.
1662
 */
1663
static int group_can_go_on(struct perf_event *event,
1664 1665 1666 1667
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1668
	 * Groups consisting entirely of software events can always go on.
1669
	 */
1670
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1671 1672 1673
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1674
	 * events can go on.
1675 1676 1677 1678 1679
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1680
	 * events on the CPU, it can't go on.
1681
	 */
1682
	if (event->attr.exclusive && cpuctx->active_oncpu)
1683 1684 1685 1686 1687 1688 1689 1690
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1691 1692
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1693
{
1694 1695
	u64 tstamp = perf_event_time(event);

1696
	list_add_event(event, ctx);
1697
	perf_group_attach(event);
1698 1699 1700
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1701 1702
}

1703 1704 1705 1706 1707 1708
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1709

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1722
/*
1723
 * Cross CPU call to install and enable a performance event
1724 1725
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1726
 */
1727
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1728
{
1729 1730
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1731
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1732 1733 1734
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1735
	perf_ctx_lock(cpuctx, task_ctx);
1736
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1737 1738

	/*
1739
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1740
	 */
1741
	if (task_ctx)
1742
		task_ctx_sched_out(task_ctx);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1757 1758
		task = task_ctx->task;
	}
1759

1760
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1761

1762
	update_context_time(ctx);
S
Stephane Eranian 已提交
1763 1764 1765 1766 1767 1768
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1769

1770
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1771

1772
	/*
1773
	 * Schedule everything back in
1774
	 */
1775
	perf_event_sched_in(cpuctx, task_ctx, task);
1776 1777 1778

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1779 1780

	return 0;
T
Thomas Gleixner 已提交
1781 1782 1783
}

/*
1784
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1785
 *
1786 1787
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1788
 *
1789
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1790 1791 1792 1793
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1794 1795
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1796 1797 1798 1799
			int cpu)
{
	struct task_struct *task = ctx->task;

1800 1801
	lockdep_assert_held(&ctx->mutex);

1802
	event->ctx = ctx;
1803 1804
	if (event->cpu != -1)
		event->cpu = cpu;
1805

T
Thomas Gleixner 已提交
1806 1807
	if (!task) {
		/*
1808
		 * Per cpu events are installed via an smp call and
1809
		 * the install is always successful.
T
Thomas Gleixner 已提交
1810
		 */
1811
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1812 1813 1814 1815
		return;
	}

retry:
1816 1817
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1818

1819
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1820
	/*
1821 1822
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1823
	 */
1824
	if (ctx->is_active) {
1825
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1826 1827 1828 1829
		goto retry;
	}

	/*
1830 1831
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1832
	 */
1833
	add_event_to_ctx(event, ctx);
1834
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1835 1836
}

1837
/*
1838
 * Put a event into inactive state and update time fields.
1839 1840 1841 1842 1843 1844
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1845
static void __perf_event_mark_enabled(struct perf_event *event)
1846
{
1847
	struct perf_event *sub;
1848
	u64 tstamp = perf_event_time(event);
1849

1850
	event->state = PERF_EVENT_STATE_INACTIVE;
1851
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1852
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1853 1854
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1855
	}
1856 1857
}

1858
/*
1859
 * Cross CPU call to enable a performance event
1860
 */
1861
static int __perf_event_enable(void *info)
1862
{
1863 1864 1865
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1866
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1867
	int err;
1868

1869 1870
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1871

1872
	raw_spin_lock(&ctx->lock);
1873
	update_context_time(ctx);
1874

1875
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1876
		goto unlock;
S
Stephane Eranian 已提交
1877 1878 1879 1880

	/*
	 * set current task's cgroup time reference point
	 */
1881
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1882

1883
	__perf_event_mark_enabled(event);
1884

S
Stephane Eranian 已提交
1885 1886 1887
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1888
		goto unlock;
S
Stephane Eranian 已提交
1889
	}
1890

1891
	/*
1892
	 * If the event is in a group and isn't the group leader,
1893
	 * then don't put it on unless the group is on.
1894
	 */
1895
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1896
		goto unlock;
1897

1898
	if (!group_can_go_on(event, cpuctx, 1)) {
1899
		err = -EEXIST;
1900
	} else {
1901
		if (event == leader)
1902
			err = group_sched_in(event, cpuctx, ctx);
1903
		else
1904
			err = event_sched_in(event, cpuctx, ctx);
1905
	}
1906 1907 1908

	if (err) {
		/*
1909
		 * If this event can't go on and it's part of a
1910 1911
		 * group, then the whole group has to come off.
		 */
1912
		if (leader != event) {
1913
			group_sched_out(leader, cpuctx, ctx);
1914 1915
			perf_cpu_hrtimer_restart(cpuctx);
		}
1916
		if (leader->attr.pinned) {
1917
			update_group_times(leader);
1918
			leader->state = PERF_EVENT_STATE_ERROR;
1919
		}
1920 1921
	}

P
Peter Zijlstra 已提交
1922
unlock:
1923
	raw_spin_unlock(&ctx->lock);
1924 1925

	return 0;
1926 1927 1928
}

/*
1929
 * Enable a event.
1930
 *
1931 1932
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1933
 * remains valid.  This condition is satisfied when called through
1934 1935
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1936
 */
1937
void perf_event_enable(struct perf_event *event)
1938
{
1939
	struct perf_event_context *ctx = event->ctx;
1940 1941 1942 1943
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1944
		 * Enable the event on the cpu that it's on
1945
		 */
1946
		cpu_function_call(event->cpu, __perf_event_enable, event);
1947 1948 1949
		return;
	}

1950
	raw_spin_lock_irq(&ctx->lock);
1951
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1952 1953 1954
		goto out;

	/*
1955 1956
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1957 1958 1959 1960
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1961 1962
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1963

P
Peter Zijlstra 已提交
1964
retry:
1965
	if (!ctx->is_active) {
1966
		__perf_event_mark_enabled(event);
1967 1968 1969
		goto out;
	}

1970
	raw_spin_unlock_irq(&ctx->lock);
1971 1972 1973

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1974

1975
	raw_spin_lock_irq(&ctx->lock);
1976 1977

	/*
1978
	 * If the context is active and the event is still off,
1979 1980
	 * we need to retry the cross-call.
	 */
1981 1982 1983 1984 1985 1986
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1987
		goto retry;
1988
	}
1989

P
Peter Zijlstra 已提交
1990
out:
1991
	raw_spin_unlock_irq(&ctx->lock);
1992
}
1993
EXPORT_SYMBOL_GPL(perf_event_enable);
1994

1995
int perf_event_refresh(struct perf_event *event, int refresh)
1996
{
1997
	/*
1998
	 * not supported on inherited events
1999
	 */
2000
	if (event->attr.inherit || !is_sampling_event(event))
2001 2002
		return -EINVAL;

2003 2004
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2005 2006

	return 0;
2007
}
2008
EXPORT_SYMBOL_GPL(perf_event_refresh);
2009

2010 2011 2012
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2013
{
2014
	struct perf_event *event;
2015
	int is_active = ctx->is_active;
2016

2017
	ctx->is_active &= ~event_type;
2018
	if (likely(!ctx->nr_events))
2019 2020
		return;

2021
	update_context_time(ctx);
S
Stephane Eranian 已提交
2022
	update_cgrp_time_from_cpuctx(cpuctx);
2023
	if (!ctx->nr_active)
2024
		return;
2025

P
Peter Zijlstra 已提交
2026
	perf_pmu_disable(ctx->pmu);
2027
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2028 2029
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2030
	}
2031

2032
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2033
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2034
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2035
	}
P
Peter Zijlstra 已提交
2036
	perf_pmu_enable(ctx->pmu);
2037 2038
}

2039 2040 2041
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2042 2043 2044 2045
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2046
 * in them directly with an fd; we can only enable/disable all
2047
 * events via prctl, or enable/disable all events in a family
2048 2049
 * via ioctl, which will have the same effect on both contexts.
 */
2050 2051
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2052 2053
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2054
		&& ctx1->parent_gen == ctx2->parent_gen
2055
		&& !ctx1->pin_count && !ctx2->pin_count;
2056 2057
}

2058 2059
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2060 2061 2062
{
	u64 value;

2063
	if (!event->attr.inherit_stat)
2064 2065 2066
		return;

	/*
2067
	 * Update the event value, we cannot use perf_event_read()
2068 2069
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2070
	 * we know the event must be on the current CPU, therefore we
2071 2072
	 * don't need to use it.
	 */
2073 2074
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2075 2076
		event->pmu->read(event);
		/* fall-through */
2077

2078 2079
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2080 2081 2082 2083 2084 2085 2086
		break;

	default:
		break;
	}

	/*
2087
	 * In order to keep per-task stats reliable we need to flip the event
2088 2089
	 * values when we flip the contexts.
	 */
2090 2091 2092
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2093

2094 2095
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2096

2097
	/*
2098
	 * Since we swizzled the values, update the user visible data too.
2099
	 */
2100 2101
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2102 2103 2104 2105 2106
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2107 2108
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2109
{
2110
	struct perf_event *event, *next_event;
2111 2112 2113 2114

	if (!ctx->nr_stat)
		return;

2115 2116
	update_context_time(ctx);

2117 2118
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2119

2120 2121
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2122

2123 2124
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2125

2126
		__perf_event_sync_stat(event, next_event);
2127

2128 2129
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2130 2131 2132
	}
}

2133 2134
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2135
{
P
Peter Zijlstra 已提交
2136
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2137 2138
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2139
	struct perf_cpu_context *cpuctx;
2140
	int do_switch = 1;
T
Thomas Gleixner 已提交
2141

P
Peter Zijlstra 已提交
2142 2143
	if (likely(!ctx))
		return;
2144

P
Peter Zijlstra 已提交
2145 2146
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2147 2148
		return;

2149 2150
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2151
	next_ctx = next->perf_event_ctxp[ctxn];
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2163 2164
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2165
		if (context_equiv(ctx, next_ctx)) {
2166 2167
			/*
			 * XXX do we need a memory barrier of sorts
2168
			 * wrt to rcu_dereference() of perf_event_ctxp
2169
			 */
P
Peter Zijlstra 已提交
2170 2171
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2172 2173 2174
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2175

2176
			perf_event_sync_stat(ctx, next_ctx);
2177
		}
2178 2179
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2180
	}
2181
	rcu_read_unlock();
2182

2183
	if (do_switch) {
2184
		raw_spin_lock(&ctx->lock);
2185
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2186
		cpuctx->task_ctx = NULL;
2187
		raw_spin_unlock(&ctx->lock);
2188
	}
T
Thomas Gleixner 已提交
2189 2190
}

P
Peter Zijlstra 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2205 2206
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2207 2208 2209 2210 2211
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2212 2213 2214 2215 2216 2217 2218

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2219
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2220 2221
}

2222
static void task_ctx_sched_out(struct perf_event_context *ctx)
2223
{
P
Peter Zijlstra 已提交
2224
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2225

2226 2227
	if (!cpuctx->task_ctx)
		return;
2228 2229 2230 2231

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2232
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2233 2234 2235
	cpuctx->task_ctx = NULL;
}

2236 2237 2238 2239 2240 2241 2242
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2243 2244
}

2245
static void
2246
ctx_pinned_sched_in(struct perf_event_context *ctx,
2247
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2248
{
2249
	struct perf_event *event;
T
Thomas Gleixner 已提交
2250

2251 2252
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2253
			continue;
2254
		if (!event_filter_match(event))
2255 2256
			continue;

