core.c 164.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126 127
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

128 129 130 131 132 133
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
134 135 136 137
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
138
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
139 140
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

141 142 143
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
144

P
Peter Zijlstra 已提交
145 146 147 148
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

149
/*
150
 * perf event paranoia level:
151 152
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
153
 *   1 - disallow cpu events for unpriv
154
 *   2 - disallow kernel profiling for unpriv
155
 */
156
int sysctl_perf_event_paranoid __read_mostly = 1;
157

158 159
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
160 161

/*
162
 * max perf event sample rate
163
 */
P
Peter Zijlstra 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
182

183
static atomic64_t perf_event_id;
184

185 186 187 188
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
189 190 191 192 193
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
194

195 196 197
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

198
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
199

200
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
201
{
202
	return "pmu";
T
Thomas Gleixner 已提交
203 204
}

205 206 207 208 209
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
210 211 212 213 214 215
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
232 233
#ifdef CONFIG_CGROUP_PERF

234 235 236 237 238
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
306 307
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
308
	/*
309 310
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
311
	 */
312
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
313 314
		return;

315 316 317 318 319 320
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
321 322 323
}

static inline void
324 325
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
326 327 328 329
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

330 331 332 333 334 335
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
336 337 338 339
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
340
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
382 383
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
384 385 386 387 388 389 390 391 392 393 394

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
395
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
396 397 398 399 400 401 402
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
403 404
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
405 406 407 408 409 410 411 412
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

413 414
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
415
{
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
438 439
}

440 441
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
442
{
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
477 478 479 480
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
481 482 483 484

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

485 486 487
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
488 489 490 491 492 493 494 495 496
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
497
out:
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

572 573
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
574 575 576
{
}

577 578
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
579 580 581 582 583 584 585 586 587 588 589
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
590 591
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
622
void perf_pmu_disable(struct pmu *pmu)
623
{
P
Peter Zijlstra 已提交
624 625 626
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
627 628
}

P
Peter Zijlstra 已提交
629
void perf_pmu_enable(struct pmu *pmu)
630
{
P
Peter Zijlstra 已提交
631 632 633
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
634 635
}

636 637 638 639 640 641 642
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
643
static void perf_pmu_rotate_start(struct pmu *pmu)
644
{
P
Peter Zijlstra 已提交
645
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
646
	struct list_head *head = &__get_cpu_var(rotation_list);
647

648
	WARN_ON(!irqs_disabled());
649

650 651
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
652 653
}

654
static void get_ctx(struct perf_event_context *ctx)
655
{
656
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
657 658
}

659
static void put_ctx(struct perf_event_context *ctx)
660
{
661 662 663
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
664 665
		if (ctx->task)
			put_task_struct(ctx->task);
666
		kfree_rcu(ctx, rcu_head);
667
	}
668 669
}

670
static void unclone_ctx(struct perf_event_context *ctx)
671 672 673 674 675 676 677
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

700
/*
701
 * If we inherit events we want to return the parent event id
702 703
 * to userspace.
 */
704
static u64 primary_event_id(struct perf_event *event)
705
{
706
	u64 id = event->id;
707

708 709
	if (event->parent)
		id = event->parent->id;
710 711 712 713

	return id;
}

714
/*
715
 * Get the perf_event_context for a task and lock it.
716 717 718
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
719
static struct perf_event_context *
P
Peter Zijlstra 已提交
720
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
721
{
722
	struct perf_event_context *ctx;
723 724

	rcu_read_lock();
P
Peter Zijlstra 已提交
725
retry:
P
Peter Zijlstra 已提交
726
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
727 728 729 730
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
731
		 * perf_event_task_sched_out, though the
732 733 734 735 736 737
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
738
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
739
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
740
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
741 742
			goto retry;
		}
743 744

		if (!atomic_inc_not_zero(&ctx->refcount)) {
745
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 747
			ctx = NULL;
		}
748 749 750 751 752 753 754 755 756 757
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
758 759
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
760
{
761
	struct perf_event_context *ctx;
762 763
	unsigned long flags;

P
Peter Zijlstra 已提交
764
	ctx = perf_lock_task_context(task, ctxn, &flags);
765 766
	if (ctx) {
		++ctx->pin_count;
767
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
768 769 770 771
	}
	return ctx;
}

772
static void perf_unpin_context(struct perf_event_context *ctx)
773 774 775
{
	unsigned long flags;

776
	raw_spin_lock_irqsave(&ctx->lock, flags);
777
	--ctx->pin_count;
778
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
779 780
}

781 782 783 784 785 786 787 788 789 790 791
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

792 793 794
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
795 796 797 798

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

799 800 801
	return ctx ? ctx->time : 0;
}

802 803
/*
 * Update the total_time_enabled and total_time_running fields for a event.
804
 * The caller of this function needs to hold the ctx->lock.
805 806 807 808 809 810 811 812 813
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
814 815 816 817 818 819 820 821 822 823 824
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
825
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
826 827
	else if (ctx->is_active)
		run_end = ctx->time;
828 829 830 831
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
832 833 834 835

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
836
		run_end = perf_event_time(event);
837 838

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
839

840 841
}

842 843 844 845 846 847 848 849 850 851 852 853
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

854 855 856 857 858 859 860 861 862
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

863
/*
864
 * Add a event from the lists for its context.
865 866
 * Must be called with ctx->mutex and ctx->lock held.
 */
867
static void
868
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
869
{
870 871
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
872 873

	/*
874 875 876
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
877
	 */
878
	if (event->group_leader == event) {
879 880
		struct list_head *list;

881 882 883
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

884 885
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
886
	}
P
Peter Zijlstra 已提交
887

888
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
889 890
		ctx->nr_cgroups++;

891
	list_add_rcu(&event->event_entry, &ctx->event_list);
892
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
893
		perf_pmu_rotate_start(ctx->pmu);
894 895
	ctx->nr_events++;
	if (event->attr.inherit_stat)
896
		ctx->nr_stat++;
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

971
	event->id_header_size = size;
972 973
}

974 975
static void perf_group_attach(struct perf_event *event)
{
976
	struct perf_event *group_leader = event->group_leader, *pos;
977

P
Peter Zijlstra 已提交
978 979 980 981 982 983
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

984 985 986 987 988 989 990 991 992 993 994
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
995 996 997 998 999

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1000 1001
}

1002
/*
1003
 * Remove a event from the lists for its context.
1004
 * Must be called with ctx->mutex and ctx->lock held.
1005
 */
1006
static void
1007
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1008
{
1009
	struct perf_cpu_context *cpuctx;
1010 1011 1012 1013
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1014
		return;
1015 1016 1017

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1018
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1019
		ctx->nr_cgroups--;
1020 1021 1022 1023 1024 1025 1026 1027 1028
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1029

1030 1031
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1032
		ctx->nr_stat--;
1033

1034
	list_del_rcu(&event->event_entry);
1035

1036 1037
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1038

1039
	update_group_times(event);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1050 1051
}

1052
static void perf_group_detach(struct perf_event *event)
1053 1054
{
	struct perf_event *sibling, *tmp;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1071
		goto out;
1072 1073 1074 1075
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1076

1077
	/*
1078 1079
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1080
	 * to whatever list we are on.
1081
	 */
1082
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1083 1084
		if (list)
			list_move_tail(&sibling->group_entry, list);
1085
		sibling->group_leader = sibling;
1086 1087 1088

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1089
	}
1090 1091 1092 1093 1094 1095

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1096 1097
}

1098 1099 1100
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1101 1102
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1103 1104
}

1105 1106
static void
event_sched_out(struct perf_event *event,
1107
		  struct perf_cpu_context *cpuctx,
1108
		  struct perf_event_context *ctx)
1109
{
1110
	u64 tstamp = perf_event_time(event);
1111 1112 1113 1114 1115 1116 1117 1118 1119
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1120
		delta = tstamp - event->tstamp_stopped;
1121
		event->tstamp_running += delta;
1122
		event->tstamp_stopped = tstamp;
1123 1124
	}

1125
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1126
		return;
1127

1128 1129 1130 1131
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1132
	}
1133
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1134
	event->pmu->del(event, 0);
1135
	event->oncpu = -1;
1136

1137
	if (!is_software_event(event))
1138 1139
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1140 1141
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1142
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1143 1144 1145
		cpuctx->exclusive = 0;
}

1146
static void
1147
group_sched_out(struct perf_event *group_event,
1148
		struct perf_cpu_context *cpuctx,
1149
		struct perf_event_context *ctx)
1150
{
1151
	struct perf_event *event;
1152
	int state = group_event->state;
1153

1154
	event_sched_out(group_event, cpuctx, ctx);
1155 1156 1157 1158

	/*
	 * Schedule out siblings (if any):
	 */
1159 1160
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1161

1162
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1163 1164 1165
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1166
/*
1167
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1168
 *
1169
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1170 1171
 * remove it from the context list.
 */
1172
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1173
{
1174 1175
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1176
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1177

1178
	raw_spin_lock(&ctx->lock);
1179 1180
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1181 1182 1183 1184
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1185
	raw_spin_unlock(&ctx->lock);
1186 1187

	return 0;
T
Thomas Gleixner 已提交
1188 1189 1190 1191
}


/*
1192
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1193
 *
1194
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1195
 * call when the task is on a CPU.
1196
 *
1197 1198
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1199 1200
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1201
 * When called from perf_event_exit_task, it's OK because the
1202
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1203
 */
1204
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1205
{
1206
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1207 1208
	struct task_struct *task = ctx->task;

1209 1210
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1211 1212
	if (!task) {
		/*
1213
		 * Per cpu events are removed via an smp call and
1214
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1215
		 */
1216
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1217 1218 1219 1220
		return;
	}

retry:
1221 1222
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1223

1224
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1225
	/*
1226 1227
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1228
	 */
1229
	if (ctx->is_active) {
1230
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1231 1232 1233 1234
		goto retry;
	}

	/*
1235 1236
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1237
	 */
1238
	list_del_event(event, ctx);
1239
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1240 1241
}

1242
/*
1243
 * Cross CPU call to disable a performance event
1244
 */
1245
static int __perf_event_disable(void *info)
1246
{
1247 1248
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1249
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1250 1251

	/*
1252 1253
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1254 1255 1256
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1257
	 */
1258
	if (ctx->task && cpuctx->task_ctx != ctx)
1259
		return -EINVAL;
1260

1261
	raw_spin_lock(&ctx->lock);
1262 1263

	/*
1264
	 * If the event is on, turn it off.
1265 1266
	 * If it is in error state, leave it in error state.
	 */
1267
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1268
		update_context_time(ctx);
S
Stephane Eranian 已提交
1269
		update_cgrp_time_from_event(event);
1270 1271 1272
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1273
		else
1274 1275
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1276 1277
	}

1278
	raw_spin_unlock(&ctx->lock);
1279 1280

	return 0;
1281 1282 1283
}

/*
1284
 * Disable a event.
1285
 *
1286 1287
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1288
 * remains valid.  This condition is satisifed when called through
1289 1290 1291 1292
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1293
 * is the current context on this CPU and preemption is disabled,
1294
 * hence we can't get into perf_event_task_sched_out for this context.
1295
 */
1296
void perf_event_disable(struct perf_event *event)
1297
{
1298
	struct perf_event_context *ctx = event->ctx;
1299 1300 1301 1302
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1303
		 * Disable the event on the cpu that it's on
1304
		 */
1305
		cpu_function_call(event->cpu, __perf_event_disable, event);
1306 1307 1308
		return;
	}

P
Peter Zijlstra 已提交
1309
retry:
1310 1311
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1312

1313
	raw_spin_lock_irq(&ctx->lock);
1314
	/*
1315
	 * If the event is still active, we need to retry the cross-call.
1316
	 */
1317
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1318
		raw_spin_unlock_irq(&ctx->lock);
1319 1320 1321 1322 1323
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1324 1325 1326 1327 1328 1329 1330
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1331 1332 1333
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1334
	}
1335
	raw_spin_unlock_irq(&ctx->lock);
1336
}
1337
EXPORT_SYMBOL_GPL(perf_event_disable);
1338

S
Stephane Eranian 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1374 1375 1376 1377
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1378
static int
1379
event_sched_in(struct perf_event *event,
1380
		 struct perf_cpu_context *cpuctx,
1381
		 struct perf_event_context *ctx)
1382
{
1383 1384
	u64 tstamp = perf_event_time(event);

1385
	if (event->state <= PERF_EVENT_STATE_OFF)
1386 1387
		return 0;

1388
	event->state = PERF_EVENT_STATE_ACTIVE;
1389
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1401 1402 1403 1404 1405
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1406
	if (event->pmu->add(event, PERF_EF_START)) {
1407 1408
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1409 1410 1411
		return -EAGAIN;
	}

1412
	event->tstamp_running += tstamp - event->tstamp_stopped;
1413

S
Stephane Eranian 已提交
1414
	perf_set_shadow_time(event, ctx, tstamp);
1415

1416
	if (!is_software_event(event))
1417
		cpuctx->active_oncpu++;
1418
	ctx->nr_active++;
1419 1420
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1421

