core.c 221.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
89
task_function_call(struct task_struct *p, remote_function_f func, void *info)
90 91
{
	struct remote_function_call data = {
92 93 94 95
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
113
static int cpu_function_call(int cpu, remote_function_f func, void *info)
114 115
{
	struct remote_function_call data = {
116 117 118 119
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
120 121 122 123 124 125 126
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

127 128 129 130 131 132 133 134
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
135
{
136 137 138 139 140 141 142 143 144 145 146 147 148
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

149 150 151 152
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
153
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214 215 216 217
		if (ctx->task != current) {
			ret = -EAGAIN;
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278 279
		return;
	}

again:
280 281 282
	if (task == TASK_TOMBSTONE)
		return;

283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291 292 293 294 295 296 297
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
	if (task != TASK_TOMBSTONE) {
		if (ctx->is_active) {
			raw_spin_unlock_irq(&ctx->lock);
			goto again;
		}
		func(event, NULL, ctx, data);
298 299 300 301
	}
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
302 303
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
304 305
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
306

307 308 309 310 311 312 313
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

314 315 316 317 318 319
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
320 321 322 323
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
324
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
325
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
326
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
327

328 329 330
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
331
static atomic_t nr_freq_events __read_mostly;
332
static atomic_t nr_switch_events __read_mostly;
333

P
Peter Zijlstra 已提交
334 335 336 337
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

338
/*
339
 * perf event paranoia level:
340 341
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
342
 *   1 - disallow cpu events for unpriv
343
 *   2 - disallow kernel profiling for unpriv
344
 */
345
int sysctl_perf_event_paranoid __read_mostly = 1;
346

347 348
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
349 350

/*
351
 * max perf event sample rate
352
 */
353 354 355 356 357 358 359 360 361
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
362 363
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
364

365
static void update_perf_cpu_limits(void)
366 367 368 369
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
370
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
371
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
372
}
P
Peter Zijlstra 已提交
373

374 375
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
376 377 378 379
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
380
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
381 382 383 384 385

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
404 405 406

	return 0;
}
407

408 409 410 411 412 413 414
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
415
static DEFINE_PER_CPU(u64, running_sample_length);
416

417
static void perf_duration_warn(struct irq_work *w)
418
{
419
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
420
	u64 avg_local_sample_len;
421
	u64 local_samples_len;
422

423
	local_samples_len = __this_cpu_read(running_sample_length);
424 425 426 427 428
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
429
			avg_local_sample_len, allowed_ns >> 1,
430 431 432 433 434 435 436
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
437
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
438 439
	u64 avg_local_sample_len;
	u64 local_samples_len;
440

P
Peter Zijlstra 已提交
441
	if (allowed_ns == 0)
442 443 444
		return;

	/* decay the counter by 1 average sample */
445
	local_samples_len = __this_cpu_read(running_sample_length);
446 447
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
448
	__this_cpu_write(running_sample_length, local_samples_len);
449 450 451 452 453 454 455 456

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
457
	if (avg_local_sample_len <= allowed_ns)
458 459 460 461 462 463 464 465 466 467
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
468

469 470 471 472 473 474
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
475 476
}

477
static atomic64_t perf_event_id;
478

479 480 481 482
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
483 484 485 486 487
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
488

489
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
490

491
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
492
{
493
	return "pmu";
T
Thomas Gleixner 已提交
494 495
}

496 497 498 499 500
static inline u64 perf_clock(void)
{
	return local_clock();
}

501 502 503 504 505
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
506 507 508 509 510 511 512 513
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
530 531 532 533
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
534
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
573 574
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
575
	/*
576 577
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
578
	 */
579
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
580 581
		return;

582
	cgrp = perf_cgroup_from_task(current, event->ctx);
583 584 585 586 587
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
588 589 590
}

static inline void
591 592
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
593 594 595 596
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

597 598 599 600 601 602
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
603 604
		return;

605
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
606
	info = this_cpu_ptr(cgrp->info);
607
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
608 609 610 611 612 613 614 615 616 617 618
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
619
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 640
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
641 642 643 644 645 646 647 648 649

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
650 651
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
652 653 654 655 656 657 658 659 660 661 662

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
663
				WARN_ON_ONCE(cpuctx->cgrp);
664 665 666 667
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
668 669
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
670
				 */
671
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
672 673
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
674 675
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
676 677 678 679 680 681
		}
	}

	local_irq_restore(flags);
}

682 683
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
684
{
685 686 687
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

688
	rcu_read_lock();
689 690
	/*
	 * we come here when we know perf_cgroup_events > 0
691 692
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
693
	 */
694
	cgrp1 = perf_cgroup_from_task(task, NULL);
695
	cgrp2 = perf_cgroup_from_task(next, NULL);
696 697 698 699 700 701 702 703

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
704 705

	rcu_read_unlock();
S
Stephane Eranian 已提交
706 707
}

708 709
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
710
{
711 712 713
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

714
	rcu_read_lock();
715 716
	/*
	 * we come here when we know perf_cgroup_events > 0
717 718
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
719
	 */
720 721
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
722 723 724 725 726 727 728 729

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
730 731

	rcu_read_unlock();
S
Stephane Eranian 已提交
732 733 734 735 736 737 738 739
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
740 741
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
742

743
	if (!f.file)
S
Stephane Eranian 已提交
744 745
		return -EBADF;

A
Al Viro 已提交
746
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
747
					 &perf_event_cgrp_subsys);
748 749 750 751
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
765
out:
766
	fdput(f);
S
Stephane Eranian 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

840 841
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
842 843 844
{
}

845 846
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
847 848 849 850 851 852 853 854 855 856 857
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
858 859
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

890 891 892 893 894 895 896 897
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
898
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
899 900 901 902 903 904 905 906 907
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
908 909
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
910
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
911 912 913
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
914

P
Peter Zijlstra 已提交
915
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
916 917
}

918
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
919
{
920
	struct hrtimer *timer = &cpuctx->hrtimer;
921
	struct pmu *pmu = cpuctx->ctx.pmu;
922
	u64 interval;
923 924 925 926 927

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

928 929 930 931
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
932 933 934
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
935

936
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
937

P
Peter Zijlstra 已提交
938 939
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
940
	timer->function = perf_mux_hrtimer_handler;
941 942
}

943
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
944
{
945
	struct hrtimer *timer = &cpuctx->hrtimer;
946
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
947
	unsigned long flags;
948 949 950

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
951
		return 0;
952

P
Peter Zijlstra 已提交
953 954 955 956 957 958 959
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
960

961
	return 0;
962 963
}

P
Peter Zijlstra 已提交
964
void perf_pmu_disable(struct pmu *pmu)
965
{
P
Peter Zijlstra 已提交
966 967 968
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
969 970
}

P
Peter Zijlstra 已提交
971
void perf_pmu_enable(struct pmu *pmu)
972
{
P
Peter Zijlstra 已提交
973 974 975
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
976 977
}

978
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
979 980

/*
981 982 983 984
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
985
 */
986
static void perf_event_ctx_activate(struct perf_event_context *ctx)
987
{
988
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
989

990
	WARN_ON(!irqs_disabled());
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1004 1005
}

1006
static void get_ctx(struct perf_event_context *ctx)
1007
{
1008
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1009 1010
}

1011 1012 1013 1014 1015 1016 1017 1018 1019
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1020
static void put_ctx(struct perf_event_context *ctx)
1021
{
1022 1023 1024
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1025
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1026
			put_task_struct(ctx->task);
1027
		call_rcu(&ctx->rcu_head, free_ctx);
1028
	}
1029 1030
}

P
Peter Zijlstra 已提交
1031 1032 1033 1034 1035 1036 1037
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1038 1039 1040 1041
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1042 1043
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1087
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1088 1089 1090
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1091 1092
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1105
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1115 1116 1117 1118 1119 1120
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1121 1122 1123 1124 1125 1126 1127
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1128 1129 1130 1131 1132 1133 1134
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1135
{
1136 1137 1138 1139 1140
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1141
		ctx->parent_ctx = NULL;
1142
	ctx->generation++;
1143 1144

	return parent_ctx;
1145 1146
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1169
/*
1170
 * If we inherit events we want to return the parent event id
1171 1172
 * to userspace.
 */
1173
static u64 primary_event_id(struct perf_event *event)
1174
{
1175
	u64 id = event->id;
1176

1177 1178
	if (event->parent)
		id = event->parent->id;
1179 1180 1181 1182

	return id;
}

1183
/*
1184
 * Get the perf_event_context for a task and lock it.
1185
 *
1186 1187 1188
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1189
static struct perf_event_context *
P
Peter Zijlstra 已提交
1190
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1191
{
1192
	struct perf_event_context *ctx;
1193

P
Peter Zijlstra 已提交
1194
retry:
1195 1196 1197
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1198
	 * part of the read side critical section was irqs-enabled -- see
1199 1200 1201
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1202
	 * side critical section has interrupts disabled.
1203
	 */
1204
	local_irq_save(*flags);
1205
	rcu_read_lock();
P
Peter Zijlstra 已提交
1206
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1207 1208 1209 1210
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1211
		 * perf_event_task_sched_out, though the
1212 1213 1214 1215 1216 1217
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1218
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1219
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1220
			raw_spin_unlock(&ctx->lock);
1221
			rcu_read_unlock();
1222
			local_irq_restore(*flags);
1223 1224
			goto retry;
		}
1225

1226 1227
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1228
			raw_spin_unlock(&ctx->lock);
1229
			ctx = NULL;
P
Peter Zijlstra 已提交
1230 1231
		} else {
			WARN_ON_ONCE(ctx->task != task);
1232
		}
1233 1234
	}
	rcu_read_unlock();
1235 1236
	if (!ctx)
		local_irq_restore(*flags);
1237 1238 1239 1240 1241 1242 1243 1244
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1245 1246
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1247
{
1248
	struct perf_event_context *ctx;
1249 1250
	unsigned long flags;

P
Peter Zijlstra 已提交
1251
	ctx = perf_lock_task_context(task, ctxn, &flags);
1252 1253
	if (ctx) {
		++ctx->pin_count;
1254
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1255 1256 1257 1258
	}
	return ctx;
}

1259
static void perf_unpin_context(struct perf_event_context *ctx)
1260 1261 1262
{
	unsigned long flags;

1263
	raw_spin_lock_irqsave(&ctx->lock, flags);
1264
	--ctx->pin_count;
1265
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1279 1280 1281
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1282 1283 1284 1285

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1286 1287 1288
	return ctx ? ctx->time : 0;
}

1289 1290
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1291
 * The caller of this function needs to hold the ctx->lock.
1292 1293 1294 1295 1296 1297 1298 1299 1300
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1312
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1313 1314
	else if (ctx->is_active)
		run_end = ctx->time;
1315 1316 1317 1318
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1319 1320 1321 1322

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1323
		run_end = perf_event_time(event);
1324 1325

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1326

1327 1328
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1341 1342 1343 1344 1345 1346 1347 1348 1349
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1350
/*
1351
 * Add a event from the lists for its context.
1352 1353
 * Must be called with ctx->mutex and ctx->lock held.
 */
1354
static void
1355
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1356
{
P
Peter Zijlstra 已提交
1357 1358
	lockdep_assert_held(&ctx->lock);

1359 1360
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1361 1362

	/*
1363 1364 1365
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1366
	 */
1367
	if (event->group_leader == event) {
1368 1369
		struct list_head *list;

1370 1371 1372
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1373 1374
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1375
	}
P
Peter Zijlstra 已提交
1376

1377
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1378 1379
		ctx->nr_cgroups++;

1380 1381 1382
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1383
		ctx->nr_stat++;
1384 1385

	ctx->generation++;
1386 1387
}

J
Jiri Olsa 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1397
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1413
		nr += nr_siblings;
1414 1415 1416 1417 1418 1419 1420
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1421
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1422 1423 1424 1425 1426 1427 1428
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1429 1430 1431 1432 1433 1434
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1435 1436 1437
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1438 1439 1440
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1441 1442 1443
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1444 1445 1446
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1447 1448 1449
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1461 1462 1463 1464 1465 1466
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1467 1468 1469 1470 1471 1472
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1473 1474 1475
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1476 1477 1478 1479 1480 1481 1482 1483 1484
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1485
	event->id_header_size = size;
1486 1487
}

P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1509 1510
static void perf_group_attach(struct perf_event *event)
{
1511
	struct perf_event *group_leader = event->group_leader, *pos;
1512

P
Peter Zijlstra 已提交
1513 1514 1515 1516 1517 1518
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1519 1520 1521 1522 1523
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1524 1525
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1526 1527 1528 1529 1530 1531
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1532 1533 1534 1535 1536

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1537 1538
}

1539
/*
1540
 * Remove a event from the lists for its context.
1541
 * Must be called with ctx->mutex and ctx->lock held.
1542
 */
1543
static void
1544
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1545
{
1546
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1547 1548 1549 1550

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1551 1552 1553 1554
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1555
		return;
1556 1557 1558

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1559
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1560
		ctx->nr_cgroups--;
1561 1562 1563 1564
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1565 1566
		cpuctx = __get_cpu_context(ctx);
		/*
1567 1568
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1569 1570 1571 1572
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1573

1574 1575
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1576
		ctx->nr_stat--;
1577

1578
	list_del_rcu(&event->event_entry);
1579

1580 1581
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1582

1583
	update_group_times(event);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1594 1595

	ctx->generation++;
1596 1597
}

1598
static void perf_group_detach(struct perf_event *event)
1599 1600
{
	struct perf_event *sibling, *tmp;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1617
		goto out;
1618 1619 1620 1621
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1622

1623
	/*
1624 1625
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1626
	 * to whatever list we are on.
1627
	 */
1628
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1629 1630
		if (list)
			list_move_tail(&sibling->group_entry, list);
1631
		sibling->group_leader = sibling;
1632 1633 1634

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1635 1636

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1637
	}
1638 1639 1640 1641 1642 1643

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1644 1645
}

1646 1647
static bool is_orphaned_event(struct perf_event *event)
{
1648
	return event->state == PERF_EVENT_STATE_EXIT;
1649 1650
}

1651 1652 1653 1654 1655 1656
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1657 1658 1659
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1660
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1661
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1662 1663
}

1664 1665
static void
event_sched_out(struct perf_event *event,
1666
		  struct perf_cpu_context *cpuctx,
1667
		  struct perf_event_context *ctx)
1668
{
1669
	u64 tstamp = perf_event_time(event);
1670
	u64 delta;
P
Peter Zijlstra 已提交
1671 1672 1673 1674

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1683
		delta = tstamp - event->tstamp_stopped;
1684
		event->tstamp_running += delta;
1685
		event->tstamp_stopped = tstamp;
1686 1687
	}

1688
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1689
		return;
1690

1691 1692
	perf_pmu_disable(event->pmu);

1693 1694 1695 1696
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1697
	}
1698
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1699
	event->pmu->del(event, 0);
1700
	event->oncpu = -1;
1701