S
Stephane Eranian 已提交
2257 2258 2259 2260
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2261
		if (group_can_go_on(event, cpuctx, 1))
2262
			group_sched_in(event, cpuctx, ctx);
2263 2264 2265 2266 2267

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2268 2269 2270
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2271
		}
2272
	}
2273 2274 2275 2276
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2277
		      struct perf_cpu_context *cpuctx)
2278 2279 2280
{
	struct perf_event *event;
	int can_add_hw = 1;
2281

2282 2283 2284
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2285
			continue;
2286 2287
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2288
		 * of events:
2289
		 */
2290
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2291 2292
			continue;

S
Stephane Eranian 已提交
2293 2294 2295 2296
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2297
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2298
			if (group_sched_in(event, cpuctx, ctx))
2299
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2300
		}
T
Thomas Gleixner 已提交
2301
	}
2302 2303 2304 2305 2306
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2307 2308
	     enum event_type_t event_type,
	     struct task_struct *task)
2309
{
S
Stephane Eranian 已提交
2310
	u64 now;
2311
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2312

2313
	ctx->is_active |= event_type;
2314
	if (likely(!ctx->nr_events))
2315
		return;
2316

S
Stephane Eranian 已提交
2317 2318
	now = perf_clock();
	ctx->timestamp = now;
2319
	perf_cgroup_set_timestamp(task, ctx);
2320 2321 2322 2323
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2324
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2325
		ctx_pinned_sched_in(ctx, cpuctx);
2326 2327

	/* Then walk through the lower prio flexible groups */
2328
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2329
		ctx_flexible_sched_in(ctx, cpuctx);
2330 2331
}

2332
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2333 2334
			     enum event_type_t event_type,
			     struct task_struct *task)
2335 2336 2337
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2338
	ctx_sched_in(ctx, cpuctx, event_type, task);
2339 2340
}

S
Stephane Eranian 已提交
2341 2342
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2343
{
P
Peter Zijlstra 已提交
2344
	struct perf_cpu_context *cpuctx;
2345

P
Peter Zijlstra 已提交
2346
	cpuctx = __get_cpu_context(ctx);
2347 2348 2349
	if (cpuctx->task_ctx == ctx)
		return;

2350
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2351
	perf_pmu_disable(ctx->pmu);
2352 2353 2354 2355 2356 2357 2358
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2359 2360
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2361

2362 2363
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2364 2365 2366
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2367 2368 2369 2370
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2371
	perf_pmu_rotate_start(ctx->pmu);
2372 2373
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2445 2446
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2456
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2457
	}
S
Stephane Eranian 已提交
2458 2459 2460 2461 2462 2463
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2464
		perf_cgroup_sched_in(prev, task);
2465 2466 2467 2468

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2469 2470
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2498
#define REDUCE_FLS(a, b)		\
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2538 2539 2540
	if (!divisor)
		return dividend;

2541 2542 2543
	return div64_u64(dividend, divisor);
}

2544 2545 2546
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2547
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2548
{
2549
	struct hw_perf_event *hwc = &event->hw;
2550
	s64 period, sample_period;
2551 2552
	s64 delta;

2553
	period = perf_calculate_period(event, nsec, count);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2564

2565
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2566 2567 2568
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2569
		local64_set(&hwc->period_left, 0);
2570 2571 2572

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2573
	}
2574 2575
}

2576 2577 2578 2579 2580 2581 2582
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2583
{
2584 2585
	struct perf_event *event;
	struct hw_perf_event *hwc;
2586
	u64 now, period = TICK_NSEC;
2587
	s64 delta;
2588

2589 2590 2591 2592 2593 2594
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2595 2596
		return;

2597
	raw_spin_lock(&ctx->lock);
2598
	perf_pmu_disable(ctx->pmu);
2599

2600
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2601
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2602 2603
			continue;

2604
		if (!event_filter_match(event))
2605 2606
			continue;

2607
		hwc = &event->hw;
2608

2609 2610
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2611
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2612
			event->pmu->start(event, 0);
2613 2614
		}

2615
		if (!event->attr.freq || !event->attr.sample_freq)
2616 2617
			continue;

2618 2619 2620 2621 2622
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2623
		now = local64_read(&event->count);
2624 2625
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2626

2627 2628 2629
		/*
		 * restart the event
		 * reload only if value has changed
2630 2631 2632
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2633
		 */
2634
		if (delta > 0)
2635
			perf_adjust_period(event, period, delta, false);
2636 2637

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2638
	}
2639

2640
	perf_pmu_enable(ctx->pmu);
2641
	raw_spin_unlock(&ctx->lock);
2642 2643
}

2644
/*
2645
 * Round-robin a context's events:
2646
 */
2647
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2648
{
2649 2650 2651 2652 2653 2654
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2655 2656
}

2657
/*
2658 2659 2660
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2661
 */
2662
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2663
{
P
Peter Zijlstra 已提交
2664
	struct perf_event_context *ctx = NULL;
2665
	int rotate = 0, remove = 1;
2666

2667
	if (cpuctx->ctx.nr_events) {
2668
		remove = 0;
2669 2670 2671
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2672

P
Peter Zijlstra 已提交
2673
	ctx = cpuctx->task_ctx;
2674
	if (ctx && ctx->nr_events) {
2675
		remove = 0;
2676 2677 2678
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2679

2680
	if (!rotate)
2681 2682
		goto done;

2683
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2684
	perf_pmu_disable(cpuctx->ctx.pmu);
2685

2686 2687 2688
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2689

2690 2691 2692
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2693

2694
	perf_event_sched_in(cpuctx, ctx, current);
2695

2696 2697
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2698
done:
2699 2700
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2701 2702

	return rotate;
2703 2704
}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
	if (list_empty(&__get_cpu_var(rotation_list)))
		return true;
	else
		return false;
}
#endif

2715 2716 2717 2718
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2719 2720
	struct perf_event_context *ctx;
	int throttled;
2721

2722 2723
	WARN_ON(!irqs_disabled());

2724 2725 2726
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2727
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2728 2729 2730 2731 2732 2733
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2734
	}
T
Thomas Gleixner 已提交
2735 2736
}

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2747
	__perf_event_mark_enabled(event);
2748 2749 2750 2751

	return 1;
}

2752
/*
2753
 * Enable all of a task's events that have been marked enable-on-exec.
2754 2755
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2756
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2757
{
2758
	struct perf_event *event;
2759 2760
	unsigned long flags;
	int enabled = 0;
2761
	int ret;
2762 2763

	local_irq_save(flags);
2764
	if (!ctx || !ctx->nr_events)
2765 2766
		goto out;

2767 2768 2769 2770 2771 2772 2773
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2774
	perf_cgroup_sched_out(current, NULL);
2775

2776
	raw_spin_lock(&ctx->lock);
2777
	task_ctx_sched_out(ctx);
2778

2779
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2780 2781 2782
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2783 2784 2785
	}

	/*
2786
	 * Unclone this context if we enabled any event.
2787
	 */
2788 2789
	if (enabled)
		unclone_ctx(ctx);
2790

2791
	raw_spin_unlock(&ctx->lock);
2792

2793 2794 2795
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2796
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2797
out:
2798 2799 2800
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2801
/*
2802
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2803
 */
2804
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2805
{
2806 2807
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2808
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2809

2810 2811 2812 2813
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2814 2815
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2816 2817 2818 2819
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2820
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2821
	if (ctx->is_active) {
2822
		update_context_time(ctx);
S
Stephane Eranian 已提交
2823 2824
		update_cgrp_time_from_event(event);
	}
2825
	update_event_times(event);
2826 2827
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2828
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2829 2830
}

P
Peter Zijlstra 已提交
2831 2832
static inline u64 perf_event_count(struct perf_event *event)
{
2833
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2834 2835
}

2836
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2837 2838
{
	/*
2839 2840
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2841
	 */
2842 2843 2844 2845
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2846 2847 2848
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2849
		raw_spin_lock_irqsave(&ctx->lock, flags);
2850 2851 2852 2853 2854
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2855
		if (ctx->is_active) {
2856
			update_context_time(ctx);
S
Stephane Eranian 已提交
2857 2858
			update_cgrp_time_from_event(event);
		}
2859
		update_event_times(event);
2860
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2861 2862
	}

P
Peter Zijlstra 已提交
2863
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2864 2865
}

2866
/*
2867
 * Initialize the perf_event context in a task_struct:
2868
 */
2869
static void __perf_event_init_context(struct perf_event_context *ctx)
2870
{
2871
	raw_spin_lock_init(&ctx->lock);
2872
	mutex_init(&ctx->mutex);
2873 2874
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2875 2876
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2892
	}
2893 2894 2895
	ctx->pmu = pmu;

	return ctx;
2896 2897
}

2898 2899 2900 2901 2902
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2903 2904

	rcu_read_lock();
2905
	if (!vpid)
T
Thomas Gleixner 已提交
2906 2907
		task = current;
	else
2908
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2909 2910 2911 2912 2913 2914 2915 2916
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2917 2918 2919 2920
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2921 2922 2923 2924 2925 2926 2927
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2928 2929 2930
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2931
static struct perf_event_context *
M
Matt Helsley 已提交
2932
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2933
{
2934
	struct perf_event_context *ctx;
2935
	struct perf_cpu_context *cpuctx;
2936
	unsigned long flags;
P
Peter Zijlstra 已提交
2937
	int ctxn, err;
T
Thomas Gleixner 已提交
2938

2939
	if (!task) {
2940
		/* Must be root to operate on a CPU event: */
2941
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2942 2943 2944
			return ERR_PTR(-EACCES);

		/*
2945
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2946 2947 2948
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2949
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2950 2951
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2952
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2953
		ctx = &cpuctx->ctx;
2954
		get_ctx(ctx);
2955
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2956 2957 2958 2959

		return ctx;
	}

P
Peter Zijlstra 已提交
2960 2961 2962 2963 2964
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2965
retry:
P
Peter Zijlstra 已提交
2966
	ctx = perf_lock_task_context(task, ctxn, &flags);
2967
	if (ctx) {
2968
		unclone_ctx(ctx);
2969
		++ctx->pin_count;
2970
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2971
	} else {
2972
		ctx = alloc_perf_context(pmu, task);
2973 2974 2975
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2987
		else {
2988
			get_ctx(ctx);
2989
			++ctx->pin_count;
2990
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2991
		}
2992 2993 2994
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2995
			put_ctx(ctx);
2996 2997 2998 2999

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3000 3001 3002
		}
	}

T
Thomas Gleixner 已提交
3003
	return ctx;
3004

P
Peter Zijlstra 已提交
3005
errout:
3006
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3007 3008
}

L
Li Zefan 已提交
3009 3010
static void perf_event_free_filter(struct perf_event *event);

3011
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3012
{
3013
	struct perf_event *event;
P
Peter Zijlstra 已提交
3014

3015 3016 3017
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3018
	perf_event_free_filter(event);
3019
	kfree(event);
P
Peter Zijlstra 已提交
3020 3021
}

3022
static void ring_buffer_put(struct ring_buffer *rb);
3023
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3024

3025
static void free_event(struct perf_event *event)
3026
{
3027
	irq_work_sync(&event->pending);
3028

3029
	if (!event->parent) {
3030
		if (event->attach_state & PERF_ATTACH_TASK)
3031
			static_key_slow_dec_deferred(&perf_sched_events);
3032
		if (event->attr.mmap || event->attr.mmap_data)
3033 3034 3035 3036 3037
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
3038 3039
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3040 3041
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3042
			static_key_slow_dec_deferred(&perf_sched_events);
3043
		}
3044 3045 3046 3047

