core.c 209.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
L
Li Zefan 已提交
39
#include <linux/ftrace_event.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166

P
Peter Zijlstra 已提交
167 168 169 170
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

171
/*
172
 * perf event paranoia level:
173 174
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
175
 *   1 - disallow cpu events for unpriv
176
 *   2 - disallow kernel profiling for unpriv
177
 */
178
int sysctl_perf_event_paranoid __read_mostly = 1;
179

180 181
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
182 183

/*
184
 * max perf event sample rate
185
 */
186 187 188 189 190 191 192 193 194
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
195 196
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
197 198 199 200 201 202

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
203
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
204
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
205
}
P
Peter Zijlstra 已提交
206

207 208
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
209 210 211 212
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
213
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
214 215 216 217 218

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
237 238 239

	return 0;
}
240

241 242 243 244 245 246 247
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
248
static DEFINE_PER_CPU(u64, running_sample_length);
249

250
static void perf_duration_warn(struct irq_work *w)
251
{
252
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
253
	u64 avg_local_sample_len;
254
	u64 local_samples_len;
255

256
	local_samples_len = __this_cpu_read(running_sample_length);
257 258 259 260 261
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
262
			avg_local_sample_len, allowed_ns >> 1,
263 264 265 266 267 268 269
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
270
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
271 272
	u64 avg_local_sample_len;
	u64 local_samples_len;
273

P
Peter Zijlstra 已提交
274
	if (allowed_ns == 0)
275 276 277
		return;

	/* decay the counter by 1 average sample */
278
	local_samples_len = __this_cpu_read(running_sample_length);
279 280
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
281
	__this_cpu_write(running_sample_length, local_samples_len);
282 283 284 285 286 287 288 289

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
290
	if (avg_local_sample_len <= allowed_ns)
291 292 293 294 295 296 297 298 299 300
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
301

302 303 304 305 306 307
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
308 309
}

310
static atomic64_t perf_event_id;
311

312 313 314 315
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
316 317 318 319 320
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
321

322
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
323

324
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
325
{
326
	return "pmu";
T
Thomas Gleixner 已提交
327 328
}

329 330 331 332 333
static inline u64 perf_clock(void)
{
	return local_clock();
}

334 335 336 337 338
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
339 340 341 342 343 344
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
361 362 363 364 365 366 367 368
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
385 386 387 388
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
389
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
428 429
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
430
	/*
431 432
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
433
	 */
434
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
435 436
		return;

437 438 439 440 441 442
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
443 444 445
}

static inline void
446 447
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
448 449 450 451
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

452 453 454 455 456 457
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
458 459 460 461
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
462
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 496
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
497 498 499 500 501 502 503 504 505

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
506 507
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516 517 518

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
519
				WARN_ON_ONCE(cpuctx->cgrp);
520 521 522 523
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
524 525 526 527
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
528 529
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
530 531 532 533 534 535 536 537
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

538 539
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
540
{
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
563 564
}

565 566
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
567
{
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
586 587 588 589 590 591 592 593
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
594 595
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
596

597
	if (!f.file)
S
Stephane Eranian 已提交
598 599
		return -EBADF;

A
Al Viro 已提交
600
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
601
					 &perf_event_cgrp_subsys);
602 603 604 605
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
619
out:
620
	fdput(f);
S
Stephane Eranian 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

694 695
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
696 697 698
{
}

699 700
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
701 702 703 704 705 706 707 708 709 710 711
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
712 713
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

744 745 746 747 748 749 750 751
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
752
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

775
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
776
{
777
	struct hrtimer *timer = &cpuctx->hrtimer;
778
	struct pmu *pmu = cpuctx->ctx.pmu;
779
	u64 interval;
780 781 782 783 784

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

785 786 787 788
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
789 790 791
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
792

793
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
794

795 796
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	timer->function = perf_mux_hrtimer_handler;
797 798
}

799
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
800
{
801
	struct hrtimer *timer = &cpuctx->hrtimer;
802 803 804 805
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

808 809
	if (hrtimer_is_queued(timer))
		return 0;
810

811 812
	hrtimer_start(timer, cpuctx->hrtimer_interval, HRTIMER_MODE_REL_PINNED);
	return 0;
813 814
}

P
Peter Zijlstra 已提交
815
void perf_pmu_disable(struct pmu *pmu)
816
{
P
Peter Zijlstra 已提交
817 818 819
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
820 821
}

P
Peter Zijlstra 已提交
822
void perf_pmu_enable(struct pmu *pmu)
823
{
P
Peter Zijlstra 已提交
824 825 826
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
827 828
}

829
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
830 831

/*
832 833 834 835
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
836
 */
837
static void perf_event_ctx_activate(struct perf_event_context *ctx)
838
{
839
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
840

841
	WARN_ON(!irqs_disabled());
842

843 844 845 846 847 848 849 850 851 852 853 854
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
855 856
}

857
static void get_ctx(struct perf_event_context *ctx)
858
{
859
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
860 861
}

862 863 864 865 866 867 868 869 870
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

871
static void put_ctx(struct perf_event_context *ctx)
872
{
873 874 875
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
876 877
		if (ctx->task)
			put_task_struct(ctx->task);
878
		call_rcu(&ctx->rcu_head, free_ctx);
879
	}
880 881
}

P
Peter Zijlstra 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
923 924
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
925 926 927 928 929 930 931 932 933 934 935 936
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
937
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
938 939 940 941 942 943 944 945 946
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
947 948 949 950 951 952
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
953 954 955 956 957 958 959
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

960 961 962 963 964 965 966
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
967
{
968 969 970 971 972
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
973
		ctx->parent_ctx = NULL;
974
	ctx->generation++;
975 976

	return parent_ctx;
977 978
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1001
/*
1002
 * If we inherit events we want to return the parent event id
1003 1004
 * to userspace.
 */
1005
static u64 primary_event_id(struct perf_event *event)
1006
{
1007
	u64 id = event->id;
1008

1009 1010
	if (event->parent)
		id = event->parent->id;
1011 1012 1013 1014

	return id;
}

1015
/*
1016
 * Get the perf_event_context for a task and lock it.
1017 1018 1019
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1020
static struct perf_event_context *
P
Peter Zijlstra 已提交
1021
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1022
{
1023
	struct perf_event_context *ctx;
1024

P
Peter Zijlstra 已提交
1025
retry:
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1037
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1038 1039 1040 1041
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1042
		 * perf_event_task_sched_out, though the
1043 1044 1045 1046 1047 1048
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1049
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1050
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1051
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1052 1053
			rcu_read_unlock();
			preempt_enable();
1054 1055
			goto retry;
		}
1056 1057

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1058
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1059 1060
			ctx = NULL;
		}
1061 1062
	}
	rcu_read_unlock();
1063
	preempt_enable();
1064 1065 1066 1067 1068 1069 1070 1071
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1072 1073
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1074
{
1075
	struct perf_event_context *ctx;
1076 1077
	unsigned long flags;

P
Peter Zijlstra 已提交
1078
	ctx = perf_lock_task_context(task, ctxn, &flags);
1079 1080
	if (ctx) {
		++ctx->pin_count;
1081
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1082 1083 1084 1085
	}
	return ctx;
}

1086
static void perf_unpin_context(struct perf_event_context *ctx)
1087 1088 1089
{
	unsigned long flags;

1090
	raw_spin_lock_irqsave(&ctx->lock, flags);
1091
	--ctx->pin_count;
1092
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1106 1107 1108
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1109 1110 1111 1112

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1113 1114 1115
	return ctx ? ctx->time : 0;
}

1116 1117
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1118
 * The caller of this function needs to hold the ctx->lock.
1119 1120 1121 1122 1123 1124 1125 1126 1127
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1139
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1140 1141
	else if (ctx->is_active)
		run_end = ctx->time;
1142 1143 1144 1145
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1146 1147 1148 1149

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1150
		run_end = perf_event_time(event);
1151 1152

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1153

1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1168 1169 1170 1171 1172 1173 1174 1175 1176
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1177
/*
1178
 * Add a event from the lists for its context.
1179 1180
 * Must be called with ctx->mutex and ctx->lock held.
 */
1181
static void
1182
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1183
{
1184 1185
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1186 1187

	/*
1188 1189 1190
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1191
	 */
1192
	if (event->group_leader == event) {
1193 1194
		struct list_head *list;

1195 1196 1197
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1198 1199
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1200
	}
P
Peter Zijlstra 已提交
1201

1202
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1203 1204
		ctx->nr_cgroups++;

1205 1206 1207
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1208
		ctx->nr_stat++;
1209 1210

	ctx->generation++;
1211 1212
}

J
Jiri Olsa 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1261 1262 1263 1264 1265 1266
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1267 1268 1269
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1270 1271 1272
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1273 1274 1275
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1276 1277 1278
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1279 1280 1281 1282 1283 1284 1285 1286 1287
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1288 1289 1290 1291 1292 1293
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1294 1295 1296
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1306
	event->id_header_size = size;
1307 1308
}

1309 1310
static void perf_group_attach(struct perf_event *event)
{
1311
	struct perf_event *group_leader = event->group_leader, *pos;
1312

P
Peter Zijlstra 已提交
1313 1314 1315 1316 1317 1318
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1319 1320 1321 1322 1323
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1324 1325
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1326 1327 1328 1329 1330 1331
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1332 1333 1334 1335 1336

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1337 1338
}

1339
/*
1340
 * Remove a event from the lists for its context.
1341
 * Must be called with ctx->mutex and ctx->lock held.
1342
 */
1343
static void
1344
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1345
{
1346
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1347 1348 1349 1350

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1351 1352 1353 1354
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1355
		return;
1356 1357 1358

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1359
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1360
		ctx->nr_cgroups--;
1361 1362 1363 1364 1365 1366 1367 1368 1369
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1370

1371 1372
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1373
		ctx->nr_stat--;
1374

1375
	list_del_rcu(&event->event_entry);
1376

1377 1378
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1379

1380
	update_group_times(event);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1391 1392

	ctx->generation++;
1393 1394
}

1395
static void perf_group_detach(struct perf_event *event)
1396 1397
{
	struct perf_event *sibling, *tmp;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1414
		goto out;
1415 1416 1417 1418
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1419