1702
	if (!is_software_event(event))
1703
		cpuctx->active_oncpu--;
1704 1705
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1706 1707
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1708
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1709
		cpuctx->exclusive = 0;
1710 1711

	perf_pmu_enable(event->pmu);
1712 1713
}

1714
static void
1715
group_sched_out(struct perf_event *group_event,
1716
		struct perf_cpu_context *cpuctx,
1717
		struct perf_event_context *ctx)
1718
{
1719
	struct perf_event *event;
1720
	int state = group_event->state;
1721

1722
	event_sched_out(group_event, cpuctx, ctx);
1723 1724 1725 1726

	/*
	 * Schedule out siblings (if any):
	 */
1727 1728
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1729

1730
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1731 1732 1733
		cpuctx->exclusive = 0;
}

1734
#define DETACH_GROUP	0x01UL
1735
#define DETACH_STATE	0x02UL
1736

T
Thomas Gleixner 已提交
1737
/*
1738
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1739
 *
1740
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1741 1742
 * remove it from the context list.
 */
1743 1744 1745 1746 1747
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1748
{
1749
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1750

1751
	event_sched_out(event, cpuctx, ctx);
1752
	if (flags & DETACH_GROUP)
1753
		perf_group_detach(event);
1754
	list_del_event(event, ctx);
1755 1756
	if (flags & DETACH_STATE)
		event->state = PERF_EVENT_STATE_EXIT;
1757 1758

	if (!ctx->nr_events && ctx->is_active) {
1759
		ctx->is_active = 0;
1760 1761 1762 1763
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1764
	}
T
Thomas Gleixner 已提交
1765 1766 1767
}

/*
1768
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1769
 *
1770 1771
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1772 1773
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1774
 * When called from perf_event_exit_task, it's OK because the
1775
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1776
 */
1777
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1778
{
1779
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1780

1781
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1782 1783
}

1784
/*
1785
 * Cross CPU call to disable a performance event
1786
 */
1787 1788 1789 1790
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1791
{
1792 1793
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1794

1795 1796 1797 1798 1799 1800 1801 1802
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1803 1804
}

1805
/*
1806
 * Disable a event.
1807
 *
1808 1809
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1810
 * remains valid.  This condition is satisifed when called through
1811 1812
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1813 1814
 * goes to exit will block in perf_event_exit_event().
 *
1815
 * When called from perf_pending_event it's OK because event->ctx
1816
 * is the current context on this CPU and preemption is disabled,
1817
 * hence we can't get into perf_event_task_sched_out for this context.
1818
 */
P
Peter Zijlstra 已提交
1819
static void _perf_event_disable(struct perf_event *event)
1820
{
1821
	struct perf_event_context *ctx = event->ctx;
1822

1823
	raw_spin_lock_irq(&ctx->lock);
1824
	if (event->state <= PERF_EVENT_STATE_OFF) {
1825
		raw_spin_unlock_irq(&ctx->lock);
1826
		return;
1827
	}
1828
	raw_spin_unlock_irq(&ctx->lock);
1829

1830 1831 1832 1833 1834 1835
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1836
}
P
Peter Zijlstra 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1850
EXPORT_SYMBOL_GPL(perf_event_disable);
1851

S
Stephane Eranian 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1887 1888 1889
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1890
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1891

1892
static int
1893
event_sched_in(struct perf_event *event,
1894
		 struct perf_cpu_context *cpuctx,
1895
		 struct perf_event_context *ctx)
1896
{
1897
	u64 tstamp = perf_event_time(event);
1898
	int ret = 0;
1899

1900 1901
	lockdep_assert_held(&ctx->lock);

1902
	if (event->state <= PERF_EVENT_STATE_OFF)
1903 1904
		return 0;

1905
	event->state = PERF_EVENT_STATE_ACTIVE;
1906
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1918 1919 1920 1921 1922
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1923 1924
	perf_pmu_disable(event->pmu);

1925 1926
	perf_set_shadow_time(event, ctx, tstamp);

1927 1928
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1929
	if (event->pmu->add(event, PERF_EF_START)) {
1930 1931
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1932 1933
		ret = -EAGAIN;
		goto out;
1934 1935
	}

1936 1937
	event->tstamp_running += tstamp - event->tstamp_stopped;

1938
	if (!is_software_event(event))
1939
		cpuctx->active_oncpu++;
1940 1941
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1942 1943
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1944

1945
	if (event->attr.exclusive)
1946 1947
		cpuctx->exclusive = 1;

1948 1949 1950 1951
out:
	perf_pmu_enable(event->pmu);

	return ret;
1952 1953
}

1954
static int
1955
group_sched_in(struct perf_event *group_event,
1956
	       struct perf_cpu_context *cpuctx,
1957
	       struct perf_event_context *ctx)
1958
{
1959
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1960
	struct pmu *pmu = ctx->pmu;
1961 1962
	u64 now = ctx->time;
	bool simulate = false;
1963

1964
	if (group_event->state == PERF_EVENT_STATE_OFF)
1965 1966
		return 0;

1967
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1968

1969
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1970
		pmu->cancel_txn(pmu);
1971
		perf_mux_hrtimer_restart(cpuctx);
1972
		return -EAGAIN;
1973
	}
1974 1975 1976 1977

	/*
	 * Schedule in siblings as one group (if any):
	 */
1978
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979
		if (event_sched_in(event, cpuctx, ctx)) {
1980
			partial_group = event;
1981 1982 1983 1984
			goto group_error;
		}
	}

1985
	if (!pmu->commit_txn(pmu))
1986
		return 0;
1987

1988 1989 1990 1991
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2002
	 */
2003 2004
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2005 2006 2007 2008 2009 2010 2011 2012
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2013
	}
2014
	event_sched_out(group_event, cpuctx, ctx);
2015

P
Peter Zijlstra 已提交
2016
	pmu->cancel_txn(pmu);
2017

2018
	perf_mux_hrtimer_restart(cpuctx);
2019

2020 2021 2022
	return -EAGAIN;
}

2023
/*
2024
 * Work out whether we can put this event group on the CPU now.
2025
 */
2026
static int group_can_go_on(struct perf_event *event,
2027 2028 2029 2030
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2031
	 * Groups consisting entirely of software events can always go on.
2032
	 */
2033
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2034 2035 2036
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2037
	 * events can go on.
2038 2039 2040 2041 2042
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2043
	 * events on the CPU, it can't go on.
2044
	 */
2045
	if (event->attr.exclusive && cpuctx->active_oncpu)
2046 2047 2048 2049 2050 2051 2052 2053
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2054 2055
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2056
{
2057 2058
	u64 tstamp = perf_event_time(event);

2059
	list_add_event(event, ctx);
2060
	perf_group_attach(event);
2061 2062 2063
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2064 2065
}

2066 2067
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2068 2069 2070 2071 2072
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2086 2087
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2088
{
2089 2090 2091 2092 2093 2094
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2095 2096
}

T
Thomas Gleixner 已提交
2097
/*
2098
 * Cross CPU call to install and enable a performance event
2099 2100
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2101
 */
2102
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2103
{
2104
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2105
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2106
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
T
Thomas Gleixner 已提交
2107

2108
	raw_spin_lock(&cpuctx->ctx.lock);
2109
	if (ctx->task) {
2110
		raw_spin_lock(&ctx->lock);
2111 2112 2113 2114
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
2115
		task_ctx = ctx;
2116
		if (ctx->task != current)
2117
			goto unlock;
2118

2119 2120 2121 2122
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2123 2124
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2125
	}
2126

2127
	ctx_resched(cpuctx, task_ctx);
2128
unlock:
2129
	perf_ctx_unlock(cpuctx, task_ctx);
2130 2131

	return 0;
T
Thomas Gleixner 已提交
2132 2133 2134
}

/*
2135
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2136 2137
 */
static void
2138 2139
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2140 2141
			int cpu)
{
2142 2143
	struct task_struct *task = NULL;

2144 2145
	lockdep_assert_held(&ctx->mutex);

2146
	event->ctx = ctx;
2147 2148
	if (event->cpu != -1)
		event->cpu = cpu;
2149

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
2160
	task = ctx->task;
2161

2162
	/*
2163 2164 2165 2166 2167
	 * If between ctx = find_get_context() and mutex_lock(&ctx->mutex) the
	 * ctx gets destroyed, we must not install an event into it.
	 *
	 * This is normally tested for after we acquire the mutex, so this is
	 * a sanity check.
2168
	 */
2169
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2170 2171 2172
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	update_context_time(ctx);
	/*
	 * Update cgrp time only if current cgrp matches event->cgrp.
	 * Must be done before calling add_event_to_ctx().
	 */
	update_cgrp_time_from_event(event);
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2186 2187
}

2188
/*
2189
 * Put a event into inactive state and update time fields.
2190 2191 2192 2193 2194 2195
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2196
static void __perf_event_mark_enabled(struct perf_event *event)
2197
{
2198
	struct perf_event *sub;
2199
	u64 tstamp = perf_event_time(event);
2200

2201
	event->state = PERF_EVENT_STATE_INACTIVE;
2202
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2203
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2204 2205
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2206
	}
2207 2208
}

2209
/*
2210
 * Cross CPU call to enable a performance event
2211
 */
2212 2213 2214 2215
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2216
{
2217
	struct perf_event *leader = event->group_leader;
2218
	struct perf_event_context *task_ctx;
2219

P
Peter Zijlstra 已提交
2220 2221
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2222
		return;
2223

2224
	update_context_time(ctx);
2225
	__perf_event_mark_enabled(event);
2226

2227 2228 2229
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2230
	if (!event_filter_match(event)) {
2231 2232
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2233
			perf_cgroup_defer_enabled(event);
2234 2235
		}
		return;
S
Stephane Eranian 已提交
2236
	}
2237

2238
	/*
2239
	 * If the event is in a group and isn't the group leader,
2240
	 * then don't put it on unless the group is on.
2241
	 */
2242
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2243
		return;
2244

2245 2246 2247
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2248

2249
	ctx_resched(cpuctx, task_ctx);
2250 2251
}

2252
/*
2253
 * Enable a event.
2254
 *
2255 2256
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2257
 * remains valid.  This condition is satisfied when called through
2258 2259
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2260
 */
P
Peter Zijlstra 已提交
2261
static void _perf_event_enable(struct perf_event *event)
2262
{
2263
	struct perf_event_context *ctx = event->ctx;
2264

2265
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2266 2267
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2268
		raw_spin_unlock_irq(&ctx->lock);
2269 2270 2271 2272
		return;
	}

	/*
2273
	 * If the event is in error state, clear that first.
2274 2275 2276 2277
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2278
	 */
2279 2280
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2281
	raw_spin_unlock_irq(&ctx->lock);
2282

2283
	event_function_call(event, __perf_event_enable, NULL);
2284
}
P
Peter Zijlstra 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2297
EXPORT_SYMBOL_GPL(perf_event_enable);
2298

P
Peter Zijlstra 已提交
2299
static int _perf_event_refresh(struct perf_event *event, int refresh)
2300
{
2301
	/*
2302
	 * not supported on inherited events
2303
	 */
2304
	if (event->attr.inherit || !is_sampling_event(event))
2305 2306
		return -EINVAL;

2307
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2308
	_perf_event_enable(event);
2309 2310

	return 0;
2311
}
P
Peter Zijlstra 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2327
EXPORT_SYMBOL_GPL(perf_event_refresh);
2328

2329 2330 2331
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2332
{
2333
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2334
	struct perf_event *event;
2335

P
Peter Zijlstra 已提交
2336
	lockdep_assert_held(&ctx->lock);
2337

2338 2339 2340 2341 2342 2343 2344
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2345
		return;
2346 2347
	}

2348
	ctx->is_active &= ~event_type;
2349 2350 2351 2352 2353
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2354

2355
	update_context_time(ctx);
S
Stephane Eranian 已提交
2356
	update_cgrp_time_from_cpuctx(cpuctx);
2357
	if (!ctx->nr_active)
2358
		return;
2359

P
Peter Zijlstra 已提交
2360
	perf_pmu_disable(ctx->pmu);
2361
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2362 2363
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2364
	}
2365

2366
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2367
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2368
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2369
	}
P
Peter Zijlstra 已提交
2370
	perf_pmu_enable(ctx->pmu);
2371 2372
}

2373
/*
2374 2375 2376 2377 2378 2379
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2380
 */
2381 2382
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2383
{
2384 2385 2386
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2409 2410
}

2411 2412
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2413 2414 2415
{
	u64 value;

2416
	if (!event->attr.inherit_stat)
2417 2418 2419
		return;

	/*
2420
	 * Update the event value, we cannot use perf_event_read()
2421 2422
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2423
	 * we know the event must be on the current CPU, therefore we
2424 2425
	 * don't need to use it.
	 */
2426 2427
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2428 2429
		event->pmu->read(event);
		/* fall-through */
2430

2431 2432
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2433 2434 2435 2436 2437 2438 2439
		break;

	default:
		break;
	}

	/*
2440
	 * In order to keep per-task stats reliable we need to flip the event
2441 2442
	 * values when we flip the contexts.
	 */
2443 2444 2445
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2446

2447 2448
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2449

2450
	/*
2451
	 * Since we swizzled the values, update the user visible data too.
2452
	 */
2453 2454
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2455 2456
}

2457 2458
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2459
{
2460
	struct perf_event *event, *next_event;
2461 2462 2463 2464

	if (!ctx->nr_stat)
		return;

2465 2466
	update_context_time(ctx);

2467 2468
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2469

2470 2471
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2472

2473 2474
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2475

2476
		__perf_event_sync_stat(event, next_event);
2477

2478 2479
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2480 2481 2482
	}
}

2483 2484
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2485
{
P
Peter Zijlstra 已提交
2486
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2487
	struct perf_event_context *next_ctx;
2488
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2489
	struct perf_cpu_context *cpuctx;
2490
	int do_switch = 1;
T
Thomas Gleixner 已提交
2491

P
Peter Zijlstra 已提交
2492 2493
	if (likely(!ctx))
		return;
2494

P
Peter Zijlstra 已提交
2495 2496
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2497 2498
		return;

2499
	rcu_read_lock();
P
Peter Zijlstra 已提交
2500
	next_ctx = next->perf_event_ctxp[ctxn];
2501 2502 2503 2504 2505 2506 2507
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2508
	if (!parent && !next_parent)
2509 2510 2511
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2512 2513 2514 2515 2516 2517 2518 2519 2520
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2521 2522
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2523
		if (context_equiv(ctx, next_ctx)) {
2524 2525
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2526 2527 2528

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2539
			do_switch = 0;
2540

2541
			perf_event_sync_stat(ctx, next_ctx);
2542
		}
2543 2544
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2545
	}
2546
unlock:
2547
	rcu_read_unlock();
2548

2549
	if (do_switch) {
2550
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2551
		task_ctx_sched_out(cpuctx, ctx);
2552
		raw_spin_unlock(&ctx->lock);
2553
	}
T
Thomas Gleixner 已提交
2554 2555
}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2606 2607 2608
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2623 2624
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2625 2626 2627
{
	int ctxn;

2628 2629 2630
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2631 2632 2633
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2634 2635
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2636 2637 2638 2639 2640 2641

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2642
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2643
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2644 2645
}

2646 2647
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2648
{
2649 2650
	if (!cpuctx->task_ctx)
		return;
2651 2652 2653 2654

