core.c 224.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
67 68 69 70 71 72 73 74 75 76 77
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
98
task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 100
{
	struct remote_function_call data = {
101 102 103
		.p	= p,
		.func	= func,
		.info	= info,
104
		.ret	= -EAGAIN,
105
	};
106
	int ret;
107

108 109 110 111 112
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
113

114
	return ret;
115 116 117 118 119 120 121 122 123 124 125
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
126
static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 128
{
	struct remote_function_call data = {
129 130 131 132
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
133 134 135 136 137 138 139
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

140 141 142 143 144 145 146 147
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
148
{
149 150 151 152 153 154 155 156 157 158 159 160 161
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

162 163 164 165
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
166
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214
		if (ctx->task != current) {
215
			ret = -ESRCH;
216 217
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278
		return;
	}

279 280 281
	if (task == TASK_TOMBSTONE)
		return;

282
again:
283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
292 293 294
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
295
	}
296 297 298 299 300
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
301 302 303
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
319
	EVENT_TIME = 0x4,
320 321 322
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
323 324 325 326
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
327 328 329 330 331 332 333

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
334
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
336

337 338 339
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
340
static atomic_t nr_freq_events __read_mostly;
341
static atomic_t nr_switch_events __read_mostly;
342

P
Peter Zijlstra 已提交
343 344 345 346
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

347
/*
348
 * perf event paranoia level:
349 350
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
351
 *   1 - disallow cpu events for unpriv
352
 *   2 - disallow kernel profiling for unpriv
353
 */
354
int sysctl_perf_event_paranoid __read_mostly = 1;
355

356 357
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 359

/*
360
 * max perf event sample rate
361
 */
362 363 364 365 366 367 368 369 370
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
371 372
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373

374
static void update_perf_cpu_limits(void)
375 376 377 378
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
379 380 381 382 383
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
384
}
P
Peter Zijlstra 已提交
385

386 387
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
388 389 390 391
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
392
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
393 394 395 396 397

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

415 416 417 418 419 420 421
	if (sysctl_perf_cpu_time_max_percent == 100) {
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
422 423 424

	return 0;
}
425

426 427 428 429 430 431 432
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
433
static DEFINE_PER_CPU(u64, running_sample_length);
434

435 436 437
static u64 __report_avg;
static u64 __report_allowed;

438
static void perf_duration_warn(struct irq_work *w)
439
{
440
	printk_ratelimited(KERN_WARNING
441 442 443 444
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
445 446 447 448 449 450
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
451 452 453 454
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
455

456
	if (max_len == 0)
457 458
		return;

459 460 461 462 463
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
464 465

	/*
466 467
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
468 469
	 * from having to maintain a count.
	 */
470 471
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
472 473
		return;

474 475
	__report_avg = avg_len;
	__report_allowed = max_len;
476

477 478 479 480 481 482 483 484 485
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
486

487 488 489 490 491
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
492

493
	if (!irq_work_queue(&perf_duration_work)) {
494
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
495
			     "kernel.perf_event_max_sample_rate to %d\n",
496
			     __report_avg, __report_allowed,
497 498
			     sysctl_perf_event_sample_rate);
	}
499 500
}

501
static atomic64_t perf_event_id;
502

503 504 505 506
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
507 508 509 510 511
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
512

513
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
514

515
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
516
{
517
	return "pmu";
T
Thomas Gleixner 已提交
518 519
}

520 521 522 523 524
static inline u64 perf_clock(void)
{
	return local_clock();
}

525 526 527 528 529
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
530 531 532 533 534 535 536 537
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
554 555 556 557
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
558
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
597 598
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
599
	/*
600 601
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
602
	 */
603
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
604 605
		return;

606
	cgrp = perf_cgroup_from_task(current, event->ctx);
607 608 609 610 611
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
612 613 614
}

static inline void
615 616
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
617 618 619 620
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

621 622 623 624 625 626
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
627 628
		return;

629
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
630
	info = this_cpu_ptr(cgrp->info);
631
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
632 633 634 635 636 637 638 639 640 641 642
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
643
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
663 664
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
665 666 667 668 669 670 671 672 673

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
674 675
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
676 677 678 679 680 681 682 683 684 685 686

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
687
				WARN_ON_ONCE(cpuctx->cgrp);
688 689 690 691
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
692 693
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
694
				 */
695
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
696 697
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
698 699
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
700 701 702 703 704 705
		}
	}

	local_irq_restore(flags);
}

706 707
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
708
{
709 710 711
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

712
	rcu_read_lock();
713 714
	/*
	 * we come here when we know perf_cgroup_events > 0
715 716
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
717
	 */
718
	cgrp1 = perf_cgroup_from_task(task, NULL);
719
	cgrp2 = perf_cgroup_from_task(next, NULL);
720 721 722 723 724 725 726 727

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
728 729

	rcu_read_unlock();
S
Stephane Eranian 已提交
730 731
}

732 733
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
734
{
735 736 737
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

738
	rcu_read_lock();
739 740
	/*
	 * we come here when we know perf_cgroup_events > 0
741 742
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
743
	 */
744 745
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
746 747 748 749 750 751 752 753

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
754 755

	rcu_read_unlock();
S
Stephane Eranian 已提交
756 757 758 759 760 761 762 763
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
764 765
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
766

767
	if (!f.file)
S
Stephane Eranian 已提交
768 769
		return -EBADF;

A
Al Viro 已提交
770
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
771
					 &perf_event_cgrp_subsys);
772 773 774 775
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
789
out:
790
	fdput(f);
S
Stephane Eranian 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

864 865
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
866 867 868
{
}

869 870
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
871 872 873 874 875 876 877 878 879 880 881
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
882 883
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

914 915 916 917 918 919 920 921
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
922
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
923 924 925 926 927 928 929 930 931
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
932 933
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
934
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
935 936 937
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
938

P
Peter Zijlstra 已提交
939
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
940 941
}

942
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
943
{
944
	struct hrtimer *timer = &cpuctx->hrtimer;
945
	struct pmu *pmu = cpuctx->ctx.pmu;
946
	u64 interval;
947 948 949 950 951

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

952 953 954 955
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
956 957 958
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
959

960
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
961

P
Peter Zijlstra 已提交
962 963
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
964
	timer->function = perf_mux_hrtimer_handler;
965 966
}

967
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
968
{
969
	struct hrtimer *timer = &cpuctx->hrtimer;
970
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
971
	unsigned long flags;
972 973 974

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
975
		return 0;
976

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
984

985
	return 0;
986 987
}

P
Peter Zijlstra 已提交
988
void perf_pmu_disable(struct pmu *pmu)
989
{
P
Peter Zijlstra 已提交
990 991 992
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
993 994
}

P
Peter Zijlstra 已提交
995
void perf_pmu_enable(struct pmu *pmu)
996
{
P
Peter Zijlstra 已提交
997 998 999
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1000 1001
}

1002
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1003 1004

/*
1005 1006 1007 1008
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1009
 */
1010
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1011
{
1012
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1013

1014
	WARN_ON(!irqs_disabled());
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1028 1029
}

1030
static void get_ctx(struct perf_event_context *ctx)
1031
{
1032
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1044
static void put_ctx(struct perf_event_context *ctx)
1045
{
1046 1047 1048
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1049
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1050
			put_task_struct(ctx->task);
1051
		call_rcu(&ctx->rcu_head, free_ctx);
1052
	}
1053 1054
}

P
Peter Zijlstra 已提交
1055 1056 1057 1058 1059 1060 1061
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1062 1063 1064 1065
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1066 1067
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1111
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1112 1113 1114
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1115 1116
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1129
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1139 1140 1141 1142 1143 1144
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150 1151
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1152 1153 1154 1155 1156 1157 1158
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1159
{
1160 1161 1162 1163 1164
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1165
		ctx->parent_ctx = NULL;
1166
	ctx->generation++;
1167 1168

	return parent_ctx;
1169 1170
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1193
/*
1194
 * If we inherit events we want to return the parent event id
1195 1196
 * to userspace.
 */
1197
static u64 primary_event_id(struct perf_event *event)
1198
{
1199
	u64 id = event->id;
1200

1201 1202
	if (event->parent)
		id = event->parent->id;
1203 1204 1205 1206

	return id;
}

1207
/*
1208
 * Get the perf_event_context for a task and lock it.
1209
 *
1210 1211 1212
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1213
static struct perf_event_context *
P
Peter Zijlstra 已提交
1214
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1215
{
1216
	struct perf_event_context *ctx;
1217

P
Peter Zijlstra 已提交
1218
retry:
1219 1220 1221
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1222
	 * part of the read side critical section was irqs-enabled -- see
1223 1224 1225
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1226
	 * side critical section has interrupts disabled.
1227
	 */
1228
	local_irq_save(*flags);
1229
	rcu_read_lock();
P
Peter Zijlstra 已提交
1230
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1231 1232 1233 1234
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1235
		 * perf_event_task_sched_out, though the
1236 1237 1238 1239 1240 1241
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1242
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1243
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1244
			raw_spin_unlock(&ctx->lock);
1245
			rcu_read_unlock();
1246
			local_irq_restore(*flags);
1247 1248
			goto retry;
		}
1249

1250 1251
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1252
			raw_spin_unlock(&ctx->lock);
1253
			ctx = NULL;
P
Peter Zijlstra 已提交
1254 1255
		} else {
			WARN_ON_ONCE(ctx->task != task);
1256
		}
1257 1258
	}
	rcu_read_unlock();
1259 1260
	if (!ctx)
		local_irq_restore(*flags);
1261 1262 1263 1264 1265 1266 1267 1268
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1269 1270
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1271
{
1272
	struct perf_event_context *ctx;
1273 1274
	unsigned long flags;

P
Peter Zijlstra 已提交
1275
	ctx = perf_lock_task_context(task, ctxn, &flags);
1276 1277
	if (ctx) {
		++ctx->pin_count;
1278
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1279 1280 1281 1282
	}
	return ctx;
}

1283
static void perf_unpin_context(struct perf_event_context *ctx)
1284 1285 1286
{
	unsigned long flags;

1287
	raw_spin_lock_irqsave(&ctx->lock, flags);
1288
	--ctx->pin_count;
1289
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1303 1304 1305
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1306 1307 1308 1309

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1310 1311 1312
	return ctx ? ctx->time : 0;
}

1313 1314 1315 1316 1317 1318 1319 1320
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1321 1322
	lockdep_assert_held(&ctx->lock);

1323 1324 1325
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1326

S
Stephane Eranian 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1338
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1339 1340
	else if (ctx->is_active)
		run_end = ctx->time;
1341 1342 1343 1344
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1345 1346 1347 1348

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1349
		run_end = perf_event_time(event);
1350 1351

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1352

1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1367 1368 1369 1370 1371 1372 1373 1374 1375
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1376
/*
1377
 * Add a event from the lists for its context.
1378 1379
 * Must be called with ctx->mutex and ctx->lock held.
 */
1380
static void
1381
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1382
{
P
Peter Zijlstra 已提交
1383 1384
	lockdep_assert_held(&ctx->lock);

1385 1386
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1387 1388

	/*
1389 1390 1391
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1392
	 */
1393
	if (event->group_leader == event) {
1394 1395
		struct list_head *list;

1396 1397 1398
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1399 1400
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1401
	}
P
Peter Zijlstra 已提交
1402

1403
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1404 1405
		ctx->nr_cgroups++;

1406 1407 1408
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1409
		ctx->nr_stat++;
1410 1411

	ctx->generation++;
1412 1413
}

J
Jiri Olsa 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1423
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1439
		nr += nr_siblings;
1440 1441 1442 1443 1444 1445 1446
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1447
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1448 1449 1450 1451 1452 1453 1454
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1455 1456 1457 1458 1459 1460
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1461 1462 1463
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1464 1465 1466
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1467 1468 1469
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1470 1471 1472
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1473 1474 1475
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1487 1488 1489 1490 1491 1492
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1493 1494 1495 1496 1497 1498
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1499 1500 1501
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1502 1503 1504 1505 1506 1507 1508 1509 1510
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1511
	event->id_header_size = size;
1512 1513
}

P
Peter Zijlstra 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1535 1536
static void perf_group_attach(struct perf_event *event)
{
1537
	struct perf_event *group_leader = event->group_leader, *pos;
1538

P
Peter Zijlstra 已提交
1539 1540 1541 1542 1543 1544
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1545 1546 1547 1548 1549
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1550 1551
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1552 1553 1554 1555 1556 1557
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1558 1559 1560 1561 1562

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1563 1564
}

1565
/*
1566
 * Remove a event from the lists for its context.
1567
 * Must be called with ctx->mutex and ctx->lock held.
1568
 */
1569
static void
1570
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1571
{
1572
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1573 1574 1575 1576

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1577 1578 1579 1580
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1581
		return;
1582 1583 1584

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1585
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1586
		ctx->nr_cgroups--;
1587 1588 1589 1590
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1591 1592
		cpuctx = __get_cpu_context(ctx);
		/*
1593 1594
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1595 1596 1597 1598
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1599

1600 1601
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1602
		ctx->nr_stat--;
1603

1604
	list_del_rcu(&event->event_entry);
1605

1606 1607
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1608

1609
	update_group_times(event);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1620 1621

	ctx->generation++;
1622 1623
}

1624
static void perf_group_detach(struct perf_event *event)
1625 1626
{
	struct perf_event *sibling, *tmp;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1643
		goto out;
1644 1645 1646 1647
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1648

1649
	/*
1650 1651
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1652
	 * to whatever list we are on.
1653
	 */
1654
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1655 1656
		if (list)
			list_move_tail(&sibling->group_entry, list);
1657
		sibling->group_leader = sibling;
1658 1659 1660

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1661 1662

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1663
	}
1664 1665 1666 1667 1668 1669

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1670 1671
}

1672 1673
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1674
	return event->state == PERF_EVENT_STATE_DEAD;
1675 1676
}

1677 1678 1679 1680 1681 1682
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1683 1684 1685
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1686
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1687
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1688 1689
}

1690 1691
static void
event_sched_out(struct perf_event *event,
1692
		  struct perf_cpu_context *cpuctx,
1693
		  struct perf_event_context *ctx)
1694
{
1695
	u64 tstamp = perf_event_time(event);
1696
	u64 delta;
P
Peter Zijlstra 已提交
1697 1698 1699 1700

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1709
		delta = tstamp - event->tstamp_stopped;
1710
		event->tstamp_running += delta;
1711
		event->tstamp_stopped = tstamp;
1712 1713
	}

1714
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1715
		return;
1716

1717 1718
	perf_pmu_disable(event->pmu);

1719 1720 1721
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1722 1723 1724 1725
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1726
	}
1727

1728
	if (!is_software_event(event))
1729
		cpuctx->active_oncpu--;
1730 1731
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1732 1733
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1734
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1735
		cpuctx->exclusive = 0;
1736 1737

	perf_pmu_enable(event->pmu);
1738 1739
}

1740
static void
1741
group_sched_out(struct perf_event *group_event,
1742
		struct perf_cpu_context *cpuctx,
1743
		struct perf_event_context *ctx)
1744
{
1745
	struct perf_event *event;
1746
	int state = group_event->state;
1747