1422
	if (event->attr.exclusive)
1423 1424
		cpuctx->exclusive = 1;

1425 1426 1427
	return 0;
}

1428
static int
1429
group_sched_in(struct perf_event *group_event,
1430
	       struct perf_cpu_context *cpuctx,
1431
	       struct perf_event_context *ctx)
1432
{
1433
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1434
	struct pmu *pmu = group_event->pmu;
1435 1436
	u64 now = ctx->time;
	bool simulate = false;
1437

1438
	if (group_event->state == PERF_EVENT_STATE_OFF)
1439 1440
		return 0;

P
Peter Zijlstra 已提交
1441
	pmu->start_txn(pmu);
1442

1443
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1444
		pmu->cancel_txn(pmu);
1445
		return -EAGAIN;
1446
	}
1447 1448 1449 1450

	/*
	 * Schedule in siblings as one group (if any):
	 */
1451
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1452
		if (event_sched_in(event, cpuctx, ctx)) {
1453
			partial_group = event;
1454 1455 1456 1457
			goto group_error;
		}
	}

1458
	if (!pmu->commit_txn(pmu))
1459
		return 0;
1460

1461 1462 1463 1464
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1475
	 */
1476 1477
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1478 1479 1480 1481 1482 1483 1484 1485
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1486
	}
1487
	event_sched_out(group_event, cpuctx, ctx);
1488

P
Peter Zijlstra 已提交
1489
	pmu->cancel_txn(pmu);
1490

1491 1492 1493
	return -EAGAIN;
}

1494
/*
1495
 * Work out whether we can put this event group on the CPU now.
1496
 */
1497
static int group_can_go_on(struct perf_event *event,
1498 1499 1500 1501
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1502
	 * Groups consisting entirely of software events can always go on.
1503
	 */
1504
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1505 1506 1507
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1508
	 * events can go on.
1509 1510 1511 1512 1513
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1514
	 * events on the CPU, it can't go on.
1515
	 */
1516
	if (event->attr.exclusive && cpuctx->active_oncpu)
1517 1518 1519 1520 1521 1522 1523 1524
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1525 1526
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1527
{
1528 1529
	u64 tstamp = perf_event_time(event);

1530
	list_add_event(event, ctx);
1531
	perf_group_attach(event);
1532 1533 1534
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1535 1536
}

1537 1538 1539 1540 1541 1542
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1556
/*
1557
 * Cross CPU call to install and enable a performance event
1558 1559
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1560
 */
1561
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1562
{
1563 1564
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1565
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1566 1567 1568
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1569
	perf_ctx_lock(cpuctx, task_ctx);
1570
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1571 1572

	/*
1573
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1574
	 */
1575
	if (task_ctx)
1576
		task_ctx_sched_out(task_ctx);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1591 1592
		task = task_ctx->task;
	}
1593

1594
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1595

1596
	update_context_time(ctx);
S
Stephane Eranian 已提交
1597 1598 1599 1600 1601 1602
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1603

1604
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1605

1606
	/*
1607
	 * Schedule everything back in
1608
	 */
1609
	perf_event_sched_in(cpuctx, task_ctx, task);
1610 1611 1612

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1613 1614

	return 0;
T
Thomas Gleixner 已提交
1615 1616 1617
}

/*
1618
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1619
 *
1620 1621
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1622
 *
1623
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1624 1625 1626 1627
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1628 1629
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1630 1631 1632 1633
			int cpu)
{
	struct task_struct *task = ctx->task;

1634 1635
	lockdep_assert_held(&ctx->mutex);

1636 1637
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1638 1639
	if (!task) {
		/*
1640
		 * Per cpu events are installed via an smp call and
1641
		 * the install is always successful.
T
Thomas Gleixner 已提交
1642
		 */
1643
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1644 1645 1646 1647
		return;
	}

retry:
1648 1649
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1650

1651
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1652
	/*
1653 1654
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1655
	 */
1656
	if (ctx->is_active) {
1657
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1658 1659 1660 1661
		goto retry;
	}

	/*
1662 1663
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1664
	 */
1665
	add_event_to_ctx(event, ctx);
1666
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1667 1668
}

1669
/*
1670
 * Put a event into inactive state and update time fields.
1671 1672 1673 1674 1675 1676
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1677
static void __perf_event_mark_enabled(struct perf_event *event)
1678
{
1679
	struct perf_event *sub;
1680
	u64 tstamp = perf_event_time(event);
1681

1682
	event->state = PERF_EVENT_STATE_INACTIVE;
1683
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1684
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1685 1686
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1687
	}
1688 1689
}

1690
/*
1691
 * Cross CPU call to enable a performance event
1692
 */
1693
static int __perf_event_enable(void *info)
1694
{
1695 1696 1697
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1698
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1699
	int err;
1700

1701 1702
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1703

1704
	raw_spin_lock(&ctx->lock);
1705
	update_context_time(ctx);
1706

1707
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1708
		goto unlock;
S
Stephane Eranian 已提交
1709 1710 1711 1712

	/*
	 * set current task's cgroup time reference point
	 */
1713
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1714

1715
	__perf_event_mark_enabled(event);
1716

S
Stephane Eranian 已提交
1717 1718 1719
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1720
		goto unlock;
S
Stephane Eranian 已提交
1721
	}
1722

1723
	/*
1724
	 * If the event is in a group and isn't the group leader,
1725
	 * then don't put it on unless the group is on.
1726
	 */
1727
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1728
		goto unlock;
1729

1730
	if (!group_can_go_on(event, cpuctx, 1)) {
1731
		err = -EEXIST;
1732
	} else {
1733
		if (event == leader)
1734
			err = group_sched_in(event, cpuctx, ctx);
1735
		else
1736
			err = event_sched_in(event, cpuctx, ctx);
1737
	}
1738 1739 1740

	if (err) {
		/*
1741
		 * If this event can't go on and it's part of a
1742 1743
		 * group, then the whole group has to come off.
		 */
1744
		if (leader != event)
1745
			group_sched_out(leader, cpuctx, ctx);
1746
		if (leader->attr.pinned) {
1747
			update_group_times(leader);
1748
			leader->state = PERF_EVENT_STATE_ERROR;
1749
		}
1750 1751
	}

P
Peter Zijlstra 已提交
1752
unlock:
1753
	raw_spin_unlock(&ctx->lock);
1754 1755

	return 0;
1756 1757 1758
}

/*
1759
 * Enable a event.
1760
 *
1761 1762
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1763
 * remains valid.  This condition is satisfied when called through
1764 1765
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1766
 */
1767
void perf_event_enable(struct perf_event *event)
1768
{
1769
	struct perf_event_context *ctx = event->ctx;
1770 1771 1772 1773
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1774
		 * Enable the event on the cpu that it's on
1775
		 */
1776
		cpu_function_call(event->cpu, __perf_event_enable, event);
1777 1778 1779
		return;
	}

1780
	raw_spin_lock_irq(&ctx->lock);
1781
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1782 1783 1784
		goto out;

	/*
1785 1786
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1787 1788 1789 1790
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1791 1792
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1793

P
Peter Zijlstra 已提交
1794
retry:
1795
	if (!ctx->is_active) {
1796
		__perf_event_mark_enabled(event);
1797 1798 1799
		goto out;
	}

1800
	raw_spin_unlock_irq(&ctx->lock);
1801 1802 1803

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1804

1805
	raw_spin_lock_irq(&ctx->lock);
1806 1807

	/*
1808
	 * If the context is active and the event is still off,
1809 1810
	 * we need to retry the cross-call.
	 */
1811 1812 1813 1814 1815 1816
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1817
		goto retry;
1818
	}
1819

P
Peter Zijlstra 已提交
1820
out:
1821
	raw_spin_unlock_irq(&ctx->lock);
1822
}
1823
EXPORT_SYMBOL_GPL(perf_event_enable);
1824

1825
int perf_event_refresh(struct perf_event *event, int refresh)
1826
{
1827
	/*
1828
	 * not supported on inherited events
1829
	 */
1830
	if (event->attr.inherit || !is_sampling_event(event))
1831 1832
		return -EINVAL;

1833 1834
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1835 1836

	return 0;
1837
}
1838
EXPORT_SYMBOL_GPL(perf_event_refresh);
1839

1840 1841 1842
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1843
{
1844
	struct perf_event *event;
1845
	int is_active = ctx->is_active;
1846

1847
	ctx->is_active &= ~event_type;
1848
	if (likely(!ctx->nr_events))
1849 1850
		return;

1851
	update_context_time(ctx);
S
Stephane Eranian 已提交
1852
	update_cgrp_time_from_cpuctx(cpuctx);
1853
	if (!ctx->nr_active)
1854
		return;
1855

P
Peter Zijlstra 已提交
1856
	perf_pmu_disable(ctx->pmu);
1857
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1858 1859
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1860
	}
1861

1862
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1863
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1864
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1865
	}
P
Peter Zijlstra 已提交
1866
	perf_pmu_enable(ctx->pmu);
1867 1868
}

1869 1870 1871
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1872 1873 1874 1875
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1876
 * in them directly with an fd; we can only enable/disable all
1877
 * events via prctl, or enable/disable all events in a family
1878 1879
 * via ioctl, which will have the same effect on both contexts.
 */
1880 1881
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1882 1883
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1884
		&& ctx1->parent_gen == ctx2->parent_gen
1885
		&& !ctx1->pin_count && !ctx2->pin_count;
1886 1887
}

1888 1889
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1890 1891 1892
{
	u64 value;

1893
	if (!event->attr.inherit_stat)
1894 1895 1896
		return;

	/*
1897
	 * Update the event value, we cannot use perf_event_read()
1898 1899
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1900
	 * we know the event must be on the current CPU, therefore we
1901 1902
	 * don't need to use it.
	 */
1903 1904
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1905 1906
		event->pmu->read(event);
		/* fall-through */
1907

1908 1909
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1910 1911 1912 1913 1914 1915 1916
		break;

	default:
		break;
	}

	/*
1917
	 * In order to keep per-task stats reliable we need to flip the event
1918 1919
	 * values when we flip the contexts.
	 */
1920 1921 1922
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1923

1924 1925
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1926

1927
	/*
1928
	 * Since we swizzled the values, update the user visible data too.
1929
	 */
1930 1931
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1932 1933 1934 1935 1936
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1937 1938
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1939
{
1940
	struct perf_event *event, *next_event;
1941 1942 1943 1944

	if (!ctx->nr_stat)
		return;

1945 1946
	update_context_time(ctx);

1947 1948
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1949

1950 1951
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1952

1953 1954
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1955

1956
		__perf_event_sync_stat(event, next_event);
1957

1958 1959
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1960 1961 1962
	}
}

1963 1964
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1965
{
P
Peter Zijlstra 已提交
1966
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1967 1968
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1969
	struct perf_cpu_context *cpuctx;
1970
	int do_switch = 1;
T
Thomas Gleixner 已提交
1971

P
Peter Zijlstra 已提交
1972 1973
	if (likely(!ctx))
		return;
1974

P
Peter Zijlstra 已提交
1975 1976
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1977 1978
		return;

1979 1980
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1981
	next_ctx = next->perf_event_ctxp[ctxn];
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1993 1994
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1995
		if (context_equiv(ctx, next_ctx)) {
1996 1997
			/*
			 * XXX do we need a memory barrier of sorts
1998
			 * wrt to rcu_dereference() of perf_event_ctxp
1999
			 */
P
Peter Zijlstra 已提交
2000 2001
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2002 2003 2004
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2005

2006
			perf_event_sync_stat(ctx, next_ctx);
2007
		}
2008 2009
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2010
	}
2011
	rcu_read_unlock();
2012

2013
	if (do_switch) {
2014
		raw_spin_lock(&ctx->lock);
2015
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2016
		cpuctx->task_ctx = NULL;
2017
		raw_spin_unlock(&ctx->lock);
2018
	}
T
Thomas Gleixner 已提交
2019 2020
}

P
Peter Zijlstra 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2035 2036
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2037 2038 2039 2040 2041
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2042 2043 2044 2045 2046 2047 2048

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2049
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2050 2051
}

2052
static void task_ctx_sched_out(struct perf_event_context *ctx)
2053
{
P
Peter Zijlstra 已提交
2054
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2055

2056 2057
	if (!cpuctx->task_ctx)
		return;
2058 2059 2060 2061

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2062
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2063 2064 2065
	cpuctx->task_ctx = NULL;
}

2066 2067 2068 2069 2070 2071 2072
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2073 2074
}

2075
static void
2076
ctx_pinned_sched_in(struct perf_event_context *ctx,
2077
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2078
{
2079
	struct perf_event *event;
T
Thomas Gleixner 已提交
2080

2081 2082
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2083
			continue;
2084
		if (!event_filter_match(event))
2085 2086
			continue;

S
Stephane Eranian 已提交
2087 2088 2089 2090
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2091
		if (group_can_go_on(event, cpuctx, 1))
2092
			group_sched_in(event, cpuctx, ctx);
2093 2094 2095 2096 2097