1420
	/*
1421 1422
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1423
	 * to whatever list we are on.
1424
	 */
1425
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1426 1427
		if (list)
			list_move_tail(&sibling->group_entry, list);
1428
		sibling->group_leader = sibling;
1429 1430 1431

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1432 1433

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1434
	}
1435 1436 1437 1438 1439 1440

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1482 1483 1484
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1485 1486
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1487 1488
}

1489 1490
static void
event_sched_out(struct perf_event *event,
1491
		  struct perf_cpu_context *cpuctx,
1492
		  struct perf_event_context *ctx)
1493
{
1494
	u64 tstamp = perf_event_time(event);
1495
	u64 delta;
P
Peter Zijlstra 已提交
1496 1497 1498 1499

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1500 1501 1502 1503 1504 1505 1506 1507
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1508
		delta = tstamp - event->tstamp_stopped;
1509
		event->tstamp_running += delta;
1510
		event->tstamp_stopped = tstamp;
1511 1512
	}

1513
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1514
		return;
1515

1516 1517
	perf_pmu_disable(event->pmu);

1518 1519 1520 1521
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1522
	}
1523
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1524
	event->pmu->del(event, 0);
1525
	event->oncpu = -1;
1526

1527
	if (!is_software_event(event))
1528
		cpuctx->active_oncpu--;
1529 1530
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1531 1532
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1533
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1534
		cpuctx->exclusive = 0;
1535

1536 1537 1538
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1539
	perf_pmu_enable(event->pmu);
1540 1541
}

1542
static void
1543
group_sched_out(struct perf_event *group_event,
1544
		struct perf_cpu_context *cpuctx,
1545
		struct perf_event_context *ctx)
1546
{
1547
	struct perf_event *event;
1548
	int state = group_event->state;
1549

1550
	event_sched_out(group_event, cpuctx, ctx);
1551 1552 1553 1554

	/*
	 * Schedule out siblings (if any):
	 */
1555 1556
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1557

1558
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1559 1560 1561
		cpuctx->exclusive = 0;
}

1562 1563 1564 1565 1566
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1567
/*
1568
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1569
 *
1570
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1571 1572
 * remove it from the context list.
 */
1573
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1574
{
1575 1576
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1577
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1578
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1579

1580
	raw_spin_lock(&ctx->lock);
1581
	event_sched_out(event, cpuctx, ctx);
1582 1583
	if (re->detach_group)
		perf_group_detach(event);
1584
	list_del_event(event, ctx);
1585 1586 1587 1588
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1589
	raw_spin_unlock(&ctx->lock);
1590 1591

	return 0;
T
Thomas Gleixner 已提交
1592 1593 1594 1595
}


/*
1596
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1597
 *
1598
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1599
 * call when the task is on a CPU.
1600
 *
1601 1602
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1603 1604
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1605
 * When called from perf_event_exit_task, it's OK because the
1606
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1607
 */
1608
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1609
{
1610
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1611
	struct task_struct *task = ctx->task;
1612 1613 1614 1615
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1616

1617 1618
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1619 1620
	if (!task) {
		/*
1621 1622 1623 1624
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1625
		 */
1626
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1627 1628 1629 1630
		return;
	}

retry:
1631
	if (!task_function_call(task, __perf_remove_from_context, &re))
1632
		return;
T
Thomas Gleixner 已提交
1633

1634
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1635
	/*
1636 1637
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1638
	 */
1639
	if (ctx->is_active) {
1640
		raw_spin_unlock_irq(&ctx->lock);
1641 1642 1643 1644 1645
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1646 1647 1648 1649
		goto retry;
	}

	/*
1650 1651
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1652
	 */
1653 1654
	if (detach_group)
		perf_group_detach(event);
1655
	list_del_event(event, ctx);
1656
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1657 1658
}

1659
/*
1660
 * Cross CPU call to disable a performance event
1661
 */
1662
int __perf_event_disable(void *info)
1663
{
1664 1665
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1666
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1667 1668

	/*
1669 1670
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1671 1672 1673
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1674
	 */
1675
	if (ctx->task && cpuctx->task_ctx != ctx)
1676
		return -EINVAL;
1677

1678
	raw_spin_lock(&ctx->lock);
1679 1680

	/*
1681
	 * If the event is on, turn it off.
1682 1683
	 * If it is in error state, leave it in error state.
	 */
1684
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1685
		update_context_time(ctx);
S
Stephane Eranian 已提交
1686
		update_cgrp_time_from_event(event);
1687 1688 1689
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1690
		else
1691 1692
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1693 1694
	}

1695
	raw_spin_unlock(&ctx->lock);
1696 1697

	return 0;
1698 1699 1700
}

/*
1701
 * Disable a event.
1702
 *
1703 1704
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1705
 * remains valid.  This condition is satisifed when called through
1706 1707 1708 1709
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1710
 * is the current context on this CPU and preemption is disabled,
1711
 * hence we can't get into perf_event_task_sched_out for this context.
1712
 */
P
Peter Zijlstra 已提交
1713
static void _perf_event_disable(struct perf_event *event)
1714
{
1715
	struct perf_event_context *ctx = event->ctx;
1716 1717 1718 1719
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1720
		 * Disable the event on the cpu that it's on
1721
		 */
1722
		cpu_function_call(event->cpu, __perf_event_disable, event);
1723 1724 1725
		return;
	}

P
Peter Zijlstra 已提交
1726
retry:
1727 1728
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1729

1730
	raw_spin_lock_irq(&ctx->lock);
1731
	/*
1732
	 * If the event is still active, we need to retry the cross-call.
1733
	 */
1734
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1735
		raw_spin_unlock_irq(&ctx->lock);
1736 1737 1738 1739 1740
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1741 1742 1743 1744 1745 1746 1747
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1748 1749 1750
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1751
	}
1752
	raw_spin_unlock_irq(&ctx->lock);
1753
}
P
Peter Zijlstra 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1767
EXPORT_SYMBOL_GPL(perf_event_disable);
1768

S
Stephane Eranian 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1804 1805 1806
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1807
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1808

1809
static int
1810
event_sched_in(struct perf_event *event,
1811
		 struct perf_cpu_context *cpuctx,
1812
		 struct perf_event_context *ctx)
1813
{
1814
	u64 tstamp = perf_event_time(event);
1815
	int ret = 0;
1816

1817 1818
	lockdep_assert_held(&ctx->lock);

1819
	if (event->state <= PERF_EVENT_STATE_OFF)
1820 1821
		return 0;

1822
	event->state = PERF_EVENT_STATE_ACTIVE;
1823
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1835 1836 1837 1838 1839
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1840 1841
	perf_pmu_disable(event->pmu);

1842 1843 1844 1845
	event->tstamp_running += tstamp - event->tstamp_stopped;

	perf_set_shadow_time(event, ctx, tstamp);

1846 1847
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1848
	if (event->pmu->add(event, PERF_EF_START)) {
1849 1850
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1851 1852
		ret = -EAGAIN;
		goto out;
1853 1854
	}

1855
	if (!is_software_event(event))
1856
		cpuctx->active_oncpu++;
1857 1858
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1859 1860
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1861

1862
	if (event->attr.exclusive)
1863 1864
		cpuctx->exclusive = 1;

1865 1866 1867
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1868 1869 1870 1871
out:
	perf_pmu_enable(event->pmu);

	return ret;
1872 1873
}

1874
static int
1875
group_sched_in(struct perf_event *group_event,
1876
	       struct perf_cpu_context *cpuctx,
1877
	       struct perf_event_context *ctx)
1878
{
1879
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1880
	struct pmu *pmu = ctx->pmu;
1881 1882
	u64 now = ctx->time;
	bool simulate = false;
1883

1884
	if (group_event->state == PERF_EVENT_STATE_OFF)
1885 1886
		return 0;

P
Peter Zijlstra 已提交
1887
	pmu->start_txn(pmu);
1888

1889
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1890
		pmu->cancel_txn(pmu);
1891
		perf_mux_hrtimer_restart(cpuctx);
1892
		return -EAGAIN;
1893
	}
1894 1895 1896 1897

	/*
	 * Schedule in siblings as one group (if any):
	 */
1898
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1899
		if (event_sched_in(event, cpuctx, ctx)) {
1900
			partial_group = event;
1901 1902 1903 1904
			goto group_error;
		}
	}

1905
	if (!pmu->commit_txn(pmu))
1906
		return 0;
1907

1908 1909 1910 1911
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1922
	 */
1923 1924
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1925 1926 1927 1928 1929 1930 1931 1932
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1933
	}
1934
	event_sched_out(group_event, cpuctx, ctx);
1935

P
Peter Zijlstra 已提交
1936
	pmu->cancel_txn(pmu);
1937

1938
	perf_mux_hrtimer_restart(cpuctx);
1939

1940 1941 1942
	return -EAGAIN;
}

1943
/*
1944
 * Work out whether we can put this event group on the CPU now.
1945
 */
1946
static int group_can_go_on(struct perf_event *event,
1947 1948 1949 1950
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1951
	 * Groups consisting entirely of software events can always go on.
1952
	 */
1953
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1954 1955 1956
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1957
	 * events can go on.
1958 1959 1960 1961 1962
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1963
	 * events on the CPU, it can't go on.
1964
	 */
1965
	if (event->attr.exclusive && cpuctx->active_oncpu)
1966 1967 1968 1969 1970 1971 1972 1973
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1974 1975
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1976
{
1977 1978
	u64 tstamp = perf_event_time(event);

1979
	list_add_event(event, ctx);
1980
	perf_group_attach(event);
1981 1982 1983
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1984 1985
}

1986 1987 1988 1989 1990 1991
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2005
/*
2006
 * Cross CPU call to install and enable a performance event
2007 2008
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2009
 */
2010
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2011
{
2012 2013
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2014
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2015 2016 2017
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2018
	perf_ctx_lock(cpuctx, task_ctx);
2019
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2020 2021

	/*
2022
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2023
	 */
2024
	if (task_ctx)
2025
		task_ctx_sched_out(task_ctx);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2040 2041
		task = task_ctx->task;
	}
2042