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2655
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2656 2657
}

2658 2659 2660 2661 2662 2663 2664
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2665 2666
}

2667
static void
2668
ctx_pinned_sched_in(struct perf_event_context *ctx,
2669
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2670
{
2671
	struct perf_event *event;
T
Thomas Gleixner 已提交
2672

2673 2674
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2675
			continue;
2676
		if (!event_filter_match(event))
2677 2678
			continue;

S
Stephane Eranian 已提交
2679 2680 2681 2682
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2683
		if (group_can_go_on(event, cpuctx, 1))
2684
			group_sched_in(event, cpuctx, ctx);
2685 2686 2687 2688 2689

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2690 2691 2692
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2693
		}
2694
	}
2695 2696 2697 2698
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2699
		      struct perf_cpu_context *cpuctx)
2700 2701 2702
{
	struct perf_event *event;
	int can_add_hw = 1;
2703

2704 2705 2706
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2707
			continue;
2708 2709
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2710
		 * of events:
2711
		 */
2712
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2713 2714
			continue;

S
Stephane Eranian 已提交
2715 2716 2717 2718
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2719
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2720
			if (group_sched_in(event, cpuctx, ctx))
2721
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2722
		}
T
Thomas Gleixner 已提交
2723
	}
2724 2725 2726 2727 2728
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2729 2730
	     enum event_type_t event_type,
	     struct task_struct *task)
2731
{
2732
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2733 2734 2735
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2736

2737
	if (likely(!ctx->nr_events))
2738
		return;
2739

2740
	ctx->is_active |= event_type;
2741 2742 2743 2744 2745 2746 2747
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2748 2749
	now = perf_clock();
	ctx->timestamp = now;
2750
	perf_cgroup_set_timestamp(task, ctx);
2751 2752 2753 2754
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2755
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2756
		ctx_pinned_sched_in(ctx, cpuctx);
2757 2758

	/* Then walk through the lower prio flexible groups */
2759
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2760
		ctx_flexible_sched_in(ctx, cpuctx);
2761 2762
}

2763
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2764 2765
			     enum event_type_t event_type,
			     struct task_struct *task)
2766 2767 2768
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2769
	ctx_sched_in(ctx, cpuctx, event_type, task);
2770 2771
}

S
Stephane Eranian 已提交
2772 2773
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2774
{
P
Peter Zijlstra 已提交
2775
	struct perf_cpu_context *cpuctx;
2776

P
Peter Zijlstra 已提交
2777
	cpuctx = __get_cpu_context(ctx);
2778 2779 2780
	if (cpuctx->task_ctx == ctx)
		return;

2781
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2782
	perf_pmu_disable(ctx->pmu);
2783 2784 2785 2786 2787 2788
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2789
	perf_event_sched_in(cpuctx, ctx, task);
2790 2791
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2792 2793
}

P
Peter Zijlstra 已提交
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2805 2806
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2807 2808 2809 2810
{
	struct perf_event_context *ctx;
	int ctxn;

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2821 2822 2823 2824 2825
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2826
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2827
	}
2828

2829 2830 2831
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2832 2833
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2834 2835
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2863
#define REDUCE_FLS(a, b)		\
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2903 2904 2905
	if (!divisor)
		return dividend;

2906 2907 2908
	return div64_u64(dividend, divisor);
}

2909 2910 2911
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2912
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2913
{
2914
	struct hw_perf_event *hwc = &event->hw;
2915
	s64 period, sample_period;
2916 2917
	s64 delta;

2918
	period = perf_calculate_period(event, nsec, count);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2929

2930
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2931 2932 2933
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2934
		local64_set(&hwc->period_left, 0);
2935 2936 2937

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2938
	}
2939 2940
}

2941 2942 2943 2944 2945 2946 2947
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2948
{
2949 2950
	struct perf_event *event;
	struct hw_perf_event *hwc;
2951
	u64 now, period = TICK_NSEC;
2952
	s64 delta;
2953

2954 2955 2956 2957 2958 2959
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2960 2961
		return;

2962
	raw_spin_lock(&ctx->lock);
2963
	perf_pmu_disable(ctx->pmu);
2964

2965
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2966
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2967 2968
			continue;

2969
		if (!event_filter_match(event))
2970 2971
			continue;

2972 2973
		perf_pmu_disable(event->pmu);

2974
		hwc = &event->hw;
2975

2976
		if (hwc->interrupts == MAX_INTERRUPTS) {
2977
			hwc->interrupts = 0;
2978
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2979
			event->pmu->start(event, 0);
2980 2981
		}

2982
		if (!event->attr.freq || !event->attr.sample_freq)
2983
			goto next;
2984

2985 2986 2987 2988 2989
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2990
		now = local64_read(&event->count);
2991 2992
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2993

2994 2995 2996
		/*
		 * restart the event
		 * reload only if value has changed
2997 2998 2999
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3000
		 */
3001
		if (delta > 0)
3002
			perf_adjust_period(event, period, delta, false);
3003 3004

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3005 3006
	next:
		perf_pmu_enable(event->pmu);
3007
	}
3008

3009
	perf_pmu_enable(ctx->pmu);
3010
	raw_spin_unlock(&ctx->lock);
3011 3012
}

3013
/*
3014
 * Round-robin a context's events:
3015
 */
3016
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3017
{
3018 3019 3020 3021 3022 3023
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3024 3025
}

3026
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3027
{
P
Peter Zijlstra 已提交
3028
	struct perf_event_context *ctx = NULL;
3029
	int rotate = 0;
3030

3031 3032 3033 3034
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3035

P
Peter Zijlstra 已提交
3036
	ctx = cpuctx->task_ctx;
3037 3038 3039 3040
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3041

3042
	if (!rotate)
3043 3044
		goto done;

3045
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3046
	perf_pmu_disable(cpuctx->ctx.pmu);
3047

3048 3049 3050
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3051

3052 3053 3054
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3055

3056
	perf_event_sched_in(cpuctx, ctx, current);
3057

3058 3059
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3060
done:
3061 3062

	return rotate;
3063 3064
}

3065 3066 3067
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3068
	if (atomic_read(&nr_freq_events) ||
3069
	    __this_cpu_read(perf_throttled_count))
3070
		return false;
3071 3072
	else
		return true;
3073 3074 3075
}
#endif

3076 3077
void perf_event_task_tick(void)
{
3078 3079
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3080
	int throttled;
3081

3082 3083
	WARN_ON(!irqs_disabled());

3084 3085 3086
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3087
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3088
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3089 3090
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3101
	__perf_event_mark_enabled(event);
3102 3103 3104 3105

	return 1;
}

3106
/*
3107
 * Enable all of a task's events that have been marked enable-on-exec.
3108 3109
 * This expects task == current.
 */
3110
static void perf_event_enable_on_exec(int ctxn)
3111
{
3112
	struct perf_event_context *ctx, *clone_ctx = NULL;
3113
	struct perf_cpu_context *cpuctx;
3114
	struct perf_event *event;
3115 3116 3117 3118
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3119
	ctx = current->perf_event_ctxp[ctxn];
3120
	if (!ctx || !ctx->nr_events)
3121 3122
		goto out;

3123 3124 3125 3126
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3127 3128

	/*
3129
	 * Unclone and reschedule this context if we enabled any event.
3130
	 */
3131
	if (enabled) {
3132
		clone_ctx = unclone_ctx(ctx);
3133 3134 3135
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3136

P
Peter Zijlstra 已提交
3137
out:
3138
	local_irq_restore(flags);
3139 3140 3141

	if (clone_ctx)
		put_ctx(clone_ctx);
3142 3143
}

3144 3145 3146 3147 3148
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3149 3150
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3151 3152 3153
	rcu_read_unlock();
}

3154 3155 3156
struct perf_read_data {
	struct perf_event *event;
	bool group;
3157
	int ret;
3158 3159
};

T
Thomas Gleixner 已提交
3160
/*
3161
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3162
 */
3163
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3164
{
3165 3166
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3167
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3168
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3169
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3170

3171 3172 3173 3174
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3175 3176
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3177 3178 3179 3180
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3181
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3182
	if (ctx->is_active) {
3183
		update_context_time(ctx);
S
Stephane Eranian 已提交
3184 3185
		update_cgrp_time_from_event(event);
	}
3186

3187
	update_event_times(event);
3188 3189
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3190

3191 3192 3193
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3194
		goto unlock;
3195 3196 3197 3198 3199
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3200 3201 3202

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3203 3204 3205 3206 3207
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3208
			sub->pmu->read(sub);
3209
		}
3210
	}
3211 3212

	data->ret = pmu->commit_txn(pmu);
3213 3214

unlock:
3215
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3216 3217
}

P
Peter Zijlstra 已提交
3218 3219
static inline u64 perf_event_count(struct perf_event *event)
{
3220 3221 3222 3223
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3224 3225
}

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3279
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3280
{
3281 3282
	int ret = 0;

T
Thomas Gleixner 已提交
3283
	/*
3284 3285
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3286
	 */
3287
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3288 3289 3290
		struct perf_read_data data = {
			.event = event,
			.group = group,
3291
			.ret = 0,
3292
		};
3293
		smp_call_function_single(event->oncpu,
3294
					 __perf_event_read, &data, 1);
3295
		ret = data.ret;
3296
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3297 3298 3299
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3300
		raw_spin_lock_irqsave(&ctx->lock, flags);
3301 3302 3303 3304 3305
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3306
		if (ctx->is_active) {
3307
			update_context_time(ctx);
S
Stephane Eranian 已提交
3308 3309
			update_cgrp_time_from_event(event);
		}
3310 3311 3312 3313
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3314
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3315
	}
3316 3317

	return ret;
T
Thomas Gleixner 已提交
3318 3319
}

3320
/*
3321
 * Initialize the perf_event context in a task_struct:
3322
 */
3323
static void __perf_event_init_context(struct perf_event_context *ctx)
3324
{
3325
	raw_spin_lock_init(&ctx->lock);
3326
	mutex_init(&ctx->mutex);
3327
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3328 3329
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3330 3331
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3347
	}
3348 3349 3350
	ctx->pmu = pmu;

	return ctx;
3351 3352
}

3353 3354 3355 3356 3357
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3358 3359

	rcu_read_lock();
3360
	if (!vpid)
T
Thomas Gleixner 已提交
3361 3362
		task = current;
	else
3363
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3364 3365 3366 3367 3368 3369 3370 3371
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3372
	err = -EACCES;
3373
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3374 3375
		goto errout;

3376 3377 3378 3379 3380 3381 3382
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3383 3384 3385
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3386
static struct perf_event_context *
3387 3388
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3389
{
3390
	struct perf_event_context *ctx, *clone_ctx = NULL;
3391
	struct perf_cpu_context *cpuctx;
3392
	void *task_ctx_data = NULL;
3393
	unsigned long flags;
P
Peter Zijlstra 已提交
3394
	int ctxn, err;
3395
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3396

3397
	if (!task) {
3398
		/* Must be root to operate on a CPU event: */
3399
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3400 3401 3402
			return ERR_PTR(-EACCES);

		/*
3403
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3404 3405 3406
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3407
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3408 3409
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3410
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3411
		ctx = &cpuctx->ctx;
3412
		get_ctx(ctx);
3413
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3414 3415 3416 3417

		return ctx;
	}

P
Peter Zijlstra 已提交
3418 3419 3420 3421 3422
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3423 3424 3425 3426 3427 3428 3429 3430
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3431
retry:
P
Peter Zijlstra 已提交
3432
	ctx = perf_lock_task_context(task, ctxn, &flags);
3433
	if (ctx) {
3434
		clone_ctx = unclone_ctx(ctx);
3435
		++ctx->pin_count;
3436 3437 3438 3439 3440

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3441
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3442 3443 3444

		if (clone_ctx)
			put_ctx(clone_ctx);
3445
	} else {
3446
		ctx = alloc_perf_context(pmu, task);
3447 3448 3449
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3450

3451 3452 3453 3454 3455
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3466
		else {
3467
			get_ctx(ctx);
3468
			++ctx->pin_count;
3469
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3470
		}
3471 3472 3473
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3474
			put_ctx(ctx);
3475 3476 3477 3478

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3479 3480 3481
		}
	}

3482
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3483
	return ctx;
3484

P
Peter Zijlstra 已提交
3485
errout:
3486
	kfree(task_ctx_data);
3487
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3488 3489
}

L
Li Zefan 已提交
3490
static void perf_event_free_filter(struct perf_event *event);
3491
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3492

3493
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3494
{
3495
	struct perf_event *event;
P
Peter Zijlstra 已提交
3496

3497 3498 3499
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3500
	perf_event_free_filter(event);
3501
	kfree(event);
P
Peter Zijlstra 已提交
3502 3503
}

3504 3505
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3506

3507
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3508
{
3509 3510 3511 3512 3513 3514
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3515

3516 3517
static void unaccount_event(struct perf_event *event)
{
3518 3519
	bool dec = false;

3520 3521 3522 3523
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3524
		dec = true;
3525 3526 3527 3528 3529 3530
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3531 3532
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3533
	if (event->attr.context_switch) {
3534
		dec = true;
3535 3536
		atomic_dec(&nr_switch_events);
	}
3537
	if (is_cgroup_event(event))
3538
		dec = true;
3539
	if (has_branch_stack(event))
3540 3541 3542
		dec = true;

	if (dec)
3543 3544 3545 3546
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3547

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3558
 * _free_event()), the latter -- before the first perf_install_in_context().
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3633
static void _free_event(struct perf_event *event)
3634
{
3635
	irq_work_sync(&event->pending);
3636

3637
	unaccount_event(event);
3638

3639
	if (event->rb) {
3640 3641 3642 3643 3644 3645 3646
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3647
		ring_buffer_attach(event, NULL);
3648
		mutex_unlock(&event->mmap_mutex);
3649 3650
	}

S
Stephane Eranian 已提交
3651 3652 3653
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3673 3674
}

P
Peter Zijlstra 已提交
3675 3676 3677 3678 3679
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3680
{
P
Peter Zijlstra 已提交
3681 3682 3683 3684 3685 3686
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3687

P
Peter Zijlstra 已提交
3688
	_free_event(event);
T
Thomas Gleixner 已提交
3689 3690
}

3691
/*
3692
 * Remove user event from the owner task.
3693
 */
3694
static void perf_remove_from_owner(struct perf_event *event)
3695
{
P
Peter Zijlstra 已提交
3696
	struct task_struct *owner;
3697

P
Peter Zijlstra 已提交
3698 3699
	rcu_read_lock();
	/*
3700 3701 3702
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3703 3704
	 * owner->perf_event_mutex.
	 */
3705
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3727 3728 3729 3730 3731 3732
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3733
		if (event->owner) {
P
Peter Zijlstra 已提交
3734
			list_del_init(&event->owner_entry);
3735 3736
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3737 3738 3739
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3740 3741 3742 3743 3744 3745 3746
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
	struct perf_event_context *ctx;
	struct perf_event *child, *tmp;