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2098 2099 2100
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2101
		}
2102
	}
2103 2104 2105 2106
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2107
		      struct perf_cpu_context *cpuctx)
2108 2109 2110
{
	struct perf_event *event;
	int can_add_hw = 1;
2111

2112 2113 2114
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2115
			continue;
2116 2117
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2118
		 * of events:
2119
		 */
2120
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2121 2122
			continue;

S
Stephane Eranian 已提交
2123 2124 2125 2126
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2127
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2128
			if (group_sched_in(event, cpuctx, ctx))
2129
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2130
		}
T
Thomas Gleixner 已提交
2131
	}
2132 2133 2134 2135 2136
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2137 2138
	     enum event_type_t event_type,
	     struct task_struct *task)
2139
{
S
Stephane Eranian 已提交
2140
	u64 now;
2141
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2142

2143
	ctx->is_active |= event_type;
2144
	if (likely(!ctx->nr_events))
2145
		return;
2146

S
Stephane Eranian 已提交
2147 2148
	now = perf_clock();
	ctx->timestamp = now;
2149
	perf_cgroup_set_timestamp(task, ctx);
2150 2151 2152 2153
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2154
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2155
		ctx_pinned_sched_in(ctx, cpuctx);
2156 2157

	/* Then walk through the lower prio flexible groups */
2158
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2159
		ctx_flexible_sched_in(ctx, cpuctx);
2160 2161
}

2162
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2163 2164
			     enum event_type_t event_type,
			     struct task_struct *task)
2165 2166 2167
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2168
	ctx_sched_in(ctx, cpuctx, event_type, task);
2169 2170
}

S
Stephane Eranian 已提交
2171 2172
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2173
{
P
Peter Zijlstra 已提交
2174
	struct perf_cpu_context *cpuctx;
2175

P
Peter Zijlstra 已提交
2176
	cpuctx = __get_cpu_context(ctx);
2177 2178 2179
	if (cpuctx->task_ctx == ctx)
		return;

2180
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2181
	perf_pmu_disable(ctx->pmu);
2182 2183 2184 2185 2186 2187 2188
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2189 2190
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2191

2192 2193
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2194 2195 2196
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2197 2198 2199 2200
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2201
	perf_pmu_rotate_start(ctx->pmu);
2202 2203
}

P
Peter Zijlstra 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2215 2216
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2226
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2227
	}
S
Stephane Eranian 已提交
2228 2229 2230 2231 2232 2233
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2234
		perf_cgroup_sched_in(prev, task);
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2264
#define REDUCE_FLS(a, b)		\
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2304 2305 2306
	if (!divisor)
		return dividend;

2307 2308 2309
	return div64_u64(dividend, divisor);
}

2310 2311 2312
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2313
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2314
{
2315
	struct hw_perf_event *hwc = &event->hw;
2316
	s64 period, sample_period;
2317 2318
	s64 delta;

2319
	period = perf_calculate_period(event, nsec, count);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2330

2331
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2332 2333 2334
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2335
		local64_set(&hwc->period_left, 0);
2336 2337 2338

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2339
	}
2340 2341
}

2342 2343 2344 2345 2346 2347 2348
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2349
{
2350 2351
	struct perf_event *event;
	struct hw_perf_event *hwc;
2352
	u64 now, period = TICK_NSEC;
2353
	s64 delta;
2354

2355 2356 2357 2358 2359 2360
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2361 2362
		return;

2363
	raw_spin_lock(&ctx->lock);
2364
	perf_pmu_disable(ctx->pmu);
2365

2366
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2367
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2368 2369
			continue;

2370
		if (!event_filter_match(event))
2371 2372
			continue;

2373
		hwc = &event->hw;
2374

2375 2376
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2377
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2378
			event->pmu->start(event, 0);
2379 2380
		}

2381
		if (!event->attr.freq || !event->attr.sample_freq)
2382 2383
			continue;

2384 2385 2386 2387 2388
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2389
		now = local64_read(&event->count);
2390 2391
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2392

2393 2394 2395
		/*
		 * restart the event
		 * reload only if value has changed
2396 2397 2398
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2399
		 */
2400
		if (delta > 0)
2401
			perf_adjust_period(event, period, delta, false);
2402 2403

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2404
	}
2405

2406
	perf_pmu_enable(ctx->pmu);
2407
	raw_spin_unlock(&ctx->lock);
2408 2409
}

2410
/*
2411
 * Round-robin a context's events:
2412
 */
2413
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2414
{
2415 2416 2417 2418 2419 2420
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2421 2422
}

2423
/*
2424 2425 2426
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2427
 */
2428
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2429
{
P
Peter Zijlstra 已提交
2430
	struct perf_event_context *ctx = NULL;
2431
	int rotate = 0, remove = 1;
2432

2433
	if (cpuctx->ctx.nr_events) {
2434
		remove = 0;
2435 2436 2437
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2438

P
Peter Zijlstra 已提交
2439
	ctx = cpuctx->task_ctx;
2440
	if (ctx && ctx->nr_events) {
2441
		remove = 0;
2442 2443 2444
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2445

2446
	if (!rotate)
2447 2448
		goto done;

2449
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2450
	perf_pmu_disable(cpuctx->ctx.pmu);
2451

2452 2453 2454
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2455

2456 2457 2458
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2459

2460
	perf_event_sched_in(cpuctx, ctx, current);
2461

2462 2463
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2464
done:
2465 2466 2467 2468 2469 2470 2471 2472
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2473 2474
	struct perf_event_context *ctx;
	int throttled;
2475

2476 2477
	WARN_ON(!irqs_disabled());

2478 2479 2480
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2481
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2482 2483 2484 2485 2486 2487 2488
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2489 2490 2491 2492
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2493 2494
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2505
	__perf_event_mark_enabled(event);
2506 2507 2508 2509

	return 1;
}

2510
/*
2511
 * Enable all of a task's events that have been marked enable-on-exec.
2512 2513
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2514
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2515
{
2516
	struct perf_event *event;
2517 2518
	unsigned long flags;
	int enabled = 0;
2519
	int ret;
2520 2521

	local_irq_save(flags);
2522
	if (!ctx || !ctx->nr_events)
2523 2524
		goto out;

2525 2526 2527 2528 2529 2530 2531
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2532
	perf_cgroup_sched_out(current, NULL);
2533

2534
	raw_spin_lock(&ctx->lock);
2535
	task_ctx_sched_out(ctx);
2536

2537
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2538 2539 2540
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2541 2542 2543
	}

	/*
2544
	 * Unclone this context if we enabled any event.
2545
	 */
2546 2547
	if (enabled)
		unclone_ctx(ctx);
2548

2549
	raw_spin_unlock(&ctx->lock);
2550

2551 2552 2553
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2554
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2555
out:
2556 2557 2558
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2559
/*
2560
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2561
 */
2562
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2563
{
2564 2565
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2566
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2567

2568 2569 2570 2571
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2572 2573
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2574 2575 2576 2577
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2578
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2579
	if (ctx->is_active) {
2580
		update_context_time(ctx);
S
Stephane Eranian 已提交
2581 2582
		update_cgrp_time_from_event(event);
	}
2583
	update_event_times(event);
2584 2585
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2586
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2587 2588
}

P
Peter Zijlstra 已提交
2589 2590
static inline u64 perf_event_count(struct perf_event *event)
{
2591
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2592 2593
}

2594
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2595 2596
{
	/*
2597 2598
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2599
	 */
2600 2601 2602 2603
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2604 2605 2606
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2607
		raw_spin_lock_irqsave(&ctx->lock, flags);
2608 2609 2610 2611 2612
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2613
		if (ctx->is_active) {
2614
			update_context_time(ctx);
S
Stephane Eranian 已提交
2615 2616
			update_cgrp_time_from_event(event);
		}
2617
		update_event_times(event);
2618
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2619 2620
	}

P
Peter Zijlstra 已提交
2621
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2622 2623
}

2624
/*
2625
 * Initialize the perf_event context in a task_struct:
2626
 */
2627
static void __perf_event_init_context(struct perf_event_context *ctx)
2628
{
2629
	raw_spin_lock_init(&ctx->lock);
2630
	mutex_init(&ctx->mutex);
2631 2632
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2633 2634
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2650
	}
2651 2652 2653
	ctx->pmu = pmu;

	return ctx;
2654 2655
}

2656 2657 2658 2659 2660
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2661 2662

	rcu_read_lock();
2663
	if (!vpid)
T
Thomas Gleixner 已提交
2664 2665
		task = current;
	else
2666
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2667 2668 2669 2670 2671 2672 2673 2674
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2675 2676 2677 2678
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2679 2680 2681 2682 2683 2684 2685
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2686 2687 2688
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2689
static struct perf_event_context *
M
Matt Helsley 已提交
2690
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2691
{
2692
	struct perf_event_context *ctx;
2693
	struct perf_cpu_context *cpuctx;
2694
	unsigned long flags;
P
Peter Zijlstra 已提交
2695
	int ctxn, err;
T
Thomas Gleixner 已提交
2696

2697
	if (!task) {
2698
		/* Must be root to operate on a CPU event: */
2699
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2700 2701 2702
			return ERR_PTR(-EACCES);

		/*
2703
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2704 2705 2706
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2707
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2708 2709
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2710
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2711
		ctx = &cpuctx->ctx;
2712
		get_ctx(ctx);
2713
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2714 2715 2716 2717

		return ctx;
	}

P
Peter Zijlstra 已提交
2718 2719 2720 2721 2722
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2723
retry:
P
Peter Zijlstra 已提交
2724
	ctx = perf_lock_task_context(task, ctxn, &flags);
2725
	if (ctx) {
2726
		unclone_ctx(ctx);
2727
		++ctx->pin_count;
2728
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2729
	} else {
2730
		ctx = alloc_perf_context(pmu, task);
2731 2732 2733
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2734

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2745
		else {
2746
			get_ctx(ctx);
2747
			++ctx->pin_count;
2748
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2749
		}
2750 2751 2752
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2753
			put_ctx(ctx);
2754 2755 2756 2757

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2758 2759 2760
		}
	}

T
Thomas Gleixner 已提交
2761
	return ctx;
2762

P
Peter Zijlstra 已提交
2763
errout:
2764
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2765 2766
}

L
Li Zefan 已提交
2767 2768
static void perf_event_free_filter(struct perf_event *event);

2769
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2770
{
2771
	struct perf_event *event;
P
Peter Zijlstra 已提交
2772

2773 2774 2775
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2776
	perf_event_free_filter(event);
2777
	kfree(event);
P
Peter Zijlstra 已提交
2778 2779
}

2780
static void ring_buffer_put(struct ring_buffer *rb);
2781

2782
static void free_event(struct perf_event *event)
2783
{
2784
	irq_work_sync(&event->pending);
2785

2786
	if (!event->parent) {
2787
		if (event->attach_state & PERF_ATTACH_TASK)
2788
			static_key_slow_dec_deferred(&perf_sched_events);
2789
		if (event->attr.mmap || event->attr.mmap_data)
2790 2791 2792 2793 2794
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2795 2796
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2797 2798
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2799
			static_key_slow_dec_deferred(&perf_sched_events);
2800
		}
2801
	}
2802

2803 2804 2805
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2806 2807
	}

S
Stephane Eranian 已提交
2808 2809 2810
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2811 2812
	if (event->destroy)
		event->destroy(event);
2813

P
Peter Zijlstra 已提交
2814 2815 2816
	if (event->ctx)
		put_ctx(event->ctx);

2817
	call_rcu(&event->rcu_head, free_event_rcu);
2818 2819
}

2820
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2821
{
2822
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2823

2824
	WARN_ON_ONCE(ctx->parent_ctx);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2838
	raw_spin_lock_irq(&ctx->lock);
2839
	perf_group_detach(event);
2840
	raw_spin_unlock_irq(&ctx->lock);
2841
	perf_remove_from_context(event);
2842
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2843

2844
	free_event(event);
T
Thomas Gleixner 已提交
2845 2846 2847

	return 0;
}
2848
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2849

2850 2851 2852 2853
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2854
{
2855
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2856
	struct task_struct *owner;
2857

2858
	file->private_data = NULL;
2859

P
Peter Zijlstra 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2893
	return perf_event_release_kernel(event);
2894 2895
}

2896
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2897
{
2898
	struct perf_event *child;
2899 2900
	u64 total = 0;

2901 2902 2903
	*enabled = 0;
	*running = 0;

2904
	mutex_lock(&event->child_mutex);
2905
	total += perf_event_read(event);
2906 2907 2908 2909 2910 2911
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2912
		total += perf_event_read(child);
2913 2914 2915
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2916
	mutex_unlock(&event->child_mutex);
2917 2918 2919

	return total;
}
2920
EXPORT_SYMBOL_GPL(perf_event_read_value);
2921

2922
static int perf_event_read_group(struct perf_event *event,
2923 2924
				   u64 read_format, char __user *buf)
{
2925
	struct perf_event *leader = event->group_leader, *sub;
2926 2927
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2928
	u64 values[5];
2929
	u64 count, enabled, running;
2930