2043
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2044

2045
	update_context_time(ctx);
S
Stephane Eranian 已提交
2046 2047 2048 2049 2050 2051
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2052

2053
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2054

2055
	/*
2056
	 * Schedule everything back in
2057
	 */
2058
	perf_event_sched_in(cpuctx, task_ctx, task);
2059 2060 2061

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2062 2063

	return 0;
T
Thomas Gleixner 已提交
2064 2065 2066
}

/*
2067
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2068
 *
2069 2070
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2071
 *
2072
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2073 2074 2075 2076
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2077 2078
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2079 2080 2081 2082
			int cpu)
{
	struct task_struct *task = ctx->task;

2083 2084
	lockdep_assert_held(&ctx->mutex);

2085
	event->ctx = ctx;
2086 2087
	if (event->cpu != -1)
		event->cpu = cpu;
2088

T
Thomas Gleixner 已提交
2089 2090
	if (!task) {
		/*
2091
		 * Per cpu events are installed via an smp call and
2092
		 * the install is always successful.
T
Thomas Gleixner 已提交
2093
		 */
2094
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2095 2096 2097 2098
		return;
	}

retry:
2099 2100
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2101

2102
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2103
	/*
2104 2105
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2106
	 */
2107
	if (ctx->is_active) {
2108
		raw_spin_unlock_irq(&ctx->lock);
2109 2110 2111 2112 2113
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2114 2115 2116 2117
		goto retry;
	}

	/*
2118 2119
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2120
	 */
2121
	add_event_to_ctx(event, ctx);
2122
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2123 2124
}

2125
/*
2126
 * Put a event into inactive state and update time fields.
2127 2128 2129 2130 2131 2132
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2133
static void __perf_event_mark_enabled(struct perf_event *event)
2134
{
2135
	struct perf_event *sub;
2136
	u64 tstamp = perf_event_time(event);
2137

2138
	event->state = PERF_EVENT_STATE_INACTIVE;
2139
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2140
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2141 2142
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2143
	}
2144 2145
}

2146
/*
2147
 * Cross CPU call to enable a performance event
2148
 */
2149
static int __perf_event_enable(void *info)
2150
{
2151 2152 2153
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2154
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2155
	int err;
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2167
		return -EINVAL;
2168

2169
	raw_spin_lock(&ctx->lock);
2170
	update_context_time(ctx);
2171

2172
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2173
		goto unlock;
S
Stephane Eranian 已提交
2174 2175 2176 2177

	/*
	 * set current task's cgroup time reference point
	 */
2178
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2179

2180
	__perf_event_mark_enabled(event);
2181

S
Stephane Eranian 已提交
2182 2183 2184
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2185
		goto unlock;
S
Stephane Eranian 已提交
2186
	}
2187

2188
	/*
2189
	 * If the event is in a group and isn't the group leader,
2190
	 * then don't put it on unless the group is on.
2191
	 */
2192
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2193
		goto unlock;
2194

2195
	if (!group_can_go_on(event, cpuctx, 1)) {
2196
		err = -EEXIST;
2197
	} else {
2198
		if (event == leader)
2199
			err = group_sched_in(event, cpuctx, ctx);
2200
		else
2201
			err = event_sched_in(event, cpuctx, ctx);
2202
	}
2203 2204 2205

	if (err) {
		/*
2206
		 * If this event can't go on and it's part of a
2207 2208
		 * group, then the whole group has to come off.
		 */
2209
		if (leader != event) {
2210
			group_sched_out(leader, cpuctx, ctx);
2211
			perf_mux_hrtimer_restart(cpuctx);
2212
		}
2213
		if (leader->attr.pinned) {
2214
			update_group_times(leader);
2215
			leader->state = PERF_EVENT_STATE_ERROR;
2216
		}
2217 2218
	}

P
Peter Zijlstra 已提交
2219
unlock:
2220
	raw_spin_unlock(&ctx->lock);
2221 2222

	return 0;
2223 2224 2225
}

/*
2226
 * Enable a event.
2227
 *
2228 2229
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2230
 * remains valid.  This condition is satisfied when called through
2231 2232
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2233
 */
P
Peter Zijlstra 已提交
2234
static void _perf_event_enable(struct perf_event *event)
2235
{
2236
	struct perf_event_context *ctx = event->ctx;
2237 2238 2239 2240
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2241
		 * Enable the event on the cpu that it's on
2242
		 */
2243
		cpu_function_call(event->cpu, __perf_event_enable, event);
2244 2245 2246
		return;
	}

2247
	raw_spin_lock_irq(&ctx->lock);
2248
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2249 2250 2251
		goto out;

	/*
2252 2253
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2254 2255 2256 2257
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2258 2259
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2260

P
Peter Zijlstra 已提交
2261
retry:
2262
	if (!ctx->is_active) {
2263
		__perf_event_mark_enabled(event);
2264 2265 2266
		goto out;
	}

2267
	raw_spin_unlock_irq(&ctx->lock);
2268 2269 2270

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2271

2272
	raw_spin_lock_irq(&ctx->lock);
2273 2274

	/*
2275
	 * If the context is active and the event is still off,
2276 2277
	 * we need to retry the cross-call.
	 */
2278 2279 2280 2281 2282 2283
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2284
		goto retry;
2285
	}
2286

P
Peter Zijlstra 已提交
2287
out:
2288
	raw_spin_unlock_irq(&ctx->lock);
2289
}
P
Peter Zijlstra 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2302
EXPORT_SYMBOL_GPL(perf_event_enable);
2303

P
Peter Zijlstra 已提交
2304
static int _perf_event_refresh(struct perf_event *event, int refresh)
2305
{
2306
	/*
2307
	 * not supported on inherited events
2308
	 */
2309
	if (event->attr.inherit || !is_sampling_event(event))
2310 2311
		return -EINVAL;

2312
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2313
	_perf_event_enable(event);
2314 2315

	return 0;
2316
}
P
Peter Zijlstra 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2332
EXPORT_SYMBOL_GPL(perf_event_refresh);
2333

2334 2335 2336
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2337
{
2338
	struct perf_event *event;
2339
	int is_active = ctx->is_active;
2340

2341
	ctx->is_active &= ~event_type;
2342
	if (likely(!ctx->nr_events))
2343 2344
		return;

2345
	update_context_time(ctx);
S
Stephane Eranian 已提交
2346
	update_cgrp_time_from_cpuctx(cpuctx);
2347
	if (!ctx->nr_active)
2348
		return;
2349

P
Peter Zijlstra 已提交
2350
	perf_pmu_disable(ctx->pmu);
2351
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2352 2353
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2354
	}
2355

2356
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2357
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2358
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2359
	}
P
Peter Zijlstra 已提交
2360
	perf_pmu_enable(ctx->pmu);
2361 2362
}

2363
/*
2364 2365 2366 2367 2368 2369
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2370
 */
2371 2372
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2373
{
2374 2375 2376
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2399 2400
}

2401 2402
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2403 2404 2405
{
	u64 value;

2406
	if (!event->attr.inherit_stat)
2407 2408 2409
		return;

	/*
2410
	 * Update the event value, we cannot use perf_event_read()
2411 2412
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2413
	 * we know the event must be on the current CPU, therefore we
2414 2415
	 * don't need to use it.
	 */
2416 2417
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2418 2419
		event->pmu->read(event);
		/* fall-through */
2420

2421 2422
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2423 2424 2425 2426 2427 2428 2429
		break;

	default:
		break;
	}

	/*
2430
	 * In order to keep per-task stats reliable we need to flip the event
2431 2432
	 * values when we flip the contexts.
	 */
2433 2434 2435
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2436

2437 2438
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2439

2440
	/*
2441
	 * Since we swizzled the values, update the user visible data too.
2442
	 */
2443 2444
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2445 2446
}

2447 2448
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2449
{
2450
	struct perf_event *event, *next_event;
2451 2452 2453 2454

	if (!ctx->nr_stat)
		return;

2455 2456
	update_context_time(ctx);

2457 2458
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2459

2460 2461
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2462

2463 2464
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2465

2466
		__perf_event_sync_stat(event, next_event);
2467

2468 2469
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2470 2471 2472
	}
}

2473 2474
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2475
{
P
Peter Zijlstra 已提交
2476
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2477
	struct perf_event_context *next_ctx;
2478
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2479
	struct perf_cpu_context *cpuctx;
2480
	int do_switch = 1;
T
Thomas Gleixner 已提交
2481

P
Peter Zijlstra 已提交
2482 2483
	if (likely(!ctx))
		return;
2484

P
Peter Zijlstra 已提交
2485 2486
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2487 2488
		return;

2489
	rcu_read_lock();
P
Peter Zijlstra 已提交
2490
	next_ctx = next->perf_event_ctxp[ctxn];
2491 2492 2493 2494 2495 2496 2497
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2498
	if (!parent && !next_parent)
2499 2500 2501
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2502 2503 2504 2505 2506 2507 2508 2509 2510
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2511 2512
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2513
		if (context_equiv(ctx, next_ctx)) {
2514 2515
			/*
			 * XXX do we need a memory barrier of sorts
2516
			 * wrt to rcu_dereference() of perf_event_ctxp
2517
			 */
P
Peter Zijlstra 已提交
2518 2519
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2520 2521
			ctx->task = next;
			next_ctx->task = task;
2522 2523 2524

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2525
			do_switch = 0;
2526

2527
			perf_event_sync_stat(ctx, next_ctx);
2528
		}
2529 2530
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2531
	}
2532
unlock:
2533
	rcu_read_unlock();
2534

2535
	if (do_switch) {
2536
		raw_spin_lock(&ctx->lock);
2537
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2538
		cpuctx->task_ctx = NULL;
2539
		raw_spin_unlock(&ctx->lock);
2540
	}
T
Thomas Gleixner 已提交
2541 2542
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2607 2608
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2609 2610 2611
{
	int ctxn;

2612 2613 2614
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

P
Peter Zijlstra 已提交
2615 2616
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2617 2618 2619 2620 2621 2622

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2623
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2624
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2625 2626
}