1748
	event_sched_out(group_event, cpuctx, ctx);
1749 1750 1751 1752

	/*
	 * Schedule out siblings (if any):
	 */
1753 1754
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1755

1756
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1757 1758 1759
		cpuctx->exclusive = 0;
}

1760
#define DETACH_GROUP	0x01UL
1761

T
Thomas Gleixner 已提交
1762
/*
1763
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1764
 *
1765
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1766 1767
 * remove it from the context list.
 */
1768 1769 1770 1771 1772
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1773
{
1774
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1775

1776
	event_sched_out(event, cpuctx, ctx);
1777
	if (flags & DETACH_GROUP)
1778
		perf_group_detach(event);
1779
	list_del_event(event, ctx);
1780 1781

	if (!ctx->nr_events && ctx->is_active) {
1782
		ctx->is_active = 0;
1783 1784 1785 1786
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1787
	}
T
Thomas Gleixner 已提交
1788 1789 1790
}

/*
1791
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1792
 *
1793 1794
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1795 1796
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1797
 * When called from perf_event_exit_task, it's OK because the
1798
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1799
 */
1800
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1801
{
1802
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1803

1804
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1805 1806
}

1807
/*
1808
 * Cross CPU call to disable a performance event
1809
 */
1810 1811 1812 1813
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1814
{
1815 1816
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1817

1818 1819 1820 1821 1822 1823 1824 1825
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1826 1827
}

1828
/*
1829
 * Disable a event.
1830
 *
1831 1832
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1833
 * remains valid.  This condition is satisifed when called through
1834 1835
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1836 1837
 * goes to exit will block in perf_event_exit_event().
 *
1838
 * When called from perf_pending_event it's OK because event->ctx
1839
 * is the current context on this CPU and preemption is disabled,
1840
 * hence we can't get into perf_event_task_sched_out for this context.
1841
 */
P
Peter Zijlstra 已提交
1842
static void _perf_event_disable(struct perf_event *event)
1843
{
1844
	struct perf_event_context *ctx = event->ctx;
1845

1846
	raw_spin_lock_irq(&ctx->lock);
1847
	if (event->state <= PERF_EVENT_STATE_OFF) {
1848
		raw_spin_unlock_irq(&ctx->lock);
1849
		return;
1850
	}
1851
	raw_spin_unlock_irq(&ctx->lock);
1852

1853 1854 1855 1856 1857 1858
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1859
}
P
Peter Zijlstra 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1873
EXPORT_SYMBOL_GPL(perf_event_disable);
1874

S
Stephane Eranian 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1910 1911 1912
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1913
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1914

1915
static int
1916
event_sched_in(struct perf_event *event,
1917
		 struct perf_cpu_context *cpuctx,
1918
		 struct perf_event_context *ctx)
1919
{
1920
	u64 tstamp = perf_event_time(event);
1921
	int ret = 0;
1922

1923 1924
	lockdep_assert_held(&ctx->lock);

1925
	if (event->state <= PERF_EVENT_STATE_OFF)
1926 1927
		return 0;

1928
	event->state = PERF_EVENT_STATE_ACTIVE;
1929
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1941 1942 1943 1944 1945
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1946 1947
	perf_pmu_disable(event->pmu);

1948 1949
	perf_set_shadow_time(event, ctx, tstamp);

1950 1951
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1952
	if (event->pmu->add(event, PERF_EF_START)) {
1953 1954
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1955 1956
		ret = -EAGAIN;
		goto out;
1957 1958
	}

1959 1960
	event->tstamp_running += tstamp - event->tstamp_stopped;

1961
	if (!is_software_event(event))
1962
		cpuctx->active_oncpu++;
1963 1964
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1965 1966
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1967

1968
	if (event->attr.exclusive)
1969 1970
		cpuctx->exclusive = 1;

1971 1972 1973 1974
out:
	perf_pmu_enable(event->pmu);

	return ret;
1975 1976
}

1977
static int
1978
group_sched_in(struct perf_event *group_event,
1979
	       struct perf_cpu_context *cpuctx,
1980
	       struct perf_event_context *ctx)
1981
{
1982
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1983
	struct pmu *pmu = ctx->pmu;
1984 1985
	u64 now = ctx->time;
	bool simulate = false;
1986

1987
	if (group_event->state == PERF_EVENT_STATE_OFF)
1988 1989
		return 0;

1990
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1991

1992
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1993
		pmu->cancel_txn(pmu);
1994
		perf_mux_hrtimer_restart(cpuctx);
1995
		return -EAGAIN;
1996
	}
1997 1998 1999 2000

	/*
	 * Schedule in siblings as one group (if any):
	 */
2001
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2002
		if (event_sched_in(event, cpuctx, ctx)) {
2003
			partial_group = event;
2004 2005 2006 2007
			goto group_error;
		}
	}

2008
	if (!pmu->commit_txn(pmu))
2009
		return 0;
2010

2011 2012 2013 2014
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2025
	 */
2026 2027
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2028 2029 2030 2031 2032 2033 2034 2035
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2036
	}
2037
	event_sched_out(group_event, cpuctx, ctx);
2038

P
Peter Zijlstra 已提交
2039
	pmu->cancel_txn(pmu);
2040

2041
	perf_mux_hrtimer_restart(cpuctx);
2042

2043 2044 2045
	return -EAGAIN;
}

2046
/*
2047
 * Work out whether we can put this event group on the CPU now.
2048
 */
2049
static int group_can_go_on(struct perf_event *event,
2050 2051 2052 2053
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2054
	 * Groups consisting entirely of software events can always go on.
2055
	 */
2056
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2057 2058 2059
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2060
	 * events can go on.
2061 2062 2063 2064 2065
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2066
	 * events on the CPU, it can't go on.
2067
	 */
2068
	if (event->attr.exclusive && cpuctx->active_oncpu)
2069 2070 2071 2072 2073 2074 2075 2076
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2077 2078
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2079
{
2080 2081
	u64 tstamp = perf_event_time(event);

2082
	list_add_event(event, ctx);
2083
	perf_group_attach(event);
2084 2085 2086
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2087 2088
}

2089 2090 2091
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2092 2093 2094 2095 2096
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2122 2123
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2124
{
2125 2126 2127 2128 2129 2130
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2131 2132
}

T
Thomas Gleixner 已提交
2133
/*
2134
 * Cross CPU call to install and enable a performance event
2135
 *
2136 2137
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2138
 */
2139
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2140
{
2141 2142
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2143
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2145 2146
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2147

2148
	raw_spin_lock(&cpuctx->ctx.lock);
2149
	if (ctx->task) {
2150 2151
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2152 2153 2154 2155

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2156
			goto unlock;
2157
		}
2158

2159
		/*
2160 2161 2162
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2163
		 */
2164 2165 2166 2167 2168
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2169 2170
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2171
	}
2172

2173 2174 2175 2176 2177 2178 2179 2180
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2181
unlock:
2182
	perf_ctx_unlock(cpuctx, task_ctx);
2183

2184
	return ret;
T
Thomas Gleixner 已提交
2185 2186 2187
}

/*
2188 2189 2190
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2191 2192
 */
static void
2193 2194
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2195 2196
			int cpu)
{
2197
	struct task_struct *task = READ_ONCE(ctx->task);
2198

2199 2200
	lockdep_assert_held(&ctx->mutex);

2201
	event->ctx = ctx;
2202 2203
	if (event->cpu != -1)
		event->cpu = cpu;
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2216 2217 2218 2219
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2220
again:
2221
	/*
2222 2223
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2224
	 */
2225 2226 2227 2228 2229
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2230
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2231 2232 2233 2234 2235
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2236 2237 2238
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2239 2240
	raw_spin_unlock_irq(&ctx->lock);
	/*
2241 2242
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2243
	 */
2244
	goto again;
T
Thomas Gleixner 已提交
2245 2246
}

2247
/*
2248
 * Put a event into inactive state and update time fields.
2249 2250 2251 2252 2253 2254
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2255
static void __perf_event_mark_enabled(struct perf_event *event)
2256
{
2257
	struct perf_event *sub;
2258
	u64 tstamp = perf_event_time(event);
2259

2260
	event->state = PERF_EVENT_STATE_INACTIVE;
2261
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2262
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2263 2264
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2265
	}
2266 2267
}

2268
/*
2269
 * Cross CPU call to enable a performance event
2270
 */
2271 2272 2273 2274
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2275
{
2276
	struct perf_event *leader = event->group_leader;
2277
	struct perf_event_context *task_ctx;
2278

P
Peter Zijlstra 已提交
2279 2280
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2281
		return;
2282

2283 2284 2285
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2286
	__perf_event_mark_enabled(event);
2287

2288 2289 2290
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2291
	if (!event_filter_match(event)) {
2292
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2293
			perf_cgroup_defer_enabled(event);
2294
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2295
		return;
S
Stephane Eranian 已提交
2296
	}
2297

2298
	/*
2299
	 * If the event is in a group and isn't the group leader,
2300
	 * then don't put it on unless the group is on.
2301
	 */
2302 2303
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304
		return;
2305
	}
2306

2307 2308 2309
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2310

2311
	ctx_resched(cpuctx, task_ctx);
2312 2313
}

2314
/*
2315
 * Enable a event.
2316
 *
2317 2318
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2319
 * remains valid.  This condition is satisfied when called through
2320 2321
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2322
 */
P
Peter Zijlstra 已提交
2323
static void _perf_event_enable(struct perf_event *event)
2324
{
2325
	struct perf_event_context *ctx = event->ctx;
2326

2327
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2328 2329
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2330
		raw_spin_unlock_irq(&ctx->lock);
2331 2332 2333 2334
		return;
	}

	/*
2335
	 * If the event is in error state, clear that first.
2336 2337 2338 2339
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2340
	 */
2341 2342
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2343
	raw_spin_unlock_irq(&ctx->lock);
2344

2345
	event_function_call(event, __perf_event_enable, NULL);
2346
}
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2359
EXPORT_SYMBOL_GPL(perf_event_enable);
2360

P
Peter Zijlstra 已提交
2361
static int _perf_event_refresh(struct perf_event *event, int refresh)
2362
{
2363
	/*
2364
	 * not supported on inherited events
2365
	 */
2366
	if (event->attr.inherit || !is_sampling_event(event))
2367 2368
		return -EINVAL;

2369
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2370
	_perf_event_enable(event);
2371 2372

	return 0;
2373
}
P
Peter Zijlstra 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2389
EXPORT_SYMBOL_GPL(perf_event_refresh);
2390

2391 2392 2393
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2394
{
2395
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2396
	struct perf_event *event;
2397

P
Peter Zijlstra 已提交
2398
	lockdep_assert_held(&ctx->lock);
2399

2400 2401 2402 2403 2404 2405 2406
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2407
		return;
2408 2409
	}

2410
	ctx->is_active &= ~event_type;
2411 2412 2413
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2414 2415 2416 2417 2418
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2419

2420 2421 2422 2423 2424 2425 2426 2427 2428
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2429
		return;
2430

P
Peter Zijlstra 已提交
2431
	perf_pmu_disable(ctx->pmu);
2432
	if (is_active & EVENT_PINNED) {
2433 2434
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2435
	}
2436

2437
	if (is_active & EVENT_FLEXIBLE) {
2438
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2439
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2440
	}
P
Peter Zijlstra 已提交
2441
	perf_pmu_enable(ctx->pmu);
2442 2443
}

2444
/*
2445 2446 2447 2448 2449 2450
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2451
 */
2452 2453
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2454
{
2455 2456 2457
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2480 2481
}

2482 2483
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2484 2485 2486
{
	u64 value;

2487
	if (!event->attr.inherit_stat)
2488 2489 2490
		return;

	/*
2491
	 * Update the event value, we cannot use perf_event_read()
2492 2493
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2494
	 * we know the event must be on the current CPU, therefore we
2495 2496
	 * don't need to use it.
	 */
2497 2498
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2499 2500
		event->pmu->read(event);
		/* fall-through */
2501

2502 2503
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2504 2505 2506 2507 2508 2509 2510
		break;

	default:
		break;
	}

	/*
2511
	 * In order to keep per-task stats reliable we need to flip the event
2512 2513
	 * values when we flip the contexts.
	 */
2514 2515 2516
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2517

2518 2519
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2520

2521
	/*
2522
	 * Since we swizzled the values, update the user visible data too.
2523
	 */
2524 2525
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2526 2527
}

2528 2529
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2530
{
2531
	struct perf_event *event, *next_event;
2532 2533 2534 2535

	if (!ctx->nr_stat)
		return;

2536 2537
	update_context_time(ctx);

2538 2539
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2540

2541 2542
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2543

2544 2545
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2546

2547
		__perf_event_sync_stat(event, next_event);
2548

2549 2550
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2551 2552 2553
	}
}

2554 2555
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2556
{
P
Peter Zijlstra 已提交
2557
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2558
	struct perf_event_context *next_ctx;
2559
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2560
	struct perf_cpu_context *cpuctx;
2561
	int do_switch = 1;
T
Thomas Gleixner 已提交
2562

P
Peter Zijlstra 已提交
2563 2564
	if (likely(!ctx))
		return;
2565

P
Peter Zijlstra 已提交
2566 2567
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2568 2569
		return;

2570
	rcu_read_lock();
P
Peter Zijlstra 已提交
2571
	next_ctx = next->perf_event_ctxp[ctxn];
2572 2573 2574 2575 2576 2577 2578
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2579
	if (!parent && !next_parent)
2580 2581 2582
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2583 2584 2585 2586 2587 2588 2589 2590 2591
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2592 2593
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2594
		if (context_equiv(ctx, next_ctx)) {
2595 2596
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2597 2598 2599

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2610
			do_switch = 0;
2611

2612
			perf_event_sync_stat(ctx, next_ctx);
2613
		}
2614 2615
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2616
	}
2617
unlock:
2618
	rcu_read_unlock();
2619

2620
	if (do_switch) {
2621
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2622
		task_ctx_sched_out(cpuctx, ctx);
2623
		raw_spin_unlock(&ctx->lock);
2624
	}
T
Thomas Gleixner 已提交
2625 2626
}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2677 2678 2679
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2694 2695
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2696 2697 2698
{
	int ctxn;

2699 2700 2701
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2702 2703 2704
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2705 2706
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2707 2708 2709 2710 2711 2712

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2713
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2714
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2715 2716
}

2717 2718 2719 2720 2721 2722 2723
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2724 2725
}

2726
static void
2727
ctx_pinned_sched_in(struct perf_event_context *ctx,
2728
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2729
{
2730
	struct perf_event *event;
T
Thomas Gleixner 已提交
2731

2732 2733
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2734
			continue;
2735
		if (!event_filter_match(event))
2736 2737
			continue;

S
Stephane Eranian 已提交
2738 2739 2740 2741
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2742
		if (group_can_go_on(event, cpuctx, 1))
2743
			group_sched_in(event, cpuctx, ctx);
2744 2745 2746 2747 2748

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2749 2750 2751
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2752
		}
2753
	}
2754 2755 2756 2757
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2758
		      struct perf_cpu_context *cpuctx)
2759 2760 2761
{
	struct perf_event *event;
	int can_add_hw = 1;
2762

2763 2764 2765
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2766
			continue;
2767 2768
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2769
		 * of events:
2770
		 */
2771
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2772 2773
			continue;