2931
	mutex_lock(&ctx->mutex);
2932
	count = perf_event_read_value(leader, &enabled, &running);
2933 2934

	values[n++] = 1 + leader->nr_siblings;
2935 2936 2937 2938
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2939 2940 2941
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2942 2943 2944 2945

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2946
		goto unlock;
2947

2948
	ret = size;
2949

2950
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2951
		n = 0;
2952

2953
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2954 2955 2956 2957 2958
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2959
		if (copy_to_user(buf + ret, values, size)) {
2960 2961 2962
			ret = -EFAULT;
			goto unlock;
		}
2963 2964

		ret += size;
2965
	}
2966 2967
unlock:
	mutex_unlock(&ctx->mutex);
2968

2969
	return ret;
2970 2971
}

2972
static int perf_event_read_one(struct perf_event *event,
2973 2974
				 u64 read_format, char __user *buf)
{
2975
	u64 enabled, running;
2976 2977 2978
	u64 values[4];
	int n = 0;

2979 2980 2981 2982 2983
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2984
	if (read_format & PERF_FORMAT_ID)
2985
		values[n++] = primary_event_id(event);
2986 2987 2988 2989 2990 2991 2992

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2993
/*
2994
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2995 2996
 */
static ssize_t
2997
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2998
{
2999
	u64 read_format = event->attr.read_format;
3000
	int ret;
T
Thomas Gleixner 已提交
3001

3002
	/*
3003
	 * Return end-of-file for a read on a event that is in
3004 3005 3006
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3007
	if (event->state == PERF_EVENT_STATE_ERROR)
3008 3009
		return 0;

3010
	if (count < event->read_size)
3011 3012
		return -ENOSPC;

3013
	WARN_ON_ONCE(event->ctx->parent_ctx);
3014
	if (read_format & PERF_FORMAT_GROUP)
3015
		ret = perf_event_read_group(event, read_format, buf);
3016
	else
3017
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3018

3019
	return ret;
T
Thomas Gleixner 已提交
3020 3021 3022 3023 3024
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3025
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3026

3027
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3028 3029 3030 3031
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3032
	struct perf_event *event = file->private_data;
3033
	struct ring_buffer *rb;
3034
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3035

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3053
	rcu_read_lock();
3054
	rb = rcu_dereference(event->rb);
3055 3056
	if (rb) {
		ring_buffer_attach(event, rb);
3057
		events = atomic_xchg(&rb->poll, 0);
3058
	}
P
Peter Zijlstra 已提交
3059
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3060

3061 3062
	mutex_unlock(&event->mmap_mutex);

3063
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3064 3065 3066 3067

	return events;
}

3068
static void perf_event_reset(struct perf_event *event)
3069
{
3070
	(void)perf_event_read(event);
3071
	local64_set(&event->count, 0);
3072
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3073 3074
}

3075
/*
3076 3077 3078 3079
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3080
 */
3081 3082
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3083
{
3084
	struct perf_event *child;
P
Peter Zijlstra 已提交
3085

3086 3087 3088 3089
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3090
		func(child);
3091
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3092 3093
}

3094 3095
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3096
{
3097 3098
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3099

3100 3101
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3102
	event = event->group_leader;
3103

3104 3105 3106 3107
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3108
	mutex_unlock(&ctx->mutex);
3109 3110
}

3111
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3112
{
3113
	struct perf_event_context *ctx = event->ctx;
3114 3115 3116
	int ret = 0;
	u64 value;

3117
	if (!is_sampling_event(event))
3118 3119
		return -EINVAL;

3120
	if (copy_from_user(&value, arg, sizeof(value)))
3121 3122 3123 3124 3125
		return -EFAULT;

	if (!value)
		return -EINVAL;

3126
	raw_spin_lock_irq(&ctx->lock);
3127 3128
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3129 3130 3131 3132
			ret = -EINVAL;
			goto unlock;
		}

3133
		event->attr.sample_freq = value;
3134
	} else {
3135 3136
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3137 3138
	}
unlock:
3139
	raw_spin_unlock_irq(&ctx->lock);
3140 3141 3142 3143

	return ret;
}

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3165
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3166

3167 3168
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3169 3170
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3171
	u32 flags = arg;
3172 3173

	switch (cmd) {
3174 3175
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3176
		break;
3177 3178
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3179
		break;
3180 3181
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3182
		break;
P
Peter Zijlstra 已提交
3183

3184 3185
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3186

3187 3188
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3189

3190
	case PERF_EVENT_IOC_SET_OUTPUT:
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3208

L
Li Zefan 已提交
3209 3210 3211
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3212
	default:
P
Peter Zijlstra 已提交
3213
		return -ENOTTY;
3214
	}
P
Peter Zijlstra 已提交
3215 3216

	if (flags & PERF_IOC_FLAG_GROUP)
3217
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3218
	else
3219
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3220 3221

	return 0;
3222 3223
}

3224
int perf_event_task_enable(void)
3225
{
3226
	struct perf_event *event;
3227

3228 3229 3230 3231
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3232 3233 3234 3235

	return 0;
}

3236
int perf_event_task_disable(void)
3237
{
3238
	struct perf_event *event;
3239

3240 3241 3242 3243
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3244 3245 3246 3247

	return 0;
}

3248
static int perf_event_index(struct perf_event *event)
3249
{
P
Peter Zijlstra 已提交
3250 3251 3252
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3253
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3254 3255
		return 0;

3256
	return event->pmu->event_idx(event);
3257 3258
}

3259
static void calc_timer_values(struct perf_event *event,
3260
				u64 *now,
3261 3262
				u64 *enabled,
				u64 *running)
3263
{
3264
	u64 ctx_time;
3265

3266 3267
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3268 3269 3270 3271
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3272 3273 3274 3275
void __weak perf_update_user_clock(struct perf_event_mmap_page *userpg, u64 now)
{
}

3276 3277 3278 3279 3280
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3281
void perf_event_update_userpage(struct perf_event *event)
3282
{
3283
	struct perf_event_mmap_page *userpg;
3284
	struct ring_buffer *rb;
3285
	u64 enabled, running, now;
3286 3287

	rcu_read_lock();
3288 3289 3290 3291 3292 3293 3294 3295 3296
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3297
	calc_timer_values(event, &now, &enabled, &running);
3298 3299
	rb = rcu_dereference(event->rb);
	if (!rb)
3300 3301
		goto unlock;

3302
	userpg = rb->user_page;
3303

3304 3305 3306 3307 3308
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3309
	++userpg->lock;
3310
	barrier();
3311
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3312
	userpg->offset = perf_event_count(event);
3313
	if (userpg->index)
3314
		userpg->offset -= local64_read(&event->hw.prev_count);
3315

3316
	userpg->time_enabled = enabled +
3317
			atomic64_read(&event->child_total_time_enabled);
3318

3319
	userpg->time_running = running +
3320
			atomic64_read(&event->child_total_time_running);
3321

3322 3323
	perf_update_user_clock(userpg, now);

3324
	barrier();
3325
	++userpg->lock;
3326
	preempt_enable();
3327
unlock:
3328
	rcu_read_unlock();
3329 3330
}

3331 3332 3333
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3334
	struct ring_buffer *rb;
3335 3336 3337 3338 3339 3340 3341 3342 3343
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3344 3345
	rb = rcu_dereference(event->rb);
	if (!rb)
3346 3347 3348 3349 3350
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3351
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3403 3404 3405 3406
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3407
		wake_up_all(&event->waitq);
3408 3409

unlock:
3410 3411 3412
	rcu_read_unlock();
}

3413
static void rb_free_rcu(struct rcu_head *rcu_head)
3414
{
3415
	struct ring_buffer *rb;
3416

3417 3418
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3419 3420
}

3421
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3422
{
3423
	struct ring_buffer *rb;
3424

3425
	rcu_read_lock();
3426 3427 3428 3429
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3430 3431 3432
	}
	rcu_read_unlock();

3433
	return rb;
3434 3435
}

3436
static void ring_buffer_put(struct ring_buffer *rb)
3437
{
3438 3439 3440
	struct perf_event *event, *n;
	unsigned long flags;

3441
	if (!atomic_dec_and_test(&rb->refcount))
3442
		return;
3443

3444 3445 3446 3447 3448 3449 3450
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3451
	call_rcu(&rb->rcu_head, rb_free_rcu);
3452 3453 3454 3455
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3456
	struct perf_event *event = vma->vm_file->private_data;
3457

3458
	atomic_inc(&event->mmap_count);
3459 3460 3461 3462
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3463
	struct perf_event *event = vma->vm_file->private_data;
3464

3465
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3466
		unsigned long size = perf_data_size(event->rb);
3467
		struct user_struct *user = event->mmap_user;
3468
		struct ring_buffer *rb = event->rb;
3469

3470
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3471
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3472
		rcu_assign_pointer(event->rb, NULL);
3473
		ring_buffer_detach(event, rb);
3474
		mutex_unlock(&event->mmap_mutex);
3475

3476
		ring_buffer_put(rb);
3477
		free_uid(user);
3478
	}
3479 3480
}

3481
static const struct vm_operations_struct perf_mmap_vmops = {
3482 3483 3484 3485
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3486 3487 3488 3489
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3490
	struct perf_event *event = file->private_data;
3491
	unsigned long user_locked, user_lock_limit;
3492
	struct user_struct *user = current_user();
3493
	unsigned long locked, lock_limit;
3494
	struct ring_buffer *rb;
3495 3496
	unsigned long vma_size;
	unsigned long nr_pages;
3497
	long user_extra, extra;
3498
	int ret = 0, flags = 0;
3499

3500 3501 3502
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3503
	 * same rb.
3504 3505 3506 3507
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3508
	if (!(vma->vm_flags & VM_SHARED))
3509
		return -EINVAL;
3510 3511 3512 3513

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3514
	/*
3515
	 * If we have rb pages ensure they're a power-of-two number, so we
3516 3517 3518
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3519 3520
		return -EINVAL;

3521
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3522 3523
		return -EINVAL;

3524 3525
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3526

3527 3528
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3529 3530 3531
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3532
		else
3533 3534 3535 3536
			ret = -EINVAL;
		goto unlock;
	}

3537
	user_extra = nr_pages + 1;
3538
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3539 3540 3541 3542 3543 3544

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3545
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3546

3547 3548 3549
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3550

3551
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3552
	lock_limit >>= PAGE_SHIFT;
3553
	locked = vma->vm_mm->pinned_vm + extra;
3554

3555 3556
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3557 3558 3559
		ret = -EPERM;
		goto unlock;
	}
3560

3561
	WARN_ON(event->rb);
3562

3563
	if (vma->vm_flags & VM_WRITE)
3564
		flags |= RING_BUFFER_WRITABLE;
3565

3566 3567 3568 3569
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3570
	if (!rb) {
3571
		ret = -ENOMEM;
3572
		goto unlock;
3573
	}
3574
	rcu_assign_pointer(event->rb, rb);
3575

3576 3577 3578
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3579
	vma->vm_mm->pinned_vm += event->mmap_locked;
3580

3581 3582
	perf_event_update_userpage(event);

3583
unlock:
3584 3585
	if (!ret)
		atomic_inc(&event->mmap_count);
3586
	mutex_unlock(&event->mmap_mutex);
3587 3588 3589

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3590 3591

	return ret;
3592 3593
}

P
Peter Zijlstra 已提交
3594 3595 3596
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3597
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3598 3599 3600
	int retval;

	mutex_lock(&inode->i_mutex);
3601
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3602 3603 3604 3605 3606 3607 3608 3609
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3610
static const struct file_operations perf_fops = {
3611
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3612 3613 3614
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3615 3616
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3617
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3618
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3619 3620
};

3621
/*
3622
 * Perf event wakeup
3623 3624 3625 3626 3627
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3628
void perf_event_wakeup(struct perf_event *event)
3629
{
3630
	ring_buffer_wakeup(event);
3631

3632 3633 3634
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3635
	}
3636 3637
}

3638
static void perf_pending_event(struct irq_work *entry)
3639
{
3640 3641
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3642

3643 3644 3645
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3646 3647
	}

3648 3649 3650
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3651 3652 3653
	}
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3675 3676 3677
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3705 3706 3707
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3734 3735 3736
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3737 3738 3739 3740 3741
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3742
static void perf_output_read_one(struct perf_output_handle *handle,
3743 3744
				 struct perf_event *event,
				 u64 enabled, u64 running)
3745
{
3746
	u64 read_format = event->attr.read_format;
3747 3748 3749
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3750
	values[n++] = perf_event_count(event);
3751
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3752
		values[n++] = enabled +
3753
			atomic64_read(&event->child_total_time_enabled);
3754 3755
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3756
		values[n++] = running +
3757
			atomic64_read(&event->child_total_time_running);
3758 3759
	}
	if (read_format & PERF_FORMAT_ID)
3760
		values[n++] = primary_event_id(event);
3761