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
3048
			if (!(event->attach_state & PERF_ATTACH_TASK)) {
3049 3050
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
3051
			}
3052
		}
3053
	}
3054

3055
	if (event->rb) {
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3072 3073
	}

S
Stephane Eranian 已提交
3074 3075 3076
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3077 3078
	if (event->destroy)
		event->destroy(event);
3079

P
Peter Zijlstra 已提交
3080 3081 3082
	if (event->ctx)
		put_ctx(event->ctx);

3083
	call_rcu(&event->rcu_head, free_event_rcu);
3084 3085
}

3086
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3087
{
3088
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3089

3090
	WARN_ON_ONCE(ctx->parent_ctx);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3104
	raw_spin_lock_irq(&ctx->lock);
3105
	perf_group_detach(event);
3106
	raw_spin_unlock_irq(&ctx->lock);
3107
	perf_remove_from_context(event);
3108
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3109

3110
	free_event(event);
T
Thomas Gleixner 已提交
3111 3112 3113

	return 0;
}
3114
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3115

3116 3117 3118
/*
 * Called when the last reference to the file is gone.
 */
3119
static void put_event(struct perf_event *event)
3120
{
P
Peter Zijlstra 已提交
3121
	struct task_struct *owner;
3122

3123 3124
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3125

P
Peter Zijlstra 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3159 3160 3161 3162 3163 3164 3165
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3166 3167
}

3168
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3169
{
3170
	struct perf_event *child;
3171 3172
	u64 total = 0;

3173 3174 3175
	*enabled = 0;
	*running = 0;

3176
	mutex_lock(&event->child_mutex);
3177
	total += perf_event_read(event);
3178 3179 3180 3181 3182 3183
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3184
		total += perf_event_read(child);
3185 3186 3187
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3188
	mutex_unlock(&event->child_mutex);
3189 3190 3191

	return total;
}
3192
EXPORT_SYMBOL_GPL(perf_event_read_value);
3193

3194
static int perf_event_read_group(struct perf_event *event,
3195 3196
				   u64 read_format, char __user *buf)
{
3197
	struct perf_event *leader = event->group_leader, *sub;
3198 3199
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3200
	u64 values[5];
3201
	u64 count, enabled, running;
3202

3203
	mutex_lock(&ctx->mutex);
3204
	count = perf_event_read_value(leader, &enabled, &running);
3205 3206

	values[n++] = 1 + leader->nr_siblings;
3207 3208 3209 3210
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3211 3212 3213
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3214 3215 3216 3217

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3218
		goto unlock;
3219

3220
	ret = size;
3221

3222
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3223
		n = 0;
3224

3225
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3226 3227 3228 3229 3230
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3231
		if (copy_to_user(buf + ret, values, size)) {
3232 3233 3234
			ret = -EFAULT;
			goto unlock;
		}
3235 3236

		ret += size;
3237
	}
3238 3239
unlock:
	mutex_unlock(&ctx->mutex);
3240

3241
	return ret;
3242 3243
}

3244
static int perf_event_read_one(struct perf_event *event,
3245 3246
				 u64 read_format, char __user *buf)
{
3247
	u64 enabled, running;
3248 3249 3250
	u64 values[4];
	int n = 0;

3251 3252 3253 3254 3255
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3256
	if (read_format & PERF_FORMAT_ID)
3257
		values[n++] = primary_event_id(event);
3258 3259 3260 3261 3262 3263 3264

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3265
/*
3266
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3267 3268
 */
static ssize_t
3269
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3270
{
3271
	u64 read_format = event->attr.read_format;
3272
	int ret;
T
Thomas Gleixner 已提交
3273

3274
	/*
3275
	 * Return end-of-file for a read on a event that is in
3276 3277 3278
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3279
	if (event->state == PERF_EVENT_STATE_ERROR)
3280 3281
		return 0;

3282
	if (count < event->read_size)
3283 3284
		return -ENOSPC;

3285
	WARN_ON_ONCE(event->ctx->parent_ctx);
3286
	if (read_format & PERF_FORMAT_GROUP)
3287
		ret = perf_event_read_group(event, read_format, buf);
3288
	else
3289
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3290

3291
	return ret;
T
Thomas Gleixner 已提交
3292 3293 3294 3295 3296
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3297
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3298

3299
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3300 3301 3302 3303
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3304
	struct perf_event *event = file->private_data;
3305
	struct ring_buffer *rb;
3306
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3307

3308
	/*
3309 3310
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3311 3312
	 */
	mutex_lock(&event->mmap_mutex);
3313 3314
	rb = event->rb;
	if (rb)
3315
		events = atomic_xchg(&rb->poll, 0);
3316 3317
	mutex_unlock(&event->mmap_mutex);

3318
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3319 3320 3321 3322

	return events;
}

3323
static void perf_event_reset(struct perf_event *event)
3324
{
3325
	(void)perf_event_read(event);
3326
	local64_set(&event->count, 0);
3327
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3328 3329
}

3330
/*
3331 3332 3333 3334
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3335
 */
3336 3337
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3338
{
3339
	struct perf_event *child;
P
Peter Zijlstra 已提交
3340

3341 3342 3343 3344
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3345
		func(child);
3346
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3347 3348
}

3349 3350
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3351
{
3352 3353
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3354

3355 3356
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3357
	event = event->group_leader;
3358

3359 3360
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3361
		perf_event_for_each_child(sibling, func);
3362
	mutex_unlock(&ctx->mutex);
3363 3364
}

3365
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3366
{
3367
	struct perf_event_context *ctx = event->ctx;
3368 3369 3370
	int ret = 0;
	u64 value;

3371
	if (!is_sampling_event(event))
3372 3373
		return -EINVAL;

3374
	if (copy_from_user(&value, arg, sizeof(value)))
3375 3376 3377 3378 3379
		return -EFAULT;

	if (!value)
		return -EINVAL;

3380
	raw_spin_lock_irq(&ctx->lock);
3381 3382
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3383 3384 3385 3386
			ret = -EINVAL;
			goto unlock;
		}

3387
		event->attr.sample_freq = value;
3388
	} else {
3389 3390
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3391 3392
	}
unlock:
3393
	raw_spin_unlock_irq(&ctx->lock);
3394 3395 3396 3397

	return ret;
}

3398 3399
static const struct file_operations perf_fops;

3400
static inline int perf_fget_light(int fd, struct fd *p)
3401
{
3402 3403 3404
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3405

3406 3407 3408
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3409
	}
3410 3411
	*p = f;
	return 0;
3412 3413 3414 3415
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3416
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3417

3418 3419
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3420 3421
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3422
	u32 flags = arg;
3423 3424

	switch (cmd) {
3425 3426
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3427
		break;
3428 3429
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3430
		break;
3431 3432
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3433
		break;
P
Peter Zijlstra 已提交
3434

3435 3436
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3437

3438 3439
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3440

3441
	case PERF_EVENT_IOC_SET_OUTPUT:
3442 3443 3444
	{
		int ret;
		if (arg != -1) {
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3455 3456 3457
		}
		return ret;
	}
3458

L
Li Zefan 已提交
3459 3460 3461
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3462
	default:
P
Peter Zijlstra 已提交
3463
		return -ENOTTY;
3464
	}
P
Peter Zijlstra 已提交
3465 3466

	if (flags & PERF_IOC_FLAG_GROUP)
3467
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3468
	else
3469
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3470 3471

	return 0;
3472 3473
}

3474
int perf_event_task_enable(void)
3475
{
3476
	struct perf_event *event;
3477

3478 3479 3480 3481
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3482 3483 3484 3485

	return 0;
}

3486
int perf_event_task_disable(void)
3487
{
3488
	struct perf_event *event;
3489

3490 3491 3492 3493
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3494 3495 3496 3497

	return 0;
}

3498
static int perf_event_index(struct perf_event *event)
3499
{
P
Peter Zijlstra 已提交
3500 3501 3502
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3503
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3504 3505
		return 0;

3506
	return event->pmu->event_idx(event);
3507 3508
}

3509
static void calc_timer_values(struct perf_event *event,
3510
				u64 *now,
3511 3512
				u64 *enabled,
				u64 *running)
3513
{
3514
	u64 ctx_time;
3515

3516 3517
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3518 3519 3520 3521
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3522
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3523 3524 3525
{
}

3526 3527 3528 3529 3530
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3531
void perf_event_update_userpage(struct perf_event *event)
3532
{
3533
	struct perf_event_mmap_page *userpg;
3534
	struct ring_buffer *rb;
3535
	u64 enabled, running, now;
3536 3537

	rcu_read_lock();
3538 3539 3540 3541 3542 3543 3544 3545 3546
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3547
	calc_timer_values(event, &now, &enabled, &running);
3548 3549
	rb = rcu_dereference(event->rb);
	if (!rb)
3550 3551
		goto unlock;

3552
	userpg = rb->user_page;
3553

3554 3555 3556 3557 3558
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3559
	++userpg->lock;
3560
	barrier();
3561
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3562
	userpg->offset = perf_event_count(event);
3563
	if (userpg->index)
3564
		userpg->offset -= local64_read(&event->hw.prev_count);
3565

3566
	userpg->time_enabled = enabled +
3567
			atomic64_read(&event->child_total_time_enabled);
3568

3569
	userpg->time_running = running +
3570
			atomic64_read(&event->child_total_time_running);
3571

3572
	arch_perf_update_userpage(userpg, now);
3573

3574
	barrier();
3575
	++userpg->lock;
3576
	preempt_enable();
3577
unlock:
3578
	rcu_read_unlock();
3579 3580
}

3581 3582 3583
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3584
	struct ring_buffer *rb;
3585 3586 3587 3588 3589 3590 3591 3592 3593
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3594 3595
	rb = rcu_dereference(event->rb);
	if (!rb)
3596 3597 3598 3599 3600
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3601
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3616 3617 3618 3619 3620 3621 3622 3623 3624
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3625 3626
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3627 3628 3629
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3630
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3649 3650 3651 3652
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3653 3654 3655
	rcu_read_unlock();
}

3656
static void rb_free_rcu(struct rcu_head *rcu_head)
3657
{
3658
	struct ring_buffer *rb;
3659

3660 3661
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3662 3663
}

3664
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3665
{
3666
	struct ring_buffer *rb;
3667

3668
	rcu_read_lock();
3669 3670 3671 3672
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3673 3674 3675
	}
	rcu_read_unlock();

3676
	return rb;
3677 3678
}

3679
static void ring_buffer_put(struct ring_buffer *rb)
3680
{
3681
	if (!atomic_dec_and_test(&rb->refcount))
3682
		return;
3683

3684
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3685

3686
	call_rcu(&rb->rcu_head, rb_free_rcu);
3687 3688 3689 3690
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3691
	struct perf_event *event = vma->vm_file->private_data;
3692

3693
	atomic_inc(&event->mmap_count);
3694
	atomic_inc(&event->rb->mmap_count);
3695 3696
}

3697 3698 3699 3700 3701 3702 3703 3704
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3705 3706
static void perf_mmap_close(struct vm_area_struct *vma)
{
3707
	struct perf_event *event = vma->vm_file->private_data;
3708

3709 3710 3711 3712
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3713

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3729

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3746

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3762
		}
3763
		mutex_unlock(&event->mmap_mutex);
3764
		put_event(event);
3765

3766 3767 3768 3769 3770
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3771
	}
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3788 3789
}