S
Stephane Eranian 已提交
2774 2775 2776 2777
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2778
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2779
			if (group_sched_in(event, cpuctx, ctx))
2780
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2781
		}
T
Thomas Gleixner 已提交
2782
	}
2783 2784 2785 2786 2787
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2788 2789
	     enum event_type_t event_type,
	     struct task_struct *task)
2790
{
2791
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2792 2793 2794
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2795

2796
	if (likely(!ctx->nr_events))
2797
		return;
2798

2799
	ctx->is_active |= (event_type | EVENT_TIME);
2800 2801 2802 2803 2804 2805 2806
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

2807 2808 2809 2810 2811 2812 2813 2814 2815
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

2816 2817 2818 2819
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2820
	if (is_active & EVENT_PINNED)
2821
		ctx_pinned_sched_in(ctx, cpuctx);
2822 2823

	/* Then walk through the lower prio flexible groups */
2824
	if (is_active & EVENT_FLEXIBLE)
2825
		ctx_flexible_sched_in(ctx, cpuctx);
2826 2827
}

2828
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2829 2830
			     enum event_type_t event_type,
			     struct task_struct *task)
2831 2832 2833
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2834
	ctx_sched_in(ctx, cpuctx, event_type, task);
2835 2836
}

S
Stephane Eranian 已提交
2837 2838
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2839
{
P
Peter Zijlstra 已提交
2840
	struct perf_cpu_context *cpuctx;
2841

P
Peter Zijlstra 已提交
2842
	cpuctx = __get_cpu_context(ctx);
2843 2844 2845
	if (cpuctx->task_ctx == ctx)
		return;

2846
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2847
	perf_pmu_disable(ctx->pmu);
2848 2849 2850 2851 2852 2853
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2854
	perf_event_sched_in(cpuctx, ctx, task);
2855 2856
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2857 2858
}

P
Peter Zijlstra 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2870 2871
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2872 2873 2874 2875
{
	struct perf_event_context *ctx;
	int ctxn;

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2886 2887 2888 2889 2890
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2891
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2892
	}
2893

2894 2895 2896
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2897 2898
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2899 2900
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2928
#define REDUCE_FLS(a, b)		\
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2968 2969 2970
	if (!divisor)
		return dividend;

2971 2972 2973
	return div64_u64(dividend, divisor);
}

2974 2975 2976
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2977
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2978
{
2979
	struct hw_perf_event *hwc = &event->hw;
2980
	s64 period, sample_period;
2981 2982
	s64 delta;

2983
	period = perf_calculate_period(event, nsec, count);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2994

2995
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2996 2997 2998
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2999
		local64_set(&hwc->period_left, 0);
3000 3001 3002

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3003
	}
3004 3005
}

3006 3007 3008 3009 3010 3011 3012
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3013
{
3014 3015
	struct perf_event *event;
	struct hw_perf_event *hwc;
3016
	u64 now, period = TICK_NSEC;
3017
	s64 delta;
3018

3019 3020 3021 3022 3023 3024
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3025 3026
		return;

3027
	raw_spin_lock(&ctx->lock);
3028
	perf_pmu_disable(ctx->pmu);
3029

3030
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3031
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3032 3033
			continue;

3034
		if (!event_filter_match(event))
3035 3036
			continue;

3037 3038
		perf_pmu_disable(event->pmu);

3039
		hwc = &event->hw;
3040

3041
		if (hwc->interrupts == MAX_INTERRUPTS) {
3042
			hwc->interrupts = 0;
3043
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3044
			event->pmu->start(event, 0);
3045 3046
		}

3047
		if (!event->attr.freq || !event->attr.sample_freq)
3048
			goto next;
3049

3050 3051 3052 3053 3054
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3055
		now = local64_read(&event->count);
3056 3057
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3058

3059 3060 3061
		/*
		 * restart the event
		 * reload only if value has changed
3062 3063 3064
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3065
		 */
3066
		if (delta > 0)
3067
			perf_adjust_period(event, period, delta, false);
3068 3069

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3070 3071
	next:
		perf_pmu_enable(event->pmu);
3072
	}
3073

3074
	perf_pmu_enable(ctx->pmu);
3075
	raw_spin_unlock(&ctx->lock);
3076 3077
}

3078
/*
3079
 * Round-robin a context's events:
3080
 */
3081
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3082
{
3083 3084 3085 3086 3087 3088
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3089 3090
}

3091
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3092
{
P
Peter Zijlstra 已提交
3093
	struct perf_event_context *ctx = NULL;
3094
	int rotate = 0;
3095

3096 3097 3098 3099
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3100

P
Peter Zijlstra 已提交
3101
	ctx = cpuctx->task_ctx;
3102 3103 3104 3105
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3106

3107
	if (!rotate)
3108 3109
		goto done;

3110
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3111
	perf_pmu_disable(cpuctx->ctx.pmu);
3112

3113 3114 3115
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3116

3117 3118 3119
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3120

3121
	perf_event_sched_in(cpuctx, ctx, current);
3122

3123 3124
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3125
done:
3126 3127

	return rotate;
3128 3129 3130 3131
}

void perf_event_task_tick(void)
{
3132 3133
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3134
	int throttled;
3135

3136 3137
	WARN_ON(!irqs_disabled());

3138 3139
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3140
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3141

3142
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3143
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3144 3145
}

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3156
	__perf_event_mark_enabled(event);
3157 3158 3159 3160

	return 1;
}

3161
/*
3162
 * Enable all of a task's events that have been marked enable-on-exec.
3163 3164
 * This expects task == current.
 */
3165
static void perf_event_enable_on_exec(int ctxn)
3166
{
3167
	struct perf_event_context *ctx, *clone_ctx = NULL;
3168
	struct perf_cpu_context *cpuctx;
3169
	struct perf_event *event;
3170 3171 3172 3173
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3174
	ctx = current->perf_event_ctxp[ctxn];
3175
	if (!ctx || !ctx->nr_events)
3176 3177
		goto out;

3178 3179
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3180
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3181 3182
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3183 3184

	/*
3185
	 * Unclone and reschedule this context if we enabled any event.
3186
	 */
3187
	if (enabled) {
3188
		clone_ctx = unclone_ctx(ctx);
3189 3190 3191
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3192

P
Peter Zijlstra 已提交
3193
out:
3194
	local_irq_restore(flags);
3195 3196 3197

	if (clone_ctx)
		put_ctx(clone_ctx);
3198 3199
}

3200 3201 3202 3203 3204
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3205 3206
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3207 3208 3209
	rcu_read_unlock();
}

3210 3211 3212
struct perf_read_data {
	struct perf_event *event;
	bool group;
3213
	int ret;
3214 3215
};

T
Thomas Gleixner 已提交
3216
/*
3217
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3218
 */
3219
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3220
{
3221 3222
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3223
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3224
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3225
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3226

3227 3228 3229 3230
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3231 3232
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3233 3234 3235 3236
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3237
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3238
	if (ctx->is_active) {
3239
		update_context_time(ctx);
S
Stephane Eranian 已提交
3240 3241
		update_cgrp_time_from_event(event);
	}
3242

3243
	update_event_times(event);
3244 3245
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3246

3247 3248 3249
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3250
		goto unlock;
3251 3252 3253 3254 3255
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3256 3257 3258

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3259 3260 3261 3262 3263
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3264
			sub->pmu->read(sub);
3265
		}
3266
	}
3267 3268

	data->ret = pmu->commit_txn(pmu);
3269 3270

unlock:
3271
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3272 3273
}

P
Peter Zijlstra 已提交
3274 3275
static inline u64 perf_event_count(struct perf_event *event)
{
3276 3277 3278 3279
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3280 3281
}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3335
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3336
{
3337 3338
	int ret = 0;

T
Thomas Gleixner 已提交
3339
	/*
3340 3341
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3342
	 */
3343
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3344 3345 3346
		struct perf_read_data data = {
			.event = event,
			.group = group,
3347
			.ret = 0,
3348
		};
3349
		smp_call_function_single(event->oncpu,
3350
					 __perf_event_read, &data, 1);
3351
		ret = data.ret;
3352
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3353 3354 3355
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3356
		raw_spin_lock_irqsave(&ctx->lock, flags);
3357 3358 3359 3360 3361
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3362
		if (ctx->is_active) {
3363
			update_context_time(ctx);
S
Stephane Eranian 已提交
3364 3365
			update_cgrp_time_from_event(event);
		}
3366 3367 3368 3369
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3370
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3371
	}
3372 3373

	return ret;
T
Thomas Gleixner 已提交
3374 3375
}

3376
/*
3377
 * Initialize the perf_event context in a task_struct:
3378
 */
3379
static void __perf_event_init_context(struct perf_event_context *ctx)
3380
{
3381
	raw_spin_lock_init(&ctx->lock);
3382
	mutex_init(&ctx->mutex);
3383
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3384 3385
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3386 3387
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3403
	}
3404 3405 3406
	ctx->pmu = pmu;

	return ctx;
3407 3408
}

3409 3410 3411 3412 3413
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3414 3415

	rcu_read_lock();
3416
	if (!vpid)
T
Thomas Gleixner 已提交
3417 3418
		task = current;
	else
3419
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3420 3421 3422 3423 3424 3425 3426 3427
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3428
	err = -EACCES;
3429
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3430 3431
		goto errout;

3432 3433 3434 3435 3436 3437 3438
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3439 3440 3441
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3442
static struct perf_event_context *
3443 3444
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3445
{
3446
	struct perf_event_context *ctx, *clone_ctx = NULL;
3447
	struct perf_cpu_context *cpuctx;
3448
	void *task_ctx_data = NULL;
3449
	unsigned long flags;
P
Peter Zijlstra 已提交
3450
	int ctxn, err;
3451
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3452

3453
	if (!task) {
3454
		/* Must be root to operate on a CPU event: */
3455
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3456 3457 3458
			return ERR_PTR(-EACCES);

		/*
3459
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3460 3461 3462
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3463
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3464 3465
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3466
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3467
		ctx = &cpuctx->ctx;
3468
		get_ctx(ctx);
3469
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3470 3471 3472 3473

		return ctx;
	}

P
Peter Zijlstra 已提交
3474 3475 3476 3477 3478
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3479 3480 3481 3482 3483 3484 3485 3486
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3487
retry:
P
Peter Zijlstra 已提交
3488
	ctx = perf_lock_task_context(task, ctxn, &flags);
3489
	if (ctx) {
3490
		clone_ctx = unclone_ctx(ctx);
3491
		++ctx->pin_count;
3492 3493 3494 3495 3496

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3497
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3498 3499 3500

		if (clone_ctx)
			put_ctx(clone_ctx);
3501
	} else {
3502
		ctx = alloc_perf_context(pmu, task);
3503 3504 3505
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3506

3507 3508 3509 3510 3511
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3522
		else {
3523
			get_ctx(ctx);
3524
			++ctx->pin_count;
3525
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3526
		}
3527 3528 3529
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3530
			put_ctx(ctx);
3531 3532 3533 3534

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3535 3536 3537
		}
	}

3538
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3539
	return ctx;
3540

P
Peter Zijlstra 已提交
3541
errout:
3542
	kfree(task_ctx_data);
3543
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3544 3545
}

L
Li Zefan 已提交
3546
static void perf_event_free_filter(struct perf_event *event);
3547
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3548

3549
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3550
{
3551
	struct perf_event *event;
P
Peter Zijlstra 已提交
3552

3553 3554 3555
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3556
	perf_event_free_filter(event);
3557
	kfree(event);
P
Peter Zijlstra 已提交
3558 3559
}

3560 3561
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3562

3563
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3564
{
3565 3566 3567 3568 3569 3570
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3594 3595
static void unaccount_event(struct perf_event *event)
{
3596 3597
	bool dec = false;

3598 3599 3600 3601
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3602
		dec = true;
3603 3604 3605 3606 3607 3608
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3609
	if (event->attr.freq)
3610
		unaccount_freq_event();
3611
	if (event->attr.context_switch) {
3612
		dec = true;
3613 3614
		atomic_dec(&nr_switch_events);
	}
3615
	if (is_cgroup_event(event))
3616
		dec = true;
3617
	if (has_branch_stack(event))
3618 3619
		dec = true;

3620 3621 3622 3623
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3624 3625 3626

	unaccount_event_cpu(event, event->cpu);
}
3627

3628 3629 3630 3631 3632 3633 3634 3635
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3646
 * _free_event()), the latter -- before the first perf_install_in_context().
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3721
static void _free_event(struct perf_event *event)
3722
{
3723
	irq_work_sync(&event->pending);
3724

3725
	unaccount_event(event);
3726

3727
	if (event->rb) {
3728 3729 3730 3731 3732 3733 3734
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3735
		ring_buffer_attach(event, NULL);
3736
		mutex_unlock(&event->mmap_mutex);
3737 3738
	}

S
Stephane Eranian 已提交
3739 3740 3741
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3761 3762
}

P
Peter Zijlstra 已提交
3763 3764 3765 3766 3767
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3768
{
P
Peter Zijlstra 已提交
3769 3770 3771 3772 3773 3774
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3775

P
Peter Zijlstra 已提交
3776
	_free_event(event);
T
Thomas Gleixner 已提交
3777 3778
}

3779
/*
3780
 * Remove user event from the owner task.
3781
 */
3782
static void perf_remove_from_owner(struct perf_event *event)
3783
{
P
Peter Zijlstra 已提交
3784
	struct task_struct *owner;
3785

P
Peter Zijlstra 已提交
3786 3787
	rcu_read_lock();
	/*
3788 3789 3790
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3791 3792
	 * owner->perf_event_mutex.
	 */
3793
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3815 3816 3817 3818 3819 3820
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3821
		if (event->owner) {
P
Peter Zijlstra 已提交
3822
			list_del_init(&event->owner_entry);
3823 3824
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3825 3826 3827
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3828 3829 3830 3831 3832 3833 3834
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
3845
	struct perf_event_context *ctx = event->ctx;
3846 3847
	struct perf_event *child, *tmp;

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

3858 3859
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3860

3861
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3862
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3863
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
3864

P
Peter Zijlstra 已提交
3865
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
3866
	/*
P
Peter Zijlstra 已提交
3867 3868
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
3869
	 *
P
Peter Zijlstra 已提交
3870 3871 3872
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
3873
	 *
3874 3875
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3876
	 */
P
Peter Zijlstra 已提交
3877 3878 3879 3880
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3881

3882 3883 3884
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3885

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

3935 3936
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
3937 3938 3939 3940
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3941 3942 3943
/*
 * Called when the last reference to the file is gone.
 */
3944 3945
static int perf_release(struct inode *inode, struct file *file)
{
3946
	perf_event_release_kernel(file->private_data);
3947
	return 0;
3948 3949
}

3950
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3951
{
3952
	struct perf_event *child;
3953 3954
	u64 total = 0;

3955 3956 3957
	*enabled = 0;
	*running = 0;

3958
	mutex_lock(&event->child_mutex);
3959

3960
	(void)perf_event_read(event, false);
3961 3962
	total += perf_event_count(event);