3762
	__output_copy(handle, values, n * sizeof(u64));
3763 3764 3765
}

/*
3766
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3767 3768
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3769 3770
			    struct perf_event *event,
			    u64 enabled, u64 running)
3771
{
3772 3773
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3774 3775 3776 3777 3778 3779
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3780
		values[n++] = enabled;
3781 3782

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3783
		values[n++] = running;
3784

3785
	if (leader != event)
3786 3787
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3788
	values[n++] = perf_event_count(leader);
3789
	if (read_format & PERF_FORMAT_ID)
3790
		values[n++] = primary_event_id(leader);
3791

3792
	__output_copy(handle, values, n * sizeof(u64));
3793

3794
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3795 3796
		n = 0;

3797
		if (sub != event)
3798 3799
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3800
		values[n++] = perf_event_count(sub);
3801
		if (read_format & PERF_FORMAT_ID)
3802
			values[n++] = primary_event_id(sub);
3803

3804
		__output_copy(handle, values, n * sizeof(u64));
3805 3806 3807
	}
}

3808 3809 3810
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3811
static void perf_output_read(struct perf_output_handle *handle,
3812
			     struct perf_event *event)
3813
{
3814
	u64 enabled = 0, running = 0, now;
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3826
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3827
		calc_timer_values(event, &now, &enabled, &running);
3828

3829
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3830
		perf_output_read_group(handle, event, enabled, running);
3831
	else
3832
		perf_output_read_one(handle, event, enabled, running);
3833 3834
}

3835 3836 3837
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3838
			struct perf_event *event)
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3869
		perf_output_read(handle, event);
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3880
			__output_copy(handle, data->callchain, size);
3881 3882 3883 3884 3885 3886 3887 3888 3889
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3890 3891
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
3935 3936 3937 3938
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3939
			 struct perf_event *event,
3940
			 struct pt_regs *regs)
3941
{
3942
	u64 sample_type = event->attr.sample_type;
3943

3944
	header->type = PERF_RECORD_SAMPLE;
3945
	header->size = sizeof(*header) + event->header_size;
3946 3947 3948

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3949

3950
	__perf_event_header__init_id(header, data, event);
3951

3952
	if (sample_type & PERF_SAMPLE_IP)
3953 3954
		data->ip = perf_instruction_pointer(regs);

3955
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3956
		int size = 1;
3957

3958 3959 3960 3961 3962 3963
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3964 3965
	}

3966
	if (sample_type & PERF_SAMPLE_RAW) {
3967 3968 3969 3970 3971 3972 3973 3974
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3975
		header->size += size;
3976
	}
3977 3978 3979 3980 3981 3982 3983 3984 3985

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
3986
}
3987

3988
static void perf_event_output(struct perf_event *event,
3989 3990 3991 3992 3993
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3994

3995 3996 3997
	/* protect the callchain buffers */
	rcu_read_lock();

3998
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3999

4000
	if (perf_output_begin(&handle, event, header.size))
4001
		goto exit;
4002

4003
	perf_output_sample(&handle, &header, data, event);
4004

4005
	perf_output_end(&handle);
4006 4007 4008

exit:
	rcu_read_unlock();
4009 4010
}

4011
/*
4012
 * read event_id
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4023
perf_event_read_event(struct perf_event *event,
4024 4025 4026
			struct task_struct *task)
{
	struct perf_output_handle handle;
4027
	struct perf_sample_data sample;
4028
	struct perf_read_event read_event = {
4029
		.header = {
4030
			.type = PERF_RECORD_READ,
4031
			.misc = 0,
4032
			.size = sizeof(read_event) + event->read_size,
4033
		},
4034 4035
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4036
	};
4037
	int ret;
4038

4039
	perf_event_header__init_id(&read_event.header, &sample, event);
4040
	ret = perf_output_begin(&handle, event, read_event.header.size);
4041 4042 4043
	if (ret)
		return;

4044
	perf_output_put(&handle, read_event);
4045
	perf_output_read(&handle, event);
4046
	perf_event__output_id_sample(event, &handle, &sample);
4047

4048 4049 4050
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4051
/*
P
Peter Zijlstra 已提交
4052 4053
 * task tracking -- fork/exit
 *
4054
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4055 4056
 */

P
Peter Zijlstra 已提交
4057
struct perf_task_event {
4058
	struct task_struct		*task;
4059
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4060 4061 4062 4063 4064 4065

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4066 4067
		u32				tid;
		u32				ptid;
4068
		u64				time;
4069
	} event_id;
P
Peter Zijlstra 已提交
4070 4071
};

4072
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4073
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4074 4075
{
	struct perf_output_handle handle;
4076
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4077
	struct task_struct *task = task_event->task;
4078
	int ret, size = task_event->event_id.header.size;
4079

4080
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4081

4082
	ret = perf_output_begin(&handle, event,
4083
				task_event->event_id.header.size);
4084
	if (ret)
4085
		goto out;
P
Peter Zijlstra 已提交
4086

4087 4088
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4089

4090 4091
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4092

4093
	perf_output_put(&handle, task_event->event_id);
4094

4095 4096
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4097
	perf_output_end(&handle);
4098 4099
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4100 4101
}

4102
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4103
{
P
Peter Zijlstra 已提交
4104
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4105 4106
		return 0;

4107
	if (!event_filter_match(event))
4108 4109
		return 0;

4110 4111
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4112 4113 4114 4115 4116
		return 1;

	return 0;
}

4117
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4118
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4119
{
4120
	struct perf_event *event;
P
Peter Zijlstra 已提交
4121

4122 4123 4124
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4125 4126 4127
	}
}

4128
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4129 4130
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4131
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4132
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4133
	int ctxn;
P
Peter Zijlstra 已提交
4134

4135
	rcu_read_lock();
P
Peter Zijlstra 已提交
4136
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4137
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4138 4139
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4140
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4141 4142 4143 4144 4145

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4146
				goto next;
P
Peter Zijlstra 已提交
4147 4148 4149 4150
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4151 4152
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4153
	}
P
Peter Zijlstra 已提交
4154 4155 4156
	rcu_read_unlock();
}

4157 4158
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4159
			      int new)
P
Peter Zijlstra 已提交
4160
{
P
Peter Zijlstra 已提交
4161
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4162

4163 4164 4165
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4166 4167
		return;

P
Peter Zijlstra 已提交
4168
	task_event = (struct perf_task_event){
4169 4170
		.task	  = task,
		.task_ctx = task_ctx,
4171
		.event_id    = {
P
Peter Zijlstra 已提交
4172
			.header = {
4173
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4174
				.misc = 0,
4175
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4176
			},
4177 4178
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4179 4180
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4181
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4182 4183 4184
		},
	};

4185
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4186 4187
}

4188
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4189
{
4190
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4191 4192
}

4193 4194 4195 4196 4197
/*
 * comm tracking
 */

struct perf_comm_event {
4198 4199
	struct task_struct	*task;
	char			*comm;
4200 4201 4202 4203 4204 4205 4206
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4207
	} event_id;
4208 4209
};

4210
static void perf_event_comm_output(struct perf_event *event,
4211 4212 4213
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4214
	struct perf_sample_data sample;
4215
	int size = comm_event->event_id.header.size;
4216 4217 4218 4219
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4220
				comm_event->event_id.header.size);
4221 4222

	if (ret)
4223
		goto out;
4224

4225 4226
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4227

4228
	perf_output_put(&handle, comm_event->event_id);
4229
	__output_copy(&handle, comm_event->comm,
4230
				   comm_event->comm_size);
4231 4232 4233

	perf_event__output_id_sample(event, &handle, &sample);

4234
	perf_output_end(&handle);
4235 4236
out:
	comm_event->event_id.header.size = size;
4237 4238
}

4239
static int perf_event_comm_match(struct perf_event *event)
4240
{
P
Peter Zijlstra 已提交
4241
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4242 4243
		return 0;

4244
	if (!event_filter_match(event))
4245 4246
		return 0;

4247
	if (event->attr.comm)
4248 4249 4250 4251 4252
		return 1;

	return 0;
}

4253
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4254 4255
				  struct perf_comm_event *comm_event)
{
4256
	struct perf_event *event;
4257

4258 4259 4260
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4261 4262 4263
	}
}

4264
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4265 4266
{
	struct perf_cpu_context *cpuctx;
4267
	struct perf_event_context *ctx;
4268
	char comm[TASK_COMM_LEN];
4269
	unsigned int size;
P
Peter Zijlstra 已提交
4270
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4271
	int ctxn;
4272

4273
	memset(comm, 0, sizeof(comm));
4274
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4275
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4276 4277 4278 4279

	comm_event->comm = comm;
	comm_event->comm_size = size;

4280
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4281
	rcu_read_lock();
P
Peter Zijlstra 已提交
4282
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4283
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4284 4285
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4286
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4287 4288 4289

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4290
			goto next;
P
Peter Zijlstra 已提交
4291 4292 4293 4294

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4295 4296
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4297
	}
4298
	rcu_read_unlock();
4299 4300
}

4301
void perf_event_comm(struct task_struct *task)
4302
{
4303
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4304 4305
	struct perf_event_context *ctx;
	int ctxn;
4306

P
Peter Zijlstra 已提交
4307 4308 4309 4310
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4311

P
Peter Zijlstra 已提交
4312 4313
		perf_event_enable_on_exec(ctx);
	}
4314

4315
	if (!atomic_read(&nr_comm_events))
4316
		return;
4317

4318
	comm_event = (struct perf_comm_event){
4319
		.task	= task,
4320 4321
		/* .comm      */
		/* .comm_size */
4322
		.event_id  = {
4323
			.header = {
4324
				.type = PERF_RECORD_COMM,
4325 4326 4327 4328 4329
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4330 4331 4332
		},
	};

4333
	perf_event_comm_event(&comm_event);
4334 4335
}

4336 4337 4338 4339 4340
/*
 * mmap tracking
 */

struct perf_mmap_event {
4341 4342 4343 4344
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4345 4346 4347 4348 4349 4350 4351 4352 4353

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4354
	} event_id;
4355 4356
};

4357
static void perf_event_mmap_output(struct perf_event *event,
4358 4359 4360
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4361
	struct perf_sample_data sample;
4362
	int size = mmap_event->event_id.header.size;
4363
	int ret;
4364

4365 4366
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4367
				mmap_event->event_id.header.size);
4368
	if (ret)
4369
		goto out;
4370

4371 4372
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4373

4374
	perf_output_put(&handle, mmap_event->event_id);
4375
	__output_copy(&handle, mmap_event->file_name,
4376
				   mmap_event->file_size);
4377 4378 4379

	perf_event__output_id_sample(event, &handle, &sample);

4380
	perf_output_end(&handle);
4381 4382
out:
	mmap_event->event_id.header.size = size;
4383 4384
}

4385
static int perf_event_mmap_match(struct perf_event *event,
4386 4387
				   struct perf_mmap_event *mmap_event,
				   int executable)
4388
{
P
Peter Zijlstra 已提交
4389
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4390 4391
		return 0;

4392
	if (!event_filter_match(event))
4393 4394
		return 0;

4395 4396
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4397 4398 4399 4400 4401
		return 1;

	return 0;
}

4402
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4403 4404
				  struct perf_mmap_event *mmap_event,
				  int executable)
4405
{
4406
	struct perf_event *event;
4407

4408
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4409
		if (perf_event_mmap_match(event, mmap_event, executable))
4410
			perf_event_mmap_output(event, mmap_event);
4411 4412 4413
	}
}

4414
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4415 4416
{
	struct perf_cpu_context *cpuctx;
4417
	struct perf_event_context *ctx;
4418 4419
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4420 4421 4422
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4423
	const char *name;
P
Peter Zijlstra 已提交
4424
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4425
	int ctxn;
4426

4427 4428
	memset(tmp, 0, sizeof(tmp));

4429
	if (file) {
4430
		/*
4431
		 * d_path works from the end of the rb backwards, so we
4432 4433 4434 4435
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4436 4437 4438 4439
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4440
		name = d_path(&file->f_path, buf, PATH_MAX);
4441 4442 4443 4444 4445
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4446 4447 4448
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4449
			goto got_name;
4450
		}
4451 4452 4453 4454

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4455 4456 4457 4458 4459 4460 4461 4462
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4463 4464
		}

4465 4466 4467 4468 4469
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4470
	size = ALIGN(strlen(name)+1, sizeof(u64));
4471 4472 4473 4474

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4475
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4476

4477
	rcu_read_lock();
P
Peter Zijlstra 已提交
4478
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4479
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4480 4481
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4482 4483
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4484 4485 4486

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4487
			goto next;
P
Peter Zijlstra 已提交
4488 4489 4490 4491 4492 4493

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4494 4495
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4496
	}
4497 4498
	rcu_read_unlock();

4499 4500 4501
	kfree(buf);
}

4502
void perf_event_mmap(struct vm_area_struct *vma)
4503
{
4504 4505
	struct perf_mmap_event mmap_event;