3790
static const struct vm_operations_struct perf_mmap_vmops = {
3791 3792 3793 3794
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3795 3796 3797 3798
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3799
	struct perf_event *event = file->private_data;
3800
	unsigned long user_locked, user_lock_limit;
3801
	struct user_struct *user = current_user();
3802
	unsigned long locked, lock_limit;
3803
	struct ring_buffer *rb;
3804 3805
	unsigned long vma_size;
	unsigned long nr_pages;
3806
	long user_extra, extra;
3807
	int ret = 0, flags = 0;
3808

3809 3810 3811
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3812
	 * same rb.
3813 3814 3815 3816
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3817
	if (!(vma->vm_flags & VM_SHARED))
3818
		return -EINVAL;
3819 3820 3821 3822

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3823
	/*
3824
	 * If we have rb pages ensure they're a power-of-two number, so we
3825 3826 3827
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3828 3829
		return -EINVAL;

3830
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3831 3832
		return -EINVAL;

3833 3834
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3835

3836
	WARN_ON_ONCE(event->ctx->parent_ctx);
3837
again:
3838
	mutex_lock(&event->mmap_mutex);
3839
	if (event->rb) {
3840
		if (event->rb->nr_pages != nr_pages) {
3841
			ret = -EINVAL;
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

3855 3856 3857
		goto unlock;
	}

3858
	user_extra = nr_pages + 1;
3859
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3860 3861 3862 3863 3864 3865

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3866
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3867

3868 3869 3870
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3871

3872
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3873
	lock_limit >>= PAGE_SHIFT;
3874
	locked = vma->vm_mm->pinned_vm + extra;
3875

3876 3877
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3878 3879 3880
		ret = -EPERM;
		goto unlock;
	}
3881

3882
	WARN_ON(event->rb);
3883

3884
	if (vma->vm_flags & VM_WRITE)
3885
		flags |= RING_BUFFER_WRITABLE;
3886

3887 3888 3889 3890
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3891
	if (!rb) {
3892
		ret = -ENOMEM;
3893
		goto unlock;
3894
	}
P
Peter Zijlstra 已提交
3895

3896
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
3897 3898
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
3899

3900
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
3901 3902
	vma->vm_mm->pinned_vm += extra;

3903
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
3904
	rcu_assign_pointer(event->rb, rb);
3905

3906 3907
	perf_event_update_userpage(event);

3908
unlock:
3909 3910
	if (!ret)
		atomic_inc(&event->mmap_count);
3911
	mutex_unlock(&event->mmap_mutex);
3912

3913 3914 3915 3916
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
3917
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
3918
	vma->vm_ops = &perf_mmap_vmops;
3919 3920

	return ret;
3921 3922
}

P
Peter Zijlstra 已提交
3923 3924
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3925
	struct inode *inode = file_inode(filp);
3926
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3927 3928 3929
	int retval;

	mutex_lock(&inode->i_mutex);
3930
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3931 3932 3933 3934 3935 3936 3937 3938
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3939
static const struct file_operations perf_fops = {
3940
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3941 3942 3943
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3944 3945
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3946
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3947
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3948 3949
};

3950
/*
3951
 * Perf event wakeup
3952 3953 3954 3955 3956
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3957
void perf_event_wakeup(struct perf_event *event)
3958
{
3959
	ring_buffer_wakeup(event);
3960

3961 3962 3963
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3964
	}
3965 3966
}

3967
static void perf_pending_event(struct irq_work *entry)
3968
{
3969 3970
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3971

3972 3973 3974
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3975 3976
	}

3977 3978 3979
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3980 3981 3982
	}
}

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4130 4131 4132
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4160 4161 4162
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4189 4190 4191
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4192 4193 4194 4195 4196
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4197
static void perf_output_read_one(struct perf_output_handle *handle,
4198 4199
				 struct perf_event *event,
				 u64 enabled, u64 running)
4200
{
4201
	u64 read_format = event->attr.read_format;
4202 4203 4204
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4205
	values[n++] = perf_event_count(event);
4206
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4207
		values[n++] = enabled +
4208
			atomic64_read(&event->child_total_time_enabled);
4209 4210
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4211
		values[n++] = running +
4212
			atomic64_read(&event->child_total_time_running);
4213 4214
	}
	if (read_format & PERF_FORMAT_ID)
4215
		values[n++] = primary_event_id(event);
4216

4217
	__output_copy(handle, values, n * sizeof(u64));
4218 4219 4220
}

/*
4221
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4222 4223
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4224 4225
			    struct perf_event *event,
			    u64 enabled, u64 running)
4226
{
4227 4228
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4229 4230 4231 4232 4233 4234
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4235
		values[n++] = enabled;
4236 4237

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4238
		values[n++] = running;
4239

4240
	if (leader != event)
4241 4242
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4243
	values[n++] = perf_event_count(leader);
4244
	if (read_format & PERF_FORMAT_ID)
4245
		values[n++] = primary_event_id(leader);
4246

4247
	__output_copy(handle, values, n * sizeof(u64));
4248

4249
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4250 4251
		n = 0;

4252
		if (sub != event)
4253 4254
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4255
		values[n++] = perf_event_count(sub);
4256
		if (read_format & PERF_FORMAT_ID)
4257
			values[n++] = primary_event_id(sub);
4258

4259
		__output_copy(handle, values, n * sizeof(u64));
4260 4261 4262
	}
}

4263 4264 4265
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4266
static void perf_output_read(struct perf_output_handle *handle,
4267
			     struct perf_event *event)
4268
{
4269
	u64 enabled = 0, running = 0, now;
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4281
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4282
		calc_timer_values(event, &now, &enabled, &running);
4283

4284
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4285
		perf_output_read_group(handle, event, enabled, running);
4286
	else
4287
		perf_output_read_one(handle, event, enabled, running);
4288 4289
}

4290 4291 4292
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4293
			struct perf_event *event)
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4324
		perf_output_read(handle, event);
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4335
			__output_copy(handle, data->callchain, size);
4336 4337 4338 4339 4340 4341 4342 4343 4344
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4345 4346
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4407 4408 4409 4410 4411

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
A
Andi Kleen 已提交
4412 4413 4414

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4415 4416 4417

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4418 4419 4420 4421
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4422
			 struct perf_event *event,
4423
			 struct pt_regs *regs)
4424
{
4425
	u64 sample_type = event->attr.sample_type;
4426

4427
	header->type = PERF_RECORD_SAMPLE;
4428
	header->size = sizeof(*header) + event->header_size;
4429 4430 4431

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4432

4433
	__perf_event_header__init_id(header, data, event);
4434

4435
	if (sample_type & PERF_SAMPLE_IP)
4436 4437
		data->ip = perf_instruction_pointer(regs);

4438
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4439
		int size = 1;
4440

4441
		data->callchain = perf_callchain(event, regs);
4442 4443 4444 4445 4446

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4447 4448
	}

4449
	if (sample_type & PERF_SAMPLE_RAW) {
4450 4451 4452 4453 4454 4455 4456 4457
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4458
		header->size += size;
4459
	}
4460 4461 4462 4463 4464 4465 4466 4467 4468

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4512
}
4513

4514
static void perf_event_output(struct perf_event *event,
4515 4516 4517 4518 4519
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4520

4521 4522 4523
	/* protect the callchain buffers */
	rcu_read_lock();

4524
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4525

4526
	if (perf_output_begin(&handle, event, header.size))
4527
		goto exit;
4528

4529
	perf_output_sample(&handle, &header, data, event);
4530

4531
	perf_output_end(&handle);
4532 4533 4534

exit:
	rcu_read_unlock();
4535 4536
}

4537
/*
4538
 * read event_id
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4549
perf_event_read_event(struct perf_event *event,
4550 4551 4552
			struct task_struct *task)
{
	struct perf_output_handle handle;
4553
	struct perf_sample_data sample;
4554
	struct perf_read_event read_event = {
4555
		.header = {
4556
			.type = PERF_RECORD_READ,
4557
			.misc = 0,
4558
			.size = sizeof(read_event) + event->read_size,
4559
		},
4560 4561
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4562
	};
4563
	int ret;
4564

4565
	perf_event_header__init_id(&read_event.header, &sample, event);
4566
	ret = perf_output_begin(&handle, event, read_event.header.size);
4567 4568 4569
	if (ret)
		return;

4570
	perf_output_put(&handle, read_event);
4571
	perf_output_read(&handle, event);
4572
	perf_event__output_id_sample(event, &handle, &sample);
4573

4574 4575 4576
	perf_output_end(&handle);
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_match_cb match,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		if (match(event, data))
			output(event, data);
	}
}

static void
perf_event_aux(perf_event_aux_match_cb match,
	       perf_event_aux_output_cb output,
	       void *data,
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_aux_ctx(ctx, match, output, data);
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
		perf_event_aux_ctx(task_ctx, match, output, data);
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4635
/*
P
Peter Zijlstra 已提交
4636 4637
 * task tracking -- fork/exit
 *
4638
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4639 4640
 */

P
Peter Zijlstra 已提交
4641
struct perf_task_event {
4642
	struct task_struct		*task;
4643
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4644 4645 4646 4647 4648 4649

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4650 4651
		u32				tid;
		u32				ptid;
4652
		u64				time;
4653
	} event_id;
P
Peter Zijlstra 已提交
4654 4655
};

4656
static void perf_event_task_output(struct perf_event *event,
4657
				   void *data)
P
Peter Zijlstra 已提交
4658
{
4659
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4660
	struct perf_output_handle handle;
4661
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4662
	struct task_struct *task = task_event->task;
4663
	int ret, size = task_event->event_id.header.size;
4664

4665
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4666

4667
	ret = perf_output_begin(&handle, event,
4668
				task_event->event_id.header.size);
4669
	if (ret)
4670
		goto out;
P
Peter Zijlstra 已提交
4671

4672 4673
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4674

4675 4676
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4677

4678
	perf_output_put(&handle, task_event->event_id);
4679

4680 4681
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4682
	perf_output_end(&handle);
4683 4684
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4685 4686
}

4687 4688
static int perf_event_task_match(struct perf_event *event,
				 void *data __maybe_unused)
P
Peter Zijlstra 已提交
4689
{
4690 4691
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
P
Peter Zijlstra 已提交
4692 4693
}

4694 4695
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4696
			      int new)
P
Peter Zijlstra 已提交
4697
{
P
Peter Zijlstra 已提交
4698
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4699

4700 4701 4702
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4703 4704
		return;

P
Peter Zijlstra 已提交
4705
	task_event = (struct perf_task_event){
4706 4707
		.task	  = task,
		.task_ctx = task_ctx,
4708
		.event_id    = {
P
Peter Zijlstra 已提交
4709
			.header = {
4710
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4711
				.misc = 0,
4712
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4713
			},
4714 4715
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4716 4717
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4718
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4719 4720 4721
		},
	};

4722 4723 4724 4725
	perf_event_aux(perf_event_task_match,
		       perf_event_task_output,
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4726 4727
}

4728
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4729
{
4730
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4731 4732
}

4733 4734 4735 4736 4737
/*
 * comm tracking
 */

struct perf_comm_event {
4738 4739
	struct task_struct	*task;
	char			*comm;
4740 4741 4742 4743 4744 4745 4746
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4747
	} event_id;
4748 4749
};