3760 3761
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3762

3763
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3764
	WARN_ON_ONCE(ctx->parent_ctx);
3765
	perf_remove_from_context(event, DETACH_GROUP | DETACH_STATE);
L
Leon Yu 已提交
3766
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3767 3768

	/*
3769 3770 3771
	 * At this point we must have event->state == PERF_EVENT_STATE_EXIT,
	 * either from the above perf_remove_from_context() or through
	 * perf_event_exit_event().
P
Peter Zijlstra 已提交
3772
	 *
3773 3774 3775
	 * Therefore, anybody acquiring event->child_mutex after the below
	 * loop _must_ also see this, most importantly inherit_event() which
	 * will avoid placing more children on the list.
P
Peter Zijlstra 已提交
3776
	 *
3777 3778
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3779
	 */
3780
	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_EXIT);
P
Peter Zijlstra 已提交
3781

3782 3783 3784
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3785

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

	/* Must be the last reference */
P
Peter Zijlstra 已提交
3836 3837 3838 3839 3840
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3841 3842 3843
/*
 * Called when the last reference to the file is gone.
 */
3844 3845
static int perf_release(struct inode *inode, struct file *file)
{
3846
	perf_event_release_kernel(file->private_data);
3847
	return 0;
3848 3849
}

3850
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3851
{
3852
	struct perf_event *child;
3853 3854
	u64 total = 0;

3855 3856 3857
	*enabled = 0;
	*running = 0;

3858
	mutex_lock(&event->child_mutex);
3859

3860
	(void)perf_event_read(event, false);
3861 3862
	total += perf_event_count(event);

3863 3864 3865 3866 3867 3868
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3869
		(void)perf_event_read(child, false);
3870
		total += perf_event_count(child);
3871 3872 3873
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3874
	mutex_unlock(&event->child_mutex);
3875 3876 3877

	return total;
}
3878
EXPORT_SYMBOL_GPL(perf_event_read_value);
3879

3880
static int __perf_read_group_add(struct perf_event *leader,
3881
					u64 read_format, u64 *values)
3882
{
3883 3884
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3885
	int ret;
P
Peter Zijlstra 已提交
3886

3887 3888 3889
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3900

3901 3902 3903 3904 3905 3906 3907 3908 3909
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3910 3911
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3912

3913 3914 3915 3916 3917
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3918 3919

	return 0;
3920
}
3921

3922 3923 3924 3925 3926
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3927
	int ret;
3928
	u64 *values;
3929

3930
	lockdep_assert_held(&ctx->mutex);
3931

3932 3933 3934
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3935

3936 3937 3938 3939 3940 3941 3942
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3953

3954
	mutex_unlock(&leader->child_mutex);
3955

3956
	ret = event->read_size;
3957 3958
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3959
	goto out;
3960

3961 3962 3963
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3964
	kfree(values);
3965
	return ret;
3966 3967
}

3968
static int perf_read_one(struct perf_event *event,
3969 3970
				 u64 read_format, char __user *buf)
{
3971
	u64 enabled, running;
3972 3973 3974
	u64 values[4];
	int n = 0;

3975 3976 3977 3978 3979
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3980
	if (read_format & PERF_FORMAT_ID)
3981
		values[n++] = primary_event_id(event);
3982 3983 3984 3985 3986 3987 3988

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4002
/*
4003
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4004 4005
 */
static ssize_t
4006
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4007
{
4008
	u64 read_format = event->attr.read_format;
4009
	int ret;
T
Thomas Gleixner 已提交
4010

4011
	/*
4012
	 * Return end-of-file for a read on a event that is in
4013 4014 4015
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4016
	if (event->state == PERF_EVENT_STATE_ERROR)
4017 4018
		return 0;

4019
	if (count < event->read_size)
4020 4021
		return -ENOSPC;

4022
	WARN_ON_ONCE(event->ctx->parent_ctx);
4023
	if (read_format & PERF_FORMAT_GROUP)
4024
		ret = perf_read_group(event, read_format, buf);
4025
	else
4026
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4027

4028
	return ret;
T
Thomas Gleixner 已提交
4029 4030 4031 4032 4033
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4034
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4035 4036
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4037

P
Peter Zijlstra 已提交
4038
	ctx = perf_event_ctx_lock(event);
4039
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4040 4041 4042
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4043 4044 4045 4046
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4047
	struct perf_event *event = file->private_data;
4048
	struct ring_buffer *rb;
4049
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4050

4051
	poll_wait(file, &event->waitq, wait);
4052

4053
	if (is_event_hup(event))
4054
		return events;
P
Peter Zijlstra 已提交
4055

4056
	/*
4057 4058
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4059 4060
	 */
	mutex_lock(&event->mmap_mutex);
4061 4062
	rb = event->rb;
	if (rb)
4063
		events = atomic_xchg(&rb->poll, 0);
4064
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4065 4066 4067
	return events;
}

P
Peter Zijlstra 已提交
4068
static void _perf_event_reset(struct perf_event *event)
4069
{
4070
	(void)perf_event_read(event, false);
4071
	local64_set(&event->count, 0);
4072
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4073 4074
}

4075
/*
4076 4077
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4078
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4079
 * task existence requirements of perf_event_enable/disable.
4080
 */
4081 4082
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4083
{
4084
	struct perf_event *child;
P
Peter Zijlstra 已提交
4085

4086
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4087

4088 4089 4090
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4091
		func(child);
4092
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4093 4094
}

4095 4096
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4097
{
4098 4099
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4100

P
Peter Zijlstra 已提交
4101 4102
	lockdep_assert_held(&ctx->mutex);

4103
	event = event->group_leader;
4104

4105 4106
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4107
		perf_event_for_each_child(sibling, func);
4108 4109
}

4110 4111 4112 4113
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4114
{
4115
	u64 value = *((u64 *)info);
4116
	bool active;
4117

4118 4119
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4120
	} else {
4121 4122
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4123
	}
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4155
	event_function_call(event, __perf_event_period, &value);
4156

4157
	return 0;
4158 4159
}

4160 4161
static const struct file_operations perf_fops;

4162
static inline int perf_fget_light(int fd, struct fd *p)
4163
{
4164 4165 4166
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4167

4168 4169 4170
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4171
	}
4172 4173
	*p = f;
	return 0;
4174 4175 4176 4177
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4178
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4179
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4180

P
Peter Zijlstra 已提交
4181
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4182
{
4183
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4184
	u32 flags = arg;
4185 4186

	switch (cmd) {
4187
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4188
		func = _perf_event_enable;
4189
		break;
4190
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4191
		func = _perf_event_disable;
4192
		break;
4193
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4194
		func = _perf_event_reset;
4195
		break;
P
Peter Zijlstra 已提交
4196

4197
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4198
		return _perf_event_refresh(event, arg);
4199

4200 4201
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4202

4203 4204 4205 4206 4207 4208 4209 4210 4211
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4212
	case PERF_EVENT_IOC_SET_OUTPUT:
4213 4214 4215
	{
		int ret;
		if (arg != -1) {
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4226 4227 4228
		}
		return ret;
	}
4229

L
Li Zefan 已提交
4230 4231 4232
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4233 4234 4235
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4236
	default:
P
Peter Zijlstra 已提交
4237
		return -ENOTTY;
4238
	}
P
Peter Zijlstra 已提交
4239 4240

	if (flags & PERF_IOC_FLAG_GROUP)
4241
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4242
	else
4243
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4244 4245

	return 0;
4246 4247
}

P
Peter Zijlstra 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4281
int perf_event_task_enable(void)
4282
{
P
Peter Zijlstra 已提交
4283
	struct perf_event_context *ctx;
4284
	struct perf_event *event;
4285

4286
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4287 4288 4289 4290 4291
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4292
	mutex_unlock(&current->perf_event_mutex);
4293 4294 4295 4296

	return 0;
}

4297
int perf_event_task_disable(void)
4298
{
P
Peter Zijlstra 已提交
4299
	struct perf_event_context *ctx;
4300
	struct perf_event *event;
4301

4302
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4303 4304 4305 4306 4307
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4308
	mutex_unlock(&current->perf_event_mutex);
4309 4310 4311 4312

	return 0;
}

4313
static int perf_event_index(struct perf_event *event)
4314
{
P
Peter Zijlstra 已提交
4315 4316 4317
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4318
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4319 4320
		return 0;

4321
	return event->pmu->event_idx(event);
4322 4323
}

4324
static void calc_timer_values(struct perf_event *event,
4325
				u64 *now,
4326 4327
				u64 *enabled,
				u64 *running)
4328
{
4329
	u64 ctx_time;
4330

4331 4332
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4333 4334 4335 4336
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4352 4353
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4354 4355 4356 4357 4358

unlock:
	rcu_read_unlock();
}

4359 4360
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4361 4362 4363
{
}

4364 4365 4366 4367 4368
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4369
void perf_event_update_userpage(struct perf_event *event)
4370
{
4371
	struct perf_event_mmap_page *userpg;
4372
	struct ring_buffer *rb;
4373
	u64 enabled, running, now;
4374 4375

	rcu_read_lock();
4376 4377 4378 4379
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4380 4381 4382 4383 4384 4385 4386 4387 4388
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4389
	calc_timer_values(event, &now, &enabled, &running);
4390

4391
	userpg = rb->user_page;
4392 4393 4394 4395 4396
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4397
	++userpg->lock;
4398
	barrier();
4399
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4400
	userpg->offset = perf_event_count(event);
4401
	if (userpg->index)
4402
		userpg->offset -= local64_read(&event->hw.prev_count);
4403

4404
	userpg->time_enabled = enabled +
4405
			atomic64_read(&event->child_total_time_enabled);
4406

4407
	userpg->time_running = running +
4408
			atomic64_read(&event->child_total_time_running);
4409

4410
	arch_perf_update_userpage(event, userpg, now);
4411

4412
	barrier();
4413
	++userpg->lock;
4414
	preempt_enable();
4415
unlock:
4416
	rcu_read_unlock();
4417 4418
}

4419 4420 4421
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4422
	struct ring_buffer *rb;
4423 4424 4425 4426 4427 4428 4429 4430 4431
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4432 4433
	rb = rcu_dereference(event->rb);
	if (!rb)
4434 4435 4436 4437 4438
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4439
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4454 4455 4456
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4457
	struct ring_buffer *old_rb = NULL;
4458 4459
	unsigned long flags;

4460 4461 4462 4463 4464 4465
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4466

4467 4468 4469 4470
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4471

4472 4473
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4474
	}
4475

4476
	if (rb) {
4477 4478 4479 4480 4481
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4498 4499 4500 4501 4502 4503 4504 4505
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4506 4507 4508 4509
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4510 4511 4512
	rcu_read_unlock();
}

4513
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4514
{
4515
	struct ring_buffer *rb;
4516

4517
	rcu_read_lock();
4518 4519 4520 4521
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4522 4523 4524
	}
	rcu_read_unlock();

4525
	return rb;
4526 4527
}

4528
void ring_buffer_put(struct ring_buffer *rb)
4529
{
4530
	if (!atomic_dec_and_test(&rb->refcount))
4531
		return;
4532

4533
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4534

4535
	call_rcu(&rb->rcu_head, rb_free_rcu);
4536 4537 4538 4539
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4540
	struct perf_event *event = vma->vm_file->private_data;
4541

4542
	atomic_inc(&event->mmap_count);
4543
	atomic_inc(&event->rb->mmap_count);
4544

4545 4546 4547
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4548 4549
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4550 4551
}

4552 4553 4554 4555 4556 4557 4558 4559
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4560 4561
static void perf_mmap_close(struct vm_area_struct *vma)
{
4562
	struct perf_event *event = vma->vm_file->private_data;
4563

4564
	struct ring_buffer *rb = ring_buffer_get(event);
4565 4566 4567
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4568

4569 4570 4571
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4586 4587 4588
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4589
		goto out_put;
4590

4591
	ring_buffer_attach(event, NULL);
4592 4593 4594
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4595 4596
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4597

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4614

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4626 4627 4628
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4629
		mutex_unlock(&event->mmap_mutex);
4630
		put_event(event);
4631

4632 4633 4634 4635 4636
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4637
	}
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4653
out_put:
4654
	ring_buffer_put(rb); /* could be last */
4655 4656
}

4657
static const struct vm_operations_struct perf_mmap_vmops = {
4658
	.open		= perf_mmap_open,
4659
	.close		= perf_mmap_close, /* non mergable */
4660 4661
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4662 4663 4664 4665
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4666
	struct perf_event *event = file->private_data;
4667
	unsigned long user_locked, user_lock_limit;
4668
	struct user_struct *user = current_user();
4669
	unsigned long locked, lock_limit;
4670
	struct ring_buffer *rb = NULL;
4671 4672
	unsigned long vma_size;
	unsigned long nr_pages;
4673
	long user_extra = 0, extra = 0;
4674
	int ret = 0, flags = 0;
4675

4676 4677 4678
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4679
	 * same rb.
4680 4681 4682 4683
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4684
	if (!(vma->vm_flags & VM_SHARED))
4685
		return -EINVAL;
4686 4687

	vma_size = vma->vm_end - vma->vm_start;
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4748

4749
	/*
4750
	 * If we have rb pages ensure they're a power-of-two number, so we
4751 4752
	 * can do bitmasks instead of modulo.
	 */
4753
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4754 4755
		return -EINVAL;

4756
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4757 4758
		return -EINVAL;

4759
	WARN_ON_ONCE(event->ctx->parent_ctx);
4760
again:
4761
	mutex_lock(&event->mmap_mutex);
4762
	if (event->rb) {
4763
		if (event->rb->nr_pages != nr_pages) {
4764
			ret = -EINVAL;
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4778 4779 4780
		goto unlock;
	}

4781
	user_extra = nr_pages + 1;
4782 4783

accounting:
4784
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4785 4786 4787 4788 4789 4790

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4791
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4792

4793 4794
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4795

4796
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4797
	lock_limit >>= PAGE_SHIFT;
4798
	locked = vma->vm_mm->pinned_vm + extra;
4799

4800 4801
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4802 4803 4804
		ret = -EPERM;
		goto unlock;
	}
4805

4806
	WARN_ON(!rb && event->rb);
4807

4808
	if (vma->vm_flags & VM_WRITE)
4809
		flags |= RING_BUFFER_WRITABLE;
4810

4811
	if (!rb) {
4812 4813 4814
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4815

4816 4817 4818 4819
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4820

4821 4822 4823
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4824

4825
		ring_buffer_attach(event, rb);
4826

4827 4828 4829
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4830 4831
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4832 4833 4834
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4835

4836
unlock:
4837 4838 4839 4840
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4841
		atomic_inc(&event->mmap_count);
4842 4843 4844 4845
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4846
	mutex_unlock(&event->mmap_mutex);
4847

4848 4849 4850 4851
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4852
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4853
	vma->vm_ops = &perf_mmap_vmops;
4854

4855 4856 4857
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4858
	return ret;
4859 4860
}

P
Peter Zijlstra 已提交
4861 4862
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4863
	struct inode *inode = file_inode(filp);
4864
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4865 4866
	int retval;

A
Al Viro 已提交
4867
	inode_lock(inode);
4868
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
4869
	inode_unlock(inode);
P
Peter Zijlstra 已提交
4870 4871 4872 4873 4874 4875 4876