4506
	if (!atomic_read(&nr_mmap_events))
4507 4508 4509
		return;

	mmap_event = (struct perf_mmap_event){
4510
		.vma	= vma,
4511 4512
		/* .file_name */
		/* .file_size */
4513
		.event_id  = {
4514
			.header = {
4515
				.type = PERF_RECORD_MMAP,
4516
				.misc = PERF_RECORD_MISC_USER,
4517 4518 4519 4520
				/* .size */
			},
			/* .pid */
			/* .tid */
4521 4522
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4523
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4524 4525 4526
		},
	};

4527
	perf_event_mmap_event(&mmap_event);
4528 4529
}

4530 4531 4532 4533
/*
 * IRQ throttle logging
 */

4534
static void perf_log_throttle(struct perf_event *event, int enable)
4535 4536
{
	struct perf_output_handle handle;
4537
	struct perf_sample_data sample;
4538 4539 4540 4541 4542
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4543
		u64				id;
4544
		u64				stream_id;
4545 4546
	} throttle_event = {
		.header = {
4547
			.type = PERF_RECORD_THROTTLE,
4548 4549 4550
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4551
		.time		= perf_clock(),
4552 4553
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4554 4555
	};

4556
	if (enable)
4557
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4558

4559 4560 4561
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4562
				throttle_event.header.size);
4563 4564 4565 4566
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4567
	perf_event__output_id_sample(event, &handle, &sample);
4568 4569 4570
	perf_output_end(&handle);
}

4571
/*
4572
 * Generic event overflow handling, sampling.
4573 4574
 */

4575
static int __perf_event_overflow(struct perf_event *event,
4576 4577
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4578
{
4579 4580
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4581
	u64 seq;
4582 4583
	int ret = 0;

4584 4585 4586 4587 4588 4589 4590
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4591 4592 4593 4594 4595 4596 4597 4598 4599
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4600 4601
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4602 4603
			ret = 1;
		}
4604
	}
4605

4606
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4607
		u64 now = perf_clock();
4608
		s64 delta = now - hwc->freq_time_stamp;
4609

4610
		hwc->freq_time_stamp = now;
4611

4612
		if (delta > 0 && delta < 2*TICK_NSEC)
4613
			perf_adjust_period(event, delta, hwc->last_period, true);
4614 4615
	}

4616 4617
	/*
	 * XXX event_limit might not quite work as expected on inherited
4618
	 * events
4619 4620
	 */

4621 4622
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4623
		ret = 1;
4624
		event->pending_kill = POLL_HUP;
4625 4626
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4627 4628
	}

4629
	if (event->overflow_handler)
4630
		event->overflow_handler(event, data, regs);
4631
	else
4632
		perf_event_output(event, data, regs);
4633

P
Peter Zijlstra 已提交
4634
	if (event->fasync && event->pending_kill) {
4635 4636
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4637 4638
	}

4639
	return ret;
4640 4641
}

4642
int perf_event_overflow(struct perf_event *event,
4643 4644
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4645
{
4646
	return __perf_event_overflow(event, 1, data, regs);
4647 4648
}

4649
/*
4650
 * Generic software event infrastructure
4651 4652
 */

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4664
/*
4665 4666
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4667 4668 4669 4670
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4671
static u64 perf_swevent_set_period(struct perf_event *event)
4672
{
4673
	struct hw_perf_event *hwc = &event->hw;
4674 4675 4676 4677 4678
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4679 4680

again:
4681
	old = val = local64_read(&hwc->period_left);
4682 4683
	if (val < 0)
		return 0;
4684

4685 4686 4687
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4688
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4689
		goto again;
4690

4691
	return nr;
4692 4693
}

4694
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4695
				    struct perf_sample_data *data,
4696
				    struct pt_regs *regs)
4697
{
4698
	struct hw_perf_event *hwc = &event->hw;
4699
	int throttle = 0;
4700

4701 4702
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4703

4704 4705
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4706

4707
	for (; overflow; overflow--) {
4708
		if (__perf_event_overflow(event, throttle,
4709
					    data, regs)) {
4710 4711 4712 4713 4714 4715
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4716
		throttle = 1;
4717
	}
4718 4719
}

P
Peter Zijlstra 已提交
4720
static void perf_swevent_event(struct perf_event *event, u64 nr,
4721
			       struct perf_sample_data *data,
4722
			       struct pt_regs *regs)
4723
{
4724
	struct hw_perf_event *hwc = &event->hw;
4725

4726
	local64_add(nr, &event->count);
4727

4728 4729 4730
	if (!regs)
		return;

4731
	if (!is_sampling_event(event))
4732
		return;
4733

4734 4735 4736 4737 4738 4739
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

4740
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4741
		return perf_swevent_overflow(event, 1, data, regs);
4742

4743
	if (local64_add_negative(nr, &hwc->period_left))
4744
		return;
4745

4746
	perf_swevent_overflow(event, 0, data, regs);
4747 4748
}

4749 4750 4751
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4752
	if (event->hw.state & PERF_HES_STOPPED)
4753
		return 1;
P
Peter Zijlstra 已提交
4754

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4766
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4767
				enum perf_type_id type,
L
Li Zefan 已提交
4768 4769 4770
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4771
{
4772
	if (event->attr.type != type)
4773
		return 0;
4774

4775
	if (event->attr.config != event_id)
4776 4777
		return 0;

4778 4779
	if (perf_exclude_event(event, regs))
		return 0;
4780 4781 4782 4783

	return 1;
}

4784 4785 4786 4787 4788 4789 4790
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4791 4792
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4793
{
4794 4795 4796 4797
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4798

4799 4800
/* For the read side: events when they trigger */
static inline struct hlist_head *
4801
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4802 4803
{
	struct swevent_hlist *hlist;
4804

4805
	hlist = rcu_dereference(swhash->swevent_hlist);
4806 4807 4808
	if (!hlist)
		return NULL;

4809 4810 4811 4812 4813
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4814
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4825
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4826 4827 4828 4829 4830
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4831 4832 4833
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4834
				    u64 nr,
4835 4836
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4837
{
4838
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4839
	struct perf_event *event;
4840 4841
	struct hlist_node *node;
	struct hlist_head *head;
4842

4843
	rcu_read_lock();
4844
	head = find_swevent_head_rcu(swhash, type, event_id);
4845 4846 4847 4848
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4849
		if (perf_swevent_match(event, type, event_id, data, regs))
4850
			perf_swevent_event(event, nr, data, regs);
4851
	}
4852 4853
end:
	rcu_read_unlock();
4854 4855
}

4856
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4857
{
4858
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4859

4860
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4861
}
I
Ingo Molnar 已提交
4862
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4863

4864
inline void perf_swevent_put_recursion_context(int rctx)
4865
{
4866
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4867

4868
	put_recursion_context(swhash->recursion, rctx);
4869
}
4870

4871
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4872
{
4873
	struct perf_sample_data data;
4874 4875
	int rctx;

4876
	preempt_disable_notrace();
4877 4878 4879
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4880

4881
	perf_sample_data_init(&data, addr);
4882

4883
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4884 4885

	perf_swevent_put_recursion_context(rctx);
4886
	preempt_enable_notrace();
4887 4888
}

4889
static void perf_swevent_read(struct perf_event *event)
4890 4891 4892
{
}

P
Peter Zijlstra 已提交
4893
static int perf_swevent_add(struct perf_event *event, int flags)
4894
{
4895
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4896
	struct hw_perf_event *hwc = &event->hw;
4897 4898
	struct hlist_head *head;

4899
	if (is_sampling_event(event)) {
4900
		hwc->last_period = hwc->sample_period;
4901
		perf_swevent_set_period(event);
4902
	}
4903

P
Peter Zijlstra 已提交
4904 4905
	hwc->state = !(flags & PERF_EF_START);

4906
	head = find_swevent_head(swhash, event);
4907 4908 4909 4910 4911
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4912 4913 4914
	return 0;
}

P
Peter Zijlstra 已提交
4915
static void perf_swevent_del(struct perf_event *event, int flags)
4916
{
4917
	hlist_del_rcu(&event->hlist_entry);
4918 4919
}

P
Peter Zijlstra 已提交
4920
static void perf_swevent_start(struct perf_event *event, int flags)
4921
{
P
Peter Zijlstra 已提交
4922
	event->hw.state = 0;
4923
}
I
Ingo Molnar 已提交
4924

P
Peter Zijlstra 已提交
4925
static void perf_swevent_stop(struct perf_event *event, int flags)
4926
{
P
Peter Zijlstra 已提交
4927
	event->hw.state = PERF_HES_STOPPED;
4928 4929
}

4930 4931
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4932
swevent_hlist_deref(struct swevent_htable *swhash)
4933
{
4934 4935
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4936 4937
}

4938
static void swevent_hlist_release(struct swevent_htable *swhash)
4939
{
4940
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4941

4942
	if (!hlist)
4943 4944
		return;

4945
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4946
	kfree_rcu(hlist, rcu_head);
4947 4948 4949 4950
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4951
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4952

4953
	mutex_lock(&swhash->hlist_mutex);
4954

4955 4956
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4957

4958
	mutex_unlock(&swhash->hlist_mutex);
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4976
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4977 4978
	int err = 0;

4979
	mutex_lock(&swhash->hlist_mutex);
4980

4981
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4982 4983 4984 4985 4986 4987 4988
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4989
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4990
	}
4991
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4992
exit:
4993
	mutex_unlock(&swhash->hlist_mutex);
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5017
fail:
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5028
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5029

5030 5031 5032
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5033

5034 5035
	WARN_ON(event->parent);

5036
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5047 5048 5049 5050 5051 5052
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5053 5054 5055 5056 5057 5058 5059 5060 5061
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5062
	if (event_id >= PERF_COUNT_SW_MAX)
5063 5064 5065 5066 5067 5068 5069 5070 5071
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5072
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5073 5074 5075 5076 5077 5078
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5079 5080 5081 5082 5083
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5084
static struct pmu perf_swevent = {
5085
	.task_ctx_nr	= perf_sw_context,
5086

5087
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5088 5089 5090 5091
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5092
	.read		= perf_swevent_read,
5093 5094

	.event_idx	= perf_swevent_event_idx,
5095 5096
};

5097 5098
#ifdef CONFIG_EVENT_TRACING

5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5113 5114
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5115 5116 5117 5118
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5119 5120 5121 5122 5123 5124 5125 5126 5127
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5128
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5129 5130
{
	struct perf_sample_data data;
5131 5132 5133
	struct perf_event *event;
	struct hlist_node *node;

5134 5135 5136 5137 5138 5139 5140 5141
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5142 5143
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5144
			perf_swevent_event(event, count, &data, regs);
5145
	}
5146 5147

	perf_swevent_put_recursion_context(rctx);
5148 5149 5150
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5151
static void tp_perf_event_destroy(struct perf_event *event)
5152
{
5153
	perf_trace_destroy(event);
5154 5155
}

5156
static int perf_tp_event_init(struct perf_event *event)
5157
{
5158 5159
	int err;

5160 5161 5162
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5163 5164 5165 5166 5167 5168
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5169 5170
	err = perf_trace_init(event);
	if (err)
5171
		return err;
5172

5173
	event->destroy = tp_perf_event_destroy;
5174

5175 5176 5177 5178
	return 0;
}

static struct pmu perf_tracepoint = {
5179 5180
	.task_ctx_nr	= perf_sw_context,

5181
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5182 5183 5184 5185
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5186
	.read		= perf_swevent_read,
5187 5188

	.event_idx	= perf_swevent_event_idx,
5189 5190 5191 5192
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5193
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5194
}
L
Li Zefan 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5219
#else
L
Li Zefan 已提交
5220

5221
static inline void perf_tp_register(void)
5222 5223
{
}
L
Li Zefan 已提交
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5234
#endif /* CONFIG_EVENT_TRACING */
5235

5236
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5237
void perf_bp_event(struct perf_event *bp, void *data)
5238
{
5239 5240 5241
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5242
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5243

P
Peter Zijlstra 已提交
5244
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5245
		perf_swevent_event(bp, 1, &sample, regs);
5246 5247 5248
}
#endif

5249 5250 5251
/*
 * hrtimer based swevent callback
 */
5252

5253
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5254
{
5255 5256 5257 5258 5259
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5260

5261
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5262 5263 5264 5265

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5266
	event->pmu->read(event);
5267

5268 5269 5270 5271 5272
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5273
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5274
			if (perf_event_overflow(event, &data, regs))
5275 5276
				ret = HRTIMER_NORESTART;
	}
5277

5278 5279
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5280

5281
	return ret;
5282 5283
}

5284
static void perf_swevent_start_hrtimer(struct perf_event *event)
5285
{
5286
	struct hw_perf_event *hwc = &event->hw;
5287 5288 5289 5290
	s64 period;

	if (!is_sampling_event(event))
		return;
5291

5292 5293 5294 5295
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5296

5297 5298 5299 5300 5301
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5302
				ns_to_ktime(period), 0,
5303
				HRTIMER_MODE_REL_PINNED, 0);
5304
}
5305 5306