4750
static void perf_event_comm_output(struct perf_event *event,
4751
				   void *data)
4752
{
4753
	struct perf_comm_event *comm_event = data;
4754
	struct perf_output_handle handle;
4755
	struct perf_sample_data sample;
4756
	int size = comm_event->event_id.header.size;
4757 4758 4759 4760
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4761
				comm_event->event_id.header.size);
4762 4763

	if (ret)
4764
		goto out;
4765

4766 4767
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4768

4769
	perf_output_put(&handle, comm_event->event_id);
4770
	__output_copy(&handle, comm_event->comm,
4771
				   comm_event->comm_size);
4772 4773 4774

	perf_event__output_id_sample(event, &handle, &sample);

4775
	perf_output_end(&handle);
4776 4777
out:
	comm_event->event_id.header.size = size;
4778 4779
}

4780 4781
static int perf_event_comm_match(struct perf_event *event,
				 void *data __maybe_unused)
4782
{
4783
	return event->attr.comm;
4784 4785
}

4786
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4787
{
4788
	char comm[TASK_COMM_LEN];
4789 4790
	unsigned int size;

4791
	memset(comm, 0, sizeof(comm));
4792
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4793
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4794 4795 4796 4797

	comm_event->comm = comm;
	comm_event->comm_size = size;

4798
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4799

4800 4801 4802 4803
	perf_event_aux(perf_event_comm_match,
		       perf_event_comm_output,
		       comm_event,
		       NULL);
4804 4805
}

4806
void perf_event_comm(struct task_struct *task)
4807
{
4808
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4809 4810
	struct perf_event_context *ctx;
	int ctxn;
4811

4812
	rcu_read_lock();
P
Peter Zijlstra 已提交
4813 4814 4815 4816
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4817

P
Peter Zijlstra 已提交
4818 4819
		perf_event_enable_on_exec(ctx);
	}
4820
	rcu_read_unlock();
4821

4822
	if (!atomic_read(&nr_comm_events))
4823
		return;
4824

4825
	comm_event = (struct perf_comm_event){
4826
		.task	= task,
4827 4828
		/* .comm      */
		/* .comm_size */
4829
		.event_id  = {
4830
			.header = {
4831
				.type = PERF_RECORD_COMM,
4832 4833 4834 4835 4836
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4837 4838 4839
		},
	};

4840
	perf_event_comm_event(&comm_event);
4841 4842
}

4843 4844 4845 4846 4847
/*
 * mmap tracking
 */

struct perf_mmap_event {
4848 4849 4850 4851
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4852 4853 4854 4855 4856 4857 4858 4859 4860

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4861
	} event_id;
4862 4863
};

4864
static void perf_event_mmap_output(struct perf_event *event,
4865
				   void *data)
4866
{
4867
	struct perf_mmap_event *mmap_event = data;
4868
	struct perf_output_handle handle;
4869
	struct perf_sample_data sample;
4870
	int size = mmap_event->event_id.header.size;
4871
	int ret;
4872

4873 4874
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4875
				mmap_event->event_id.header.size);
4876
	if (ret)
4877
		goto out;
4878

4879 4880
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4881

4882
	perf_output_put(&handle, mmap_event->event_id);
4883
	__output_copy(&handle, mmap_event->file_name,
4884
				   mmap_event->file_size);
4885 4886 4887

	perf_event__output_id_sample(event, &handle, &sample);

4888
	perf_output_end(&handle);
4889 4890
out:
	mmap_event->event_id.header.size = size;
4891 4892
}

4893
static int perf_event_mmap_match(struct perf_event *event,
4894
				 void *data)
4895
{
4896 4897 4898
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;
4899

4900 4901
	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
4902 4903
}

4904
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4905
{
4906 4907
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4908 4909 4910
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4911
	const char *name;
4912

4913 4914
	memset(tmp, 0, sizeof(tmp));

4915
	if (file) {
4916
		/*
4917
		 * d_path works from the end of the rb backwards, so we
4918 4919 4920 4921
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4922 4923 4924 4925
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4926
		name = d_path(&file->f_path, buf, PATH_MAX);
4927 4928 4929 4930 4931
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4932 4933
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4934 4935
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
4936
			goto got_name;
4937
		}
4938 4939 4940 4941

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4942 4943 4944 4945 4946 4947 4948 4949
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4950 4951
		}

4952 4953 4954 4955 4956
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4957
	size = ALIGN(strlen(name)+1, sizeof(u64));
4958 4959 4960 4961

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4962 4963 4964
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

4965
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4966

4967 4968 4969 4970
	perf_event_aux(perf_event_mmap_match,
		       perf_event_mmap_output,
		       mmap_event,
		       NULL);
4971

4972 4973 4974
	kfree(buf);
}

4975
void perf_event_mmap(struct vm_area_struct *vma)
4976
{
4977 4978
	struct perf_mmap_event mmap_event;

4979
	if (!atomic_read(&nr_mmap_events))
4980 4981 4982
		return;

	mmap_event = (struct perf_mmap_event){
4983
		.vma	= vma,
4984 4985
		/* .file_name */
		/* .file_size */
4986
		.event_id  = {
4987
			.header = {
4988
				.type = PERF_RECORD_MMAP,
4989
				.misc = PERF_RECORD_MISC_USER,
4990 4991 4992 4993
				/* .size */
			},
			/* .pid */
			/* .tid */
4994 4995
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4996
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4997 4998 4999
		},
	};

5000
	perf_event_mmap_event(&mmap_event);
5001 5002
}

5003 5004 5005 5006
/*
 * IRQ throttle logging
 */

5007
static void perf_log_throttle(struct perf_event *event, int enable)
5008 5009
{
	struct perf_output_handle handle;
5010
	struct perf_sample_data sample;
5011 5012 5013 5014 5015
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5016
		u64				id;
5017
		u64				stream_id;
5018 5019
	} throttle_event = {
		.header = {
5020
			.type = PERF_RECORD_THROTTLE,
5021 5022 5023
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5024
		.time		= perf_clock(),
5025 5026
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5027 5028
	};

5029
	if (enable)
5030
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5031

5032 5033 5034
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5035
				throttle_event.header.size);
5036 5037 5038 5039
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5040
	perf_event__output_id_sample(event, &handle, &sample);
5041 5042 5043
	perf_output_end(&handle);
}

5044
/*
5045
 * Generic event overflow handling, sampling.
5046 5047
 */

5048
static int __perf_event_overflow(struct perf_event *event,
5049 5050
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5051
{
5052 5053
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5054
	u64 seq;
5055 5056
	int ret = 0;

5057 5058 5059 5060 5061 5062 5063
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5064 5065 5066 5067 5068 5069 5070 5071 5072
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5073 5074
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5075 5076
			ret = 1;
		}
5077
	}
5078

5079
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5080
		u64 now = perf_clock();
5081
		s64 delta = now - hwc->freq_time_stamp;
5082

5083
		hwc->freq_time_stamp = now;
5084

5085
		if (delta > 0 && delta < 2*TICK_NSEC)
5086
			perf_adjust_period(event, delta, hwc->last_period, true);
5087 5088
	}

5089 5090
	/*
	 * XXX event_limit might not quite work as expected on inherited
5091
	 * events
5092 5093
	 */

5094 5095
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5096
		ret = 1;
5097
		event->pending_kill = POLL_HUP;
5098 5099
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5100 5101
	}

5102
	if (event->overflow_handler)
5103
		event->overflow_handler(event, data, regs);
5104
	else
5105
		perf_event_output(event, data, regs);
5106

P
Peter Zijlstra 已提交
5107
	if (event->fasync && event->pending_kill) {
5108 5109
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5110 5111
	}

5112
	return ret;
5113 5114
}

5115
int perf_event_overflow(struct perf_event *event,
5116 5117
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5118
{
5119
	return __perf_event_overflow(event, 1, data, regs);
5120 5121
}

5122
/*
5123
 * Generic software event infrastructure
5124 5125
 */

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5137
/*
5138 5139
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5140 5141 5142 5143
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5144
u64 perf_swevent_set_period(struct perf_event *event)
5145
{
5146
	struct hw_perf_event *hwc = &event->hw;
5147 5148 5149 5150 5151
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5152 5153

again:
5154
	old = val = local64_read(&hwc->period_left);
5155 5156
	if (val < 0)
		return 0;
5157

5158 5159 5160
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5161
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5162
		goto again;
5163

5164
	return nr;
5165 5166
}

5167
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5168
				    struct perf_sample_data *data,
5169
				    struct pt_regs *regs)
5170
{
5171
	struct hw_perf_event *hwc = &event->hw;
5172
	int throttle = 0;
5173

5174 5175
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5176

5177 5178
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5179

5180
	for (; overflow; overflow--) {
5181
		if (__perf_event_overflow(event, throttle,
5182
					    data, regs)) {
5183 5184 5185 5186 5187 5188
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5189
		throttle = 1;
5190
	}
5191 5192
}

P
Peter Zijlstra 已提交
5193
static void perf_swevent_event(struct perf_event *event, u64 nr,
5194
			       struct perf_sample_data *data,
5195
			       struct pt_regs *regs)
5196
{
5197
	struct hw_perf_event *hwc = &event->hw;
5198

5199
	local64_add(nr, &event->count);
5200

5201 5202 5203
	if (!regs)
		return;

5204
	if (!is_sampling_event(event))
5205
		return;
5206

5207 5208 5209 5210 5211 5212
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5213
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5214
		return perf_swevent_overflow(event, 1, data, regs);
5215

5216
	if (local64_add_negative(nr, &hwc->period_left))
5217
		return;
5218

5219
	perf_swevent_overflow(event, 0, data, regs);
5220 5221
}

5222 5223 5224
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5225
	if (event->hw.state & PERF_HES_STOPPED)
5226
		return 1;
P
Peter Zijlstra 已提交
5227

5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5239
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5240
				enum perf_type_id type,
L
Li Zefan 已提交
5241 5242 5243
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5244
{
5245
	if (event->attr.type != type)
5246
		return 0;
5247

5248
	if (event->attr.config != event_id)
5249 5250
		return 0;

5251 5252
	if (perf_exclude_event(event, regs))
		return 0;
5253 5254 5255 5256

	return 1;
}

5257 5258 5259 5260 5261 5262 5263
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5264 5265
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5266
{
5267 5268 5269 5270
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5271

5272 5273
/* For the read side: events when they trigger */
static inline struct hlist_head *
5274
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5275 5276
{
	struct swevent_hlist *hlist;
5277

5278
	hlist = rcu_dereference(swhash->swevent_hlist);
5279 5280 5281
	if (!hlist)
		return NULL;

5282 5283 5284 5285 5286
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5287
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5298
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5299 5300 5301 5302 5303
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5304 5305 5306
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5307
				    u64 nr,
5308 5309
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5310
{
5311
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5312
	struct perf_event *event;
5313
	struct hlist_head *head;
5314

5315
	rcu_read_lock();
5316
	head = find_swevent_head_rcu(swhash, type, event_id);
5317 5318 5319
	if (!head)
		goto end;

5320
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5321
		if (perf_swevent_match(event, type, event_id, data, regs))
5322
			perf_swevent_event(event, nr, data, regs);
5323
	}
5324 5325
end:
	rcu_read_unlock();
5326 5327
}

5328
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5329
{
5330
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5331

5332
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5333
}
I
Ingo Molnar 已提交
5334
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5335

5336
inline void perf_swevent_put_recursion_context(int rctx)
5337
{
5338
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5339

5340
	put_recursion_context(swhash->recursion, rctx);
5341
}
5342

5343
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5344
{
5345
	struct perf_sample_data data;
5346 5347
	int rctx;

5348
	preempt_disable_notrace();
5349 5350 5351
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5352