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4877
static const struct file_operations perf_fops = {
4878
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4879 4880 4881
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4882
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4883
	.compat_ioctl		= perf_compat_ioctl,
4884
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4885
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4886 4887
};

4888
/*
4889
 * Perf event wakeup
4890 4891 4892 4893 4894
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4895 4896 4897 4898 4899 4900 4901 4902
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4903
void perf_event_wakeup(struct perf_event *event)
4904
{
4905
	ring_buffer_wakeup(event);
4906

4907
	if (event->pending_kill) {
4908
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4909
		event->pending_kill = 0;
4910
	}
4911 4912
}

4913
static void perf_pending_event(struct irq_work *entry)
4914
{
4915 4916
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4917 4918 4919 4920 4921 4922 4923
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4924

4925 4926
	if (event->pending_disable) {
		event->pending_disable = 0;
4927
		perf_event_disable_local(event);
4928 4929
	}

4930 4931 4932
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4933
	}
4934 4935 4936

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4937 4938
}

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4975
static void perf_sample_regs_user(struct perf_regs *regs_user,
4976 4977
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4978
{
4979 4980
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4981
		regs_user->regs = regs;
4982 4983
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4984 4985 4986
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4987 4988 4989
	}
}

4990 4991 4992 4993 4994 4995 4996 4997
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5093 5094 5095
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5109
		data->time = perf_event_clock(event);
5110

5111
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5123 5124 5125
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5150 5151 5152

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5153 5154
}

5155 5156 5157
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5158 5159 5160 5161 5162
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5163
static void perf_output_read_one(struct perf_output_handle *handle,
5164 5165
				 struct perf_event *event,
				 u64 enabled, u64 running)
5166
{
5167
	u64 read_format = event->attr.read_format;
5168 5169 5170
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5171
	values[n++] = perf_event_count(event);
5172
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5173
		values[n++] = enabled +
5174
			atomic64_read(&event->child_total_time_enabled);
5175 5176
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5177
		values[n++] = running +
5178
			atomic64_read(&event->child_total_time_running);
5179 5180
	}
	if (read_format & PERF_FORMAT_ID)
5181
		values[n++] = primary_event_id(event);
5182

5183
	__output_copy(handle, values, n * sizeof(u64));
5184 5185 5186
}

/*
5187
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5188 5189
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5190 5191
			    struct perf_event *event,
			    u64 enabled, u64 running)
5192
{
5193 5194
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5195 5196 5197 5198 5199 5200
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5201
		values[n++] = enabled;
5202 5203

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5204
		values[n++] = running;
5205

5206
	if (leader != event)
5207 5208
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5209
	values[n++] = perf_event_count(leader);
5210
	if (read_format & PERF_FORMAT_ID)
5211
		values[n++] = primary_event_id(leader);
5212

5213
	__output_copy(handle, values, n * sizeof(u64));
5214

5215
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5216 5217
		n = 0;

5218 5219
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5220 5221
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5222
		values[n++] = perf_event_count(sub);
5223
		if (read_format & PERF_FORMAT_ID)
5224
			values[n++] = primary_event_id(sub);
5225

5226
		__output_copy(handle, values, n * sizeof(u64));
5227 5228 5229
	}
}

5230 5231 5232
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5233
static void perf_output_read(struct perf_output_handle *handle,
5234
			     struct perf_event *event)
5235
{
5236
	u64 enabled = 0, running = 0, now;
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5248
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5249
		calc_timer_values(event, &now, &enabled, &running);
5250

5251
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5252
		perf_output_read_group(handle, event, enabled, running);
5253
	else
5254
		perf_output_read_one(handle, event, enabled, running);
5255 5256
}

5257 5258 5259
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5260
			struct perf_event *event)
5261 5262 5263 5264 5265
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5266 5267 5268
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5294
		perf_output_read(handle, event);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5305
			__output_copy(handle, data->callchain, size);
5306 5307 5308 5309 5310 5311 5312 5313
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5314 5315 5316 5317 5318 5319 5320 5321 5322
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5334

5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5369

5370
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5371 5372 5373
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5374
	}
A
Andi Kleen 已提交
5375 5376 5377

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5378 5379 5380

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5381

A
Andi Kleen 已提交
5382 5383 5384
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5415 5416 5417 5418
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5419
			 struct perf_event *event,
5420
			 struct pt_regs *regs)
5421
{
5422
	u64 sample_type = event->attr.sample_type;
5423

5424
	header->type = PERF_RECORD_SAMPLE;
5425
	header->size = sizeof(*header) + event->header_size;
5426 5427 5428

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5429

5430
	__perf_event_header__init_id(header, data, event);
5431

5432
	if (sample_type & PERF_SAMPLE_IP)
5433 5434
		data->ip = perf_instruction_pointer(regs);

5435
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5436
		int size = 1;
5437

5438
		data->callchain = perf_callchain(event, regs);
5439 5440 5441 5442 5443

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5444 5445
	}

5446
	if (sample_type & PERF_SAMPLE_RAW) {
5447 5448 5449 5450 5451 5452 5453
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5454
		header->size += round_up(size, sizeof(u64));
5455
	}
5456 5457 5458 5459 5460 5461 5462 5463 5464

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5465

5466
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5467 5468
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5469

5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5493
						     data->regs_user.regs);
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5521
}
5522

5523 5524 5525
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5526 5527 5528
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5529

5530 5531 5532
	/* protect the callchain buffers */
	rcu_read_lock();

5533
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5534

5535
	if (perf_output_begin(&handle, event, header.size))
5536
		goto exit;
5537

5538
	perf_output_sample(&handle, &header, data, event);
5539

5540
	perf_output_end(&handle);
5541 5542 5543

exit:
	rcu_read_unlock();
5544 5545
}

5546
/*
5547
 * read event_id
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5558
perf_event_read_event(struct perf_event *event,
5559 5560 5561
			struct task_struct *task)
{
	struct perf_output_handle handle;
5562
	struct perf_sample_data sample;
5563
	struct perf_read_event read_event = {
5564
		.header = {
5565
			.type = PERF_RECORD_READ,
5566
			.misc = 0,
5567
			.size = sizeof(read_event) + event->read_size,
5568
		},
5569 5570
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5571
	};
5572
	int ret;
5573

5574
	perf_event_header__init_id(&read_event.header, &sample, event);
5575
	ret = perf_output_begin(&handle, event, read_event.header.size);
5576 5577 5578
	if (ret)
		return;

5579
	perf_output_put(&handle, read_event);
5580
	perf_output_read(&handle, event);
5581
	perf_event__output_id_sample(event, &handle, &sample);
5582

5583 5584 5585
	perf_output_end(&handle);
}

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5600
		output(event, data);
5601 5602 5603
	}
}

J
Jiri Olsa 已提交
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5615
static void
5616
perf_event_aux(perf_event_aux_output_cb output, void *data,
5617 5618 5619 5620 5621 5622 5623
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5635 5636 5637 5638 5639
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5640
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5641 5642 5643 5644 5645
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5646
			perf_event_aux_ctx(ctx, output, data);
5647 5648 5649 5650 5651 5652
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5653
/*
P
Peter Zijlstra 已提交
5654 5655
 * task tracking -- fork/exit
 *
5656
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5657 5658
 */

P
Peter Zijlstra 已提交
5659
struct perf_task_event {
5660
	struct task_struct		*task;
5661
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5662 5663 5664 5665 5666 5667

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5668 5669
		u32				tid;
		u32				ptid;
5670
		u64				time;
5671
	} event_id;
P
Peter Zijlstra 已提交
5672 5673
};

5674 5675
static int perf_event_task_match(struct perf_event *event)
{
5676 5677 5678
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5679 5680
}

5681
static void perf_event_task_output(struct perf_event *event,
5682
				   void *data)
P
Peter Zijlstra 已提交
5683
{
5684
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5685
	struct perf_output_handle handle;
5686
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5687
	struct task_struct *task = task_event->task;
5688
	int ret, size = task_event->event_id.header.size;
5689

5690 5691 5692
	if (!perf_event_task_match(event))
		return;

5693
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5694

5695
	ret = perf_output_begin(&handle, event,
5696
				task_event->event_id.header.size);
5697
	if (ret)
5698
		goto out;
P
Peter Zijlstra 已提交
5699

5700 5701
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5702

5703 5704
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5705

5706 5707
	task_event->event_id.time = perf_event_clock(event);

5708
	perf_output_put(&handle, task_event->event_id);
5709

5710 5711
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5712
	perf_output_end(&handle);
5713 5714
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5715 5716
}

5717 5718
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5719
			      int new)
P
Peter Zijlstra 已提交
5720
{
P
Peter Zijlstra 已提交
5721
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5722

5723 5724 5725
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5726 5727
		return;

P
Peter Zijlstra 已提交
5728
	task_event = (struct perf_task_event){
5729 5730
		.task	  = task,
		.task_ctx = task_ctx,
5731
		.event_id    = {
P
Peter Zijlstra 已提交
5732
			.header = {
5733
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5734
				.misc = 0,
5735
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5736
			},
5737 5738
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5739 5740
			/* .tid  */
			/* .ptid */
5741
			/* .time */
P
Peter Zijlstra 已提交
5742 5743 5744
		},
	};

5745
	perf_event_aux(perf_event_task_output,
5746 5747
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5748 5749
}

5750
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5751
{
5752
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5753 5754
}

5755 5756 5757 5758 5759
/*
 * comm tracking
 */

struct perf_comm_event {
5760 5761
	struct task_struct	*task;
	char			*comm;
5762 5763 5764 5765 5766 5767 5768
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5769
	} event_id;
5770 5771
};

5772 5773 5774 5775 5776
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5777
static void perf_event_comm_output(struct perf_event *event,
5778
				   void *data)
5779
{
5780
	struct perf_comm_event *comm_event = data;
5781
	struct perf_output_handle handle;
5782
	struct perf_sample_data sample;
5783
	int size = comm_event->event_id.header.size;
5784 5785
	int ret;

5786 5787 5788
	if (!perf_event_comm_match(event))
		return;

5789 5790
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5791
				comm_event->event_id.header.size);
5792 5793

	if (ret)
5794
		goto out;
5795

5796 5797
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5798

5799
	perf_output_put(&handle, comm_event->event_id);
5800
	__output_copy(&handle, comm_event->comm,
5801
				   comm_event->comm_size);
5802 5803 5804

	perf_event__output_id_sample(event, &handle, &sample);

5805
	perf_output_end(&handle);
5806 5807
out:
	comm_event->event_id.header.size = size;
5808 5809
}

5810
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5811
{
5812
	char comm[TASK_COMM_LEN];
5813 5814
	unsigned int size;

5815
	memset(comm, 0, sizeof(comm));
5816
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5817
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5818 5819 5820 5821

	comm_event->comm = comm;
	comm_event->comm_size = size;

5822
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5823

5824
	perf_event_aux(perf_event_comm_output,
5825 5826
		       comm_event,
		       NULL);
5827 5828
}

5829
void perf_event_comm(struct task_struct *task, bool exec)
5830
{
5831 5832
	struct perf_comm_event comm_event;

5833
	if (!atomic_read(&nr_comm_events))
5834
		return;
5835

5836
	comm_event = (struct perf_comm_event){
5837
		.task	= task,
5838 5839
		/* .comm      */
		/* .comm_size */
5840
		.event_id  = {
5841
			.header = {
5842
				.type = PERF_RECORD_COMM,
5843
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5844 5845 5846 5847
				/* .size */
			},
			/* .pid */
			/* .tid */
5848 5849 5850
		},
	};

5851
	perf_event_comm_event(&comm_event);
5852 5853
}

5854 5855 5856 5857 5858
/*
 * mmap tracking
 */

struct perf_mmap_event {
5859 5860 5861 5862
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5863 5864 5865
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5866
	u32			prot, flags;
5867 5868 5869 5870 5871 5872 5873 5874 5875

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5876
	} event_id;
5877 5878
};

5879 5880 5881 5882 5883 5884 5885 5886
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5887
	       (executable && (event->attr.mmap || event->attr.mmap2));
5888 5889
}

5890
static void perf_event_mmap_output(struct perf_event *event,
5891
				   void *data)
5892
{
5893
	struct perf_mmap_event *mmap_event = data;
5894
	struct perf_output_handle handle;
5895
	struct perf_sample_data sample;
5896
	int size = mmap_event->event_id.header.size;
5897
	int ret;
5898

5899 5900 5901
	if (!perf_event_mmap_match(event, data))
		return;

5902 5903 5904 5905 5906
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5907
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5908 5909
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5910 5911
	}

5912 5913
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5914
				mmap_event->event_id.header.size);
5915
	if (ret)
5916
		goto out;
5917

5918 5919
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5920

5921
	perf_output_put(&handle, mmap_event->event_id);
5922 5923 5924 5925 5926 5927

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5928 5929
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5930 5931
	}

5932
	__output_copy(&handle, mmap_event->file_name,
5933
				   mmap_event->file_size);
5934 5935 5936

	perf_event__output_id_sample(event, &handle, &sample);

5937
	perf_output_end(&handle);
5938 5939
out:
	mmap_event->event_id.header.size = size;
5940 5941
}

5942
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5943
{
5944 5945
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5946 5947
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5948
	u32 prot = 0, flags = 0;
5949 5950 5951
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5952
	char *name;
5953

5954
	if (file) {
5955 5956
		struct inode *inode;
		dev_t dev;
5957

5958
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5959
		if (!buf) {
5960 5961
			name = "//enomem";
			goto cpy_name;
5962
		}
5963
		/*
5964
		 * d_path() works from the end of the rb backwards, so we
5965 5966 5967
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5968
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5969
		if (IS_ERR(name)) {
5970 5971
			name = "//toolong";
			goto cpy_name;
5972
		}
5973 5974 5975 5976 5977 5978
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6001
		goto got_name;
6002
	} else {
6003 6004 6005 6006 6007 6008
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6009
		name = (char *)arch_vma_name(vma);
6010 6011
		if (name)
			goto cpy_name;
6012

6013
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6014
				vma->vm_end >= vma->vm_mm->brk) {
6015 6016
			name = "[heap]";
			goto cpy_name;
6017 6018
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6019
				vma->vm_end >= vma->vm_mm->start_stack) {
6020 6021
			name = "[stack]";
			goto cpy_name;
6022 6023
		}

6024 6025
		name = "//anon";
		goto cpy_name;
6026 6027
	}

6028 6029 6030
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6031
got_name:
6032 6033 6034 6035 6036 6037 6038 6039
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6040 6041 6042

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6043 6044 6045 6046
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6047 6048
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6049

6050 6051 6052
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6053
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6054

6055
	perf_event_aux(perf_event_mmap_output,
6056 6057
		       mmap_event,
		       NULL);
6058

6059 6060 6061
	kfree(buf);
}

6062
void perf_event_mmap(struct vm_area_struct *vma)
6063
{
6064 6065
	struct perf_mmap_event mmap_event;