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5307
{
5308 5309
	struct hw_perf_event *hwc = &event->hw;

5310
	if (is_sampling_event(event)) {
5311
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5312
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5313 5314 5315

		hrtimer_cancel(&hwc->hrtimer);
	}
5316 5317
}

P
Peter Zijlstra 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5342 5343 5344 5345 5346
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5347
{
5348 5349 5350
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5351
	now = local_clock();
5352 5353
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5354 5355
}

P
Peter Zijlstra 已提交
5356
static void cpu_clock_event_start(struct perf_event *event, int flags)
5357
{
P
Peter Zijlstra 已提交
5358
	local64_set(&event->hw.prev_count, local_clock());
5359 5360 5361
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5362
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5363
{
5364 5365 5366
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5367

P
Peter Zijlstra 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5381 5382 5383 5384
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5385

5386 5387 5388 5389 5390 5391 5392 5393
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5394 5395 5396 5397 5398 5399
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5400 5401
	perf_swevent_init_hrtimer(event);

5402
	return 0;
5403 5404
}

5405
static struct pmu perf_cpu_clock = {
5406 5407
	.task_ctx_nr	= perf_sw_context,

5408
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5409 5410 5411 5412
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5413
	.read		= cpu_clock_event_read,
5414 5415

	.event_idx	= perf_swevent_event_idx,
5416 5417 5418 5419 5420 5421 5422
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5423
{
5424 5425
	u64 prev;
	s64 delta;
5426

5427 5428 5429 5430
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5431

P
Peter Zijlstra 已提交
5432
static void task_clock_event_start(struct perf_event *event, int flags)
5433
{
P
Peter Zijlstra 已提交
5434
	local64_set(&event->hw.prev_count, event->ctx->time);
5435 5436 5437
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5438
static void task_clock_event_stop(struct perf_event *event, int flags)
5439 5440 5441
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5442 5443 5444 5445 5446 5447
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5448

P
Peter Zijlstra 已提交
5449 5450 5451 5452 5453 5454
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5455 5456 5457 5458
}

static void task_clock_event_read(struct perf_event *event)
{
5459 5460 5461
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5462 5463 5464 5465 5466

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5467
{
5468 5469 5470 5471 5472 5473
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5474 5475 5476 5477 5478 5479
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5480 5481
	perf_swevent_init_hrtimer(event);

5482
	return 0;
L
Li Zefan 已提交
5483 5484
}

5485
static struct pmu perf_task_clock = {
5486 5487
	.task_ctx_nr	= perf_sw_context,

5488
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5489 5490 5491 5492
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5493
	.read		= task_clock_event_read,
5494 5495

	.event_idx	= perf_swevent_event_idx,
5496
};
L
Li Zefan 已提交
5497

P
Peter Zijlstra 已提交
5498
static void perf_pmu_nop_void(struct pmu *pmu)
5499 5500
{
}
L
Li Zefan 已提交
5501

P
Peter Zijlstra 已提交
5502
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5503
{
P
Peter Zijlstra 已提交
5504
	return 0;
L
Li Zefan 已提交
5505 5506
}

P
Peter Zijlstra 已提交
5507
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5508
{
P
Peter Zijlstra 已提交
5509
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5510 5511
}

P
Peter Zijlstra 已提交
5512 5513 5514 5515 5516
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5517

P
Peter Zijlstra 已提交
5518
static void perf_pmu_cancel_txn(struct pmu *pmu)
5519
{
P
Peter Zijlstra 已提交
5520
	perf_pmu_enable(pmu);
5521 5522
}

5523 5524 5525 5526 5527
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5528 5529 5530 5531 5532
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5533
{
P
Peter Zijlstra 已提交
5534
	struct pmu *pmu;
5535

P
Peter Zijlstra 已提交
5536 5537
	if (ctxn < 0)
		return NULL;
5538

P
Peter Zijlstra 已提交
5539 5540 5541 5542
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5543

P
Peter Zijlstra 已提交
5544
	return NULL;
5545 5546
}

5547
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5548
{
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5564

P
Peter Zijlstra 已提交
5565
	mutex_lock(&pmus_lock);
5566
	/*
P
Peter Zijlstra 已提交
5567
	 * Like a real lame refcount.
5568
	 */
5569 5570 5571
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5572
			goto out;
5573
		}
P
Peter Zijlstra 已提交
5574
	}
5575

5576
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5577 5578
out:
	mutex_unlock(&pmus_lock);
5579
}
P
Peter Zijlstra 已提交
5580
static struct idr pmu_idr;
5581

P
Peter Zijlstra 已提交
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5614
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5635
static struct lock_class_key cpuctx_mutex;
5636
static struct lock_class_key cpuctx_lock;
5637

P
Peter Zijlstra 已提交
5638
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5639
{
P
Peter Zijlstra 已提交
5640
	int cpu, ret;
5641

5642
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5643 5644 5645 5646
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5647

P
Peter Zijlstra 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5666 5667 5668 5669 5670 5671
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5672
skip_type:
P
Peter Zijlstra 已提交
5673 5674 5675
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5676

P
Peter Zijlstra 已提交
5677 5678
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5679
		goto free_dev;
5680

P
Peter Zijlstra 已提交
5681 5682 5683 5684
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5685
		__perf_event_init_context(&cpuctx->ctx);
5686
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5687
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5688
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5689
		cpuctx->ctx.pmu = pmu;
5690 5691
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5692
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5693
	}
5694

P
Peter Zijlstra 已提交
5695
got_cpu_context:
P
Peter Zijlstra 已提交
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5710
		}
5711
	}
5712

P
Peter Zijlstra 已提交
5713 5714 5715 5716 5717
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5718 5719 5720
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

5721
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5722 5723
	ret = 0;
unlock:
5724 5725
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5726
	return ret;
P
Peter Zijlstra 已提交
5727

P
Peter Zijlstra 已提交
5728 5729 5730 5731
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5732 5733 5734 5735
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5736 5737 5738
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5739 5740
}

5741
void perf_pmu_unregister(struct pmu *pmu)
5742
{
5743 5744 5745
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5746

5747
	/*
P
Peter Zijlstra 已提交
5748 5749
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5750
	 */
5751
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5752
	synchronize_rcu();
5753

P
Peter Zijlstra 已提交
5754
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5755 5756
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5757 5758
	device_del(pmu->dev);
	put_device(pmu->dev);
5759
	free_pmu_context(pmu);
5760
}
5761

5762 5763 5764 5765
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5766
	int ret;
5767 5768

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5769 5770 5771 5772

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5773
	if (pmu) {
5774
		event->pmu = pmu;
5775 5776 5777
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5778
		goto unlock;
5779
	}
P
Peter Zijlstra 已提交
5780

5781
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5782
		event->pmu = pmu;
5783
		ret = pmu->event_init(event);
5784
		if (!ret)
P
Peter Zijlstra 已提交
5785
			goto unlock;
5786

5787 5788
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5789
			goto unlock;
5790
		}
5791
	}
P
Peter Zijlstra 已提交
5792 5793
	pmu = ERR_PTR(-ENOENT);
unlock:
5794
	srcu_read_unlock(&pmus_srcu, idx);
5795

5796
	return pmu;
5797 5798
}

T
Thomas Gleixner 已提交
5799
/*
5800
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5801
 */
5802
static struct perf_event *
5803
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5804 5805 5806
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5807 5808
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5809
{
P
Peter Zijlstra 已提交
5810
	struct pmu *pmu;
5811 5812
	struct perf_event *event;
	struct hw_perf_event *hwc;
5813
	long err;
T
Thomas Gleixner 已提交
5814

5815 5816 5817 5818 5819
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5820
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5821
	if (!event)
5822
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5823

5824
	/*
5825
	 * Single events are their own group leaders, with an
5826 5827 5828
	 * empty sibling list:
	 */
	if (!group_leader)
5829
		group_leader = event;
5830

5831 5832
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5833

5834 5835 5836
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
5837 5838
	INIT_LIST_HEAD(&event->rb_entry);

5839
	init_waitqueue_head(&event->waitq);
5840
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5841

5842
	mutex_init(&event->mmap_mutex);
5843

5844 5845 5846 5847 5848
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5849

5850
	event->parent		= parent_event;
5851

5852 5853
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5854

5855
	event->state		= PERF_EVENT_STATE_INACTIVE;
5856

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5868
	if (!overflow_handler && parent_event) {
5869
		overflow_handler = parent_event->overflow_handler;
5870 5871
		context = parent_event->overflow_handler_context;
	}
5872

5873
	event->overflow_handler	= overflow_handler;
5874
	event->overflow_handler_context = context;
5875

5876
	if (attr->disabled)
5877
		event->state = PERF_EVENT_STATE_OFF;
5878

5879
	pmu = NULL;
5880

5881
	hwc = &event->hw;
5882
	hwc->sample_period = attr->sample_period;
5883
	if (attr->freq && attr->sample_freq)
5884
		hwc->sample_period = 1;
5885
	hwc->last_period = hwc->sample_period;
5886

5887
	local64_set(&hwc->period_left, hwc->sample_period);
5888

5889
	/*
5890
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5891
	 */
5892
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5893 5894
		goto done;

5895
	pmu = perf_init_event(event);
5896

5897 5898
done:
	err = 0;
5899
	if (!pmu)
5900
		err = -EINVAL;
5901 5902
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5903

5904
	if (err) {
5905 5906 5907
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5908
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5909
	}
5910

5911
	if (!event->parent) {
5912
		if (event->attach_state & PERF_ATTACH_TASK)
5913
			static_key_slow_inc(&perf_sched_events.key);
5914
		if (event->attr.mmap || event->attr.mmap_data)
5915 5916 5917 5918 5919
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5920 5921 5922 5923 5924 5925 5926
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5927
	}
5928

5929
	return event;
T
Thomas Gleixner 已提交
5930 5931
}

5932 5933
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5934 5935
{
	u32 size;
5936
	int ret;
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5961 5962 5963
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5964 5965
	 */
	if (size > sizeof(*attr)) {
5966 5967 5968
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5969

5970 5971
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5972

5973
		for (; addr < end; addr++) {
5974 5975 5976 5977 5978 5979
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5980
		size = sizeof(*attr);
5981 5982 5983 5984 5985 5986
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5987
	if (attr->__reserved_1)
5988 5989 5990 5991 5992 5993 5994 5995
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6030 6031 6032 6033 6034 6035 6036 6037 6038
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6039 6040
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6041
{
6042
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6043 6044
	int ret = -EINVAL;

6045
	if (!output_event)
6046 6047
		goto set;

6048 6049
	/* don't allow circular references */
	if (event == output_event)
6050 6051
		goto out;

6052 6053 6054 6055 6056 6057 6058
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6059
	 * If its not a per-cpu rb, it must be the same task.
6060 6061 6062 6063
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6064
set:
6065
	mutex_lock(&event->mmap_mutex);
6066 6067 6068
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6069

6070
	if (output_event) {
6071 6072 6073
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6074
			goto unlock;
6075 6076
	}

6077 6078
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6079 6080
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6081
	ret = 0;
6082 6083 6084
unlock:
	mutex_unlock(&event->mmap_mutex);

6085 6086
	if (old_rb)
		ring_buffer_put(old_rb);
6087 6088 6089 6090
out:
	return ret;
}

T
Thomas Gleixner 已提交
6091
/**
6092
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6093
 *
6094
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6095
 * @pid:		target pid
I
Ingo Molnar 已提交
6096
 * @cpu:		target cpu
6097
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6098
 */
6099 6100
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6101
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6102
{
6103 6104
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6105 6106 6107
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6108
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6109
	struct task_struct *task = NULL;
6110
	struct pmu *pmu;
6111
	int event_fd;
6112
	int move_group = 0;
6113
	int fput_needed = 0;
6114
	int err;
T
Thomas Gleixner 已提交
6115

6116
	/* for future expandability... */
S
Stephane Eranian 已提交
6117
	if (flags & ~PERF_FLAG_ALL)
6118 6119
		return -EINVAL;

6120 6121 6122
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6123

6124 6125 6126 6127 6128
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6129
	if (attr.freq) {
6130
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6131 6132 6133
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6143 6144 6145 6146
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6147 6148 6149 6150
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6151
			goto err_fd;
6152 6153 6154 6155 6156 6157 6158 6159
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6160
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6161 6162 6163 6164 6165 6166 6167
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6168 6169
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6170 6171
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6172
		goto err_task;
6173 6174
	}

S
Stephane Eranian 已提交
6175 6176 6177 6178
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6179 6180 6181 6182 6183 6184
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6185
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6186 6187
	}

6188 6189 6190 6191 6192
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6216 6217 6218 6219

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6220
	ctx = find_get_context(pmu, task, cpu);
6221 6222
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6223
		goto err_alloc;
6224 6225
	}