2627
static void task_ctx_sched_out(struct perf_event_context *ctx)
2628
{
P
Peter Zijlstra 已提交
2629
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2630

2631 2632
	if (!cpuctx->task_ctx)
		return;
2633 2634 2635 2636

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2637
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2638 2639 2640
	cpuctx->task_ctx = NULL;
}

2641 2642 2643 2644 2645 2646 2647
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2648 2649
}

2650
static void
2651
ctx_pinned_sched_in(struct perf_event_context *ctx,
2652
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2653
{
2654
	struct perf_event *event;
T
Thomas Gleixner 已提交
2655

2656 2657
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2658
			continue;
2659
		if (!event_filter_match(event))
2660 2661
			continue;

S
Stephane Eranian 已提交
2662 2663 2664 2665
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2666
		if (group_can_go_on(event, cpuctx, 1))
2667
			group_sched_in(event, cpuctx, ctx);
2668 2669 2670 2671 2672

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2673 2674 2675
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2676
		}
2677
	}
2678 2679 2680 2681
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2682
		      struct perf_cpu_context *cpuctx)
2683 2684 2685
{
	struct perf_event *event;
	int can_add_hw = 1;
2686

2687 2688 2689
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2690
			continue;
2691 2692
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2693
		 * of events:
2694
		 */
2695
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2696 2697
			continue;

S
Stephane Eranian 已提交
2698 2699 2700 2701
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2702
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2703
			if (group_sched_in(event, cpuctx, ctx))
2704
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2705
		}
T
Thomas Gleixner 已提交
2706
	}
2707 2708 2709 2710 2711
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2712 2713
	     enum event_type_t event_type,
	     struct task_struct *task)
2714
{
S
Stephane Eranian 已提交
2715
	u64 now;
2716
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2717

2718
	ctx->is_active |= event_type;
2719
	if (likely(!ctx->nr_events))
2720
		return;
2721

S
Stephane Eranian 已提交
2722 2723
	now = perf_clock();
	ctx->timestamp = now;
2724
	perf_cgroup_set_timestamp(task, ctx);
2725 2726 2727 2728
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2729
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2730
		ctx_pinned_sched_in(ctx, cpuctx);
2731 2732

	/* Then walk through the lower prio flexible groups */
2733
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2734
		ctx_flexible_sched_in(ctx, cpuctx);
2735 2736
}

2737
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2738 2739
			     enum event_type_t event_type,
			     struct task_struct *task)
2740 2741 2742
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2743
	ctx_sched_in(ctx, cpuctx, event_type, task);
2744 2745
}

S
Stephane Eranian 已提交
2746 2747
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2748
{
P
Peter Zijlstra 已提交
2749
	struct perf_cpu_context *cpuctx;
2750

P
Peter Zijlstra 已提交
2751
	cpuctx = __get_cpu_context(ctx);
2752 2753 2754
	if (cpuctx->task_ctx == ctx)
		return;

2755
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2756
	perf_pmu_disable(ctx->pmu);
2757 2758 2759 2760 2761 2762 2763
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2764 2765
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2766

2767 2768
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2769 2770
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2771 2772
}

P
Peter Zijlstra 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2784 2785
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2795
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2796
	}
S
Stephane Eranian 已提交
2797 2798 2799 2800 2801
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2802
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2803
		perf_cgroup_sched_in(prev, task);
2804

2805 2806
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2807 2808
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2836
#define REDUCE_FLS(a, b)		\
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2876 2877 2878
	if (!divisor)
		return dividend;

2879 2880 2881
	return div64_u64(dividend, divisor);
}

2882 2883 2884
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2885
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2886
{
2887
	struct hw_perf_event *hwc = &event->hw;
2888
	s64 period, sample_period;
2889 2890
	s64 delta;

2891
	period = perf_calculate_period(event, nsec, count);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2902

2903
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2904 2905 2906
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2907
		local64_set(&hwc->period_left, 0);
2908 2909 2910

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2911
	}
2912 2913
}

2914 2915 2916 2917 2918 2919 2920
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2921
{
2922 2923
	struct perf_event *event;
	struct hw_perf_event *hwc;
2924
	u64 now, period = TICK_NSEC;
2925
	s64 delta;
2926

2927 2928 2929 2930 2931 2932
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2933 2934
		return;

2935
	raw_spin_lock(&ctx->lock);
2936
	perf_pmu_disable(ctx->pmu);
2937

2938
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2939
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2940 2941
			continue;

2942
		if (!event_filter_match(event))
2943 2944
			continue;

2945 2946
		perf_pmu_disable(event->pmu);

2947
		hwc = &event->hw;
2948

2949
		if (hwc->interrupts == MAX_INTERRUPTS) {
2950
			hwc->interrupts = 0;
2951
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2952
			event->pmu->start(event, 0);
2953 2954
		}

2955
		if (!event->attr.freq || !event->attr.sample_freq)
2956
			goto next;
2957

2958 2959 2960 2961 2962
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2963
		now = local64_read(&event->count);
2964 2965
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2966

2967 2968 2969
		/*
		 * restart the event
		 * reload only if value has changed
2970 2971 2972
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2973
		 */
2974
		if (delta > 0)
2975
			perf_adjust_period(event, period, delta, false);
2976 2977

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2978 2979
	next:
		perf_pmu_enable(event->pmu);
2980
	}
2981

2982
	perf_pmu_enable(ctx->pmu);
2983
	raw_spin_unlock(&ctx->lock);
2984 2985
}

2986
/*
2987
 * Round-robin a context's events:
2988
 */
2989
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2990
{
2991 2992 2993 2994 2995 2996
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2997 2998
}

2999
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3000
{
P
Peter Zijlstra 已提交
3001
	struct perf_event_context *ctx = NULL;
3002
	int rotate = 0;
3003

3004 3005 3006 3007
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3008

P
Peter Zijlstra 已提交
3009
	ctx = cpuctx->task_ctx;
3010 3011 3012 3013
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3014

3015
	if (!rotate)
3016 3017
		goto done;

3018
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3019
	perf_pmu_disable(cpuctx->ctx.pmu);
3020

3021 3022 3023
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3024

3025 3026 3027
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3028

3029
	perf_event_sched_in(cpuctx, ctx, current);
3030

3031 3032
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3033
done:
3034 3035

	return rotate;
3036 3037
}

3038 3039 3040
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3041
	if (atomic_read(&nr_freq_events) ||
3042
	    __this_cpu_read(perf_throttled_count))
3043
		return false;
3044 3045
	else
		return true;
3046 3047 3048
}
#endif

3049 3050
void perf_event_task_tick(void)
{
3051 3052
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3053
	int throttled;
3054

3055 3056
	WARN_ON(!irqs_disabled());

3057 3058 3059
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3060
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3061
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3062 3063
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3074
	__perf_event_mark_enabled(event);
3075 3076 3077 3078

	return 1;
}

3079
/*
3080
 * Enable all of a task's events that have been marked enable-on-exec.
3081 3082
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3083
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3084
{
3085
	struct perf_event_context *clone_ctx = NULL;
3086
	struct perf_event *event;
3087 3088
	unsigned long flags;
	int enabled = 0;
3089
	int ret;
3090 3091

	local_irq_save(flags);
3092
	if (!ctx || !ctx->nr_events)
3093 3094
		goto out;

3095 3096 3097 3098 3099 3100 3101
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3102
	perf_cgroup_sched_out(current, NULL);
3103

3104
	raw_spin_lock(&ctx->lock);
3105
	task_ctx_sched_out(ctx);
3106

3107
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3108 3109 3110
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3111 3112 3113
	}

	/*
3114
	 * Unclone this context if we enabled any event.
3115
	 */
3116
	if (enabled)
3117
		clone_ctx = unclone_ctx(ctx);
3118

3119
	raw_spin_unlock(&ctx->lock);
3120

3121 3122 3123
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3124
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3125
out:
3126
	local_irq_restore(flags);
3127 3128 3129

	if (clone_ctx)
		put_ctx(clone_ctx);
3130 3131
}

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3148
/*
3149
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3150
 */
3151
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3152
{
3153 3154
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3155
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3156

3157 3158 3159 3160
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3161 3162
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3163 3164 3165 3166
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3167
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3168
	if (ctx->is_active) {
3169
		update_context_time(ctx);
S
Stephane Eranian 已提交
3170 3171
		update_cgrp_time_from_event(event);
	}
3172
	update_event_times(event);
3173 3174
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3175
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3176 3177
}

P
Peter Zijlstra 已提交
3178 3179
static inline u64 perf_event_count(struct perf_event *event)
{
3180 3181 3182 3183
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3184 3185
}

3186
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3187 3188
{
	/*
3189 3190
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3191
	 */
3192 3193 3194 3195
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3196 3197 3198
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3199
		raw_spin_lock_irqsave(&ctx->lock, flags);
3200 3201 3202 3203 3204
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3205
		if (ctx->is_active) {
3206
			update_context_time(ctx);
S
Stephane Eranian 已提交
3207 3208
			update_cgrp_time_from_event(event);
		}
3209
		update_event_times(event);
3210
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3211 3212
	}

P
Peter Zijlstra 已提交
3213
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3214 3215
}

3216
/*
3217
 * Initialize the perf_event context in a task_struct:
3218
 */
3219
static void __perf_event_init_context(struct perf_event_context *ctx)
3220
{
3221
	raw_spin_lock_init(&ctx->lock);
3222
	mutex_init(&ctx->mutex);
3223
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3224 3225
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3226 3227
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3228
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3244
	}
3245 3246 3247
	ctx->pmu = pmu;

	return ctx;
3248 3249
}

3250 3251 3252 3253 3254
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3255 3256

	rcu_read_lock();
3257
	if (!vpid)
T
Thomas Gleixner 已提交
3258 3259
		task = current;
	else
3260
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3261 3262 3263 3264 3265 3266 3267 3268
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3269 3270 3271 3272
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3273 3274 3275 3276 3277 3278 3279
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3280 3281 3282
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3283
static struct perf_event_context *
3284 3285
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3286
{
3287
	struct perf_event_context *ctx, *clone_ctx = NULL;
3288
	struct perf_cpu_context *cpuctx;
3289
	void *task_ctx_data = NULL;
3290
	unsigned long flags;
P
Peter Zijlstra 已提交
3291
	int ctxn, err;
3292
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3293