5353
	perf_sample_data_init(&data, addr, 0);
5354

5355
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5356 5357

	perf_swevent_put_recursion_context(rctx);
5358
	preempt_enable_notrace();
5359 5360
}

5361
static void perf_swevent_read(struct perf_event *event)
5362 5363 5364
{
}

P
Peter Zijlstra 已提交
5365
static int perf_swevent_add(struct perf_event *event, int flags)
5366
{
5367
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5368
	struct hw_perf_event *hwc = &event->hw;
5369 5370
	struct hlist_head *head;

5371
	if (is_sampling_event(event)) {
5372
		hwc->last_period = hwc->sample_period;
5373
		perf_swevent_set_period(event);
5374
	}
5375

P
Peter Zijlstra 已提交
5376 5377
	hwc->state = !(flags & PERF_EF_START);

5378
	head = find_swevent_head(swhash, event);
5379 5380 5381 5382 5383
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5384 5385 5386
	return 0;
}

P
Peter Zijlstra 已提交
5387
static void perf_swevent_del(struct perf_event *event, int flags)
5388
{
5389
	hlist_del_rcu(&event->hlist_entry);
5390 5391
}

P
Peter Zijlstra 已提交
5392
static void perf_swevent_start(struct perf_event *event, int flags)
5393
{
P
Peter Zijlstra 已提交
5394
	event->hw.state = 0;
5395
}
I
Ingo Molnar 已提交
5396

P
Peter Zijlstra 已提交
5397
static void perf_swevent_stop(struct perf_event *event, int flags)
5398
{
P
Peter Zijlstra 已提交
5399
	event->hw.state = PERF_HES_STOPPED;
5400 5401
}

5402 5403
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5404
swevent_hlist_deref(struct swevent_htable *swhash)
5405
{
5406 5407
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5408 5409
}

5410
static void swevent_hlist_release(struct swevent_htable *swhash)
5411
{
5412
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5413

5414
	if (!hlist)
5415 5416
		return;

5417
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5418
	kfree_rcu(hlist, rcu_head);
5419 5420 5421 5422
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5423
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5424

5425
	mutex_lock(&swhash->hlist_mutex);
5426

5427 5428
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5429

5430
	mutex_unlock(&swhash->hlist_mutex);
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5448
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5449 5450
	int err = 0;

5451
	mutex_lock(&swhash->hlist_mutex);
5452

5453
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5454 5455 5456 5457 5458 5459 5460
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5461
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5462
	}
5463
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5464
exit:
5465
	mutex_unlock(&swhash->hlist_mutex);
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5489
fail:
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5500
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5501

5502 5503 5504
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5505

5506 5507
	WARN_ON(event->parent);

5508
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5509 5510 5511 5512 5513
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5514
	u64 event_id = event->attr.config;
5515 5516 5517 5518

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5519 5520 5521 5522 5523 5524
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5525 5526 5527 5528 5529 5530 5531 5532 5533
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5534
	if (event_id >= PERF_COUNT_SW_MAX)
5535 5536 5537 5538 5539 5540 5541 5542 5543
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5544
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5545 5546 5547 5548 5549 5550
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5551 5552 5553 5554 5555
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5556
static struct pmu perf_swevent = {
5557
	.task_ctx_nr	= perf_sw_context,
5558

5559
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5560 5561 5562 5563
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5564
	.read		= perf_swevent_read,
5565 5566

	.event_idx	= perf_swevent_event_idx,
5567 5568
};

5569 5570
#ifdef CONFIG_EVENT_TRACING

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5585 5586
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5587 5588 5589 5590
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5591 5592 5593 5594 5595 5596 5597 5598 5599
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5600 5601
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5602 5603
{
	struct perf_sample_data data;
5604 5605
	struct perf_event *event;

5606 5607 5608 5609 5610
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5611
	perf_sample_data_init(&data, addr, 0);
5612 5613
	data.raw = &raw;

5614
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5615
		if (perf_tp_event_match(event, &data, regs))
5616
			perf_swevent_event(event, count, &data, regs);
5617
	}
5618

5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5644
	perf_swevent_put_recursion_context(rctx);
5645 5646 5647
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5648
static void tp_perf_event_destroy(struct perf_event *event)
5649
{
5650
	perf_trace_destroy(event);
5651 5652
}

5653
static int perf_tp_event_init(struct perf_event *event)
5654
{
5655 5656
	int err;

5657 5658 5659
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5660 5661 5662 5663 5664 5665
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5666 5667
	err = perf_trace_init(event);
	if (err)
5668
		return err;
5669

5670
	event->destroy = tp_perf_event_destroy;
5671

5672 5673 5674 5675
	return 0;
}

static struct pmu perf_tracepoint = {
5676 5677
	.task_ctx_nr	= perf_sw_context,

5678
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5679 5680 5681 5682
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5683
	.read		= perf_swevent_read,
5684 5685

	.event_idx	= perf_swevent_event_idx,
5686 5687 5688 5689
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5690
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5691
}
L
Li Zefan 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5716
#else
L
Li Zefan 已提交
5717

5718
static inline void perf_tp_register(void)
5719 5720
{
}
L
Li Zefan 已提交
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5731
#endif /* CONFIG_EVENT_TRACING */
5732

5733
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5734
void perf_bp_event(struct perf_event *bp, void *data)
5735
{
5736 5737 5738
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5739
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5740

P
Peter Zijlstra 已提交
5741
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5742
		perf_swevent_event(bp, 1, &sample, regs);
5743 5744 5745
}
#endif

5746 5747 5748
/*
 * hrtimer based swevent callback
 */
5749

5750
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5751
{
5752 5753 5754 5755 5756
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5757

5758
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5759 5760 5761 5762

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5763
	event->pmu->read(event);
5764

5765
	perf_sample_data_init(&data, 0, event->hw.last_period);
5766 5767 5768
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5769
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5770
			if (__perf_event_overflow(event, 1, &data, regs))
5771 5772
				ret = HRTIMER_NORESTART;
	}
5773

5774 5775
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5776

5777
	return ret;
5778 5779
}

5780
static void perf_swevent_start_hrtimer(struct perf_event *event)
5781
{
5782
	struct hw_perf_event *hwc = &event->hw;
5783 5784 5785 5786
	s64 period;

	if (!is_sampling_event(event))
		return;
5787

5788 5789 5790 5791
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5792

5793 5794 5795 5796 5797
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5798
				ns_to_ktime(period), 0,
5799
				HRTIMER_MODE_REL_PINNED, 0);
5800
}
5801 5802

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5803
{
5804 5805
	struct hw_perf_event *hwc = &event->hw;

5806
	if (is_sampling_event(event)) {
5807
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5808
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5809 5810 5811

		hrtimer_cancel(&hwc->hrtimer);
	}
5812 5813
}

P
Peter Zijlstra 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5834
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5835 5836 5837 5838
		event->attr.freq = 0;
	}
}

5839 5840 5841 5842 5843
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5844
{
5845 5846 5847
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5848
	now = local_clock();
5849 5850
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5851 5852
}

P
Peter Zijlstra 已提交
5853
static void cpu_clock_event_start(struct perf_event *event, int flags)
5854
{
P
Peter Zijlstra 已提交
5855
	local64_set(&event->hw.prev_count, local_clock());
5856 5857 5858
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5859
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5860
{
5861 5862 5863
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5864

P
Peter Zijlstra 已提交
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5878 5879 5880 5881
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5882

5883 5884 5885 5886 5887 5888 5889 5890
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5891 5892 5893 5894 5895 5896
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5897 5898
	perf_swevent_init_hrtimer(event);

5899
	return 0;
5900 5901
}

5902
static struct pmu perf_cpu_clock = {
5903 5904
	.task_ctx_nr	= perf_sw_context,

5905
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5906 5907 5908 5909
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5910
	.read		= cpu_clock_event_read,
5911 5912

	.event_idx	= perf_swevent_event_idx,
5913 5914 5915 5916 5917 5918 5919
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5920
{
5921 5922
	u64 prev;
	s64 delta;
5923

5924 5925 5926 5927
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5928

P
Peter Zijlstra 已提交
5929
static void task_clock_event_start(struct perf_event *event, int flags)
5930
{
P
Peter Zijlstra 已提交
5931
	local64_set(&event->hw.prev_count, event->ctx->time);
5932 5933 5934
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5935
static void task_clock_event_stop(struct perf_event *event, int flags)
5936 5937 5938
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5939 5940 5941 5942 5943 5944
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5945

P
Peter Zijlstra 已提交
5946 5947 5948 5949 5950 5951
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5952 5953 5954 5955
}

static void task_clock_event_read(struct perf_event *event)
{
5956 5957 5958
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5959 5960 5961 5962 5963

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5964
{
5965 5966 5967 5968 5969 5970
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5971 5972 5973 5974 5975 5976
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5977 5978
	perf_swevent_init_hrtimer(event);

5979
	return 0;
L
Li Zefan 已提交
5980 5981
}

5982
static struct pmu perf_task_clock = {
5983 5984
	.task_ctx_nr	= perf_sw_context,

5985
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5986 5987 5988 5989
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5990
	.read		= task_clock_event_read,
5991 5992

	.event_idx	= perf_swevent_event_idx,
5993
};
L
Li Zefan 已提交
5994

P
Peter Zijlstra 已提交
5995
static void perf_pmu_nop_void(struct pmu *pmu)
5996 5997
{
}
L
Li Zefan 已提交
5998

P
Peter Zijlstra 已提交
5999
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6000
{
P
Peter Zijlstra 已提交
6001
	return 0;
L
Li Zefan 已提交
6002 6003
}

P
Peter Zijlstra 已提交
6004
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6005
{
P
Peter Zijlstra 已提交
6006
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6007 6008
}

P
Peter Zijlstra 已提交
6009 6010 6011 6012 6013
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6014

P
Peter Zijlstra 已提交
6015
static void perf_pmu_cancel_txn(struct pmu *pmu)
6016
{
P
Peter Zijlstra 已提交
6017
	perf_pmu_enable(pmu);
6018 6019
}

6020 6021 6022 6023 6024
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6025 6026 6027 6028 6029
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6030
{
P
Peter Zijlstra 已提交
6031
	struct pmu *pmu;
6032

P
Peter Zijlstra 已提交
6033 6034
	if (ctxn < 0)
		return NULL;
6035

P
Peter Zijlstra 已提交
6036 6037 6038 6039
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6040

P
Peter Zijlstra 已提交
6041
	return NULL;
6042 6043
}

6044
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6045
{
6046 6047 6048 6049 6050 6051 6052
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6053 6054
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6055 6056 6057 6058 6059 6060
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6061

P
Peter Zijlstra 已提交
6062
	mutex_lock(&pmus_lock);
6063
	/*
P
Peter Zijlstra 已提交
6064
	 * Like a real lame refcount.
6065
	 */
6066 6067 6068
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6069
			goto out;
6070
		}
P
Peter Zijlstra 已提交
6071
	}
6072

6073
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6074 6075
out:
	mutex_unlock(&pmus_lock);
6076
}
P
Peter Zijlstra 已提交
6077
static struct idr pmu_idr;
6078

P
Peter Zijlstra 已提交
6079 6080 6081 6082 6083 6084 6085 6086
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

#define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store)

P
Peter Zijlstra 已提交
6133
static struct device_attribute pmu_dev_attrs[] = {
6134 6135 6136
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6158
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6179
static struct lock_class_key cpuctx_mutex;
6180
static struct lock_class_key cpuctx_lock;
6181

P
Peter Zijlstra 已提交
6182
int perf_pmu_register(struct pmu *pmu, char *name, int type)
6183
{
P
Peter Zijlstra 已提交
6184
	int cpu, ret;
6185