6066
	if (!atomic_read(&nr_mmap_events))
6067 6068 6069
		return;

	mmap_event = (struct perf_mmap_event){
6070
		.vma	= vma,
6071 6072
		/* .file_name */
		/* .file_size */
6073
		.event_id  = {
6074
			.header = {
6075
				.type = PERF_RECORD_MMAP,
6076
				.misc = PERF_RECORD_MISC_USER,
6077 6078 6079 6080
				/* .size */
			},
			/* .pid */
			/* .tid */
6081 6082
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6083
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6084
		},
6085 6086 6087 6088
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6089 6090
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6091 6092
	};

6093
	perf_event_mmap_event(&mmap_event);
6094 6095
}

A
Alexander Shishkin 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6248 6249 6250 6251
/*
 * IRQ throttle logging
 */

6252
static void perf_log_throttle(struct perf_event *event, int enable)
6253 6254
{
	struct perf_output_handle handle;
6255
	struct perf_sample_data sample;
6256 6257 6258 6259 6260
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6261
		u64				id;
6262
		u64				stream_id;
6263 6264
	} throttle_event = {
		.header = {
6265
			.type = PERF_RECORD_THROTTLE,
6266 6267 6268
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6269
		.time		= perf_event_clock(event),
6270 6271
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6272 6273
	};

6274
	if (enable)
6275
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6276

6277 6278 6279
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6280
				throttle_event.header.size);
6281 6282 6283 6284
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6285
	perf_event__output_id_sample(event, &handle, &sample);
6286 6287 6288
	perf_output_end(&handle);
}

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6325
/*
6326
 * Generic event overflow handling, sampling.
6327 6328
 */

6329
static int __perf_event_overflow(struct perf_event *event,
6330 6331
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6332
{
6333 6334
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6335
	u64 seq;
6336 6337
	int ret = 0;

6338 6339 6340 6341 6342 6343 6344
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6345 6346 6347 6348 6349 6350 6351 6352 6353
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6354 6355
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6356
			tick_nohz_full_kick();
6357 6358
			ret = 1;
		}
6359
	}
6360

6361
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6362
		u64 now = perf_clock();
6363
		s64 delta = now - hwc->freq_time_stamp;
6364

6365
		hwc->freq_time_stamp = now;
6366

6367
		if (delta > 0 && delta < 2*TICK_NSEC)
6368
			perf_adjust_period(event, delta, hwc->last_period, true);
6369 6370
	}

6371 6372
	/*
	 * XXX event_limit might not quite work as expected on inherited
6373
	 * events
6374 6375
	 */

6376 6377
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6378
		ret = 1;
6379
		event->pending_kill = POLL_HUP;
6380 6381
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6382 6383
	}

6384
	if (event->overflow_handler)
6385
		event->overflow_handler(event, data, regs);
6386
	else
6387
		perf_event_output(event, data, regs);
6388

6389
	if (*perf_event_fasync(event) && event->pending_kill) {
6390 6391
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6392 6393
	}

6394
	return ret;
6395 6396
}

6397
int perf_event_overflow(struct perf_event *event,
6398 6399
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6400
{
6401
	return __perf_event_overflow(event, 1, data, regs);
6402 6403
}

6404
/*
6405
 * Generic software event infrastructure
6406 6407
 */

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6419
/*
6420 6421
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6422 6423 6424 6425
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6426
u64 perf_swevent_set_period(struct perf_event *event)
6427
{
6428
	struct hw_perf_event *hwc = &event->hw;
6429 6430 6431 6432 6433
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6434 6435

again:
6436
	old = val = local64_read(&hwc->period_left);
6437 6438
	if (val < 0)
		return 0;
6439

6440 6441 6442
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6443
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6444
		goto again;
6445

6446
	return nr;
6447 6448
}

6449
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6450
				    struct perf_sample_data *data,
6451
				    struct pt_regs *regs)
6452
{
6453
	struct hw_perf_event *hwc = &event->hw;
6454
	int throttle = 0;
6455

6456 6457
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6458

6459 6460
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6461

6462
	for (; overflow; overflow--) {
6463
		if (__perf_event_overflow(event, throttle,
6464
					    data, regs)) {
6465 6466 6467 6468 6469 6470
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6471
		throttle = 1;
6472
	}
6473 6474
}

P
Peter Zijlstra 已提交
6475
static void perf_swevent_event(struct perf_event *event, u64 nr,
6476
			       struct perf_sample_data *data,
6477
			       struct pt_regs *regs)
6478
{
6479
	struct hw_perf_event *hwc = &event->hw;
6480

6481
	local64_add(nr, &event->count);
6482

6483 6484 6485
	if (!regs)
		return;

6486
	if (!is_sampling_event(event))
6487
		return;
6488

6489 6490 6491 6492 6493 6494
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6495
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6496
		return perf_swevent_overflow(event, 1, data, regs);
6497

6498
	if (local64_add_negative(nr, &hwc->period_left))
6499
		return;
6500

6501
	perf_swevent_overflow(event, 0, data, regs);
6502 6503
}

6504 6505 6506
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6507
	if (event->hw.state & PERF_HES_STOPPED)
6508
		return 1;
P
Peter Zijlstra 已提交
6509

6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6521
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6522
				enum perf_type_id type,
L
Li Zefan 已提交
6523 6524 6525
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6526
{
6527
	if (event->attr.type != type)
6528
		return 0;
6529

6530
	if (event->attr.config != event_id)
6531 6532
		return 0;

6533 6534
	if (perf_exclude_event(event, regs))
		return 0;
6535 6536 6537 6538

	return 1;
}

6539 6540 6541 6542 6543 6544 6545
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6546 6547
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6548
{
6549 6550 6551 6552
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6553

6554 6555
/* For the read side: events when they trigger */
static inline struct hlist_head *
6556
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6557 6558
{
	struct swevent_hlist *hlist;
6559

6560
	hlist = rcu_dereference(swhash->swevent_hlist);
6561 6562 6563
	if (!hlist)
		return NULL;

6564 6565 6566 6567 6568
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6569
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6580
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6581 6582 6583 6584 6585
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6586 6587 6588
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6589
				    u64 nr,
6590 6591
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6592
{
6593
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6594
	struct perf_event *event;
6595
	struct hlist_head *head;
6596

6597
	rcu_read_lock();
6598
	head = find_swevent_head_rcu(swhash, type, event_id);
6599 6600 6601
	if (!head)
		goto end;

6602
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6603
		if (perf_swevent_match(event, type, event_id, data, regs))
6604
			perf_swevent_event(event, nr, data, regs);
6605
	}
6606 6607
end:
	rcu_read_unlock();
6608 6609
}

6610 6611
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6612
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6613
{
6614
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6615

6616
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6617
}
I
Ingo Molnar 已提交
6618
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6619

6620
inline void perf_swevent_put_recursion_context(int rctx)
6621
{
6622
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6623

6624
	put_recursion_context(swhash->recursion, rctx);
6625
}
6626

6627
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6628
{
6629
	struct perf_sample_data data;
6630

6631
	if (WARN_ON_ONCE(!regs))
6632
		return;
6633

6634
	perf_sample_data_init(&data, addr, 0);
6635
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6648 6649

	perf_swevent_put_recursion_context(rctx);
6650
fail:
6651
	preempt_enable_notrace();
6652 6653
}

6654
static void perf_swevent_read(struct perf_event *event)
6655 6656 6657
{
}

P
Peter Zijlstra 已提交
6658
static int perf_swevent_add(struct perf_event *event, int flags)
6659
{
6660
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6661
	struct hw_perf_event *hwc = &event->hw;
6662 6663
	struct hlist_head *head;

6664
	if (is_sampling_event(event)) {
6665
		hwc->last_period = hwc->sample_period;
6666
		perf_swevent_set_period(event);
6667
	}
6668

P
Peter Zijlstra 已提交
6669 6670
	hwc->state = !(flags & PERF_EF_START);

6671
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6672
	if (WARN_ON_ONCE(!head))
6673 6674 6675
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6676
	perf_event_update_userpage(event);
6677

6678 6679 6680
	return 0;
}

P
Peter Zijlstra 已提交
6681
static void perf_swevent_del(struct perf_event *event, int flags)
6682
{
6683
	hlist_del_rcu(&event->hlist_entry);
6684 6685
}

P
Peter Zijlstra 已提交
6686
static void perf_swevent_start(struct perf_event *event, int flags)
6687
{
P
Peter Zijlstra 已提交
6688
	event->hw.state = 0;
6689
}
I
Ingo Molnar 已提交
6690

P
Peter Zijlstra 已提交
6691
static void perf_swevent_stop(struct perf_event *event, int flags)
6692
{
P
Peter Zijlstra 已提交
6693
	event->hw.state = PERF_HES_STOPPED;
6694 6695
}

6696 6697
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6698
swevent_hlist_deref(struct swevent_htable *swhash)
6699
{
6700 6701
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6702 6703
}

6704
static void swevent_hlist_release(struct swevent_htable *swhash)
6705
{
6706
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6707

6708
	if (!hlist)
6709 6710
		return;

6711
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6712
	kfree_rcu(hlist, rcu_head);
6713 6714 6715 6716
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6717
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6718

6719
	mutex_lock(&swhash->hlist_mutex);
6720

6721 6722
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6723

6724
	mutex_unlock(&swhash->hlist_mutex);
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6737
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6738 6739
	int err = 0;

6740 6741
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6742 6743 6744 6745 6746 6747 6748
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6749
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6750
	}
6751
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6752
exit:
6753
	mutex_unlock(&swhash->hlist_mutex);
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6774
fail:
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6785
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6786

6787 6788 6789
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6790

6791 6792
	WARN_ON(event->parent);

6793
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6794 6795 6796 6797 6798
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6799
	u64 event_id = event->attr.config;
6800 6801 6802 6803

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6804 6805 6806 6807 6808 6809
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6810 6811 6812 6813 6814 6815 6816 6817 6818
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6819
	if (event_id >= PERF_COUNT_SW_MAX)
6820 6821 6822 6823 6824 6825 6826 6827 6828
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6829
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6830 6831 6832 6833 6834 6835 6836
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6837
	.task_ctx_nr	= perf_sw_context,
6838

6839 6840
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6841
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6842 6843 6844 6845
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6846 6847 6848
	.read		= perf_swevent_read,
};

6849 6850
#ifdef CONFIG_EVENT_TRACING

6851 6852 6853 6854 6855
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6856 6857 6858 6859
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6860 6861 6862 6863 6864 6865 6866 6867 6868
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6869 6870
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6871 6872 6873 6874
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6875 6876 6877 6878 6879 6880 6881 6882 6883
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6884 6885
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6886 6887
{
	struct perf_sample_data data;
6888 6889
	struct perf_event *event;

6890 6891 6892 6893 6894
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6895
	perf_sample_data_init(&data, addr, 0);
6896 6897
	data.raw = &raw;

6898
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6899
		if (perf_tp_event_match(event, &data, regs))
6900
			perf_swevent_event(event, count, &data, regs);
6901
	}
6902

6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6928
	perf_swevent_put_recursion_context(rctx);
6929 6930 6931
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6932
static void tp_perf_event_destroy(struct perf_event *event)
6933
{
6934
	perf_trace_destroy(event);
6935 6936
}

6937
static int perf_tp_event_init(struct perf_event *event)
6938
{
6939 6940
	int err;

6941 6942 6943
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6944 6945 6946 6947 6948 6949
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6950 6951
	err = perf_trace_init(event);
	if (err)
6952
		return err;
6953

6954
	event->destroy = tp_perf_event_destroy;
6955

6956 6957 6958 6959
	return 0;
}

static struct pmu perf_tracepoint = {
6960 6961
	.task_ctx_nr	= perf_sw_context,

6962
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6963 6964 6965 6966
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6967 6968 6969 6970 6971
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6972
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6973
}
L
Li Zefan 已提交
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7008 7009
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7010 7011 7012 7013 7014 7015
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7016
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7041
#else
L
Li Zefan 已提交
7042

7043
static inline void perf_tp_register(void)
7044 7045
{
}
L
Li Zefan 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7056 7057 7058 7059 7060 7061 7062 7063
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7064
#endif /* CONFIG_EVENT_TRACING */
7065

7066
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7067
void perf_bp_event(struct perf_event *bp, void *data)
7068
{
7069 7070 7071
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7072
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7073

P
Peter Zijlstra 已提交
7074
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7075
		perf_swevent_event(bp, 1, &sample, regs);
7076 7077 7078
}
#endif

7079 7080 7081
/*
 * hrtimer based swevent callback
 */
7082

7083
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7084
{
7085 7086 7087 7088 7089
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7090

7091
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7092 7093 7094 7095

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7096
	event->pmu->read(event);
7097

7098
	perf_sample_data_init(&data, 0, event->hw.last_period);
7099 7100 7101
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7102
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7103
			if (__perf_event_overflow(event, 1, &data, regs))
7104 7105
				ret = HRTIMER_NORESTART;
	}
7106

7107 7108
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7109

7110
	return ret;
7111 7112
}

7113
static void perf_swevent_start_hrtimer(struct perf_event *event)
7114
{
7115
	struct hw_perf_event *hwc = &event->hw;
7116 7117 7118 7119
	s64 period;

	if (!is_sampling_event(event))
		return;
7120

7121 7122 7123 7124
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7125

7126 7127 7128 7129
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7130 7131
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7132
}
7133 7134

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7135
{
7136 7137
	struct hw_perf_event *hwc = &event->hw;

7138
	if (is_sampling_event(event)) {
7139
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7140
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7141 7142 7143

		hrtimer_cancel(&hwc->hrtimer);
	}
7144 7145
}

P
Peter Zijlstra 已提交
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7166
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7167 7168 7169 7170
		event->attr.freq = 0;
	}
}

7171 7172 7173 7174 7175
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7176
{
7177 7178 7179
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7180
	now = local_clock();
7181 7182
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7183 7184
}

P
Peter Zijlstra 已提交
7185
static void cpu_clock_event_start(struct perf_event *event, int flags)
7186
{
P
Peter Zijlstra 已提交
7187
	local64_set(&event->hw.prev_count, local_clock());
7188 7189 7190
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7191
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7192
{
7193 7194 7195
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7196

P
Peter Zijlstra 已提交
7197 7198 7199 7200
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7201
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7211 7212 7213 7214
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7215

7216 7217 7218 7219 7220 7221 7222 7223
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7224 7225 7226 7227 7228 7229
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7230 7231
	perf_swevent_init_hrtimer(event);

7232
	return 0;
7233 7234
}

7235
static struct pmu perf_cpu_clock = {
7236 7237
	.task_ctx_nr	= perf_sw_context,

7238 7239
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7240
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7241 7242 7243 7244
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7245 7246 7247 7248 7249 7250 7251 7252
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7253
{
7254 7255
	u64 prev;
	s64 delta;
7256

7257 7258 7259 7260
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7261

P
Peter Zijlstra 已提交
7262
static void task_clock_event_start(struct perf_event *event, int flags)
7263
{
P
Peter Zijlstra 已提交
7264
	local64_set(&event->hw.prev_count, event->ctx->time);
7265 7266 7267
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7268
static void task_clock_event_stop(struct perf_event *event, int flags)
7269 7270 7271
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7272 7273 7274 7275 7276 7277
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7278
	perf_event_update_userpage(event);
7279