3294
	if (!task) {
3295
		/* Must be root to operate on a CPU event: */
3296
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3297 3298 3299
			return ERR_PTR(-EACCES);

		/*
3300
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3301 3302 3303
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3304
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3305 3306
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3307
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3308
		ctx = &cpuctx->ctx;
3309
		get_ctx(ctx);
3310
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3311 3312 3313 3314

		return ctx;
	}

P
Peter Zijlstra 已提交
3315 3316 3317 3318 3319
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3320 3321 3322 3323 3324 3325 3326 3327
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3328
retry:
P
Peter Zijlstra 已提交
3329
	ctx = perf_lock_task_context(task, ctxn, &flags);
3330
	if (ctx) {
3331
		clone_ctx = unclone_ctx(ctx);
3332
		++ctx->pin_count;
3333 3334 3335 3336 3337

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3338
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3339 3340 3341

		if (clone_ctx)
			put_ctx(clone_ctx);
3342
	} else {
3343
		ctx = alloc_perf_context(pmu, task);
3344 3345 3346
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3347

3348 3349 3350 3351 3352
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3363
		else {
3364
			get_ctx(ctx);
3365
			++ctx->pin_count;
3366
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3367
		}
3368 3369 3370
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3371
			put_ctx(ctx);
3372 3373 3374 3375

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3376 3377 3378
		}
	}

3379
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3380
	return ctx;
3381

P
Peter Zijlstra 已提交
3382
errout:
3383
	kfree(task_ctx_data);
3384
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3385 3386
}

L
Li Zefan 已提交
3387
static void perf_event_free_filter(struct perf_event *event);
3388
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3389

3390
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3391
{
3392
	struct perf_event *event;
P
Peter Zijlstra 已提交
3393

3394 3395 3396
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3397
	perf_event_free_filter(event);
3398
	perf_event_free_bpf_prog(event);
3399
	kfree(event);
P
Peter Zijlstra 已提交
3400 3401
}

3402 3403
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3404

3405
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3406
{
3407 3408 3409 3410 3411 3412
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3413

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3427 3428
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3429 3430 3431 3432 3433 3434 3435
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3436

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3522 3523
static void __free_event(struct perf_event *event)
{
3524
	if (!event->parent) {
3525 3526
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3527
	}
3528

3529 3530 3531 3532 3533 3534
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3535 3536
	if (event->pmu) {
		exclusive_event_destroy(event);
3537
		module_put(event->pmu->module);
3538
	}
3539

3540 3541
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3542 3543

static void _free_event(struct perf_event *event)
3544
{
3545
	irq_work_sync(&event->pending);
3546

3547
	unaccount_event(event);
3548

3549
	if (event->rb) {
3550 3551 3552 3553 3554 3555 3556
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3557
		ring_buffer_attach(event, NULL);
3558
		mutex_unlock(&event->mmap_mutex);
3559 3560
	}

S
Stephane Eranian 已提交
3561 3562 3563
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3564
	__free_event(event);
3565 3566
}

P
Peter Zijlstra 已提交
3567 3568 3569 3570 3571
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3572
{
P
Peter Zijlstra 已提交
3573 3574 3575 3576 3577 3578
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3579

P
Peter Zijlstra 已提交
3580
	_free_event(event);
T
Thomas Gleixner 已提交
3581 3582
}

3583
/*
3584
 * Remove user event from the owner task.
3585
 */
3586
static void perf_remove_from_owner(struct perf_event *event)
3587
{
P
Peter Zijlstra 已提交
3588
	struct task_struct *owner;
3589

P
Peter Zijlstra 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3631 3632 3633 3634 3635 3636 3637
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3638
	struct perf_event_context *ctx;
3639 3640 3641 3642 3643 3644

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3645

P
Peter Zijlstra 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3658 3659
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3660
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3661
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3662 3663

	_free_event(event);
3664 3665
}

P
Peter Zijlstra 已提交
3666 3667 3668 3669 3670 3671 3672
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3673 3674 3675 3676
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3677 3678
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3715
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3716
{
3717
	struct perf_event *child;
3718 3719
	u64 total = 0;

3720 3721 3722
	*enabled = 0;
	*running = 0;

3723
	mutex_lock(&event->child_mutex);
3724
	total += perf_event_read(event);
3725 3726 3727 3728 3729 3730
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3731
		total += perf_event_read(child);
3732 3733 3734
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3735
	mutex_unlock(&event->child_mutex);
3736 3737 3738

	return total;
}
3739
EXPORT_SYMBOL_GPL(perf_event_read_value);
3740

3741
static int perf_event_read_group(struct perf_event *event,
3742 3743
				   u64 read_format, char __user *buf)
{
3744
	struct perf_event *leader = event->group_leader, *sub;
3745
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3746
	int n = 0, size = 0, ret;
3747
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3748 3749 3750
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3751

3752
	count = perf_event_read_value(leader, &enabled, &running);
3753 3754

	values[n++] = 1 + leader->nr_siblings;
3755 3756 3757 3758
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3759 3760 3761
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3762 3763 3764 3765

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3766
		return -EFAULT;
3767

3768
	ret = size;
3769

3770
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3771
		n = 0;
3772

3773
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3774 3775 3776 3777 3778
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3779
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3780
			return -EFAULT;
3781
		}
3782 3783

		ret += size;
3784 3785
	}

3786
	return ret;
3787 3788
}

3789
static int perf_event_read_one(struct perf_event *event,
3790 3791
				 u64 read_format, char __user *buf)
{
3792
	u64 enabled, running;
3793 3794 3795
	u64 values[4];
	int n = 0;

3796 3797 3798 3799 3800
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3801
	if (read_format & PERF_FORMAT_ID)
3802
		values[n++] = primary_event_id(event);
3803 3804 3805 3806 3807 3808 3809

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3823
/*
3824
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3825 3826
 */
static ssize_t
3827
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3828
{
3829
	u64 read_format = event->attr.read_format;
3830
	int ret;
T
Thomas Gleixner 已提交
3831

3832
	/*
3833
	 * Return end-of-file for a read on a event that is in
3834 3835 3836
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3837
	if (event->state == PERF_EVENT_STATE_ERROR)
3838 3839
		return 0;

3840
	if (count < event->read_size)
3841 3842
		return -ENOSPC;

3843
	WARN_ON_ONCE(event->ctx->parent_ctx);
3844
	if (read_format & PERF_FORMAT_GROUP)
3845
		ret = perf_event_read_group(event, read_format, buf);
3846
	else
3847
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3848

3849
	return ret;
T
Thomas Gleixner 已提交
3850 3851 3852 3853 3854
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3855
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3856 3857
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3858

P
Peter Zijlstra 已提交
3859 3860 3861 3862 3863
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3864 3865 3866 3867
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3868
	struct perf_event *event = file->private_data;
3869
	struct ring_buffer *rb;
3870
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3871

3872
	poll_wait(file, &event->waitq, wait);
3873

3874
	if (is_event_hup(event))
3875
		return events;
P
Peter Zijlstra 已提交
3876

3877
	/*
3878 3879
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3880 3881
	 */
	mutex_lock(&event->mmap_mutex);
3882 3883
	rb = event->rb;
	if (rb)
3884
		events = atomic_xchg(&rb->poll, 0);
3885
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3886 3887 3888
	return events;
}

P
Peter Zijlstra 已提交
3889
static void _perf_event_reset(struct perf_event *event)
3890
{
3891
	(void)perf_event_read(event);
3892
	local64_set(&event->count, 0);
3893
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3894 3895
}

3896
/*
3897 3898 3899 3900
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3901
 */
3902 3903
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3904
{
3905
	struct perf_event *child;
P
Peter Zijlstra 已提交
3906

3907
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3908

3909 3910 3911
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3912
		func(child);
3913
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3914 3915
}

3916 3917
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3918
{
3919 3920
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3921

P
Peter Zijlstra 已提交
3922 3923
	lockdep_assert_held(&ctx->mutex);

3924
	event = event->group_leader;
3925

3926 3927
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3928
		perf_event_for_each_child(sibling, func);
3929 3930
}

3931
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3932
{
3933
	struct perf_event_context *ctx = event->ctx;
3934
	int ret = 0, active;
3935 3936
	u64 value;

3937
	if (!is_sampling_event(event))
3938 3939
		return -EINVAL;

3940
	if (copy_from_user(&value, arg, sizeof(value)))
3941 3942 3943 3944 3945
		return -EFAULT;

	if (!value)
		return -EINVAL;

3946
	raw_spin_lock_irq(&ctx->lock);
3947 3948
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3949 3950 3951 3952
			ret = -EINVAL;
			goto unlock;
		}

3953
		event->attr.sample_freq = value;
3954
	} else {
3955 3956
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3957
	}
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3972
unlock:
3973
	raw_spin_unlock_irq(&ctx->lock);
3974 3975 3976 3977

	return ret;
}

3978 3979
static const struct file_operations perf_fops;

3980
static inline int perf_fget_light(int fd, struct fd *p)
3981
{
3982 3983 3984
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3985

3986 3987 3988
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3989
	}
3990 3991
	*p = f;
	return 0;
3992 3993 3994 3995
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3996
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3997
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
3998

P
Peter Zijlstra 已提交
3999
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4000
{
4001
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4002
	u32 flags = arg;
4003 4004

	switch (cmd) {
4005
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4006
		func = _perf_event_enable;
4007
		break;
4008
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4009
		func = _perf_event_disable;
4010
		break;
4011
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4012
		func = _perf_event_reset;
4013
		break;
P
Peter Zijlstra 已提交
4014

4015
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4016
		return _perf_event_refresh(event, arg);
4017

4018 4019
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4020

4021 4022 4023 4024 4025 4026 4027 4028 4029
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4030
	case PERF_EVENT_IOC_SET_OUTPUT:
4031 4032 4033
	{
		int ret;
		if (arg != -1) {
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4044 4045 4046
		}
		return ret;
	}
4047