6186
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6187 6188 6189 6190
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6191

P
Peter Zijlstra 已提交
6192 6193 6194 6195 6196 6197
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6198 6199 6200
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6201 6202 6203 6204 6205
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6206 6207 6208 6209 6210 6211
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6212
skip_type:
P
Peter Zijlstra 已提交
6213 6214 6215
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6216

W
Wei Yongjun 已提交
6217
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6218 6219
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6220
		goto free_dev;
6221

P
Peter Zijlstra 已提交
6222 6223 6224 6225
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6226
		__perf_event_init_context(&cpuctx->ctx);
6227
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6228
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6229
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6230
		cpuctx->ctx.pmu = pmu;
6231 6232 6233

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6234
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6235
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6236
	}
6237

P
Peter Zijlstra 已提交
6238
got_cpu_context:
P
Peter Zijlstra 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6253
		}
6254
	}
6255

P
Peter Zijlstra 已提交
6256 6257 6258 6259 6260
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6261 6262 6263
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6264
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6265 6266
	ret = 0;
unlock:
6267 6268
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6269
	return ret;
P
Peter Zijlstra 已提交
6270

P
Peter Zijlstra 已提交
6271 6272 6273 6274
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6275 6276 6277 6278
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6279 6280 6281
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6282 6283
}

6284
void perf_pmu_unregister(struct pmu *pmu)
6285
{
6286 6287 6288
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6289

6290
	/*
P
Peter Zijlstra 已提交
6291 6292
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6293
	 */
6294
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6295
	synchronize_rcu();
6296

P
Peter Zijlstra 已提交
6297
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6298 6299
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6300 6301
	device_del(pmu->dev);
	put_device(pmu->dev);
6302
	free_pmu_context(pmu);
6303
}
6304

6305 6306 6307 6308
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6309
	int ret;
6310 6311

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6312 6313 6314 6315

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6316
	if (pmu) {
6317
		event->pmu = pmu;
6318 6319 6320
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6321
		goto unlock;
6322
	}
P
Peter Zijlstra 已提交
6323

6324
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6325
		event->pmu = pmu;
6326
		ret = pmu->event_init(event);
6327
		if (!ret)
P
Peter Zijlstra 已提交
6328
			goto unlock;
6329

6330 6331
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6332
			goto unlock;
6333
		}
6334
	}
P
Peter Zijlstra 已提交
6335 6336
	pmu = ERR_PTR(-ENOENT);
unlock:
6337
	srcu_read_unlock(&pmus_srcu, idx);
6338

6339
	return pmu;
6340 6341
}

T
Thomas Gleixner 已提交
6342
/*
6343
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6344
 */
6345
static struct perf_event *
6346
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6347 6348 6349
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6350 6351
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6352
{
P
Peter Zijlstra 已提交
6353
	struct pmu *pmu;
6354 6355
	struct perf_event *event;
	struct hw_perf_event *hwc;
6356
	long err;
T
Thomas Gleixner 已提交
6357

6358 6359 6360 6361 6362
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6363
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6364
	if (!event)
6365
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6366

6367
	/*
6368
	 * Single events are their own group leaders, with an
6369 6370 6371
	 * empty sibling list:
	 */
	if (!group_leader)
6372
		group_leader = event;
6373

6374 6375
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6376

6377 6378 6379
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6380 6381
	INIT_LIST_HEAD(&event->rb_entry);

6382
	init_waitqueue_head(&event->waitq);
6383
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6384

6385
	mutex_init(&event->mmap_mutex);
6386

6387
	atomic_long_set(&event->refcount, 1);
6388 6389 6390 6391 6392
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6393

6394
	event->parent		= parent_event;
6395

6396
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6397
	event->id		= atomic64_inc_return(&perf_event_id);
6398

6399
	event->state		= PERF_EVENT_STATE_INACTIVE;
6400

6401 6402
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6403 6404 6405

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6406 6407 6408 6409
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6410
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6411 6412 6413 6414
			event->hw.bp_target = task;
#endif
	}

6415
	if (!overflow_handler && parent_event) {
6416
		overflow_handler = parent_event->overflow_handler;
6417 6418
		context = parent_event->overflow_handler_context;
	}
6419

6420
	event->overflow_handler	= overflow_handler;
6421
	event->overflow_handler_context = context;
6422

J
Jiri Olsa 已提交
6423
	perf_event__state_init(event);
6424

6425
	pmu = NULL;
6426

6427
	hwc = &event->hw;
6428
	hwc->sample_period = attr->sample_period;
6429
	if (attr->freq && attr->sample_freq)
6430
		hwc->sample_period = 1;
6431
	hwc->last_period = hwc->sample_period;
6432

6433
	local64_set(&hwc->period_left, hwc->sample_period);
6434

6435
	/*
6436
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6437
	 */
6438
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6439 6440
		goto done;

6441
	pmu = perf_init_event(event);
6442

6443 6444
done:
	err = 0;
6445
	if (!pmu)
6446
		err = -EINVAL;
6447 6448
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6449

6450
	if (err) {
6451 6452 6453
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6454
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6455
	}
6456

6457
	if (!event->parent) {
6458
		if (event->attach_state & PERF_ATTACH_TASK)
6459
			static_key_slow_inc(&perf_sched_events.key);
6460
		if (event->attr.mmap || event->attr.mmap_data)
6461 6462 6463 6464 6465
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6466 6467 6468 6469 6470 6471 6472
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6473 6474 6475 6476 6477 6478
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6479
	}
6480

6481
	return event;
T
Thomas Gleixner 已提交
6482 6483
}

6484 6485
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6486 6487
{
	u32 size;
6488
	int ret;
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6513 6514 6515
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6516 6517
	 */
	if (size > sizeof(*attr)) {
6518 6519 6520
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6521

6522 6523
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6524

6525
		for (; addr < end; addr++) {
6526 6527 6528 6529 6530 6531
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6532
		size = sizeof(*attr);
6533 6534 6535 6536 6537 6538
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6539
	if (attr->__reserved_1)
6540 6541 6542 6543 6544 6545 6546 6547
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6576 6577 6578 6579
		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_KERNEL)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6580
	}
6581

6582
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6583
		ret = perf_reg_validate(attr->sample_regs_user);
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6602

6603 6604 6605 6606 6607 6608 6609 6610 6611
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6612 6613
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6614
{
6615
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6616 6617
	int ret = -EINVAL;

6618
	if (!output_event)
6619 6620
		goto set;

6621 6622
	/* don't allow circular references */
	if (event == output_event)
6623 6624
		goto out;

6625 6626 6627 6628 6629 6630 6631
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6632
	 * If its not a per-cpu rb, it must be the same task.
6633 6634 6635 6636
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6637
set:
6638
	mutex_lock(&event->mmap_mutex);
6639 6640 6641
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6642

6643 6644
	old_rb = event->rb;

6645
	if (output_event) {
6646 6647 6648
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6649
			goto unlock;
6650 6651
	}

6652 6653
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6670
	ret = 0;
6671 6672 6673
unlock:
	mutex_unlock(&event->mmap_mutex);

6674 6675 6676 6677
out:
	return ret;
}

T
Thomas Gleixner 已提交
6678
/**
6679
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6680
 *
6681
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6682
 * @pid:		target pid
I
Ingo Molnar 已提交
6683
 * @cpu:		target cpu
6684
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6685
 */
6686 6687
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6688
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6689
{
6690 6691
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6692 6693 6694
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6695
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6696
	struct task_struct *task = NULL;
6697
	struct pmu *pmu;
6698
	int event_fd;
6699
	int move_group = 0;
6700
	int err;
T
Thomas Gleixner 已提交
6701

6702
	/* for future expandability... */
S
Stephane Eranian 已提交
6703
	if (flags & ~PERF_FLAG_ALL)
6704 6705
		return -EINVAL;

6706 6707 6708
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6709

6710 6711 6712 6713 6714
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6715
	if (attr.freq) {
6716
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6717 6718 6719
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6720 6721 6722 6723 6724 6725 6726 6727 6728
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6729
	event_fd = get_unused_fd();
6730 6731 6732
	if (event_fd < 0)
		return event_fd;

6733
	if (group_fd != -1) {
6734 6735
		err = perf_fget_light(group_fd, &group);
		if (err)
6736
			goto err_fd;
6737
		group_leader = group.file->private_data;
6738 6739 6740 6741 6742 6743
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6744
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6745 6746 6747 6748 6749 6750 6751
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6752 6753
	get_online_cpus();

6754 6755
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6756 6757
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6758
		goto err_task;
6759 6760
	}

S
Stephane Eranian 已提交
6761 6762 6763 6764
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6765 6766 6767 6768 6769 6770
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6771
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6772 6773
	}

6774 6775 6776 6777 6778
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6802 6803 6804 6805

	/*
	 * Get the target context (task or percpu):
	 */
6806
	ctx = find_get_context(pmu, task, event->cpu);
6807 6808
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6809
		goto err_alloc;
6810 6811
	}

6812 6813 6814 6815 6816
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6817
	/*
6818
	 * Look up the group leader (we will attach this event to it):
6819
	 */
6820
	if (group_leader) {
6821
		err = -EINVAL;
6822 6823

		/*
I
Ingo Molnar 已提交
6824 6825 6826 6827
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6828
			goto err_context;
I
Ingo Molnar 已提交
6829 6830 6831
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6832
		 */
6833 6834 6835 6836 6837 6838 6839 6840
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6841 6842 6843
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6844
		if (attr.exclusive || attr.pinned)
6845
			goto err_context;
6846 6847 6848 6849 6850
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6851
			goto err_context;
6852
	}
T
Thomas Gleixner 已提交
6853

6854 6855 6856
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6857
		goto err_context;
6858
	}
6859

6860 6861 6862 6863
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6864
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6865 6866 6867 6868 6869 6870 6871

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6872 6873
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6874
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6875
			perf_event__state_init(sibling);
6876 6877 6878 6879
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6880
	}
6881

6882
	WARN_ON_ONCE(ctx->parent_ctx);
6883
	mutex_lock(&ctx->mutex);
6884 6885

	if (move_group) {
6886
		synchronize_rcu();
6887
		perf_install_in_context(ctx, group_leader, event->cpu);
6888 6889 6890
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6891
			perf_install_in_context(ctx, sibling, event->cpu);
6892 6893 6894 6895
			get_ctx(ctx);
		}
	}

6896
	perf_install_in_context(ctx, event, event->cpu);
6897
	++ctx->generation;
6898
	perf_unpin_context(ctx);
6899
	mutex_unlock(&ctx->mutex);
6900

6901 6902
	put_online_cpus();

6903
	event->owner = current;
P
Peter Zijlstra 已提交
6904

6905 6906 6907
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6908

6909 6910 6911 6912
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6913
	perf_event__id_header_size(event);
6914

6915 6916 6917 6918 6919 6920
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6921
	fdput(group);
6922 6923
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6924

6925
err_context:
6926
	perf_unpin_context(ctx);
6927
	put_ctx(ctx);
6928
err_alloc:
6929
	free_event(event);
P
Peter Zijlstra 已提交
6930
err_task:
6931
	put_online_cpus();
P
Peter Zijlstra 已提交
6932 6933
	if (task)
		put_task_struct(task);
6934
err_group_fd:
6935
	fdput(group);
6936 6937
err_fd:
	put_unused_fd(event_fd);
6938
	return err;
T
Thomas Gleixner 已提交
6939 6940
}