P
Peter Zijlstra 已提交
7280 7281 7282 7283 7284 7285
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7286 7287 7288 7289
}

static void task_clock_event_read(struct perf_event *event)
{
7290 7291 7292
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7293 7294 7295 7296 7297

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7298
{
7299 7300 7301 7302 7303 7304
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7305 7306 7307 7308 7309 7310
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7311 7312
	perf_swevent_init_hrtimer(event);

7313
	return 0;
L
Li Zefan 已提交
7314 7315
}

7316
static struct pmu perf_task_clock = {
7317 7318
	.task_ctx_nr	= perf_sw_context,

7319 7320
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7321
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7322 7323 7324 7325
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7326 7327
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7328

P
Peter Zijlstra 已提交
7329
static void perf_pmu_nop_void(struct pmu *pmu)
7330 7331
{
}
L
Li Zefan 已提交
7332

7333 7334 7335 7336
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7337
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7338
{
P
Peter Zijlstra 已提交
7339
	return 0;
L
Li Zefan 已提交
7340 7341
}

7342
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7343 7344

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7345
{
7346 7347 7348 7349 7350
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7351
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7352 7353
}

P
Peter Zijlstra 已提交
7354 7355
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7356 7357 7358 7359 7360 7361 7362
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7363 7364 7365
	perf_pmu_enable(pmu);
	return 0;
}
7366

P
Peter Zijlstra 已提交
7367
static void perf_pmu_cancel_txn(struct pmu *pmu)
7368
{
7369 7370 7371 7372 7373 7374 7375
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7376
	perf_pmu_enable(pmu);
7377 7378
}

7379 7380
static int perf_event_idx_default(struct perf_event *event)
{
7381
	return 0;
7382 7383
}

P
Peter Zijlstra 已提交
7384 7385 7386 7387
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7388
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7389
{
P
Peter Zijlstra 已提交
7390
	struct pmu *pmu;
7391

P
Peter Zijlstra 已提交
7392 7393
	if (ctxn < 0)
		return NULL;
7394

P
Peter Zijlstra 已提交
7395 7396 7397 7398
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7399

P
Peter Zijlstra 已提交
7400
	return NULL;
7401 7402
}

7403
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7404
{
7405 7406 7407 7408 7409 7410 7411
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7412 7413
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7414 7415 7416 7417 7418 7419
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7420

P
Peter Zijlstra 已提交
7421
	mutex_lock(&pmus_lock);
7422
	/*
P
Peter Zijlstra 已提交
7423
	 * Like a real lame refcount.
7424
	 */
7425 7426 7427
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7428
			goto out;
7429
		}
P
Peter Zijlstra 已提交
7430
	}
7431

7432
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7433 7434
out:
	mutex_unlock(&pmus_lock);
7435
}
P
Peter Zijlstra 已提交
7436
static struct idr pmu_idr;
7437

P
Peter Zijlstra 已提交
7438 7439 7440 7441 7442 7443 7444
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7445
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7446

7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7457 7458
static DEFINE_MUTEX(mux_interval_mutex);

7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7478
	mutex_lock(&mux_interval_mutex);
7479 7480 7481
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7482 7483
	get_online_cpus();
	for_each_online_cpu(cpu) {
7484 7485 7486 7487
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7488 7489
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7490
	}
7491 7492
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7493 7494 7495

	return count;
}
7496
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7497

7498 7499 7500 7501
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7502
};
7503
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7504 7505 7506 7507

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7508
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7524
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7545
static struct lock_class_key cpuctx_mutex;
7546
static struct lock_class_key cpuctx_lock;
7547

7548
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7549
{
P
Peter Zijlstra 已提交
7550
	int cpu, ret;
7551

7552
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7553 7554 7555 7556
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7557

P
Peter Zijlstra 已提交
7558 7559 7560 7561 7562 7563
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7564 7565 7566
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7567 7568 7569 7570 7571
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7572 7573 7574 7575 7576 7577
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7578
skip_type:
P
Peter Zijlstra 已提交
7579 7580 7581
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7582

W
Wei Yongjun 已提交
7583
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7584 7585
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7586
		goto free_dev;
7587

P
Peter Zijlstra 已提交
7588 7589 7590 7591
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7592
		__perf_event_init_context(&cpuctx->ctx);
7593
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7594
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7595
		cpuctx->ctx.pmu = pmu;
7596

7597
		__perf_mux_hrtimer_init(cpuctx, cpu);
7598

7599
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7600
	}
7601

P
Peter Zijlstra 已提交
7602
got_cpu_context:
P
Peter Zijlstra 已提交
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7614
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7615 7616
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7617
		}
7618
	}
7619

P
Peter Zijlstra 已提交
7620 7621 7622 7623 7624
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7625 7626 7627
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7628
	list_add_rcu(&pmu->entry, &pmus);
7629
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7630 7631
	ret = 0;
unlock:
7632 7633
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7634
	return ret;
P
Peter Zijlstra 已提交
7635

P
Peter Zijlstra 已提交
7636 7637 7638 7639
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7640 7641 7642 7643
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7644 7645 7646
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7647
}
7648
EXPORT_SYMBOL_GPL(perf_pmu_register);
7649

7650
void perf_pmu_unregister(struct pmu *pmu)
7651
{
7652 7653 7654
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7655

7656
	/*
P
Peter Zijlstra 已提交
7657 7658
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7659
	 */
7660
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7661
	synchronize_rcu();
7662

P
Peter Zijlstra 已提交
7663
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7664 7665
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7666 7667
	device_del(pmu->dev);
	put_device(pmu->dev);
7668
	free_pmu_context(pmu);
7669
}
7670
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7671

7672 7673
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7674
	struct perf_event_context *ctx = NULL;
7675 7676 7677 7678
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7679 7680

	if (event->group_leader != event) {
7681 7682 7683 7684 7685 7686
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7687 7688 7689
		BUG_ON(!ctx);
	}

7690 7691
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7692 7693 7694 7695

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7696 7697 7698 7699 7700 7701
	if (ret)
		module_put(pmu->module);

	return ret;
}

7702
static struct pmu *perf_init_event(struct perf_event *event)
7703 7704 7705
{
	struct pmu *pmu = NULL;
	int idx;
7706
	int ret;
7707 7708

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7709 7710 7711 7712

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7713
	if (pmu) {
7714
		ret = perf_try_init_event(pmu, event);
7715 7716
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7717
		goto unlock;
7718
	}
P
Peter Zijlstra 已提交
7719

7720
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7721
		ret = perf_try_init_event(pmu, event);
7722
		if (!ret)
P
Peter Zijlstra 已提交
7723
			goto unlock;
7724

7725 7726
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7727
			goto unlock;
7728
		}
7729
	}
P
Peter Zijlstra 已提交
7730 7731
	pmu = ERR_PTR(-ENOENT);
unlock:
7732
	srcu_read_unlock(&pmus_srcu, idx);
7733

7734
	return pmu;
7735 7736
}

7737 7738 7739 7740 7741 7742 7743 7744 7745
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7746 7747
static void account_event(struct perf_event *event)
{
7748 7749
	bool inc = false;

7750 7751 7752
	if (event->parent)
		return;

7753
	if (event->attach_state & PERF_ATTACH_TASK)
7754
		inc = true;
7755 7756 7757 7758 7759 7760
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7761 7762 7763 7764
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7765 7766
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7767
		inc = true;
7768
	}
7769
	if (has_branch_stack(event))
7770
		inc = true;
7771
	if (is_cgroup_event(event))
7772 7773 7774
		inc = true;

	if (inc)
7775
		static_key_slow_inc(&perf_sched_events.key);
7776 7777

	account_event_cpu(event, event->cpu);
7778 7779
}

T
Thomas Gleixner 已提交
7780
/*
7781
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7782
 */
7783
static struct perf_event *
7784
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7785 7786 7787
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7788
		 perf_overflow_handler_t overflow_handler,
7789
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7790
{
P
Peter Zijlstra 已提交
7791
	struct pmu *pmu;
7792 7793
	struct perf_event *event;
	struct hw_perf_event *hwc;
7794
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7795

7796 7797 7798 7799 7800
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7801
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7802
	if (!event)
7803
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7804

7805
	/*
7806
	 * Single events are their own group leaders, with an
7807 7808 7809
	 * empty sibling list:
	 */
	if (!group_leader)
7810
		group_leader = event;
7811

7812 7813
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7814

7815 7816 7817
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7818
	INIT_LIST_HEAD(&event->rb_entry);
7819
	INIT_LIST_HEAD(&event->active_entry);
7820 7821
	INIT_HLIST_NODE(&event->hlist_entry);

7822

7823
	init_waitqueue_head(&event->waitq);
7824
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7825

7826
	mutex_init(&event->mmap_mutex);
7827

7828
	atomic_long_set(&event->refcount, 1);
7829 7830 7831 7832 7833
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7834

7835
	event->parent		= parent_event;
7836

7837
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7838
	event->id		= atomic64_inc_return(&perf_event_id);
7839

7840
	event->state		= PERF_EVENT_STATE_INACTIVE;
7841

7842 7843 7844
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7845 7846 7847
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7848
		 */
7849
		event->hw.target = task;
7850 7851
	}

7852 7853 7854 7855
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7856
	if (!overflow_handler && parent_event) {
7857
		overflow_handler = parent_event->overflow_handler;
7858 7859
		context = parent_event->overflow_handler_context;
	}
7860

7861
	event->overflow_handler	= overflow_handler;
7862
	event->overflow_handler_context = context;
7863

J
Jiri Olsa 已提交
7864
	perf_event__state_init(event);
7865

7866
	pmu = NULL;
7867

7868
	hwc = &event->hw;
7869
	hwc->sample_period = attr->sample_period;
7870
	if (attr->freq && attr->sample_freq)
7871
		hwc->sample_period = 1;
7872
	hwc->last_period = hwc->sample_period;
7873

7874
	local64_set(&hwc->period_left, hwc->sample_period);
7875

7876
	/*
7877
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7878
	 */
7879
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7880
		goto err_ns;
7881 7882 7883

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7884

7885 7886 7887 7888 7889 7890
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7891
	pmu = perf_init_event(event);
7892
	if (!pmu)
7893 7894
		goto err_ns;
	else if (IS_ERR(pmu)) {
7895
		err = PTR_ERR(pmu);
7896
		goto err_ns;
I
Ingo Molnar 已提交
7897
	}
7898

7899 7900 7901 7902
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7903
	if (!event->parent) {
7904 7905
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7906
			if (err)
7907
				goto err_per_task;
7908
		}
7909
	}
7910

7911
	return event;
7912

7913 7914 7915
err_per_task:
	exclusive_event_destroy(event);

7916 7917 7918
err_pmu:
	if (event->destroy)
		event->destroy(event);
7919
	module_put(pmu->module);
7920
err_ns:
7921 7922
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7923 7924 7925 7926 7927
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7928 7929
}

7930 7931
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7932 7933
{
	u32 size;
7934
	int ret;
7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7959 7960 7961
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7962 7963
	 */
	if (size > sizeof(*attr)) {
7964 7965 7966
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7967

7968 7969
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7970

7971
		for (; addr < end; addr++) {
7972 7973 7974 7975 7976 7977
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7978
		size = sizeof(*attr);
7979 7980 7981 7982 7983 7984
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7985
	if (attr->__reserved_1)
7986 7987 7988 7989 7990 7991 7992 7993
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8022 8023
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8024 8025
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8026
	}
8027

8028
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8029
		ret = perf_reg_validate(attr->sample_regs_user);
8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8048

8049 8050
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8051 8052 8053 8054 8055 8056 8057 8058 8059
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8060 8061
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8062
{
8063
	struct ring_buffer *rb = NULL;
8064 8065
	int ret = -EINVAL;

8066
	if (!output_event)
8067 8068
		goto set;

8069 8070
	/* don't allow circular references */
	if (event == output_event)
8071 8072
		goto out;

8073 8074 8075 8076 8077 8078 8079
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8080
	 * If its not a per-cpu rb, it must be the same task.
8081 8082 8083 8084
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8085 8086 8087 8088 8089 8090
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8091 8092 8093 8094 8095 8096 8097
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8098
set:
8099
	mutex_lock(&event->mmap_mutex);
8100 8101 8102
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8103

8104
	if (output_event) {
8105 8106 8107
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8108
			goto unlock;
8109 8110
	}

8111
	ring_buffer_attach(event, rb);
8112

8113
	ret = 0;
8114 8115 8116
unlock:
	mutex_unlock(&event->mmap_mutex);

8117 8118 8119 8120
out:
	return ret;
}

P
Peter Zijlstra 已提交
8121 8122 8123 8124 8125 8126 8127 8128 8129
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8167
/**
8168
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8169
 *
8170
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8171
 * @pid:		target pid
I
Ingo Molnar 已提交
8172
 * @cpu:		target cpu
8173
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8174
 */
8175 8176
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8177
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8178
{
8179 8180
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8181
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8182
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8183
	struct file *event_file = NULL;
8184
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8185
	struct task_struct *task = NULL;
8186
	struct pmu *pmu;
8187
	int event_fd;
8188
	int move_group = 0;
8189
	int err;
8190
	int f_flags = O_RDWR;
8191
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8192

8193
	/* for future expandability... */
S
Stephane Eranian 已提交
8194
	if (flags & ~PERF_FLAG_ALL)
8195 8196
		return -EINVAL;

8197 8198 8199
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8200

8201 8202 8203 8204 8205
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8206
	if (attr.freq) {
8207
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8208
			return -EINVAL;
8209 8210 8211
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8212 8213
	}

S
Stephane Eranian 已提交
8214 8215 8216 8217 8218 8219 8220 8221 8222
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8223 8224 8225 8226
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8227 8228 8229
	if (event_fd < 0)
		return event_fd;

8230
	if (group_fd != -1) {
8231 8232
		err = perf_fget_light(group_fd, &group);
		if (err)
8233
			goto err_fd;
8234
		group_leader = group.file->private_data;
8235 8236 8237 8238 8239 8240
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8241
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8242 8243 8244 8245 8246 8247 8248
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8249 8250 8251 8252 8253 8254
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8255 8256
	get_online_cpus();

8257 8258 8259
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8260
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8261
				 NULL, NULL, cgroup_fd);
8262 8263
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8264
		goto err_cpus;
8265 8266
	}

8267 8268 8269 8270 8271 8272 8273
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8274 8275
	account_event(event);

8276 8277 8278 8279 8280
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8281

8282 8283 8284 8285 8286 8287
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8310 8311 8312 8313

	/*
	 * Get the target context (task or percpu):
	 */
8314
	ctx = find_get_context(pmu, task, event);
8315 8316
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8317
		goto err_alloc;
8318 8319
	}

8320 8321 8322 8323 8324
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8325 8326 8327 8328 8329
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8330
	/*
8331
	 * Look up the group leader (we will attach this event to it):
8332
	 */
8333
	if (group_leader) {
8334
		err = -EINVAL;
8335 8336

		/*
I
Ingo Molnar 已提交
8337 8338 8339 8340
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8341
			goto err_context;
8342 8343 8344 8345 8346