L
Li Zefan 已提交
4048 4049 4050
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4051 4052 4053
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4054
	default:
P
Peter Zijlstra 已提交
4055
		return -ENOTTY;
4056
	}
P
Peter Zijlstra 已提交
4057 4058

	if (flags & PERF_IOC_FLAG_GROUP)
4059
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4060
	else
4061
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4062 4063

	return 0;
4064 4065
}

P
Peter Zijlstra 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4099
int perf_event_task_enable(void)
4100
{
P
Peter Zijlstra 已提交
4101
	struct perf_event_context *ctx;
4102
	struct perf_event *event;
4103

4104
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4105 4106 4107 4108 4109
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4110
	mutex_unlock(&current->perf_event_mutex);
4111 4112 4113 4114

	return 0;
}

4115
int perf_event_task_disable(void)
4116
{
P
Peter Zijlstra 已提交
4117
	struct perf_event_context *ctx;
4118
	struct perf_event *event;
4119

4120
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4121 4122 4123 4124 4125
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4126
	mutex_unlock(&current->perf_event_mutex);
4127 4128 4129 4130

	return 0;
}

4131
static int perf_event_index(struct perf_event *event)
4132
{
P
Peter Zijlstra 已提交
4133 4134 4135
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4136
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4137 4138
		return 0;

4139
	return event->pmu->event_idx(event);
4140 4141
}

4142
static void calc_timer_values(struct perf_event *event,
4143
				u64 *now,
4144 4145
				u64 *enabled,
				u64 *running)
4146
{
4147
	u64 ctx_time;
4148

4149 4150
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4151 4152 4153 4154
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4170 4171
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4172 4173 4174 4175 4176

unlock:
	rcu_read_unlock();
}

4177 4178
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4179 4180 4181
{
}

4182 4183 4184 4185 4186
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4187
void perf_event_update_userpage(struct perf_event *event)
4188
{
4189
	struct perf_event_mmap_page *userpg;
4190
	struct ring_buffer *rb;
4191
	u64 enabled, running, now;
4192 4193

	rcu_read_lock();
4194 4195 4196 4197
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4198 4199 4200 4201 4202 4203 4204 4205 4206
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4207
	calc_timer_values(event, &now, &enabled, &running);
4208

4209
	userpg = rb->user_page;
4210 4211 4212 4213 4214
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4215
	++userpg->lock;
4216
	barrier();
4217
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4218
	userpg->offset = perf_event_count(event);
4219
	if (userpg->index)
4220
		userpg->offset -= local64_read(&event->hw.prev_count);
4221

4222
	userpg->time_enabled = enabled +
4223
			atomic64_read(&event->child_total_time_enabled);
4224

4225
	userpg->time_running = running +
4226
			atomic64_read(&event->child_total_time_running);
4227

4228
	arch_perf_update_userpage(event, userpg, now);
4229

4230
	barrier();
4231
	++userpg->lock;
4232
	preempt_enable();
4233
unlock:
4234
	rcu_read_unlock();
4235 4236
}

4237 4238 4239
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4240
	struct ring_buffer *rb;
4241 4242 4243 4244 4245 4246 4247 4248 4249
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4250 4251
	rb = rcu_dereference(event->rb);
	if (!rb)
4252 4253 4254 4255 4256
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4257
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4272 4273 4274
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4275
	struct ring_buffer *old_rb = NULL;
4276 4277
	unsigned long flags;

4278 4279 4280 4281 4282 4283
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4284

4285 4286 4287
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4288

4289 4290 4291 4292
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4293

4294 4295 4296 4297
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4298

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4316 4317 4318 4319 4320 4321 4322 4323
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4324 4325 4326 4327
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4328 4329 4330
	rcu_read_unlock();
}

4331
static void rb_free_rcu(struct rcu_head *rcu_head)
4332
{
4333
	struct ring_buffer *rb;
4334

4335 4336
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4337 4338
}

4339
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4340
{
4341
	struct ring_buffer *rb;
4342

4343
	rcu_read_lock();
4344 4345 4346 4347
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4348 4349 4350
	}
	rcu_read_unlock();

4351
	return rb;
4352 4353
}

4354
void ring_buffer_put(struct ring_buffer *rb)
4355
{
4356
	if (!atomic_dec_and_test(&rb->refcount))
4357
		return;
4358

4359
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4360

4361
	call_rcu(&rb->rcu_head, rb_free_rcu);
4362 4363 4364 4365
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4366
	struct perf_event *event = vma->vm_file->private_data;
4367

4368
	atomic_inc(&event->mmap_count);
4369
	atomic_inc(&event->rb->mmap_count);
4370

4371 4372 4373
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4374 4375
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4376 4377
}

4378 4379 4380 4381 4382 4383 4384 4385
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4386 4387
static void perf_mmap_close(struct vm_area_struct *vma)
{
4388
	struct perf_event *event = vma->vm_file->private_data;
4389

4390
	struct ring_buffer *rb = ring_buffer_get(event);
4391 4392 4393
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4394

4395 4396 4397
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4412 4413 4414
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4415
		goto out_put;
4416

4417
	ring_buffer_attach(event, NULL);
4418 4419 4420
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4421 4422
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4423

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4440

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4452 4453 4454
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4455
		mutex_unlock(&event->mmap_mutex);
4456
		put_event(event);
4457

4458 4459 4460 4461 4462
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4463
	}
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4479
out_put:
4480
	ring_buffer_put(rb); /* could be last */
4481 4482
}

4483
static const struct vm_operations_struct perf_mmap_vmops = {
4484
	.open		= perf_mmap_open,
4485
	.close		= perf_mmap_close, /* non mergable */
4486 4487
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4488 4489 4490 4491
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4492
	struct perf_event *event = file->private_data;
4493
	unsigned long user_locked, user_lock_limit;
4494
	struct user_struct *user = current_user();
4495
	unsigned long locked, lock_limit;
4496
	struct ring_buffer *rb = NULL;
4497 4498
	unsigned long vma_size;
	unsigned long nr_pages;
4499
	long user_extra = 0, extra = 0;
4500
	int ret = 0, flags = 0;
4501

4502 4503 4504
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4505
	 * same rb.
4506 4507 4508 4509
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4510
	if (!(vma->vm_flags & VM_SHARED))
4511
		return -EINVAL;
4512 4513

	vma_size = vma->vm_end - vma->vm_start;
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4574

4575
	/*
4576
	 * If we have rb pages ensure they're a power-of-two number, so we
4577 4578
	 * can do bitmasks instead of modulo.
	 */
4579
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4580 4581
		return -EINVAL;

4582
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4583 4584
		return -EINVAL;

4585
	WARN_ON_ONCE(event->ctx->parent_ctx);
4586
again:
4587
	mutex_lock(&event->mmap_mutex);
4588
	if (event->rb) {
4589
		if (event->rb->nr_pages != nr_pages) {
4590
			ret = -EINVAL;
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4604 4605 4606
		goto unlock;
	}

4607
	user_extra = nr_pages + 1;
4608 4609

accounting:
4610
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4611 4612 4613 4614 4615 4616

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4617
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4618

4619 4620
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4621

4622
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4623
	lock_limit >>= PAGE_SHIFT;
4624
	locked = vma->vm_mm->pinned_vm + extra;
4625

4626 4627
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4628 4629 4630
		ret = -EPERM;
		goto unlock;
	}
4631

4632
	WARN_ON(!rb && event->rb);
4633

4634
	if (vma->vm_flags & VM_WRITE)
4635
		flags |= RING_BUFFER_WRITABLE;
4636

4637
	if (!rb) {
4638 4639 4640
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4641

4642 4643 4644 4645
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4646

4647 4648 4649
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4650

4651
		ring_buffer_attach(event, rb);
4652

4653 4654 4655
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4656 4657
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4658 4659 4660
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4661

4662
unlock:
4663 4664 4665 4666
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4667
		atomic_inc(&event->mmap_count);
4668 4669 4670 4671
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4672
	mutex_unlock(&event->mmap_mutex);
4673

4674 4675 4676 4677
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4678
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4679
	vma->vm_ops = &perf_mmap_vmops;
4680

4681 4682 4683
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4684
	return ret;
4685 4686
}

P
Peter Zijlstra 已提交
4687 4688
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4689
	struct inode *inode = file_inode(filp);
4690
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4691 4692 4693
	int retval;

	mutex_lock(&inode->i_mutex);
4694
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4695 4696 4697 4698 4699 4700 4701 4702
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4703
static const struct file_operations perf_fops = {
4704
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4705 4706 4707
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4708
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4709
	.compat_ioctl		= perf_compat_ioctl,
4710
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4711
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4712 4713
};

4714
/*
4715
 * Perf event wakeup
4716 4717 4718 4719 4720
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4721
void perf_event_wakeup(struct perf_event *event)
4722
{
4723
	ring_buffer_wakeup(event);
4724

4725 4726 4727
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4728
	}
4729 4730
}

4731
static void perf_pending_event(struct irq_work *entry)
4732
{
4733 4734
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4735 4736 4737 4738 4739 4740 4741
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4742

4743 4744 4745
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4746 4747
	}

4748 4749 4750
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4751
	}
4752 4753 4754

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4755 4756
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4793
static void perf_sample_regs_user(struct perf_regs *regs_user,
4794 4795
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4796
{
4797 4798
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4799
		regs_user->regs = regs;
4800 4801
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4802 4803 4804
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4805 4806 4807
	}
}

4808 4809 4810 4811 4812 4813 4814 4815
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4911 4912 4913
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
4927
		data->time = perf_event_clock(event);
4928

4929
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4941 4942 4943
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4968 4969 4970

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4971 4972
}

4973 4974 4975
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4976 4977 4978 4979 4980
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4981
static void perf_output_read_one(struct perf_output_handle *handle,
4982 4983
				 struct perf_event *event,
				 u64 enabled, u64 running)
4984
{
4985
	u64 read_format = event->attr.read_format;
4986 4987 4988
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4989
	values[n++] = perf_event_count(event);
4990
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4991
		values[n++] = enabled +
4992
			atomic64_read(&event->child_total_time_enabled);
4993 4994
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4995
		values[n++] = running +
4996
			atomic64_read(&event->child_total_time_running);
4997 4998
	}
	if (read_format & PERF_FORMAT_ID)
4999
		values[n++] = primary_event_id(event);
5000