3963 3964 3965 3966 3967 3968
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3969
		(void)perf_event_read(child, false);
3970
		total += perf_event_count(child);
3971 3972 3973
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3974
	mutex_unlock(&event->child_mutex);
3975 3976 3977

	return total;
}
3978
EXPORT_SYMBOL_GPL(perf_event_read_value);
3979

3980
static int __perf_read_group_add(struct perf_event *leader,
3981
					u64 read_format, u64 *values)
3982
{
3983 3984
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3985
	int ret;
P
Peter Zijlstra 已提交
3986

3987 3988 3989
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3990

3991 3992 3993 3994 3995 3996 3997 3998 3999
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4000

4001 4002 4003 4004 4005 4006 4007 4008 4009
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4010 4011
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4012

4013 4014 4015 4016 4017
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4018 4019

	return 0;
4020
}
4021

4022 4023 4024 4025 4026
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4027
	int ret;
4028
	u64 *values;
4029

4030
	lockdep_assert_held(&ctx->mutex);
4031

4032 4033 4034
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4035

4036 4037 4038 4039 4040 4041 4042
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4043

4044 4045 4046 4047 4048 4049 4050 4051 4052
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4053

4054
	mutex_unlock(&leader->child_mutex);
4055

4056
	ret = event->read_size;
4057 4058
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4059
	goto out;
4060

4061 4062 4063
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4064
	kfree(values);
4065
	return ret;
4066 4067
}

4068
static int perf_read_one(struct perf_event *event,
4069 4070
				 u64 read_format, char __user *buf)
{
4071
	u64 enabled, running;
4072 4073 4074
	u64 values[4];
	int n = 0;

4075 4076 4077 4078 4079
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4080
	if (read_format & PERF_FORMAT_ID)
4081
		values[n++] = primary_event_id(event);
4082 4083 4084 4085 4086 4087 4088

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4089 4090 4091 4092
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4093
	if (event->state > PERF_EVENT_STATE_EXIT)
4094 4095 4096 4097 4098 4099 4100 4101
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4102
/*
4103
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4104 4105
 */
static ssize_t
4106
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4107
{
4108
	u64 read_format = event->attr.read_format;
4109
	int ret;
T
Thomas Gleixner 已提交
4110

4111
	/*
4112
	 * Return end-of-file for a read on a event that is in
4113 4114 4115
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4116
	if (event->state == PERF_EVENT_STATE_ERROR)
4117 4118
		return 0;

4119
	if (count < event->read_size)
4120 4121
		return -ENOSPC;

4122
	WARN_ON_ONCE(event->ctx->parent_ctx);
4123
	if (read_format & PERF_FORMAT_GROUP)
4124
		ret = perf_read_group(event, read_format, buf);
4125
	else
4126
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4127

4128
	return ret;
T
Thomas Gleixner 已提交
4129 4130 4131 4132 4133
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4134
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4135 4136
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4137

P
Peter Zijlstra 已提交
4138
	ctx = perf_event_ctx_lock(event);
4139
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4140 4141 4142
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4143 4144 4145 4146
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4147
	struct perf_event *event = file->private_data;
4148
	struct ring_buffer *rb;
4149
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4150

4151
	poll_wait(file, &event->waitq, wait);
4152

4153
	if (is_event_hup(event))
4154
		return events;
P
Peter Zijlstra 已提交
4155

4156
	/*
4157 4158
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4159 4160
	 */
	mutex_lock(&event->mmap_mutex);
4161 4162
	rb = event->rb;
	if (rb)
4163
		events = atomic_xchg(&rb->poll, 0);
4164
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4165 4166 4167
	return events;
}

P
Peter Zijlstra 已提交
4168
static void _perf_event_reset(struct perf_event *event)
4169
{
4170
	(void)perf_event_read(event, false);
4171
	local64_set(&event->count, 0);
4172
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4173 4174
}

4175
/*
4176 4177
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4178
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4179
 * task existence requirements of perf_event_enable/disable.
4180
 */
4181 4182
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4183
{
4184
	struct perf_event *child;
P
Peter Zijlstra 已提交
4185

4186
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4187

4188 4189 4190
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4191
		func(child);
4192
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4193 4194
}

4195 4196
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4197
{
4198 4199
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4200

P
Peter Zijlstra 已提交
4201 4202
	lockdep_assert_held(&ctx->mutex);

4203
	event = event->group_leader;
4204

4205 4206
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4207
		perf_event_for_each_child(sibling, func);
4208 4209
}

4210 4211 4212 4213
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4214
{
4215
	u64 value = *((u64 *)info);
4216
	bool active;
4217

4218 4219
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4220
	} else {
4221 4222
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4223
	}
4224 4225 4226 4227

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4228 4229 4230 4231 4232 4233 4234 4235
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4236 4237 4238 4239 4240 4241 4242 4243 4244
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4263
	event_function_call(event, __perf_event_period, &value);
4264

4265
	return 0;
4266 4267
}

4268 4269
static const struct file_operations perf_fops;

4270
static inline int perf_fget_light(int fd, struct fd *p)
4271
{
4272 4273 4274
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4275

4276 4277 4278
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4279
	}
4280 4281
	*p = f;
	return 0;
4282 4283 4284 4285
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4286
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4287
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4288

P
Peter Zijlstra 已提交
4289
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4290
{
4291
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4292
	u32 flags = arg;
4293 4294

	switch (cmd) {
4295
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4296
		func = _perf_event_enable;
4297
		break;
4298
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4299
		func = _perf_event_disable;
4300
		break;
4301
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4302
		func = _perf_event_reset;
4303
		break;
P
Peter Zijlstra 已提交
4304

4305
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4306
		return _perf_event_refresh(event, arg);
4307

4308 4309
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4320
	case PERF_EVENT_IOC_SET_OUTPUT:
4321 4322 4323
	{
		int ret;
		if (arg != -1) {
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4334 4335 4336
		}
		return ret;
	}
4337

L
Li Zefan 已提交
4338 4339 4340
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4341 4342 4343
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4344
	default:
P
Peter Zijlstra 已提交
4345
		return -ENOTTY;
4346
	}
P
Peter Zijlstra 已提交
4347 4348

	if (flags & PERF_IOC_FLAG_GROUP)
4349
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4350
	else
4351
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4352 4353

	return 0;
4354 4355
}

P
Peter Zijlstra 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4389
int perf_event_task_enable(void)
4390
{
P
Peter Zijlstra 已提交
4391
	struct perf_event_context *ctx;
4392
	struct perf_event *event;
4393

4394
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4395 4396 4397 4398 4399
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4400
	mutex_unlock(&current->perf_event_mutex);
4401 4402 4403 4404

	return 0;
}

4405
int perf_event_task_disable(void)
4406
{
P
Peter Zijlstra 已提交
4407
	struct perf_event_context *ctx;
4408
	struct perf_event *event;
4409

4410
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4411 4412 4413 4414 4415
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4416
	mutex_unlock(&current->perf_event_mutex);
4417 4418 4419 4420

	return 0;
}

4421
static int perf_event_index(struct perf_event *event)
4422
{
P
Peter Zijlstra 已提交
4423 4424 4425
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4426
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4427 4428
		return 0;

4429
	return event->pmu->event_idx(event);
4430 4431
}

4432
static void calc_timer_values(struct perf_event *event,
4433
				u64 *now,
4434 4435
				u64 *enabled,
				u64 *running)
4436
{
4437
	u64 ctx_time;
4438

4439 4440
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4441 4442 4443 4444
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4460 4461
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4462 4463 4464 4465 4466

unlock:
	rcu_read_unlock();
}

4467 4468
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4469 4470 4471
{
}

4472 4473 4474 4475 4476
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4477
void perf_event_update_userpage(struct perf_event *event)
4478
{
4479
	struct perf_event_mmap_page *userpg;
4480
	struct ring_buffer *rb;
4481
	u64 enabled, running, now;
4482 4483

	rcu_read_lock();
4484 4485 4486 4487
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4488 4489 4490 4491 4492 4493 4494 4495 4496
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4497
	calc_timer_values(event, &now, &enabled, &running);
4498

4499
	userpg = rb->user_page;
4500 4501 4502 4503 4504
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4505
	++userpg->lock;
4506
	barrier();
4507
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4508
	userpg->offset = perf_event_count(event);
4509
	if (userpg->index)
4510
		userpg->offset -= local64_read(&event->hw.prev_count);
4511

4512
	userpg->time_enabled = enabled +
4513
			atomic64_read(&event->child_total_time_enabled);
4514

4515
	userpg->time_running = running +
4516
			atomic64_read(&event->child_total_time_running);
4517

4518
	arch_perf_update_userpage(event, userpg, now);
4519

4520
	barrier();
4521
	++userpg->lock;
4522
	preempt_enable();
4523
unlock:
4524
	rcu_read_unlock();
4525 4526
}

4527 4528 4529
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4530
	struct ring_buffer *rb;
4531 4532 4533 4534 4535 4536 4537 4538 4539
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4540 4541
	rb = rcu_dereference(event->rb);
	if (!rb)
4542 4543 4544 4545 4546
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4547
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4562 4563 4564
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4565
	struct ring_buffer *old_rb = NULL;
4566 4567
	unsigned long flags;

4568 4569 4570 4571 4572 4573
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4574

4575 4576 4577 4578
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4579

4580 4581
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4582
	}
4583

4584
	if (rb) {
4585 4586 4587 4588 4589
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4606 4607 4608 4609 4610 4611 4612 4613
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4614 4615 4616 4617
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4618 4619 4620
	rcu_read_unlock();
}

4621
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4622
{
4623
	struct ring_buffer *rb;
4624

4625
	rcu_read_lock();
4626 4627 4628 4629
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4630 4631 4632
	}
	rcu_read_unlock();

4633
	return rb;
4634 4635
}

4636
void ring_buffer_put(struct ring_buffer *rb)
4637
{
4638
	if (!atomic_dec_and_test(&rb->refcount))
4639
		return;
4640

4641
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4642

4643
	call_rcu(&rb->rcu_head, rb_free_rcu);
4644 4645 4646 4647
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4648
	struct perf_event *event = vma->vm_file->private_data;
4649

4650
	atomic_inc(&event->mmap_count);
4651
	atomic_inc(&event->rb->mmap_count);
4652

4653 4654 4655
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4656 4657
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4658 4659
}

4660 4661 4662 4663 4664 4665 4666 4667
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4668 4669
static void perf_mmap_close(struct vm_area_struct *vma)
{
4670
	struct perf_event *event = vma->vm_file->private_data;
4671

4672
	struct ring_buffer *rb = ring_buffer_get(event);
4673 4674 4675
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4676

4677 4678 4679
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4694 4695 4696
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4697
		goto out_put;
4698

4699
	ring_buffer_attach(event, NULL);
4700 4701 4702
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4703 4704
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4705

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4722

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4734 4735 4736
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4737
		mutex_unlock(&event->mmap_mutex);
4738
		put_event(event);
4739

4740 4741 4742 4743 4744
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4745
	}
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4761
out_put:
4762
	ring_buffer_put(rb); /* could be last */
4763 4764
}

4765
static const struct vm_operations_struct perf_mmap_vmops = {
4766
	.open		= perf_mmap_open,
4767
	.close		= perf_mmap_close, /* non mergable */
4768 4769
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4770 4771 4772 4773
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4774
	struct perf_event *event = file->private_data;
4775
	unsigned long user_locked, user_lock_limit;
4776
	struct user_struct *user = current_user();
4777
	unsigned long locked, lock_limit;
4778
	struct ring_buffer *rb = NULL;
4779 4780
	unsigned long vma_size;
	unsigned long nr_pages;
4781
	long user_extra = 0, extra = 0;
4782
	int ret = 0, flags = 0;
4783

4784 4785 4786
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4787
	 * same rb.
4788 4789 4790 4791
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4792
	if (!(vma->vm_flags & VM_SHARED))
4793
		return -EINVAL;
4794 4795

	vma_size = vma->vm_end - vma->vm_start;
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4856

4857
	/*
4858
	 * If we have rb pages ensure they're a power-of-two number, so we
4859 4860
	 * can do bitmasks instead of modulo.
	 */
4861
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4862 4863
		return -EINVAL;

4864
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4865 4866
		return -EINVAL;

4867
	WARN_ON_ONCE(event->ctx->parent_ctx);
4868
again:
4869
	mutex_lock(&event->mmap_mutex);
4870
	if (event->rb) {
4871
		if (event->rb->nr_pages != nr_pages) {
4872
			ret = -EINVAL;
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4886 4887 4888
		goto unlock;
	}

4889
	user_extra = nr_pages + 1;
4890 4891

accounting:
4892
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4893 4894 4895 4896 4897 4898

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4899
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4900

4901 4902
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4903

4904
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4905
	lock_limit >>= PAGE_SHIFT;
4906
	locked = vma->vm_mm->pinned_vm + extra;
4907

4908 4909
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4910 4911 4912
		ret = -EPERM;
		goto unlock;
	}
4913

4914
	WARN_ON(!rb && event->rb);
4915

4916
	if (vma->vm_flags & VM_WRITE)
4917
		flags |= RING_BUFFER_WRITABLE;
4918

4919
	if (!rb) {
4920 4921 4922
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4923

4924 4925 4926 4927
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4928

4929 4930 4931
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4932

4933
		ring_buffer_attach(event, rb);
4934

4935 4936 4937
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4938 4939
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4940 4941 4942
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4943

4944
unlock:
4945 4946 4947 4948
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4949
		atomic_inc(&event->mmap_count);
4950 4951 4952 4953
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4954
	mutex_unlock(&event->mmap_mutex);
4955

4956 4957 4958 4959
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4960
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4961
	vma->vm_ops = &perf_mmap_vmops;
4962

4963 4964 4965
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4966
	return ret;
4967 4968
}

P
Peter Zijlstra 已提交
4969 4970
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4971
	struct inode *inode = file_inode(filp);
4972
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4973 4974
	int retval;

A
Al Viro 已提交
4975
	inode_lock(inode);
4976
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
4977
	inode_unlock(inode);
P
Peter Zijlstra 已提交
4978 4979 4980 4981 4982 4983 4984

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4985
static const struct file_operations perf_fops = {
4986
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4987 4988 4989
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4990
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4991
	.compat_ioctl		= perf_compat_ioctl,
4992
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4993
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4994 4995
};

4996
/*
4997
 * Perf event wakeup
4998 4999 5000 5001 5002
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5003 5004 5005 5006 5007 5008 5009 5010
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5011
void perf_event_wakeup(struct perf_event *event)
5012
{
5013
	ring_buffer_wakeup(event);
5014

5015
	if (event->pending_kill) {
5016
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5017
		event->pending_kill = 0;
5018
	}
5019 5020
}

5021
static void perf_pending_event(struct irq_work *entry)
5022
{
5023 5024
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5025 5026 5027 5028 5029 5030 5031
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5032

5033 5034
	if (event->pending_disable) {
		event->pending_disable = 0;
5035
		perf_event_disable_local(event);
5036 5037
	}

5038 5039 5040
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5041
	}
5042 5043 5044

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5045 5046
}

5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5083
static void perf_sample_regs_user(struct perf_regs *regs_user,
5084 5085
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5086
{
5087 5088
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5089
		regs_user->regs = regs;
5090 5091
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5092 5093 5094
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5095 5096 5097
	}
}