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8347 8348 8349
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8350
		 */
8351
		if (move_group) {
8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8365 8366 8367 8368 8369 8370
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8371 8372 8373
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8374
		if (attr.exclusive || attr.pinned)
8375
			goto err_context;
8376 8377 8378 8379 8380
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8381
			goto err_context;
8382
	}
T
Thomas Gleixner 已提交
8383

8384 8385
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8386 8387
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8388
		goto err_context;
8389
	}
8390

8391
	if (move_group) {
P
Peter Zijlstra 已提交
8392
		gctx = group_leader->ctx;
8393
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8394 8395 8396 8397
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
8398 8399 8400 8401
	} else {
		mutex_lock(&ctx->mutex);
	}

8402 8403 8404 8405 8406
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
8407 8408 8409 8410 8411
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8412 8413 8414 8415 8416 8417 8418
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8419

8420 8421 8422
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8423

8424 8425 8426
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8427 8428 8429 8430
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8431
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8432

8433 8434
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8435
			perf_remove_from_context(sibling, 0);
8436 8437 8438
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8439 8440 8441 8442
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8443
		synchronize_rcu();
P
Peter Zijlstra 已提交
8444

8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8455 8456
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8457
			perf_event__state_init(sibling);
8458
			perf_install_in_context(ctx, sibling, sibling->cpu);
8459 8460
			get_ctx(ctx);
		}
8461 8462 8463 8464 8465 8466 8467 8468 8469

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8470

8471 8472 8473 8474 8475 8476
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8477 8478
	}

8479 8480 8481 8482 8483 8484 8485 8486 8487
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8488 8489
	event->owner = current;

8490
	perf_install_in_context(ctx, event, event->cpu);
8491
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8492

8493
	if (move_group)
P
Peter Zijlstra 已提交
8494
		mutex_unlock(&gctx->mutex);
8495
	mutex_unlock(&ctx->mutex);
8496

8497 8498
	put_online_cpus();

8499 8500 8501
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8502

8503 8504 8505 8506 8507 8508
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8509
	fdput(group);
8510 8511
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8512

8513 8514 8515 8516 8517 8518
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8519
err_context:
8520
	perf_unpin_context(ctx);
8521
	put_ctx(ctx);
8522
err_alloc:
P
Peter Zijlstra 已提交
8523 8524 8525 8526 8527 8528
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
8529
err_cpus:
8530
	put_online_cpus();
8531
err_task:
P
Peter Zijlstra 已提交
8532 8533
	if (task)
		put_task_struct(task);
8534
err_group_fd:
8535
	fdput(group);
8536 8537
err_fd:
	put_unused_fd(event_fd);
8538
	return err;
T
Thomas Gleixner 已提交
8539 8540
}

8541 8542 8543 8544 8545
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8546
 * @task: task to profile (NULL for percpu)
8547 8548 8549
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8550
				 struct task_struct *task,
8551 8552
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8553 8554
{
	struct perf_event_context *ctx;
8555
	struct perf_event *event;
8556
	int err;
8557

8558 8559 8560
	/*
	 * Get the target context (task or percpu):
	 */
8561

8562
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8563
				 overflow_handler, context, -1);
8564 8565 8566 8567
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8568

8569
	/* Mark owner so we could distinguish it from user events. */
8570
	event->owner = TASK_TOMBSTONE;
8571

8572 8573
	account_event(event);

8574
	ctx = find_get_context(event->pmu, task, event);
8575 8576
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8577
		goto err_free;
8578
	}
8579 8580 8581

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8582 8583 8584 8585 8586
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

8587 8588
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
8589
		goto err_unlock;
8590 8591
	}

8592
	perf_install_in_context(ctx, event, cpu);
8593
	perf_unpin_context(ctx);
8594 8595 8596 8597
	mutex_unlock(&ctx->mutex);

	return event;

8598 8599 8600 8601
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
8602 8603 8604
err_free:
	free_event(event);
err:
8605
	return ERR_PTR(err);
8606
}
8607
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8608

8609 8610 8611 8612 8613 8614 8615 8616 8617 8618
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8619 8620 8621 8622 8623
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8624 8625
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8626
		perf_remove_from_context(event, 0);
8627
		unaccount_event_cpu(event, src_cpu);
8628
		put_ctx(src_ctx);
8629
		list_add(&event->migrate_entry, &events);
8630 8631
	}

8632 8633 8634
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8635 8636
	synchronize_rcu();

8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8661 8662
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8663 8664
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8665
		account_event_cpu(event, dst_cpu);
8666 8667 8668 8669
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8670
	mutex_unlock(&src_ctx->mutex);
8671 8672 8673
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8674
static void sync_child_event(struct perf_event *child_event,
8675
			       struct task_struct *child)
8676
{
8677
	struct perf_event *parent_event = child_event->parent;
8678
	u64 child_val;
8679

8680 8681
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8682

P
Peter Zijlstra 已提交
8683
	child_val = perf_event_count(child_event);
8684 8685 8686 8687

	/*
	 * Add back the child's count to the parent's count:
	 */
8688
	atomic64_add(child_val, &parent_event->child_count);
8689 8690 8691 8692
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8693 8694
}

8695
static void
8696 8697 8698
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8699
{
8700 8701
	struct perf_event *parent_event = child_event->parent;

8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8714 8715 8716
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8717
	if (parent_event)
8718 8719
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
8720
	child_event->state = PERF_EVENT_STATE_EXIT; /* see perf_event_release_kernel() */
8721
	raw_spin_unlock_irq(&child_ctx->lock);
8722

8723
	/*
8724
	 * Parent events are governed by their filedesc, retain them.
8725
	 */
8726
	if (!parent_event) {
8727
		perf_event_wakeup(child_event);
8728
		return;
8729
	}
8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8750 8751
}

P
Peter Zijlstra 已提交
8752
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8753
{
8754
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8755 8756 8757
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8758

8759
	child_ctx = perf_pin_task_context(child, ctxn);
8760
	if (!child_ctx)
8761 8762
		return;

8763
	/*
8764 8765 8766 8767 8768 8769 8770 8771
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
8772
	 */
8773
	mutex_lock(&child_ctx->mutex);
8774 8775

	/*
8776 8777 8778
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
8779
	 */
8780
	raw_spin_lock_irq(&child_ctx->lock);
8781
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8782

8783
	/*
8784 8785
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8786
	 */
8787 8788 8789 8790
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8791

8792
	clone_ctx = unclone_ctx(child_ctx);
8793
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8794

8795 8796
	if (clone_ctx)
		put_ctx(clone_ctx);
8797

P
Peter Zijlstra 已提交
8798
	/*
8799 8800 8801
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8802
	 */
8803
	perf_event_task(child, child_ctx, 0);
8804

8805
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8806
		perf_event_exit_event(child_event, child_ctx, child);
8807

8808 8809 8810
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8811 8812
}

P
Peter Zijlstra 已提交
8813 8814 8815 8816 8817
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8818
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8819 8820
	int ctxn;

P
Peter Zijlstra 已提交
8821 8822 8823 8824 8825 8826 8827 8828 8829 8830
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8831
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8832 8833 8834
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8835 8836
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8837 8838 8839 8840 8841 8842 8843 8844

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8845 8846
}

8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8859
	put_event(parent);
8860

P
Peter Zijlstra 已提交
8861
	raw_spin_lock_irq(&ctx->lock);
8862
	perf_group_detach(event);
8863
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8864
	raw_spin_unlock_irq(&ctx->lock);
8865 8866 8867
	free_event(event);
}

8868
/*
P
Peter Zijlstra 已提交
8869
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8870
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8871 8872 8873
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8874
 */
8875
void perf_event_free_task(struct task_struct *task)
8876
{
P
Peter Zijlstra 已提交
8877
	struct perf_event_context *ctx;
8878
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8879
	int ctxn;
8880

P
Peter Zijlstra 已提交
8881 8882 8883 8884
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8885

P
Peter Zijlstra 已提交
8886
		mutex_lock(&ctx->mutex);
8887
again:
P
Peter Zijlstra 已提交
8888 8889 8890
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8891

P
Peter Zijlstra 已提交
8892 8893 8894
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8895

P
Peter Zijlstra 已提交
8896 8897 8898
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8899

P
Peter Zijlstra 已提交
8900
		mutex_unlock(&ctx->mutex);
8901

P
Peter Zijlstra 已提交
8902 8903
		put_ctx(ctx);
	}
8904 8905
}

8906 8907 8908 8909 8910 8911 8912 8913
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8914
struct file *perf_event_get(unsigned int fd)
8915
{
8916
	struct file *file;
8917

8918 8919 8920
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
8921

8922 8923 8924 8925
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
8926

8927
	return file;
8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8949
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8950
	struct perf_event *child_event;
8951
	unsigned long flags;
P
Peter Zijlstra 已提交
8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8964
					   child,
P
Peter Zijlstra 已提交
8965
					   group_leader, parent_event,
8966
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8967 8968
	if (IS_ERR(child_event))
		return child_event;
8969

8970 8971 8972 8973 8974 8975 8976
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
8977 8978
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8979
		mutex_unlock(&parent_event->child_mutex);
8980 8981 8982 8983
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8984 8985 8986 8987 8988 8989 8990
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8991
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9008 9009
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9010

9011 9012 9013 9014
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9015
	perf_event__id_header_size(child_event);
9016

P
Peter Zijlstra 已提交
9017 9018 9019
	/*
	 * Link it up in the child's context:
	 */
9020
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9021
	add_event_to_ctx(child_event, child_ctx);
9022
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9054 9055 9056 9057 9058
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9059
		   struct task_struct *child, int ctxn,
9060 9061 9062
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9063
	struct perf_event_context *child_ctx;
9064 9065 9066 9067

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9068 9069
	}

9070
	child_ctx = child->perf_event_ctxp[ctxn];
9071 9072 9073 9074 9075 9076 9077
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9078

9079
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9080 9081
		if (!child_ctx)
			return -ENOMEM;
9082

P
Peter Zijlstra 已提交
9083
		child->perf_event_ctxp[ctxn] = child_ctx;
9084 9085 9086 9087 9088 9089 9090 9091 9092
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9093 9094
}

9095
/*
9096
 * Initialize the perf_event context in task_struct
9097
 */
9098
static int perf_event_init_context(struct task_struct *child, int ctxn)
9099
{
9100
	struct perf_event_context *child_ctx, *parent_ctx;
9101 9102
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9103
	struct task_struct *parent = current;
9104
	int inherited_all = 1;
9105
	unsigned long flags;
9106
	int ret = 0;
9107

P
Peter Zijlstra 已提交
9108
	if (likely(!parent->perf_event_ctxp[ctxn]))
9109 9110
		return 0;

9111
	/*
9112 9113
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9114
	 */
P
Peter Zijlstra 已提交
9115
	parent_ctx = perf_pin_task_context(parent, ctxn);
9116 9117
	if (!parent_ctx)
		return 0;
9118

9119 9120 9121 9122 9123 9124 9125
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9126 9127 9128 9129
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9130
	mutex_lock(&parent_ctx->mutex);
9131 9132 9133 9134 9135

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9136
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9137 9138
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9139 9140 9141
		if (ret)
			break;
	}
9142

9143 9144 9145 9146 9147 9148 9149 9150 9151
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9152
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9153 9154
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9155
		if (ret)
9156
			break;
9157 9158
	}

9159 9160 9161
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9162
	child_ctx = child->perf_event_ctxp[ctxn];
9163

9164
	if (child_ctx && inherited_all) {
9165 9166 9167
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9168 9169 9170
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9171
		 */
P
Peter Zijlstra 已提交
9172
		cloned_ctx = parent_ctx->parent_ctx;
9173 9174
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9175
			child_ctx->parent_gen = parent_ctx->parent_gen;
9176 9177 9178 9179 9180
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9181 9182
	}

P
Peter Zijlstra 已提交
9183
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9184
	mutex_unlock(&parent_ctx->mutex);
9185

9186
	perf_unpin_context(parent_ctx);
9187
	put_ctx(parent_ctx);
9188

9189
	return ret;
9190 9191
}

P
Peter Zijlstra 已提交
9192 9193 9194 9195 9196 9197 9198
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9199 9200 9201 9202
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9203 9204
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9205 9206
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9207
			return ret;
P
Peter Zijlstra 已提交
9208
		}
P
Peter Zijlstra 已提交
9209 9210 9211 9212 9213
	}

	return 0;
}

9214 9215
static void __init perf_event_init_all_cpus(void)
{
9216
	struct swevent_htable *swhash;
9217 9218 9219
	int cpu;

	for_each_possible_cpu(cpu) {
9220 9221
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9222
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9223 9224 9225
	}
}

9226
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9227
{
P
Peter Zijlstra 已提交
9228
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9229

9230
	mutex_lock(&swhash->hlist_mutex);
9231
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9232 9233
		struct swevent_hlist *hlist;

9234 9235 9236
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9237
	}
9238
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9239 9240
}

9241
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9242
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9243
{
P
Peter Zijlstra 已提交
9244
	struct perf_event_context *ctx = __info;
9245 9246
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9247

9248 9249
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9250
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9251
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9252
}
P
Peter Zijlstra 已提交
9253 9254 9255 9256 9257 9258 9259 9260 9261

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9262
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9263 9264 9265 9266 9267 9268 9269 9270

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9271
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9272
{
P
Peter Zijlstra 已提交
9273
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9274 9275
}
#else
9276
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9277 9278
#endif

P
Peter Zijlstra 已提交
9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9299
static int
T
Thomas Gleixner 已提交
9300 9301 9302 9303
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9304
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9305 9306

	case CPU_UP_PREPARE:
9307
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9308 9309 9310
		break;

	case CPU_DOWN_PREPARE:
9311
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9312 9313 9314 9315 9316 9317 9318 9319
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9320
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9321
{
9322 9323
	int ret;

P
Peter Zijlstra 已提交
9324 9325
	idr_init(&pmu_idr);

9326
	perf_event_init_all_cpus();
9327
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9328 9329 9330
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9331 9332
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9333
	register_reboot_notifier(&perf_reboot_notifier);
9334 9335 9336

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9337 9338 9339

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9340 9341 9342 9343 9344 9345 9346

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9347
}
P
Peter Zijlstra 已提交
9348

9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9388 9389

#ifdef CONFIG_CGROUP_PERF
9390 9391
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9392 9393 9394
{
	struct perf_cgroup *jc;

9395
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9408
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9409
{
9410 9411
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9412 9413 9414 9415 9416 9417 9418
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9419
	rcu_read_lock();
S
Stephane Eranian 已提交
9420
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9421
	rcu_read_unlock();
S
Stephane Eranian 已提交
9422 9423 9424
	return 0;
}

9425
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9426
{
9427
	struct task_struct *task;
9428
	struct cgroup_subsys_state *css;
9429

9430
	cgroup_taskset_for_each(task, css, tset)
9431
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9432 9433
}

9434
struct cgroup_subsys perf_event_cgrp_subsys = {
9435 9436
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9437
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9438 9439
};
#endif /* CONFIG_CGROUP_PERF */