5001
	__output_copy(handle, values, n * sizeof(u64));
5002 5003 5004
}

/*
5005
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5006 5007
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5008 5009
			    struct perf_event *event,
			    u64 enabled, u64 running)
5010
{
5011 5012
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5013 5014 5015 5016 5017 5018
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5019
		values[n++] = enabled;
5020 5021

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5022
		values[n++] = running;
5023

5024
	if (leader != event)
5025 5026
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5027
	values[n++] = perf_event_count(leader);
5028
	if (read_format & PERF_FORMAT_ID)
5029
		values[n++] = primary_event_id(leader);
5030

5031
	__output_copy(handle, values, n * sizeof(u64));
5032

5033
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5034 5035
		n = 0;

5036 5037
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5038 5039
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5040
		values[n++] = perf_event_count(sub);
5041
		if (read_format & PERF_FORMAT_ID)
5042
			values[n++] = primary_event_id(sub);
5043

5044
		__output_copy(handle, values, n * sizeof(u64));
5045 5046 5047
	}
}

5048 5049 5050
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5051
static void perf_output_read(struct perf_output_handle *handle,
5052
			     struct perf_event *event)
5053
{
5054
	u64 enabled = 0, running = 0, now;
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5066
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5067
		calc_timer_values(event, &now, &enabled, &running);
5068

5069
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5070
		perf_output_read_group(handle, event, enabled, running);
5071
	else
5072
		perf_output_read_one(handle, event, enabled, running);
5073 5074
}

5075 5076 5077
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5078
			struct perf_event *event)
5079 5080 5081 5082 5083
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5084 5085 5086
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5112
		perf_output_read(handle, event);
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5123
			__output_copy(handle, data->callchain, size);
5124 5125 5126 5127 5128 5129 5130 5131 5132
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5133 5134
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5146

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5181

5182
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5183 5184 5185
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5186
	}
A
Andi Kleen 已提交
5187 5188 5189

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5190 5191 5192

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5193

A
Andi Kleen 已提交
5194 5195 5196
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5227 5228 5229 5230
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5231
			 struct perf_event *event,
5232
			 struct pt_regs *regs)
5233
{
5234
	u64 sample_type = event->attr.sample_type;
5235

5236
	header->type = PERF_RECORD_SAMPLE;
5237
	header->size = sizeof(*header) + event->header_size;
5238 5239 5240

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5241

5242
	__perf_event_header__init_id(header, data, event);
5243

5244
	if (sample_type & PERF_SAMPLE_IP)
5245 5246
		data->ip = perf_instruction_pointer(regs);

5247
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5248
		int size = 1;
5249

5250
		data->callchain = perf_callchain(event, regs);
5251 5252 5253 5254 5255

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5256 5257
	}

5258
	if (sample_type & PERF_SAMPLE_RAW) {
5259 5260 5261 5262 5263 5264 5265 5266
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5267
		header->size += size;
5268
	}
5269 5270 5271 5272 5273 5274 5275 5276 5277

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5278

5279
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5280 5281
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5282

5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5306
						     data->regs_user.regs);
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5334
}
5335

5336
static void perf_event_output(struct perf_event *event,
5337 5338 5339 5340 5341
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5342

5343 5344 5345
	/* protect the callchain buffers */
	rcu_read_lock();

5346
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5347

5348
	if (perf_output_begin(&handle, event, header.size))
5349
		goto exit;
5350

5351
	perf_output_sample(&handle, &header, data, event);
5352

5353
	perf_output_end(&handle);
5354 5355 5356

exit:
	rcu_read_unlock();
5357 5358
}

5359
/*
5360
 * read event_id
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5371
perf_event_read_event(struct perf_event *event,
5372 5373 5374
			struct task_struct *task)
{
	struct perf_output_handle handle;
5375
	struct perf_sample_data sample;
5376
	struct perf_read_event read_event = {
5377
		.header = {
5378
			.type = PERF_RECORD_READ,
5379
			.misc = 0,
5380
			.size = sizeof(read_event) + event->read_size,
5381
		},
5382 5383
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5384
	};
5385
	int ret;
5386

5387
	perf_event_header__init_id(&read_event.header, &sample, event);
5388
	ret = perf_output_begin(&handle, event, read_event.header.size);
5389 5390 5391
	if (ret)
		return;

5392
	perf_output_put(&handle, read_event);
5393
	perf_output_read(&handle, event);
5394
	perf_event__output_id_sample(event, &handle, &sample);
5395

5396 5397 5398
	perf_output_end(&handle);
}

5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5413
		output(event, data);
5414 5415 5416 5417
	}
}

static void
5418
perf_event_aux(perf_event_aux_output_cb output, void *data,
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5431
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5432 5433 5434 5435 5436 5437 5438
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5439
			perf_event_aux_ctx(ctx, output, data);
5440 5441 5442 5443 5444 5445
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5446
		perf_event_aux_ctx(task_ctx, output, data);
5447 5448 5449 5450 5451
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5452
/*
P
Peter Zijlstra 已提交
5453 5454
 * task tracking -- fork/exit
 *
5455
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5456 5457
 */

P
Peter Zijlstra 已提交
5458
struct perf_task_event {
5459
	struct task_struct		*task;
5460
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5461 5462 5463 5464 5465 5466

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5467 5468
		u32				tid;
		u32				ptid;
5469
		u64				time;
5470
	} event_id;
P
Peter Zijlstra 已提交
5471 5472
};

5473 5474
static int perf_event_task_match(struct perf_event *event)
{
5475 5476 5477
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5478 5479
}

5480
static void perf_event_task_output(struct perf_event *event,
5481
				   void *data)
P
Peter Zijlstra 已提交
5482
{
5483
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5484
	struct perf_output_handle handle;
5485
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5486
	struct task_struct *task = task_event->task;
5487
	int ret, size = task_event->event_id.header.size;
5488

5489 5490 5491
	if (!perf_event_task_match(event))
		return;

5492
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5493

5494
	ret = perf_output_begin(&handle, event,
5495
				task_event->event_id.header.size);
5496
	if (ret)
5497
		goto out;
P
Peter Zijlstra 已提交
5498

5499 5500
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5501

5502 5503
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5504

5505 5506
	task_event->event_id.time = perf_event_clock(event);

5507
	perf_output_put(&handle, task_event->event_id);
5508

5509 5510
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5511
	perf_output_end(&handle);
5512 5513
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5514 5515
}

5516 5517
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5518
			      int new)
P
Peter Zijlstra 已提交
5519
{
P
Peter Zijlstra 已提交
5520
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5521

5522 5523 5524
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5525 5526
		return;

P
Peter Zijlstra 已提交
5527
	task_event = (struct perf_task_event){
5528 5529
		.task	  = task,
		.task_ctx = task_ctx,
5530
		.event_id    = {
P
Peter Zijlstra 已提交
5531
			.header = {
5532
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5533
				.misc = 0,
5534
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5535
			},
5536 5537
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5538 5539
			/* .tid  */
			/* .ptid */
5540
			/* .time */
P
Peter Zijlstra 已提交
5541 5542 5543
		},
	};

5544
	perf_event_aux(perf_event_task_output,
5545 5546
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5547 5548
}

5549
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5550
{
5551
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5552 5553
}

5554 5555 5556 5557 5558
/*
 * comm tracking
 */

struct perf_comm_event {
5559 5560
	struct task_struct	*task;
	char			*comm;
5561 5562 5563 5564 5565 5566 5567
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5568
	} event_id;
5569 5570
};

5571 5572 5573 5574 5575
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5576
static void perf_event_comm_output(struct perf_event *event,
5577
				   void *data)
5578
{
5579
	struct perf_comm_event *comm_event = data;
5580
	struct perf_output_handle handle;
5581
	struct perf_sample_data sample;
5582
	int size = comm_event->event_id.header.size;
5583 5584
	int ret;

5585 5586 5587
	if (!perf_event_comm_match(event))
		return;

5588 5589
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5590
				comm_event->event_id.header.size);
5591 5592

	if (ret)
5593
		goto out;
5594

5595 5596
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5597

5598
	perf_output_put(&handle, comm_event->event_id);
5599
	__output_copy(&handle, comm_event->comm,
5600
				   comm_event->comm_size);
5601 5602 5603

	perf_event__output_id_sample(event, &handle, &sample);

5604
	perf_output_end(&handle);
5605 5606
out:
	comm_event->event_id.header.size = size;
5607 5608
}

5609
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5610
{
5611
	char comm[TASK_COMM_LEN];
5612 5613
	unsigned int size;

5614
	memset(comm, 0, sizeof(comm));
5615
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5616
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5617 5618 5619 5620

	comm_event->comm = comm;
	comm_event->comm_size = size;

5621
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5622

5623
	perf_event_aux(perf_event_comm_output,
5624 5625
		       comm_event,
		       NULL);
5626 5627
}

5628
void perf_event_comm(struct task_struct *task, bool exec)
5629
{
5630 5631
	struct perf_comm_event comm_event;

5632
	if (!atomic_read(&nr_comm_events))
5633
		return;
5634

5635
	comm_event = (struct perf_comm_event){
5636
		.task	= task,
5637 5638
		/* .comm      */
		/* .comm_size */
5639
		.event_id  = {
5640
			.header = {
5641
				.type = PERF_RECORD_COMM,
5642
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5643 5644 5645 5646
				/* .size */
			},
			/* .pid */
			/* .tid */
5647 5648 5649
		},
	};

5650
	perf_event_comm_event(&comm_event);
5651 5652
}

5653 5654 5655 5656 5657
/*
 * mmap tracking
 */

struct perf_mmap_event {
5658 5659 5660 5661
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5662 5663 5664
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5665
	u32			prot, flags;
5666 5667 5668 5669 5670 5671 5672 5673 5674

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5675
	} event_id;
5676 5677
};

5678 5679 5680 5681 5682 5683 5684 5685
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5686
	       (executable && (event->attr.mmap || event->attr.mmap2));
5687 5688
}