6226 6227 6228 6229 6230
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6231
	/*
6232
	 * Look up the group leader (we will attach this event to it):
6233
	 */
6234
	if (group_leader) {
6235
		err = -EINVAL;
6236 6237

		/*
I
Ingo Molnar 已提交
6238 6239 6240 6241
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6242
			goto err_context;
I
Ingo Molnar 已提交
6243 6244 6245
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6246
		 */
6247 6248 6249 6250 6251 6252 6253 6254
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6255 6256 6257
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6258
		if (attr.exclusive || attr.pinned)
6259
			goto err_context;
6260 6261 6262 6263 6264
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6265
			goto err_context;
6266
	}
T
Thomas Gleixner 已提交
6267

6268 6269 6270
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6271
		goto err_context;
6272
	}
6273

6274 6275 6276 6277
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6278
		perf_remove_from_context(group_leader);
6279 6280
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6281
			perf_remove_from_context(sibling);
6282 6283 6284 6285
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6286
	}
6287

6288
	event->filp = event_file;
6289
	WARN_ON_ONCE(ctx->parent_ctx);
6290
	mutex_lock(&ctx->mutex);
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6302
	perf_install_in_context(ctx, event, cpu);
6303
	++ctx->generation;
6304
	perf_unpin_context(ctx);
6305
	mutex_unlock(&ctx->mutex);
6306

6307
	event->owner = current;
P
Peter Zijlstra 已提交
6308

6309 6310 6311
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6312

6313 6314 6315 6316
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6317
	perf_event__id_header_size(event);
6318

6319 6320 6321 6322 6323 6324
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6325 6326 6327
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6328

6329
err_context:
6330
	perf_unpin_context(ctx);
6331
	put_ctx(ctx);
6332
err_alloc:
6333
	free_event(event);
P
Peter Zijlstra 已提交
6334 6335 6336
err_task:
	if (task)
		put_task_struct(task);
6337
err_group_fd:
6338
	fput_light(group_file, fput_needed);
6339 6340
err_fd:
	put_unused_fd(event_fd);
6341
	return err;
T
Thomas Gleixner 已提交
6342 6343
}

6344 6345 6346 6347 6348
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6349
 * @task: task to profile (NULL for percpu)
6350 6351 6352
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6353
				 struct task_struct *task,
6354 6355
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6356 6357
{
	struct perf_event_context *ctx;
6358
	struct perf_event *event;
6359
	int err;
6360

6361 6362 6363
	/*
	 * Get the target context (task or percpu):
	 */
6364

6365 6366
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6367 6368 6369 6370
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6371

M
Matt Helsley 已提交
6372
	ctx = find_get_context(event->pmu, task, cpu);
6373 6374
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6375
		goto err_free;
6376
	}
6377 6378 6379 6380 6381 6382

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6383
	perf_unpin_context(ctx);
6384 6385 6386 6387
	mutex_unlock(&ctx->mutex);

	return event;

6388 6389 6390
err_free:
	free_event(event);
err:
6391
	return ERR_PTR(err);
6392
}
6393
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6394

6395
static void sync_child_event(struct perf_event *child_event,
6396
			       struct task_struct *child)
6397
{
6398
	struct perf_event *parent_event = child_event->parent;
6399
	u64 child_val;
6400

6401 6402
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6403

P
Peter Zijlstra 已提交
6404
	child_val = perf_event_count(child_event);
6405 6406 6407 6408

	/*
	 * Add back the child's count to the parent's count:
	 */
6409
	atomic64_add(child_val, &parent_event->child_count);
6410 6411 6412 6413
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6414 6415

	/*
6416
	 * Remove this event from the parent's list
6417
	 */
6418 6419 6420 6421
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6422 6423

	/*
6424
	 * Release the parent event, if this was the last
6425 6426
	 * reference to it.
	 */
6427
	fput(parent_event->filp);
6428 6429
}

6430
static void
6431 6432
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6433
			 struct task_struct *child)
6434
{
6435 6436 6437 6438 6439
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6440

6441
	perf_remove_from_context(child_event);
6442

6443
	/*
6444
	 * It can happen that the parent exits first, and has events
6445
	 * that are still around due to the child reference. These
6446
	 * events need to be zapped.
6447
	 */
6448
	if (child_event->parent) {
6449 6450
		sync_child_event(child_event, child);
		free_event(child_event);
6451
	}
6452 6453
}

P
Peter Zijlstra 已提交
6454
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6455
{
6456 6457
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6458
	unsigned long flags;
6459

P
Peter Zijlstra 已提交
6460
	if (likely(!child->perf_event_ctxp[ctxn])) {
6461
		perf_event_task(child, NULL, 0);
6462
		return;
P
Peter Zijlstra 已提交
6463
	}
6464

6465
	local_irq_save(flags);
6466 6467 6468 6469 6470 6471
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6472
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6473 6474 6475

	/*
	 * Take the context lock here so that if find_get_context is
6476
	 * reading child->perf_event_ctxp, we wait until it has
6477 6478
	 * incremented the context's refcount before we do put_ctx below.
	 */
6479
	raw_spin_lock(&child_ctx->lock);
6480
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6481
	child->perf_event_ctxp[ctxn] = NULL;
6482 6483 6484
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6485
	 * the events from it.
6486 6487
	 */
	unclone_ctx(child_ctx);
6488
	update_context_time(child_ctx);
6489
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6490 6491

	/*
6492 6493 6494
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6495
	 */
6496
	perf_event_task(child, child_ctx, 0);
6497

6498 6499 6500
	/*
	 * We can recurse on the same lock type through:
	 *
6501 6502 6503
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6504 6505 6506 6507 6508
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6509
	mutex_lock(&child_ctx->mutex);
6510

6511
again:
6512 6513 6514 6515 6516
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6517
				 group_entry)
6518
		__perf_event_exit_task(child_event, child_ctx, child);
6519 6520

	/*
6521
	 * If the last event was a group event, it will have appended all
6522 6523 6524
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6525 6526
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6527
		goto again;
6528 6529 6530 6531

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6532 6533
}

P
Peter Zijlstra 已提交
6534 6535 6536 6537 6538
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6539
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6540 6541
	int ctxn;

P
Peter Zijlstra 已提交
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6557 6558 6559 6560
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6575
	perf_group_detach(event);
6576 6577 6578 6579
	list_del_event(event, ctx);
	free_event(event);
}

6580 6581
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6582
 * perf_event_init_task below, used by fork() in case of fail.
6583
 */
6584
void perf_event_free_task(struct task_struct *task)
6585
{
P
Peter Zijlstra 已提交
6586
	struct perf_event_context *ctx;
6587
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6588
	int ctxn;
6589

P
Peter Zijlstra 已提交
6590 6591 6592 6593
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6594

P
Peter Zijlstra 已提交
6595
		mutex_lock(&ctx->mutex);
6596
again:
P
Peter Zijlstra 已提交
6597 6598 6599
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6600

P
Peter Zijlstra 已提交
6601 6602 6603
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6604

P
Peter Zijlstra 已提交
6605 6606 6607
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6608

P
Peter Zijlstra 已提交
6609
		mutex_unlock(&ctx->mutex);
6610

P
Peter Zijlstra 已提交
6611 6612
		put_ctx(ctx);
	}
6613 6614
}

6615 6616 6617 6618 6619 6620 6621 6622
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6635
	unsigned long flags;
P
Peter Zijlstra 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6648
					   child,
P
Peter Zijlstra 已提交
6649
					   group_leader, parent_event,
6650
				           NULL, NULL);
P
Peter Zijlstra 已提交
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6677 6678
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6679

6680 6681 6682 6683
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6684
	perf_event__id_header_size(child_event);
6685

P
Peter Zijlstra 已提交
6686 6687 6688
	/*
	 * Link it up in the child's context:
	 */
6689
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6690
	add_event_to_ctx(child_event, child_ctx);
6691
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6733 6734 6735 6736 6737
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6738
		   struct task_struct *child, int ctxn,
6739 6740 6741
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6742
	struct perf_event_context *child_ctx;
6743 6744 6745 6746

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6747 6748
	}

6749
	child_ctx = child->perf_event_ctxp[ctxn];
6750 6751 6752 6753 6754 6755 6756
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6757

6758
		child_ctx = alloc_perf_context(event->pmu, child);
6759 6760
		if (!child_ctx)
			return -ENOMEM;
6761

P
Peter Zijlstra 已提交
6762
		child->perf_event_ctxp[ctxn] = child_ctx;
6763 6764 6765 6766 6767 6768 6769 6770 6771
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6772 6773
}

6774
/*
6775
 * Initialize the perf_event context in task_struct
6776
 */
P
Peter Zijlstra 已提交
6777
int perf_event_init_context(struct task_struct *child, int ctxn)
6778
{
6779
	struct perf_event_context *child_ctx, *parent_ctx;
6780 6781
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6782
	struct task_struct *parent = current;
6783
	int inherited_all = 1;
6784
	unsigned long flags;
6785
	int ret = 0;
6786

P
Peter Zijlstra 已提交
6787
	if (likely(!parent->perf_event_ctxp[ctxn]))
6788 6789
		return 0;

6790
	/*
6791 6792
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6793
	 */
P
Peter Zijlstra 已提交
6794
	parent_ctx = perf_pin_task_context(parent, ctxn);
6795

6796 6797 6798 6799 6800 6801 6802
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6803 6804 6805 6806
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6807
	mutex_lock(&parent_ctx->mutex);
6808 6809 6810 6811 6812

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6813
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6814 6815
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6816 6817 6818
		if (ret)
			break;
	}
6819

6820 6821 6822 6823 6824 6825 6826 6827 6828
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6829
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6830 6831
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6832
		if (ret)
6833
			break;
6834 6835
	}

6836 6837 6838
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6839
	child_ctx = child->perf_event_ctxp[ctxn];
6840

6841
	if (child_ctx && inherited_all) {
6842 6843 6844
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6845 6846 6847
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6848
		 */
P
Peter Zijlstra 已提交
6849
		cloned_ctx = parent_ctx->parent_ctx;
6850 6851
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6852
			child_ctx->parent_gen = parent_ctx->parent_gen;
6853 6854 6855 6856 6857
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6858 6859
	}

P
Peter Zijlstra 已提交
6860
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6861
	mutex_unlock(&parent_ctx->mutex);
6862

6863
	perf_unpin_context(parent_ctx);
6864
	put_ctx(parent_ctx);
6865

6866
	return ret;
6867 6868
}

P
Peter Zijlstra 已提交
6869 6870 6871 6872 6873 6874 6875
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6876 6877 6878 6879
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6880 6881 6882 6883 6884 6885 6886 6887 6888
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6889 6890
static void __init perf_event_init_all_cpus(void)
{
6891
	struct swevent_htable *swhash;
6892 6893 6894
	int cpu;

	for_each_possible_cpu(cpu) {
6895 6896
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6897
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6898 6899 6900
	}
}

6901
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6902
{
P
Peter Zijlstra 已提交
6903
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6904

6905
	mutex_lock(&swhash->hlist_mutex);
6906
	if (swhash->hlist_refcount > 0) {
6907 6908
		struct swevent_hlist *hlist;

6909 6910 6911
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6912
	}
6913
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6914 6915
}

P
Peter Zijlstra 已提交
6916
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6917
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6918
{
6919 6920 6921 6922 6923 6924 6925
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6926
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6927
{
P
Peter Zijlstra 已提交
6928
	struct perf_event_context *ctx = __info;
6929
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6930

P
Peter Zijlstra 已提交
6931
	perf_pmu_rotate_stop(ctx->pmu);
6932

6933
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6934
		__perf_remove_from_context(event);
6935
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6936
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6937
}
P
Peter Zijlstra 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6947
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6948 6949 6950 6951 6952 6953 6954 6955

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6956
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6957
{
6958
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6959

6960 6961 6962
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6963

P
Peter Zijlstra 已提交
6964
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6965 6966
}
#else
6967
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6968 6969
#endif

P
Peter Zijlstra 已提交
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6990 6991 6992 6993 6994
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

6995
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6996 6997

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6998
	case CPU_DOWN_FAILED:
6999
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7000 7001
		break;

P
Peter Zijlstra 已提交
7002
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7003
	case CPU_DOWN_PREPARE:
7004
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7005 7006 7007 7008 7009 7010 7011 7012 7013
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7014
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7015
{
7016 7017
	int ret;

P
Peter Zijlstra 已提交
7018 7019
	idr_init(&pmu_idr);

7020
	perf_event_init_all_cpus();
7021
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7022 7023 7024
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7025 7026
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7027
	register_reboot_notifier(&perf_reboot_notifier);
7028 7029 7030

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7031 7032 7033

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
T
Thomas Gleixner 已提交
7034
}
P
Peter Zijlstra 已提交
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7063 7064 7065 7066 7067 7068 7069

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7070
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7100 7101
static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7102
{
7103 7104 7105 7106
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7120
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7121 7122 7123
}

struct cgroup_subsys perf_subsys = {
7124 7125 7126 7127 7128
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7129
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7130 7131
};
#endif /* CONFIG_CGROUP_PERF */