5098 5099 5100 5101 5102 5103 5104 5105
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5201 5202 5203
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5217
		data->time = perf_event_clock(event);
5218

5219
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5231 5232 5233
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5258 5259 5260

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5261 5262
}

5263 5264 5265
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5266 5267 5268 5269 5270
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5271
static void perf_output_read_one(struct perf_output_handle *handle,
5272 5273
				 struct perf_event *event,
				 u64 enabled, u64 running)
5274
{
5275
	u64 read_format = event->attr.read_format;
5276 5277 5278
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5279
	values[n++] = perf_event_count(event);
5280
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5281
		values[n++] = enabled +
5282
			atomic64_read(&event->child_total_time_enabled);
5283 5284
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5285
		values[n++] = running +
5286
			atomic64_read(&event->child_total_time_running);
5287 5288
	}
	if (read_format & PERF_FORMAT_ID)
5289
		values[n++] = primary_event_id(event);
5290

5291
	__output_copy(handle, values, n * sizeof(u64));
5292 5293 5294
}

/*
5295
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5296 5297
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5298 5299
			    struct perf_event *event,
			    u64 enabled, u64 running)
5300
{
5301 5302
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5303 5304 5305 5306 5307 5308
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5309
		values[n++] = enabled;
5310 5311

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5312
		values[n++] = running;
5313

5314
	if (leader != event)
5315 5316
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5317
	values[n++] = perf_event_count(leader);
5318
	if (read_format & PERF_FORMAT_ID)
5319
		values[n++] = primary_event_id(leader);
5320

5321
	__output_copy(handle, values, n * sizeof(u64));
5322

5323
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5324 5325
		n = 0;

5326 5327
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5328 5329
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5330
		values[n++] = perf_event_count(sub);
5331
		if (read_format & PERF_FORMAT_ID)
5332
			values[n++] = primary_event_id(sub);
5333

5334
		__output_copy(handle, values, n * sizeof(u64));
5335 5336 5337
	}
}

5338 5339 5340
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5341
static void perf_output_read(struct perf_output_handle *handle,
5342
			     struct perf_event *event)
5343
{
5344
	u64 enabled = 0, running = 0, now;
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5356
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5357
		calc_timer_values(event, &now, &enabled, &running);
5358

5359
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5360
		perf_output_read_group(handle, event, enabled, running);
5361
	else
5362
		perf_output_read_one(handle, event, enabled, running);
5363 5364
}

5365 5366 5367
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5368
			struct perf_event *event)
5369 5370 5371 5372 5373
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5374 5375 5376
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5402
		perf_output_read(handle, event);
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5413
			__output_copy(handle, data->callchain, size);
5414 5415 5416 5417 5418 5419 5420 5421
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5422 5423 5424 5425 5426 5427 5428 5429 5430
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5442

5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5477

5478
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5479 5480 5481
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5482
	}
A
Andi Kleen 已提交
5483 5484 5485

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5486 5487 5488

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5489

A
Andi Kleen 已提交
5490 5491 5492
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5523 5524 5525 5526
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5527
			 struct perf_event *event,
5528
			 struct pt_regs *regs)
5529
{
5530
	u64 sample_type = event->attr.sample_type;
5531

5532
	header->type = PERF_RECORD_SAMPLE;
5533
	header->size = sizeof(*header) + event->header_size;
5534 5535 5536

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5537

5538
	__perf_event_header__init_id(header, data, event);
5539

5540
	if (sample_type & PERF_SAMPLE_IP)
5541 5542
		data->ip = perf_instruction_pointer(regs);

5543
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5544
		int size = 1;
5545

5546
		data->callchain = perf_callchain(event, regs);
5547 5548 5549 5550 5551

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5552 5553
	}

5554
	if (sample_type & PERF_SAMPLE_RAW) {
5555 5556 5557 5558 5559 5560 5561
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5562
		header->size += round_up(size, sizeof(u64));
5563
	}
5564 5565 5566 5567 5568 5569 5570 5571 5572

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5573

5574
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5575 5576
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5577

5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5601
						     data->regs_user.regs);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5629
}
5630

5631 5632 5633
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5634 5635 5636
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5637

5638 5639 5640
	/* protect the callchain buffers */
	rcu_read_lock();

5641
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5642

5643
	if (perf_output_begin(&handle, event, header.size))
5644
		goto exit;
5645

5646
	perf_output_sample(&handle, &header, data, event);
5647

5648
	perf_output_end(&handle);
5649 5650 5651

exit:
	rcu_read_unlock();
5652 5653
}

5654
/*
5655
 * read event_id
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5666
perf_event_read_event(struct perf_event *event,
5667 5668 5669
			struct task_struct *task)
{
	struct perf_output_handle handle;
5670
	struct perf_sample_data sample;
5671
	struct perf_read_event read_event = {
5672
		.header = {
5673
			.type = PERF_RECORD_READ,
5674
			.misc = 0,
5675
			.size = sizeof(read_event) + event->read_size,
5676
		},
5677 5678
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5679
	};
5680
	int ret;
5681

5682
	perf_event_header__init_id(&read_event.header, &sample, event);
5683
	ret = perf_output_begin(&handle, event, read_event.header.size);
5684 5685 5686
	if (ret)
		return;

5687
	perf_output_put(&handle, read_event);
5688
	perf_output_read(&handle, event);
5689
	perf_event__output_id_sample(event, &handle, &sample);
5690

5691 5692 5693
	perf_output_end(&handle);
}

5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5708
		output(event, data);
5709 5710 5711
	}
}

J
Jiri Olsa 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5723
static void
5724
perf_event_aux(perf_event_aux_output_cb output, void *data,
5725 5726 5727 5728 5729 5730 5731
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5743 5744 5745 5746 5747
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5748
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5749 5750 5751 5752 5753
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5754
			perf_event_aux_ctx(ctx, output, data);
5755 5756 5757 5758 5759 5760
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5761
/*
P
Peter Zijlstra 已提交
5762 5763
 * task tracking -- fork/exit
 *
5764
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5765 5766
 */

P
Peter Zijlstra 已提交
5767
struct perf_task_event {
5768
	struct task_struct		*task;
5769
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5770 5771 5772 5773 5774 5775

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5776 5777
		u32				tid;
		u32				ptid;
5778
		u64				time;
5779
	} event_id;
P
Peter Zijlstra 已提交
5780 5781
};

5782 5783
static int perf_event_task_match(struct perf_event *event)
{
5784 5785 5786
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5787 5788
}

5789
static void perf_event_task_output(struct perf_event *event,
5790
				   void *data)
P
Peter Zijlstra 已提交
5791
{
5792
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5793
	struct perf_output_handle handle;
5794
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5795
	struct task_struct *task = task_event->task;
5796
	int ret, size = task_event->event_id.header.size;
5797

5798 5799 5800
	if (!perf_event_task_match(event))
		return;

5801
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5802

5803
	ret = perf_output_begin(&handle, event,
5804
				task_event->event_id.header.size);
5805
	if (ret)
5806
		goto out;
P
Peter Zijlstra 已提交
5807

5808 5809
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5810

5811 5812
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5813

5814 5815
	task_event->event_id.time = perf_event_clock(event);

5816
	perf_output_put(&handle, task_event->event_id);
5817

5818 5819
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5820
	perf_output_end(&handle);
5821 5822
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5823 5824
}

5825 5826
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5827
			      int new)
P
Peter Zijlstra 已提交
5828
{
P
Peter Zijlstra 已提交
5829
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5830

5831 5832 5833
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5834 5835
		return;

P
Peter Zijlstra 已提交
5836
	task_event = (struct perf_task_event){
5837 5838
		.task	  = task,
		.task_ctx = task_ctx,
5839
		.event_id    = {
P
Peter Zijlstra 已提交
5840
			.header = {
5841
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5842
				.misc = 0,
5843
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5844
			},
5845 5846
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5847 5848
			/* .tid  */
			/* .ptid */
5849
			/* .time */
P
Peter Zijlstra 已提交
5850 5851 5852
		},
	};

5853
	perf_event_aux(perf_event_task_output,
5854 5855
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5856 5857
}

5858
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5859
{
5860
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5861 5862
}

5863 5864 5865 5866 5867
/*
 * comm tracking
 */

struct perf_comm_event {
5868 5869
	struct task_struct	*task;
	char			*comm;
5870 5871 5872 5873 5874 5875 5876
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5877
	} event_id;
5878 5879
};

5880 5881 5882 5883 5884
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5885
static void perf_event_comm_output(struct perf_event *event,
5886
				   void *data)
5887
{
5888
	struct perf_comm_event *comm_event = data;
5889
	struct perf_output_handle handle;
5890
	struct perf_sample_data sample;
5891
	int size = comm_event->event_id.header.size;
5892 5893
	int ret;

5894 5895 5896
	if (!perf_event_comm_match(event))
		return;

5897 5898
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5899
				comm_event->event_id.header.size);
5900 5901

	if (ret)
5902
		goto out;
5903

5904 5905
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5906

5907
	perf_output_put(&handle, comm_event->event_id);
5908
	__output_copy(&handle, comm_event->comm,
5909
				   comm_event->comm_size);
5910 5911 5912

	perf_event__output_id_sample(event, &handle, &sample);

5913
	perf_output_end(&handle);
5914 5915
out:
	comm_event->event_id.header.size = size;
5916 5917
}

5918
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5919
{
5920
	char comm[TASK_COMM_LEN];
5921 5922
	unsigned int size;

5923
	memset(comm, 0, sizeof(comm));
5924
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5925
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5926 5927 5928 5929

	comm_event->comm = comm;
	comm_event->comm_size = size;

5930
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5931

5932
	perf_event_aux(perf_event_comm_output,
5933 5934
		       comm_event,
		       NULL);
5935 5936
}

5937
void perf_event_comm(struct task_struct *task, bool exec)
5938
{
5939 5940
	struct perf_comm_event comm_event;

5941
	if (!atomic_read(&nr_comm_events))
5942
		return;
5943

5944
	comm_event = (struct perf_comm_event){
5945
		.task	= task,
5946 5947
		/* .comm      */
		/* .comm_size */
5948
		.event_id  = {
5949
			.header = {
5950
				.type = PERF_RECORD_COMM,
5951
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5952 5953 5954 5955
				/* .size */
			},
			/* .pid */
			/* .tid */
5956 5957 5958
		},
	};

5959
	perf_event_comm_event(&comm_event);
5960 5961
}

5962 5963 5964 5965 5966
/*
 * mmap tracking
 */

struct perf_mmap_event {
5967 5968 5969 5970
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5971 5972 5973
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5974
	u32			prot, flags;
5975 5976 5977 5978 5979 5980 5981 5982 5983

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5984
	} event_id;
5985 5986
};

5987 5988 5989 5990 5991 5992 5993 5994
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5995
	       (executable && (event->attr.mmap || event->attr.mmap2));
5996 5997
}

5998
static void perf_event_mmap_output(struct perf_event *event,
5999
				   void *data)
6000
{
6001
	struct perf_mmap_event *mmap_event = data;
6002
	struct perf_output_handle handle;
6003
	struct perf_sample_data sample;
6004
	int size = mmap_event->event_id.header.size;
6005
	int ret;
6006

6007 6008 6009
	if (!perf_event_mmap_match(event, data))
		return;

6010 6011 6012 6013 6014
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6015
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6016 6017
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6018 6019
	}

6020 6021
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6022
				mmap_event->event_id.header.size);
6023
	if (ret)
6024
		goto out;
6025

6026 6027
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6028

6029
	perf_output_put(&handle, mmap_event->event_id);
6030 6031 6032 6033 6034 6035

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6036 6037
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6038 6039
	}

6040
	__output_copy(&handle, mmap_event->file_name,
6041
				   mmap_event->file_size);
6042 6043 6044

	perf_event__output_id_sample(event, &handle, &sample);

6045
	perf_output_end(&handle);
6046 6047
out:
	mmap_event->event_id.header.size = size;
6048 6049
}

6050
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6051
{
6052 6053
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6054 6055
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6056
	u32 prot = 0, flags = 0;
6057 6058 6059
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6060
	char *name;
6061

6062
	if (file) {
6063 6064
		struct inode *inode;
		dev_t dev;
6065

6066
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6067
		if (!buf) {
6068 6069
			name = "//enomem";
			goto cpy_name;
6070
		}
6071
		/*
6072
		 * d_path() works from the end of the rb backwards, so we
6073 6074 6075
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6076
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6077
		if (IS_ERR(name)) {
6078 6079
			name = "//toolong";
			goto cpy_name;
6080
		}
6081 6082 6083 6084 6085 6086
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6109
		goto got_name;
6110
	} else {
6111 6112 6113 6114 6115 6116
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6117
		name = (char *)arch_vma_name(vma);
6118 6119
		if (name)
			goto cpy_name;
6120

6121
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6122
				vma->vm_end >= vma->vm_mm->brk) {
6123 6124
			name = "[heap]";
			goto cpy_name;
6125 6126
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6127
				vma->vm_end >= vma->vm_mm->start_stack) {
6128 6129
			name = "[stack]";
			goto cpy_name;
6130 6131
		}

6132 6133
		name = "//anon";
		goto cpy_name;
6134 6135
	}

6136 6137 6138
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6139
got_name:
6140 6141 6142 6143 6144 6145 6146 6147
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6148 6149 6150

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6151 6152 6153 6154
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6155 6156
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6157

6158 6159 6160
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6161
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6162

6163
	perf_event_aux(perf_event_mmap_output,
6164 6165
		       mmap_event,
		       NULL);
6166

6167 6168 6169
	kfree(buf);
}

6170
void perf_event_mmap(struct vm_area_struct *vma)
6171
{
6172 6173
	struct perf_mmap_event mmap_event;

6174
	if (!atomic_read(&nr_mmap_events))
6175 6176 6177
		return;

	mmap_event = (struct perf_mmap_event){
6178
		.vma	= vma,
6179 6180
		/* .file_name */
		/* .file_size */
6181
		.event_id  = {
6182
			.header = {
6183
				.type = PERF_RECORD_MMAP,
6184
				.misc = PERF_RECORD_MISC_USER,
6185 6186 6187 6188
				/* .size */
			},
			/* .pid */
			/* .tid */
6189 6190
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6191
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6192
		},
6193 6194 6195 6196
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6197 6198
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6199 6200
	};

6201
	perf_event_mmap_event(&mmap_event);
6202 6203
}

A
Alexander Shishkin 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6356 6357 6358 6359
/*
 * IRQ throttle logging
 */

6360
static void perf_log_throttle(struct perf_event *event, int enable)
6361 6362
{
	struct perf_output_handle handle;
6363
	struct perf_sample_data sample;
6364 6365 6366 6367 6368
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6369
		u64				id;
6370
		u64				stream_id;
6371 6372
	} throttle_event = {
		.header = {
6373
			.type = PERF_RECORD_THROTTLE,
6374 6375 6376
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6377
		.time		= perf_event_clock(event),
6378 6379
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6380 6381
	};

6382
	if (enable)
6383
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6384

6385 6386 6387
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6388
				throttle_event.header.size);
6389 6390 6391 6392
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6393
	perf_event__output_id_sample(event, &handle, &sample);
6394 6395 6396
	perf_output_end(&handle);
}