6941 6942 6943 6944 6945
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6946
 * @task: task to profile (NULL for percpu)
6947 6948 6949
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6950
				 struct task_struct *task,
6951 6952
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6953 6954
{
	struct perf_event_context *ctx;
6955
	struct perf_event *event;
6956
	int err;
6957

6958 6959 6960
	/*
	 * Get the target context (task or percpu):
	 */
6961

6962 6963
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6964 6965 6966 6967
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6968

M
Matt Helsley 已提交
6969
	ctx = find_get_context(event->pmu, task, cpu);
6970 6971
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6972
		goto err_free;
6973
	}
6974 6975 6976 6977 6978

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6979
	perf_unpin_context(ctx);
6980 6981 6982 6983
	mutex_unlock(&ctx->mutex);

	return event;

6984 6985 6986
err_free:
	free_event(event);
err:
6987
	return ERR_PTR(err);
6988
}
6989
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6990

6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7024
static void sync_child_event(struct perf_event *child_event,
7025
			       struct task_struct *child)
7026
{
7027
	struct perf_event *parent_event = child_event->parent;
7028
	u64 child_val;
7029

7030 7031
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7032

P
Peter Zijlstra 已提交
7033
	child_val = perf_event_count(child_event);
7034 7035 7036 7037

	/*
	 * Add back the child's count to the parent's count:
	 */
7038
	atomic64_add(child_val, &parent_event->child_count);
7039 7040 7041 7042
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7043 7044

	/*
7045
	 * Remove this event from the parent's list
7046
	 */
7047 7048 7049 7050
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7051 7052

	/*
7053
	 * Release the parent event, if this was the last
7054 7055
	 * reference to it.
	 */
7056
	put_event(parent_event);
7057 7058
}

7059
static void
7060 7061
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7062
			 struct task_struct *child)
7063
{
7064 7065 7066 7067 7068
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7069

7070
	perf_remove_from_context(child_event);
7071

7072
	/*
7073
	 * It can happen that the parent exits first, and has events
7074
	 * that are still around due to the child reference. These
7075
	 * events need to be zapped.
7076
	 */
7077
	if (child_event->parent) {
7078 7079
		sync_child_event(child_event, child);
		free_event(child_event);
7080
	}
7081 7082
}

P
Peter Zijlstra 已提交
7083
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7084
{
7085 7086
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7087
	unsigned long flags;
7088

P
Peter Zijlstra 已提交
7089
	if (likely(!child->perf_event_ctxp[ctxn])) {
7090
		perf_event_task(child, NULL, 0);
7091
		return;
P
Peter Zijlstra 已提交
7092
	}
7093

7094
	local_irq_save(flags);
7095 7096 7097 7098 7099 7100
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7101
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7102 7103 7104

	/*
	 * Take the context lock here so that if find_get_context is
7105
	 * reading child->perf_event_ctxp, we wait until it has
7106 7107
	 * incremented the context's refcount before we do put_ctx below.
	 */
7108
	raw_spin_lock(&child_ctx->lock);
7109
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7110
	child->perf_event_ctxp[ctxn] = NULL;
7111 7112 7113
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7114
	 * the events from it.
7115 7116
	 */
	unclone_ctx(child_ctx);
7117
	update_context_time(child_ctx);
7118
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7119 7120

	/*
7121 7122 7123
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7124
	 */
7125
	perf_event_task(child, child_ctx, 0);
7126

7127 7128 7129
	/*
	 * We can recurse on the same lock type through:
	 *
7130 7131
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7132 7133
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7134 7135 7136
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7137
	mutex_lock(&child_ctx->mutex);
7138

7139
again:
7140 7141 7142 7143 7144
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7145
				 group_entry)
7146
		__perf_event_exit_task(child_event, child_ctx, child);
7147 7148

	/*
7149
	 * If the last event was a group event, it will have appended all
7150 7151 7152
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7153 7154
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7155
		goto again;
7156 7157 7158 7159

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7160 7161
}

P
Peter Zijlstra 已提交
7162 7163 7164 7165 7166
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7167
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7168 7169
	int ctxn;

P
Peter Zijlstra 已提交
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7185 7186 7187 7188
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7201
	put_event(parent);
7202

7203
	perf_group_detach(event);
7204 7205 7206 7207
	list_del_event(event, ctx);
	free_event(event);
}

7208 7209
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7210
 * perf_event_init_task below, used by fork() in case of fail.
7211
 */
7212
void perf_event_free_task(struct task_struct *task)
7213
{
P
Peter Zijlstra 已提交
7214
	struct perf_event_context *ctx;
7215
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7216
	int ctxn;
7217

P
Peter Zijlstra 已提交
7218 7219 7220 7221
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7222

P
Peter Zijlstra 已提交
7223
		mutex_lock(&ctx->mutex);
7224
again:
P
Peter Zijlstra 已提交
7225 7226 7227
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7228

P
Peter Zijlstra 已提交
7229 7230 7231
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7232

P
Peter Zijlstra 已提交
7233 7234 7235
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7236

P
Peter Zijlstra 已提交
7237
		mutex_unlock(&ctx->mutex);
7238

P
Peter Zijlstra 已提交
7239 7240
		put_ctx(ctx);
	}
7241 7242
}

7243 7244 7245 7246 7247 7248 7249 7250
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7263
	unsigned long flags;
P
Peter Zijlstra 已提交
7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7276
					   child,
P
Peter Zijlstra 已提交
7277
					   group_leader, parent_event,
7278
				           NULL, NULL);
P
Peter Zijlstra 已提交
7279 7280
	if (IS_ERR(child_event))
		return child_event;
7281 7282 7283 7284 7285 7286

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7311 7312
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7313

7314 7315 7316 7317
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7318
	perf_event__id_header_size(child_event);
7319

P
Peter Zijlstra 已提交
7320 7321 7322
	/*
	 * Link it up in the child's context:
	 */
7323
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7324
	add_event_to_ctx(child_event, child_ctx);
7325
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7359 7360 7361 7362 7363
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7364
		   struct task_struct *child, int ctxn,
7365 7366 7367
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7368
	struct perf_event_context *child_ctx;
7369 7370 7371 7372

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7373 7374
	}

7375
	child_ctx = child->perf_event_ctxp[ctxn];
7376 7377 7378 7379 7380 7381 7382
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7383

7384
		child_ctx = alloc_perf_context(event->pmu, child);
7385 7386
		if (!child_ctx)
			return -ENOMEM;
7387

P
Peter Zijlstra 已提交
7388
		child->perf_event_ctxp[ctxn] = child_ctx;
7389 7390 7391 7392 7393 7394 7395 7396 7397
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7398 7399
}

7400
/*
7401
 * Initialize the perf_event context in task_struct
7402
 */
P
Peter Zijlstra 已提交
7403
int perf_event_init_context(struct task_struct *child, int ctxn)
7404
{
7405
	struct perf_event_context *child_ctx, *parent_ctx;
7406 7407
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7408
	struct task_struct *parent = current;
7409
	int inherited_all = 1;
7410
	unsigned long flags;
7411
	int ret = 0;
7412

P
Peter Zijlstra 已提交
7413
	if (likely(!parent->perf_event_ctxp[ctxn]))
7414 7415
		return 0;

7416
	/*
7417 7418
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7419
	 */
P
Peter Zijlstra 已提交
7420
	parent_ctx = perf_pin_task_context(parent, ctxn);
7421

7422 7423 7424 7425 7426 7427 7428
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7429 7430 7431 7432
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7433
	mutex_lock(&parent_ctx->mutex);
7434 7435 7436 7437 7438

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7439
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7440 7441
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7442 7443 7444
		if (ret)
			break;
	}
7445

7446 7447 7448 7449 7450 7451 7452 7453 7454
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7455
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7456 7457
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7458
		if (ret)
7459
			break;
7460 7461
	}

7462 7463 7464
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7465
	child_ctx = child->perf_event_ctxp[ctxn];
7466

7467
	if (child_ctx && inherited_all) {
7468 7469 7470
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7471 7472 7473
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7474
		 */
P
Peter Zijlstra 已提交
7475
		cloned_ctx = parent_ctx->parent_ctx;
7476 7477
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7478
			child_ctx->parent_gen = parent_ctx->parent_gen;
7479 7480 7481 7482 7483
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7484 7485
	}

P
Peter Zijlstra 已提交
7486
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7487
	mutex_unlock(&parent_ctx->mutex);
7488

7489
	perf_unpin_context(parent_ctx);
7490
	put_ctx(parent_ctx);
7491

7492
	return ret;
7493 7494
}

P
Peter Zijlstra 已提交
7495 7496 7497 7498 7499 7500 7501
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7502 7503 7504 7505
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7506 7507 7508 7509 7510 7511 7512 7513 7514
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7515 7516
static void __init perf_event_init_all_cpus(void)
{
7517
	struct swevent_htable *swhash;
7518 7519 7520
	int cpu;

	for_each_possible_cpu(cpu) {
7521 7522
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7523
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7524 7525 7526
	}
}

7527
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7528
{
P
Peter Zijlstra 已提交
7529
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7530

7531
	mutex_lock(&swhash->hlist_mutex);
7532
	if (swhash->hlist_refcount > 0) {
7533 7534
		struct swevent_hlist *hlist;

7535 7536 7537
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7538
	}
7539
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7540 7541
}

P
Peter Zijlstra 已提交
7542
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7543
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7544
{
7545 7546 7547 7548 7549 7550 7551
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7552
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7553
{
P
Peter Zijlstra 已提交
7554
	struct perf_event_context *ctx = __info;
7555
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7556

P
Peter Zijlstra 已提交
7557
	perf_pmu_rotate_stop(ctx->pmu);
7558

7559
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7560
		__perf_remove_from_context(event);
7561
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7562
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7563
}
P
Peter Zijlstra 已提交
7564 7565 7566 7567 7568 7569 7570 7571 7572

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7573
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7574 7575 7576 7577 7578 7579 7580 7581

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7582
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7583
{
7584
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7585

7586 7587 7588
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7589

P
Peter Zijlstra 已提交
7590
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7591 7592
}
#else
7593
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7594 7595
#endif

P
Peter Zijlstra 已提交
7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7616 7617 7618 7619 7620
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7621
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7622 7623

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7624
	case CPU_DOWN_FAILED:
7625
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7626 7627
		break;

P
Peter Zijlstra 已提交
7628
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7629
	case CPU_DOWN_PREPARE:
7630
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7631 7632 7633 7634 7635 7636 7637 7638
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7639
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7640
{
7641 7642
	int ret;

P
Peter Zijlstra 已提交
7643 7644
	idr_init(&pmu_idr);

7645
	perf_event_init_all_cpus();
7646
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7647 7648 7649
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7650 7651
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7652
	register_reboot_notifier(&perf_reboot_notifier);
7653 7654 7655

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7656 7657 7658

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7659 7660 7661 7662 7663 7664 7665

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7666
}
P
Peter Zijlstra 已提交
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7695 7696

#ifdef CONFIG_CGROUP_PERF
7697
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7698 7699 7700
{
	struct perf_cgroup *jc;

7701
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7714
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7730
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7731
{
7732 7733 7734 7735
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7736 7737
}

7738 7739
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7740 7741 7742 7743 7744 7745 7746 7747 7748
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7749
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7750 7751 7752
}

struct cgroup_subsys perf_subsys = {
7753 7754
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7755 7756
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7757
	.exit		= perf_cgroup_exit,
7758
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7759 7760
};
#endif /* CONFIG_CGROUP_PERF */