6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6433
/*
6434
 * Generic event overflow handling, sampling.
6435 6436
 */

6437
static int __perf_event_overflow(struct perf_event *event,
6438 6439
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6440
{
6441 6442
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6443
	u64 seq;
6444 6445
	int ret = 0;

6446 6447 6448 6449 6450 6451 6452
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6453 6454 6455 6456 6457 6458 6459 6460 6461
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
6462
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
6463 6464
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6465 6466
			ret = 1;
		}
6467
	}
6468

6469
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6470
		u64 now = perf_clock();
6471
		s64 delta = now - hwc->freq_time_stamp;
6472

6473
		hwc->freq_time_stamp = now;
6474

6475
		if (delta > 0 && delta < 2*TICK_NSEC)
6476
			perf_adjust_period(event, delta, hwc->last_period, true);
6477 6478
	}

6479 6480
	/*
	 * XXX event_limit might not quite work as expected on inherited
6481
	 * events
6482 6483
	 */

6484 6485
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6486
		ret = 1;
6487
		event->pending_kill = POLL_HUP;
6488 6489
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6490 6491
	}

6492
	if (event->overflow_handler)
6493
		event->overflow_handler(event, data, regs);
6494
	else
6495
		perf_event_output(event, data, regs);
6496

6497
	if (*perf_event_fasync(event) && event->pending_kill) {
6498 6499
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6500 6501
	}

6502
	return ret;
6503 6504
}

6505
int perf_event_overflow(struct perf_event *event,
6506 6507
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6508
{
6509
	return __perf_event_overflow(event, 1, data, regs);
6510 6511
}

6512
/*
6513
 * Generic software event infrastructure
6514 6515
 */

6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6527
/*
6528 6529
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6530 6531 6532 6533
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6534
u64 perf_swevent_set_period(struct perf_event *event)
6535
{
6536
	struct hw_perf_event *hwc = &event->hw;
6537 6538 6539 6540 6541
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6542 6543

again:
6544
	old = val = local64_read(&hwc->period_left);
6545 6546
	if (val < 0)
		return 0;
6547

6548 6549 6550
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6551
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6552
		goto again;
6553

6554
	return nr;
6555 6556
}

6557
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6558
				    struct perf_sample_data *data,
6559
				    struct pt_regs *regs)
6560
{
6561
	struct hw_perf_event *hwc = &event->hw;
6562
	int throttle = 0;
6563

6564 6565
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6566

6567 6568
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6569

6570
	for (; overflow; overflow--) {
6571
		if (__perf_event_overflow(event, throttle,
6572
					    data, regs)) {
6573 6574 6575 6576 6577 6578
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6579
		throttle = 1;
6580
	}
6581 6582
}

P
Peter Zijlstra 已提交
6583
static void perf_swevent_event(struct perf_event *event, u64 nr,
6584
			       struct perf_sample_data *data,
6585
			       struct pt_regs *regs)
6586
{
6587
	struct hw_perf_event *hwc = &event->hw;
6588

6589
	local64_add(nr, &event->count);
6590

6591 6592 6593
	if (!regs)
		return;

6594
	if (!is_sampling_event(event))
6595
		return;
6596

6597 6598 6599 6600 6601 6602
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6603
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6604
		return perf_swevent_overflow(event, 1, data, regs);
6605

6606
	if (local64_add_negative(nr, &hwc->period_left))
6607
		return;
6608

6609
	perf_swevent_overflow(event, 0, data, regs);
6610 6611
}

6612 6613 6614
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6615
	if (event->hw.state & PERF_HES_STOPPED)
6616
		return 1;
P
Peter Zijlstra 已提交
6617

6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6629
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6630
				enum perf_type_id type,
L
Li Zefan 已提交
6631 6632 6633
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6634
{
6635
	if (event->attr.type != type)
6636
		return 0;
6637

6638
	if (event->attr.config != event_id)
6639 6640
		return 0;

6641 6642
	if (perf_exclude_event(event, regs))
		return 0;
6643 6644 6645 6646

	return 1;
}

6647 6648 6649 6650 6651 6652 6653
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6654 6655
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6656
{
6657 6658 6659 6660
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6661

6662 6663
/* For the read side: events when they trigger */
static inline struct hlist_head *
6664
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6665 6666
{
	struct swevent_hlist *hlist;
6667

6668
	hlist = rcu_dereference(swhash->swevent_hlist);
6669 6670 6671
	if (!hlist)
		return NULL;

6672 6673 6674 6675 6676
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6677
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6688
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6689 6690 6691 6692 6693
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6694 6695 6696
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6697
				    u64 nr,
6698 6699
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6700
{
6701
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6702
	struct perf_event *event;
6703
	struct hlist_head *head;
6704

6705
	rcu_read_lock();
6706
	head = find_swevent_head_rcu(swhash, type, event_id);
6707 6708 6709
	if (!head)
		goto end;

6710
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6711
		if (perf_swevent_match(event, type, event_id, data, regs))
6712
			perf_swevent_event(event, nr, data, regs);
6713
	}
6714 6715
end:
	rcu_read_unlock();
6716 6717
}

6718 6719
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6720
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6721
{
6722
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6723

6724
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6725
}
I
Ingo Molnar 已提交
6726
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6727

6728
inline void perf_swevent_put_recursion_context(int rctx)
6729
{
6730
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6731

6732
	put_recursion_context(swhash->recursion, rctx);
6733
}
6734

6735
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6736
{
6737
	struct perf_sample_data data;
6738

6739
	if (WARN_ON_ONCE(!regs))
6740
		return;
6741

6742
	perf_sample_data_init(&data, addr, 0);
6743
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6756 6757

	perf_swevent_put_recursion_context(rctx);
6758
fail:
6759
	preempt_enable_notrace();
6760 6761
}

6762
static void perf_swevent_read(struct perf_event *event)
6763 6764 6765
{
}

P
Peter Zijlstra 已提交
6766
static int perf_swevent_add(struct perf_event *event, int flags)
6767
{
6768
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6769
	struct hw_perf_event *hwc = &event->hw;
6770 6771
	struct hlist_head *head;

6772
	if (is_sampling_event(event)) {
6773
		hwc->last_period = hwc->sample_period;
6774
		perf_swevent_set_period(event);
6775
	}
6776

P
Peter Zijlstra 已提交
6777 6778
	hwc->state = !(flags & PERF_EF_START);

6779
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6780
	if (WARN_ON_ONCE(!head))
6781 6782 6783
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6784
	perf_event_update_userpage(event);
6785

6786 6787 6788
	return 0;
}

P
Peter Zijlstra 已提交
6789
static void perf_swevent_del(struct perf_event *event, int flags)
6790
{
6791
	hlist_del_rcu(&event->hlist_entry);
6792 6793
}

P
Peter Zijlstra 已提交
6794
static void perf_swevent_start(struct perf_event *event, int flags)
6795
{
P
Peter Zijlstra 已提交
6796
	event->hw.state = 0;
6797
}
I
Ingo Molnar 已提交
6798

P
Peter Zijlstra 已提交
6799
static void perf_swevent_stop(struct perf_event *event, int flags)
6800
{
P
Peter Zijlstra 已提交
6801
	event->hw.state = PERF_HES_STOPPED;
6802 6803
}

6804 6805
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6806
swevent_hlist_deref(struct swevent_htable *swhash)
6807
{
6808 6809
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6810 6811
}

6812
static void swevent_hlist_release(struct swevent_htable *swhash)
6813
{
6814
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6815

6816
	if (!hlist)
6817 6818
		return;

6819
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6820
	kfree_rcu(hlist, rcu_head);
6821 6822
}

6823
static void swevent_hlist_put_cpu(int cpu)
6824
{
6825
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6826

6827
	mutex_lock(&swhash->hlist_mutex);
6828

6829 6830
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6831

6832
	mutex_unlock(&swhash->hlist_mutex);
6833 6834
}

6835
static void swevent_hlist_put(void)
6836 6837 6838 6839
{
	int cpu;

	for_each_possible_cpu(cpu)
6840
		swevent_hlist_put_cpu(cpu);
6841 6842
}

6843
static int swevent_hlist_get_cpu(int cpu)
6844
{
6845
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6846 6847
	int err = 0;

6848 6849
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6850 6851 6852 6853 6854 6855 6856
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6857
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6858
	}
6859
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6860
exit:
6861
	mutex_unlock(&swhash->hlist_mutex);
6862 6863 6864 6865

	return err;
}

6866
static int swevent_hlist_get(void)
6867
{
6868
	int err, cpu, failed_cpu;
6869 6870 6871

	get_online_cpus();
	for_each_possible_cpu(cpu) {
6872
		err = swevent_hlist_get_cpu(cpu);
6873 6874 6875 6876 6877 6878 6879 6880
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6881
fail:
6882 6883 6884
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
6885
		swevent_hlist_put_cpu(cpu);
6886 6887 6888 6889 6890 6891
	}

	put_online_cpus();
	return err;
}

6892
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6893

6894 6895 6896
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6897

6898 6899
	WARN_ON(event->parent);

6900
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6901
	swevent_hlist_put();
6902 6903 6904 6905
}

static int perf_swevent_init(struct perf_event *event)
{
6906
	u64 event_id = event->attr.config;
6907 6908 6909 6910

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6911 6912 6913 6914 6915 6916
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6917 6918 6919 6920 6921 6922 6923 6924 6925
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6926
	if (event_id >= PERF_COUNT_SW_MAX)
6927 6928 6929 6930 6931
		return -ENOENT;

	if (!event->parent) {
		int err;

6932
		err = swevent_hlist_get();
6933 6934 6935
		if (err)
			return err;

6936
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6937 6938 6939 6940 6941 6942 6943
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6944
	.task_ctx_nr	= perf_sw_context,
6945

6946 6947
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6948
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6949 6950 6951 6952
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6953 6954 6955
	.read		= perf_swevent_read,
};

6956 6957
#ifdef CONFIG_EVENT_TRACING

6958 6959 6960 6961 6962
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6963 6964 6965 6966
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6967 6968 6969 6970 6971 6972 6973 6974 6975
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6976 6977
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6978 6979 6980 6981
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6982 6983 6984 6985 6986 6987 6988 6989 6990
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6991 6992
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6993 6994
{
	struct perf_sample_data data;
6995 6996
	struct perf_event *event;

6997 6998 6999 7000 7001
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

7002
	perf_sample_data_init(&data, addr, 0);
7003 7004
	data.raw = &raw;

7005
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7006
		if (perf_tp_event_match(event, &data, regs))
7007
			perf_swevent_event(event, count, &data, regs);
7008
	}
7009

7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7035
	perf_swevent_put_recursion_context(rctx);
7036 7037 7038
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7039
static void tp_perf_event_destroy(struct perf_event *event)
7040
{
7041
	perf_trace_destroy(event);
7042 7043
}

7044
static int perf_tp_event_init(struct perf_event *event)
7045
{
7046 7047
	int err;

7048 7049 7050
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7051 7052 7053 7054 7055 7056
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7057 7058
	err = perf_trace_init(event);
	if (err)
7059
		return err;
7060

7061
	event->destroy = tp_perf_event_destroy;
7062

7063 7064 7065 7066
	return 0;
}

static struct pmu perf_tracepoint = {
7067 7068
	.task_ctx_nr	= perf_sw_context,

7069
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7070 7071 7072 7073
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7074 7075 7076 7077 7078
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7079
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7080
}
L
Li Zefan 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7115 7116
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7117 7118 7119 7120 7121 7122
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7123
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7148
#else
L
Li Zefan 已提交
7149

7150
static inline void perf_tp_register(void)
7151 7152
{
}
L
Li Zefan 已提交
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7163 7164 7165 7166 7167 7168 7169 7170
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7171
#endif /* CONFIG_EVENT_TRACING */
7172

7173
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7174
void perf_bp_event(struct perf_event *bp, void *data)
7175
{
7176 7177 7178
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7179
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7180

P
Peter Zijlstra 已提交
7181
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7182
		perf_swevent_event(bp, 1, &sample, regs);
7183 7184 7185
}
#endif

7186 7187 7188
/*
 * hrtimer based swevent callback
 */
7189

7190
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7191
{
7192 7193 7194 7195 7196
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7197

7198
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7199 7200 7201 7202

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7203
	event->pmu->read(event);
7204

7205
	perf_sample_data_init(&data, 0, event->hw.last_period);
7206 7207 7208
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7209
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7210
			if (__perf_event_overflow(event, 1, &data, regs))
7211 7212
				ret = HRTIMER_NORESTART;
	}
7213

7214 7215
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7216

7217
	return ret;
7218 7219
}

7220
static void perf_swevent_start_hrtimer(struct perf_event *event)
7221
{
7222
	struct hw_perf_event *hwc = &event->hw;
7223 7224 7225 7226
	s64 period;

	if (!is_sampling_event(event))
		return;
7227

7228 7229 7230 7231
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7232

7233 7234 7235 7236
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7237 7238
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7239
}
7240 7241

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7242
{
7243 7244
	struct hw_perf_event *hwc = &event->hw;

7245
	if (is_sampling_event(event)) {
7246
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7247
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7248 7249 7250

		hrtimer_cancel(&hwc->hrtimer);
	}
7251 7252
}

P
Peter Zijlstra 已提交
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7273
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7274 7275 7276 7277
		event->attr.freq = 0;
	}
}

7278 7279 7280 7281 7282
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7283
{
7284 7285 7286
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7287
	now = local_clock();
7288 7289
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7290 7291
}

P
Peter Zijlstra 已提交
7292
static void cpu_clock_event_start(struct perf_event *event, int flags)
7293
{
P
Peter Zijlstra 已提交
7294
	local64_set(&event->hw.prev_count, local_clock());
7295 7296 7297
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7298
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7299
{
7300 7301 7302
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7303

P
Peter Zijlstra 已提交
7304 7305 7306 7307
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7308
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7309 7310 7311 7312 7313 7314 7315 7316 7317

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7318 7319 7320 7321
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7322

7323 7324 7325 7326 7327 7328 7329 7330
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7331 7332 7333 7334 7335 7336
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7337 7338
	perf_swevent_init_hrtimer(event);

7339
	return 0;
7340 7341
}

7342
static struct pmu perf_cpu_clock = {
7343 7344
	.task_ctx_nr	= perf_sw_context,

7345 7346
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7347
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7348 7349 7350 7351
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7352 7353 7354 7355 7356 7357 7358 7359
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7360
{
7361 7362
	u64 prev;
	s64 delta;
7363

7364 7365 7366 7367
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7368

P
Peter Zijlstra 已提交
7369
static void task_clock_event_start(struct perf_event *event, int flags)
7370
{
P
Peter Zijlstra 已提交
7371
	local64_set(&event->hw.prev_count, event->ctx->time);
7372 7373 7374
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7375
static void task_clock_event_stop(struct perf_event *event, int flags)
7376 7377 7378
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7379 7380 7381 7382 7383 7384
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7385
	perf_event_update_userpage(event);
7386

P
Peter Zijlstra 已提交
7387 7388 7389 7390 7391 7392
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7393 7394 7395 7396
}

static void task_clock_event_read(struct perf_event *event)
{
7397 7398 7399
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7400 7401 7402 7403 7404

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7405
{
7406 7407 7408 7409 7410 7411
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7412 7413 7414 7415 7416 7417
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7418 7419
	perf_swevent_init_hrtimer(event);

7420
	return 0;
L
Li Zefan 已提交
7421 7422
}

7423
static struct pmu perf_task_clock = {
7424 7425
	.task_ctx_nr	= perf_sw_context,

7426 7427
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7428
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7429 7430 7431 7432
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7433 7434
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7435

P
Peter Zijlstra 已提交
7436
static void perf_pmu_nop_void(struct pmu *pmu)
7437 7438
{
}
L
Li Zefan 已提交
7439

7440 7441 7442 7443
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7444
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7445
{
P
Peter Zijlstra 已提交
7446
	return 0;
L
Li Zefan 已提交
7447 7448
}

7449
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7450 7451

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7452
{
7453 7454 7455 7456 7457
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7458
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7459 7460
}

P
Peter Zijlstra 已提交
7461 7462
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7463 7464 7465 7466 7467 7468 7469
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7470 7471 7472
	perf_pmu_enable(pmu);
	return 0;
}
7473

P
Peter Zijlstra 已提交
7474
static void perf_pmu_cancel_txn(struct pmu *pmu)
7475
{
7476 7477 7478 7479 7480 7481 7482
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7483
	perf_pmu_enable(pmu);
7484 7485
}

7486 7487
static int perf_event_idx_default(struct perf_event *event)
{
7488
	return 0;
7489 7490
}

P
Peter Zijlstra 已提交
7491 7492 7493 7494
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7495
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7496
{
P
Peter Zijlstra 已提交
7497
	struct pmu *pmu;
7498

P
Peter Zijlstra 已提交
7499 7500
	if (ctxn < 0)
		return NULL;
7501

P
Peter Zijlstra 已提交
7502 7503 7504 7505
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7506

P
Peter Zijlstra 已提交
7507
	return NULL;
7508 7509
}

7510
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7511
{
7512 7513 7514 7515 7516 7517 7518
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7519 7520
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7521 7522 7523 7524 7525 7526
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7527

P
Peter Zijlstra 已提交
7528
	mutex_lock(&pmus_lock);
7529
	/*
P
Peter Zijlstra 已提交
7530
	 * Like a real lame refcount.
7531
	 */
7532 7533 7534
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7535
			goto out;
7536
		}
P
Peter Zijlstra 已提交
7537
	}
7538

7539
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7540 7541
out:
	mutex_unlock(&pmus_lock);
7542
}
P
Peter Zijlstra 已提交
7543
static struct idr pmu_idr;
7544

P
Peter Zijlstra 已提交
7545 7546 7547 7548 7549 7550 7551
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7552
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7553

7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7564 7565
static DEFINE_MUTEX(mux_interval_mutex);

7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7585
	mutex_lock(&mux_interval_mutex);
7586 7587 7588
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7589 7590
	get_online_cpus();
	for_each_online_cpu(cpu) {
7591 7592 7593 7594
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7595 7596
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7597
	}
7598 7599
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7600 7601 7602

	return count;
}
7603
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7604

7605 7606 7607 7608
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7609
};
7610
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7611 7612 7613 7614

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7615
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7631
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7652
static struct lock_class_key cpuctx_mutex;
7653
static struct lock_class_key cpuctx_lock;
7654

7655
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7656
{
P
Peter Zijlstra 已提交
7657
	int cpu, ret;
7658

7659
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7660 7661 7662 7663
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7664

P
Peter Zijlstra 已提交
7665 7666 7667 7668 7669 7670
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7671 7672 7673
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7674 7675 7676 7677 7678
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7679 7680 7681 7682 7683 7684
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7685
skip_type:
P
Peter Zijlstra 已提交
7686 7687 7688
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7689

W
Wei Yongjun 已提交
7690
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7691 7692
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7693
		goto free_dev;
7694

P
Peter Zijlstra 已提交
7695 7696 7697 7698
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7699
		__perf_event_init_context(&cpuctx->ctx);
7700
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7701
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7702
		cpuctx->ctx.pmu = pmu;
7703

7704
		__perf_mux_hrtimer_init(cpuctx, cpu);
7705

7706
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7707
	}
7708

P
Peter Zijlstra 已提交
7709
got_cpu_context:
P
Peter Zijlstra 已提交
7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7721
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7722 7723
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7724
		}
7725
	}
7726

P
Peter Zijlstra 已提交
7727 7728 7729 7730 7731
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7732 7733 7734
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7735
	list_add_rcu(&pmu->entry, &pmus);
7736
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7737 7738
	ret = 0;
unlock:
7739 7740
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7741
	return ret;
P
Peter Zijlstra 已提交
7742

P
Peter Zijlstra 已提交
7743 7744 7745 7746
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7747 7748 7749 7750
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7751 7752 7753
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7754
}
7755
EXPORT_SYMBOL_GPL(perf_pmu_register);
7756

7757
void perf_pmu_unregister(struct pmu *pmu)
7758
{
7759 7760 7761
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7762

7763
	/*
P
Peter Zijlstra 已提交
7764 7765
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7766
	 */
7767
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7768
	synchronize_rcu();
7769

P
Peter Zijlstra 已提交
7770
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7771 7772
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7773 7774
	device_del(pmu->dev);
	put_device(pmu->dev);
7775
	free_pmu_context(pmu);
7776
}
7777
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7778

7779 7780
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7781
	struct perf_event_context *ctx = NULL;
7782 7783 7784 7785
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7786 7787

	if (event->group_leader != event) {
7788 7789 7790 7791 7792 7793
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7794 7795 7796
		BUG_ON(!ctx);
	}

7797 7798
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7799 7800 7801 7802

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7803 7804 7805 7806 7807 7808
	if (ret)
		module_put(pmu->module);

	return ret;
}

7809
static struct pmu *perf_init_event(struct perf_event *event)
7810 7811 7812
{
	struct pmu *pmu = NULL;
	int idx;
7813
	int ret;
7814 7815

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7816 7817 7818 7819

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7820
	if (pmu) {
7821
		ret = perf_try_init_event(pmu, event);
7822 7823
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7824
		goto unlock;
7825
	}
P
Peter Zijlstra 已提交
7826

7827
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7828
		ret = perf_try_init_event(pmu, event);
7829
		if (!ret)
P
Peter Zijlstra 已提交
7830
			goto unlock;
7831

7832 7833
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7834
			goto unlock;
7835
		}
7836
	}
P
Peter Zijlstra 已提交
7837 7838
	pmu = ERR_PTR(-ENOENT);
unlock:
7839
	srcu_read_unlock(&pmus_srcu, idx);
7840

7841
	return pmu;
7842 7843
}

7844 7845 7846 7847 7848 7849 7850 7851 7852
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


7874 7875
static void account_event(struct perf_event *event)
{
7876 7877
	bool inc = false;

7878 7879 7880
	if (event->parent)
		return;

7881
	if (event->attach_state & PERF_ATTACH_TASK)
7882
		inc = true;
7883 7884 7885 7886 7887 7888
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7889 7890
	if (event->attr.freq)
		account_freq_event();
7891 7892
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7893
		inc = true;
7894
	}
7895
	if (has_branch_stack(event))
7896
		inc = true;
7897
	if (is_cgroup_event(event))
7898 7899
		inc = true;

7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
7922 7923

	account_event_cpu(event, event->cpu);
7924 7925
}

T
Thomas Gleixner 已提交
7926
/*
7927
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7928
 */
7929
static struct perf_event *
7930
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7931 7932 7933
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7934
		 perf_overflow_handler_t overflow_handler,
7935
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7936
{
P
Peter Zijlstra 已提交
7937
	struct pmu *pmu;
7938 7939
	struct perf_event *event;
	struct hw_perf_event *hwc;
7940
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7941

7942 7943 7944 7945 7946
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7947
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7948
	if (!event)
7949
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7950

7951
	/*
7952
	 * Single events are their own group leaders, with an
7953 7954 7955
	 * empty sibling list:
	 */
	if (!group_leader)
7956
		group_leader = event;
7957

7958 7959
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7960

7961 7962 7963
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7964
	INIT_LIST_HEAD(&event->rb_entry);
7965
	INIT_LIST_HEAD(&event->active_entry);
7966 7967
	INIT_HLIST_NODE(&event->hlist_entry);

7968

7969
	init_waitqueue_head(&event->waitq);
7970
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7971

7972
	mutex_init(&event->mmap_mutex);
7973

7974
	atomic_long_set(&event->refcount, 1);
7975 7976 7977 7978 7979
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7980

7981
	event->parent		= parent_event;
7982

7983
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7984
	event->id		= atomic64_inc_return(&perf_event_id);
7985

7986
	event->state		= PERF_EVENT_STATE_INACTIVE;
7987

7988 7989 7990
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7991 7992 7993
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7994
		 */
7995
		event->hw.target = task;
7996 7997
	}

7998 7999 8000 8001
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

8002
	if (!overflow_handler && parent_event) {
8003
		overflow_handler = parent_event->overflow_handler;
8004 8005
		context = parent_event->overflow_handler_context;
	}
8006

8007
	event->overflow_handler	= overflow_handler;
8008
	event->overflow_handler_context = context;
8009

J
Jiri Olsa 已提交
8010
	perf_event__state_init(event);
8011

8012
	pmu = NULL;
8013

8014
	hwc = &event->hw;
8015
	hwc->sample_period = attr->sample_period;
8016
	if (attr->freq && attr->sample_freq)
8017
		hwc->sample_period = 1;
8018
	hwc->last_period = hwc->sample_period;
8019

8020
	local64_set(&hwc->period_left, hwc->sample_period);
8021

8022
	/*
8023
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8024
	 */
8025
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8026
		goto err_ns;
8027 8028 8029

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
8030

8031 8032 8033 8034 8035 8036
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

8037
	pmu = perf_init_event(event);
8038
	if (!pmu)
8039 8040
		goto err_ns;
	else if (IS_ERR(pmu)) {
8041
		err = PTR_ERR(pmu);
8042
		goto err_ns;
I
Ingo Molnar 已提交
8043
	}
8044

8045 8046 8047 8048
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

8049
	if (!event->parent) {
8050 8051
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
8052
			if (err)
8053
				goto err_per_task;
8054
		}
8055
	}
8056

8057 8058 8059
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

8060
	return event;
8061

8062 8063 8064
err_per_task:
	exclusive_event_destroy(event);

8065 8066 8067
err_pmu:
	if (event->destroy)
		event->destroy(event);
8068
	module_put(pmu->module);
8069
err_ns:
8070 8071
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
8072 8073 8074 8075 8076
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
8077 8078
}

8079 8080
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
8081 8082
{
	u32 size;
8083
	int ret;
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8108 8109 8110
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8111 8112
	 */
	if (size > sizeof(*attr)) {
8113 8114 8115
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8116

8117 8118
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8119

8120
		for (; addr < end; addr++) {
8121 8122 8123 8124 8125 8126
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8127
		size = sizeof(*attr);
8128 8129 8130 8131 8132 8133
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8134
	if (attr->__reserved_1)
8135 8136 8137 8138 8139 8140 8141 8142
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8171 8172
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8173 8174
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8175
	}
8176

8177
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8178
		ret = perf_reg_validate(attr->sample_regs_user);
8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8197

8198 8199
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8200 8201 8202 8203 8204 8205 8206 8207 8208
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8209 8210
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8211
{
8212
	struct ring_buffer *rb = NULL;
8213 8214
	int ret = -EINVAL;

8215
	if (!output_event)
8216 8217
		goto set;

8218 8219
	/* don't allow circular references */
	if (event == output_event)
8220 8221
		goto out;

8222 8223 8224 8225 8226 8227 8228
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8229
	 * If its not a per-cpu rb, it must be the same task.
8230 8231 8232 8233
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8234 8235 8236 8237 8238 8239
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8240 8241 8242 8243 8244 8245 8246
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8247
set:
8248
	mutex_lock(&event->mmap_mutex);
8249 8250 8251
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8252

8253
	if (output_event) {
8254 8255 8256
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8257
			goto unlock;
8258 8259
	}

8260
	ring_buffer_attach(event, rb);
8261

8262
	ret = 0;
8263 8264 8265
unlock:
	mutex_unlock(&event->mmap_mutex);

8266 8267 8268 8269
out:
	return ret;
}

P
Peter Zijlstra 已提交
8270 8271 8272 8273 8274 8275 8276 8277 8278
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8316
/**
8317
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8318
 *
8319
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8320
 * @pid:		target pid
I
Ingo Molnar 已提交
8321
 * @cpu:		target cpu
8322
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8323
 */
8324 8325
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8326
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8327
{
8328 8329
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8330
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8331
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8332
	struct file *event_file = NULL;
8333
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8334
	struct task_struct *task = NULL;
8335
	struct pmu *pmu;
8336
	int event_fd;
8337
	int move_group = 0;
8338
	int err;
8339
	int f_flags = O_RDWR;
8340
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8341

8342
	/* for future expandability... */
S
Stephane Eranian 已提交
8343
	if (flags & ~PERF_FLAG_ALL)
8344 8345
		return -EINVAL;

8346 8347 8348
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8349

8350 8351 8352 8353 8354
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8355
	if (attr.freq) {
8356
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8357
			return -EINVAL;
8358 8359 8360
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8361 8362
	}

S
Stephane Eranian 已提交
8363 8364 8365 8366 8367 8368 8369 8370 8371
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8372 8373 8374 8375
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8376 8377 8378
	if (event_fd < 0)
		return event_fd;

8379
	if (group_fd != -1) {
8380 8381
		err = perf_fget_light(group_fd, &group);
		if (err)
8382
			goto err_fd;
8383
		group_leader = group.file->private_data;
8384 8385 8386 8387 8388 8389
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8390
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8391 8392 8393 8394 8395 8396 8397
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8398 8399 8400 8401 8402 8403
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8404 8405
	get_online_cpus();

8406 8407 8408
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8409
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8410
				 NULL, NULL, cgroup_fd);
8411 8412
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8413
		goto err_cpus;
8414 8415
	}

8416 8417 8418 8419 8420 8421 8422
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8423 8424 8425 8426 8427
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8428

8429 8430 8431 8432 8433 8434
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8457 8458 8459 8460

	/*
	 * Get the target context (task or percpu):
	 */
8461
	ctx = find_get_context(pmu, task, event);
8462 8463
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8464
		goto err_alloc;
8465 8466
	}

8467 8468 8469 8470 8471
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8472 8473 8474 8475 8476
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8477
	/*
8478
	 * Look up the group leader (we will attach this event to it):
8479
	 */
8480
	if (group_leader) {
8481
		err = -EINVAL;
8482 8483

		/*
I
Ingo Molnar 已提交
8484 8485 8486 8487
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8488
			goto err_context;
8489 8490 8491 8492 8493

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8494 8495 8496
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8497
		 */
8498
		if (move_group) {
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8512 8513 8514 8515 8516 8517
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8518 8519 8520
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8521
		if (attr.exclusive || attr.pinned)
8522
			goto err_context;
8523 8524 8525 8526 8527
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8528
			goto err_context;
8529
	}
T
Thomas Gleixner 已提交
8530

8531 8532
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8533 8534
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8535
		goto err_context;
8536
	}
8537

8538
	if (move_group) {
P
Peter Zijlstra 已提交
8539
		gctx = group_leader->ctx;
8540
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8541 8542 8543 8544
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
8545 8546 8547 8548
	} else {
		mutex_lock(&ctx->mutex);
	}

8549 8550 8551 8552 8553
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
8554 8555 8556 8557 8558
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8559 8560 8561 8562 8563 8564 8565
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8566

8567 8568 8569
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8570

8571 8572 8573
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8574 8575 8576 8577
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8578
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8579

8580 8581
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8582
			perf_remove_from_context(sibling, 0);
8583 8584 8585
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8586 8587 8588 8589
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8590
		synchronize_rcu();
P
Peter Zijlstra 已提交
8591

8592 8593 8594 8595 8596 8597 8598 8599 8600 8601
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8602 8603
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8604
			perf_event__state_init(sibling);
8605
			perf_install_in_context(ctx, sibling, sibling->cpu);
8606 8607
			get_ctx(ctx);
		}
8608 8609 8610 8611 8612 8613 8614 8615 8616

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8617

8618 8619 8620 8621 8622 8623
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8624 8625
	}

8626 8627 8628 8629 8630 8631 8632 8633 8634
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8635 8636
	event->owner = current;

8637
	perf_install_in_context(ctx, event, event->cpu);
8638
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8639

8640
	if (move_group)
P
Peter Zijlstra 已提交
8641
		mutex_unlock(&gctx->mutex);
8642
	mutex_unlock(&ctx->mutex);
8643

8644 8645
	put_online_cpus();

8646 8647 8648
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8649

8650 8651 8652 8653 8654 8655
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8656
	fdput(group);
8657 8658
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8659

8660 8661 8662 8663 8664 8665
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8666
err_context:
8667
	perf_unpin_context(ctx);
8668
	put_ctx(ctx);
8669
err_alloc:
P
Peter Zijlstra 已提交
8670 8671 8672 8673 8674 8675
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
8676
err_cpus:
8677
	put_online_cpus();
8678
err_task:
P
Peter Zijlstra 已提交
8679 8680
	if (task)
		put_task_struct(task);
8681
err_group_fd:
8682
	fdput(group);
8683 8684
err_fd:
	put_unused_fd(event_fd);
8685
	return err;
T
Thomas Gleixner 已提交
8686 8687
}

8688 8689 8690 8691 8692
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8693
 * @task: task to profile (NULL for percpu)
8694 8695 8696
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8697
				 struct task_struct *task,
8698 8699
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8700 8701
{
	struct perf_event_context *ctx;
8702
	struct perf_event *event;
8703
	int err;
8704

8705 8706 8707
	/*
	 * Get the target context (task or percpu):
	 */
8708

8709
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8710
				 overflow_handler, context, -1);
8711 8712 8713 8714
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8715

8716
	/* Mark owner so we could distinguish it from user events. */
8717
	event->owner = TASK_TOMBSTONE;
8718

8719
	ctx = find_get_context(event->pmu, task, event);
8720 8721
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8722
		goto err_free;
8723
	}
8724 8725 8726

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8727 8728 8729 8730 8731
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

8732 8733
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
8734
		goto err_unlock;
8735 8736
	}

8737
	perf_install_in_context(ctx, event, cpu);
8738
	perf_unpin_context(ctx);
8739 8740 8741 8742
	mutex_unlock(&ctx->mutex);

	return event;

8743 8744 8745 8746
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
8747 8748 8749
err_free:
	free_event(event);
err:
8750
	return ERR_PTR(err);
8751
}
8752
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8753

8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8764 8765 8766 8767 8768
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8769 8770
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8771
		perf_remove_from_context(event, 0);
8772
		unaccount_event_cpu(event, src_cpu);
8773
		put_ctx(src_ctx);
8774
		list_add(&event->migrate_entry, &events);
8775 8776
	}

8777 8778 8779
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8780 8781
	synchronize_rcu();

8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8806 8807
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8808 8809
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8810
		account_event_cpu(event, dst_cpu);
8811 8812 8813 8814
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8815
	mutex_unlock(&src_ctx->mutex);
8816 8817 8818
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8819
static void sync_child_event(struct perf_event *child_event,
8820
			       struct task_struct *child)
8821
{
8822
	struct perf_event *parent_event = child_event->parent;
8823
	u64 child_val;
8824

8825 8826
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8827

P
Peter Zijlstra 已提交
8828
	child_val = perf_event_count(child_event);
8829 8830 8831 8832

	/*
	 * Add back the child's count to the parent's count:
	 */
8833
	atomic64_add(child_val, &parent_event->child_count);
8834 8835 8836 8837
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8838 8839
}

8840
static void
8841 8842 8843
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8844
{
8845 8846
	struct perf_event *parent_event = child_event->parent;

8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8859 8860 8861
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8862
	if (parent_event)
8863 8864
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
8865
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8866
	raw_spin_unlock_irq(&child_ctx->lock);
8867

8868
	/*
8869
	 * Parent events are governed by their filedesc, retain them.
8870
	 */
8871
	if (!parent_event) {
8872
		perf_event_wakeup(child_event);
8873
		return;
8874
	}
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8895 8896
}

P
Peter Zijlstra 已提交
8897
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8898
{
8899
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8900 8901 8902
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8903

8904
	child_ctx = perf_pin_task_context(child, ctxn);
8905
	if (!child_ctx)
8906 8907
		return;

8908
	/*
8909 8910 8911 8912 8913 8914 8915 8916
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
8917
	 */
8918
	mutex_lock(&child_ctx->mutex);
8919 8920

	/*
8921 8922 8923
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
8924
	 */
8925
	raw_spin_lock_irq(&child_ctx->lock);
8926
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8927

8928
	/*
8929 8930
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8931
	 */
8932 8933 8934 8935
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8936

8937
	clone_ctx = unclone_ctx(child_ctx);
8938
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8939

8940 8941
	if (clone_ctx)
		put_ctx(clone_ctx);
8942

P
Peter Zijlstra 已提交
8943
	/*
8944 8945 8946
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8947
	 */
8948
	perf_event_task(child, child_ctx, 0);
8949

8950
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8951
		perf_event_exit_event(child_event, child_ctx, child);
8952

8953 8954 8955
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8956 8957
}

P
Peter Zijlstra 已提交
8958 8959 8960 8961 8962
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8963
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8964 8965
	int ctxn;

P
Peter Zijlstra 已提交
8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8976
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8977 8978 8979
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8980 8981
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8982 8983 8984 8985 8986 8987 8988 8989

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8990 8991
}

8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

9004
	put_event(parent);
9005

P
Peter Zijlstra 已提交
9006
	raw_spin_lock_irq(&ctx->lock);
9007
	perf_group_detach(event);
9008
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
9009
	raw_spin_unlock_irq(&ctx->lock);
9010 9011 9012
	free_event(event);
}

9013
/*
P
Peter Zijlstra 已提交
9014
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
9015
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
9016 9017 9018
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
9019
 */
9020
void perf_event_free_task(struct task_struct *task)
9021
{
P
Peter Zijlstra 已提交
9022
	struct perf_event_context *ctx;
9023
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
9024
	int ctxn;
9025

P
Peter Zijlstra 已提交
9026 9027 9028 9029
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
9030

P
Peter Zijlstra 已提交
9031
		mutex_lock(&ctx->mutex);
9032
again:
P
Peter Zijlstra 已提交
9033 9034 9035
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
9036

P
Peter Zijlstra 已提交
9037 9038 9039
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
9040

P
Peter Zijlstra 已提交
9041 9042 9043
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
9044

P
Peter Zijlstra 已提交
9045
		mutex_unlock(&ctx->mutex);
9046

P
Peter Zijlstra 已提交
9047 9048
		put_ctx(ctx);
	}
9049 9050
}

9051 9052 9053 9054 9055 9056 9057 9058
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

9059
struct file *perf_event_get(unsigned int fd)
9060
{
9061
	struct file *file;
9062

9063 9064 9065
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
9066

9067 9068 9069 9070
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
9071

9072
	return file;
9073 9074 9075 9076 9077 9078 9079 9080 9081 9082
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
9094
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
9095
	struct perf_event *child_event;
9096
	unsigned long flags;
P
Peter Zijlstra 已提交
9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9109
					   child,
P
Peter Zijlstra 已提交
9110
					   group_leader, parent_event,
9111
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9112 9113
	if (IS_ERR(child_event))
		return child_event;
9114

9115 9116 9117 9118 9119 9120 9121
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
9122 9123
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9124
		mutex_unlock(&parent_event->child_mutex);
9125 9126 9127 9128
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9129 9130 9131 9132 9133 9134 9135
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9136
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9153 9154
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9155

9156 9157 9158 9159
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9160
	perf_event__id_header_size(child_event);
9161

P
Peter Zijlstra 已提交
9162 9163 9164
	/*
	 * Link it up in the child's context:
	 */
9165
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9166
	add_event_to_ctx(child_event, child_ctx);
9167
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9199 9200 9201 9202 9203
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9204
		   struct task_struct *child, int ctxn,
9205 9206 9207
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9208
	struct perf_event_context *child_ctx;
9209 9210 9211 9212

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9213 9214
	}

9215
	child_ctx = child->perf_event_ctxp[ctxn];
9216 9217 9218 9219 9220 9221 9222
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9223

9224
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9225 9226
		if (!child_ctx)
			return -ENOMEM;
9227

P
Peter Zijlstra 已提交
9228
		child->perf_event_ctxp[ctxn] = child_ctx;
9229 9230 9231 9232 9233 9234 9235 9236 9237
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9238 9239
}

9240
/*
9241
 * Initialize the perf_event context in task_struct
9242
 */
9243
static int perf_event_init_context(struct task_struct *child, int ctxn)
9244
{
9245
	struct perf_event_context *child_ctx, *parent_ctx;
9246 9247
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9248
	struct task_struct *parent = current;
9249
	int inherited_all = 1;
9250
	unsigned long flags;
9251
	int ret = 0;
9252

P
Peter Zijlstra 已提交
9253
	if (likely(!parent->perf_event_ctxp[ctxn]))
9254 9255
		return 0;

9256
	/*
9257 9258
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9259
	 */
P
Peter Zijlstra 已提交
9260
	parent_ctx = perf_pin_task_context(parent, ctxn);
9261 9262
	if (!parent_ctx)
		return 0;
9263

9264 9265 9266 9267 9268 9269 9270
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9271 9272 9273 9274
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9275
	mutex_lock(&parent_ctx->mutex);
9276 9277 9278 9279 9280

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9281
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9282 9283
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9284 9285 9286
		if (ret)
			break;
	}
9287

9288 9289 9290 9291 9292 9293 9294 9295 9296
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9297
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9298 9299
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9300
		if (ret)
9301
			break;
9302 9303
	}

9304 9305 9306
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9307
	child_ctx = child->perf_event_ctxp[ctxn];
9308

9309
	if (child_ctx && inherited_all) {
9310 9311 9312
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9313 9314 9315
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9316
		 */
P
Peter Zijlstra 已提交
9317
		cloned_ctx = parent_ctx->parent_ctx;
9318 9319
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9320
			child_ctx->parent_gen = parent_ctx->parent_gen;
9321 9322 9323 9324 9325
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9326 9327
	}

P
Peter Zijlstra 已提交
9328
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9329
	mutex_unlock(&parent_ctx->mutex);
9330

9331
	perf_unpin_context(parent_ctx);
9332
	put_ctx(parent_ctx);
9333

9334
	return ret;
9335 9336
}

P
Peter Zijlstra 已提交
9337 9338 9339 9340 9341 9342 9343
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9344 9345 9346 9347
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9348 9349
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9350 9351
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9352
			return ret;
P
Peter Zijlstra 已提交
9353
		}
P
Peter Zijlstra 已提交
9354 9355 9356 9357 9358
	}

	return 0;
}

9359 9360
static void __init perf_event_init_all_cpus(void)
{
9361
	struct swevent_htable *swhash;
9362 9363 9364
	int cpu;

	for_each_possible_cpu(cpu) {
9365 9366
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9367
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9368 9369 9370
	}
}

9371
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9372
{
P
Peter Zijlstra 已提交
9373
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9374

9375
	mutex_lock(&swhash->hlist_mutex);
9376
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9377 9378
		struct swevent_hlist *hlist;

9379 9380 9381
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9382
	}
9383
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9384 9385
}

9386
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9387
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9388
{
P
Peter Zijlstra 已提交
9389
	struct perf_event_context *ctx = __info;
9390 9391
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9392

9393 9394
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9395
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9396
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9397
}
P
Peter Zijlstra 已提交
9398 9399 9400 9401 9402 9403 9404 9405 9406

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9407
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9408 9409 9410 9411 9412 9413 9414 9415

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9416
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9417
{
P
Peter Zijlstra 已提交
9418
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9419 9420
}
#else
9421
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9422 9423
#endif

P
Peter Zijlstra 已提交
9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9444
static int
T
Thomas Gleixner 已提交
9445 9446 9447 9448
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9449
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9450 9451

	case CPU_UP_PREPARE:
9452 9453 9454 9455 9456 9457 9458
		/*
		 * This must be done before the CPU comes alive, because the
		 * moment we can run tasks we can encounter (software) events.
		 *
		 * Specifically, someone can have inherited events on kthreadd
		 * or a pre-existing worker thread that gets re-bound.
		 */
9459
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9460 9461 9462
		break;

	case CPU_DOWN_PREPARE:
9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474
		/*
		 * This must be done before the CPU dies because after that an
		 * active event might want to IPI the CPU and that'll not work
		 * so great for dead CPUs.
		 *
		 * XXX smp_call_function_single() return -ENXIO without a warn
		 * so we could possibly deal with this.
		 *
		 * This is safe against new events arriving because
		 * sys_perf_event_open() serializes against hotplug using
		 * get_online_cpus().
		 */
9475
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9476 9477 9478 9479 9480 9481 9482 9483
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9484
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9485
{
9486 9487
	int ret;

P
Peter Zijlstra 已提交
9488 9489
	idr_init(&pmu_idr);

9490
	perf_event_init_all_cpus();
9491
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9492 9493 9494
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9495 9496
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9497
	register_reboot_notifier(&perf_reboot_notifier);
9498 9499 9500

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9501

9502 9503 9504 9505 9506 9507
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9508
}
P
Peter Zijlstra 已提交
9509

9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
9521
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9522

P
Peter Zijlstra 已提交
9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9550 9551

#ifdef CONFIG_CGROUP_PERF
9552 9553
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9554 9555 9556
{
	struct perf_cgroup *jc;

9557
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9570
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9571
{
9572 9573
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9574 9575 9576 9577 9578 9579 9580
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9581
	rcu_read_lock();
S
Stephane Eranian 已提交
9582
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9583
	rcu_read_unlock();
S
Stephane Eranian 已提交
9584 9585 9586
	return 0;
}

9587
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9588
{
9589
	struct task_struct *task;
9590
	struct cgroup_subsys_state *css;
9591

9592
	cgroup_taskset_for_each(task, css, tset)
9593
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9594 9595
}

9596
struct cgroup_subsys perf_event_cgrp_subsys = {
9597 9598
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9599
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9600 9601
};
#endif /* CONFIG_CGROUP_PERF */