5689
static void perf_event_mmap_output(struct perf_event *event,
5690
				   void *data)
5691
{
5692
	struct perf_mmap_event *mmap_event = data;
5693
	struct perf_output_handle handle;
5694
	struct perf_sample_data sample;
5695
	int size = mmap_event->event_id.header.size;
5696
	int ret;
5697

5698 5699 5700
	if (!perf_event_mmap_match(event, data))
		return;

5701 5702 5703 5704 5705
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5706
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5707 5708
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5709 5710
	}

5711 5712
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5713
				mmap_event->event_id.header.size);
5714
	if (ret)
5715
		goto out;
5716

5717 5718
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5719

5720
	perf_output_put(&handle, mmap_event->event_id);
5721 5722 5723 5724 5725 5726

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5727 5728
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5729 5730
	}

5731
	__output_copy(&handle, mmap_event->file_name,
5732
				   mmap_event->file_size);
5733 5734 5735

	perf_event__output_id_sample(event, &handle, &sample);

5736
	perf_output_end(&handle);
5737 5738
out:
	mmap_event->event_id.header.size = size;
5739 5740
}

5741
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5742
{
5743 5744
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5745 5746
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5747
	u32 prot = 0, flags = 0;
5748 5749 5750
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5751
	char *name;
5752

5753
	if (file) {
5754 5755
		struct inode *inode;
		dev_t dev;
5756

5757
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5758
		if (!buf) {
5759 5760
			name = "//enomem";
			goto cpy_name;
5761
		}
5762
		/*
5763
		 * d_path() works from the end of the rb backwards, so we
5764 5765 5766
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5767
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5768
		if (IS_ERR(name)) {
5769 5770
			name = "//toolong";
			goto cpy_name;
5771
		}
5772 5773 5774 5775 5776 5777
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5800
		goto got_name;
5801
	} else {
5802 5803 5804 5805 5806 5807
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5808
		name = (char *)arch_vma_name(vma);
5809 5810
		if (name)
			goto cpy_name;
5811

5812
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5813
				vma->vm_end >= vma->vm_mm->brk) {
5814 5815
			name = "[heap]";
			goto cpy_name;
5816 5817
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5818
				vma->vm_end >= vma->vm_mm->start_stack) {
5819 5820
			name = "[stack]";
			goto cpy_name;
5821 5822
		}

5823 5824
		name = "//anon";
		goto cpy_name;
5825 5826
	}

5827 5828 5829
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5830
got_name:
5831 5832 5833 5834 5835 5836 5837 5838
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5839 5840 5841

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5842 5843 5844 5845
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5846 5847
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5848

5849 5850 5851
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5852
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5853

5854
	perf_event_aux(perf_event_mmap_output,
5855 5856
		       mmap_event,
		       NULL);
5857

5858 5859 5860
	kfree(buf);
}

5861
void perf_event_mmap(struct vm_area_struct *vma)
5862
{
5863 5864
	struct perf_mmap_event mmap_event;

5865
	if (!atomic_read(&nr_mmap_events))
5866 5867 5868
		return;

	mmap_event = (struct perf_mmap_event){
5869
		.vma	= vma,
5870 5871
		/* .file_name */
		/* .file_size */
5872
		.event_id  = {
5873
			.header = {
5874
				.type = PERF_RECORD_MMAP,
5875
				.misc = PERF_RECORD_MISC_USER,
5876 5877 5878 5879
				/* .size */
			},
			/* .pid */
			/* .tid */
5880 5881
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5882
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5883
		},
5884 5885 5886 5887
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5888 5889
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5890 5891
	};

5892
	perf_event_mmap_event(&mmap_event);
5893 5894
}

A
Alexander Shishkin 已提交
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

5929 5930 5931 5932
/*
 * IRQ throttle logging
 */

5933
static void perf_log_throttle(struct perf_event *event, int enable)
5934 5935
{
	struct perf_output_handle handle;
5936
	struct perf_sample_data sample;
5937 5938 5939 5940 5941
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5942
		u64				id;
5943
		u64				stream_id;
5944 5945
	} throttle_event = {
		.header = {
5946
			.type = PERF_RECORD_THROTTLE,
5947 5948 5949
			.misc = 0,
			.size = sizeof(throttle_event),
		},
5950
		.time		= perf_event_clock(event),
5951 5952
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5953 5954
	};

5955
	if (enable)
5956
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5957

5958 5959 5960
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5961
				throttle_event.header.size);
5962 5963 5964 5965
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5966
	perf_event__output_id_sample(event, &handle, &sample);
5967 5968 5969
	perf_output_end(&handle);
}

5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	event->hw.itrace_started = 1;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6008
/*
6009
 * Generic event overflow handling, sampling.
6010 6011
 */

6012
static int __perf_event_overflow(struct perf_event *event,
6013 6014
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6015
{
6016 6017
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6018
	u64 seq;
6019 6020
	int ret = 0;

6021 6022 6023 6024 6025 6026 6027
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6028 6029 6030 6031 6032 6033 6034 6035 6036
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6037 6038
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6039
			tick_nohz_full_kick();
6040 6041
			ret = 1;
		}
6042
	}
6043

6044
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6045
		u64 now = perf_clock();
6046
		s64 delta = now - hwc->freq_time_stamp;
6047

6048
		hwc->freq_time_stamp = now;
6049

6050
		if (delta > 0 && delta < 2*TICK_NSEC)
6051
			perf_adjust_period(event, delta, hwc->last_period, true);
6052 6053
	}

6054 6055
	/*
	 * XXX event_limit might not quite work as expected on inherited
6056
	 * events
6057 6058
	 */

6059 6060
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6061
		ret = 1;
6062
		event->pending_kill = POLL_HUP;
6063 6064
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6065 6066
	}

6067
	if (event->overflow_handler)
6068
		event->overflow_handler(event, data, regs);
6069
	else
6070
		perf_event_output(event, data, regs);
6071

P
Peter Zijlstra 已提交
6072
	if (event->fasync && event->pending_kill) {
6073 6074
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6075 6076
	}

6077
	return ret;
6078 6079
}

6080
int perf_event_overflow(struct perf_event *event,
6081 6082
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6083
{
6084
	return __perf_event_overflow(event, 1, data, regs);
6085 6086
}

6087
/*
6088
 * Generic software event infrastructure
6089 6090
 */

6091 6092 6093 6094 6095 6096 6097
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6098 6099 6100

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6101 6102 6103 6104
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6105
/*
6106 6107
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6108 6109 6110 6111
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6112
u64 perf_swevent_set_period(struct perf_event *event)
6113
{
6114
	struct hw_perf_event *hwc = &event->hw;
6115 6116 6117 6118 6119
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6120 6121

again:
6122
	old = val = local64_read(&hwc->period_left);
6123 6124
	if (val < 0)
		return 0;
6125

6126 6127 6128
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6129
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6130
		goto again;
6131

6132
	return nr;
6133 6134
}

6135
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6136
				    struct perf_sample_data *data,
6137
				    struct pt_regs *regs)
6138
{
6139
	struct hw_perf_event *hwc = &event->hw;
6140
	int throttle = 0;
6141

6142 6143
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6144

6145 6146
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6147

6148
	for (; overflow; overflow--) {
6149
		if (__perf_event_overflow(event, throttle,
6150
					    data, regs)) {
6151 6152 6153 6154 6155 6156
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6157
		throttle = 1;
6158
	}
6159 6160
}

P
Peter Zijlstra 已提交
6161
static void perf_swevent_event(struct perf_event *event, u64 nr,
6162
			       struct perf_sample_data *data,
6163
			       struct pt_regs *regs)
6164
{
6165
	struct hw_perf_event *hwc = &event->hw;
6166

6167
	local64_add(nr, &event->count);
6168

6169 6170 6171
	if (!regs)
		return;

6172
	if (!is_sampling_event(event))
6173
		return;
6174

6175 6176 6177 6178 6179 6180
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6181
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6182
		return perf_swevent_overflow(event, 1, data, regs);
6183

6184
	if (local64_add_negative(nr, &hwc->period_left))
6185
		return;
6186

6187
	perf_swevent_overflow(event, 0, data, regs);
6188 6189
}

6190 6191 6192
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6193
	if (event->hw.state & PERF_HES_STOPPED)
6194
		return 1;
P
Peter Zijlstra 已提交
6195

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6207
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6208
				enum perf_type_id type,
L
Li Zefan 已提交
6209 6210 6211
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6212
{
6213
	if (event->attr.type != type)
6214
		return 0;
6215

6216
	if (event->attr.config != event_id)
6217 6218
		return 0;

6219 6220
	if (perf_exclude_event(event, regs))
		return 0;
6221 6222 6223 6224

	return 1;
}

6225 6226 6227 6228 6229 6230 6231
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6232 6233
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6234
{
6235 6236 6237 6238
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6239

6240 6241
/* For the read side: events when they trigger */
static inline struct hlist_head *
6242
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6243 6244
{
	struct swevent_hlist *hlist;
6245

6246
	hlist = rcu_dereference(swhash->swevent_hlist);
6247 6248 6249
	if (!hlist)
		return NULL;

6250 6251 6252 6253 6254
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6255
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6266
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6267 6268 6269 6270 6271
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6272 6273 6274
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6275
				    u64 nr,
6276 6277
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6278
{
6279
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6280
	struct perf_event *event;
6281
	struct hlist_head *head;
6282

6283
	rcu_read_lock();
6284
	head = find_swevent_head_rcu(swhash, type, event_id);
6285 6286 6287
	if (!head)
		goto end;

6288
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6289
		if (perf_swevent_match(event, type, event_id, data, regs))
6290
			perf_swevent_event(event, nr, data, regs);
6291
	}
6292 6293
end:
	rcu_read_unlock();
6294 6295
}

6296 6297
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6298
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6299
{
6300
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6301

6302
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6303
}
I
Ingo Molnar 已提交
6304
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6305

6306
inline void perf_swevent_put_recursion_context(int rctx)
6307
{
6308
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6309

6310
	put_recursion_context(swhash->recursion, rctx);
6311
}
6312

6313
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6314
{
6315
	struct perf_sample_data data;
6316

6317
	if (WARN_ON_ONCE(!regs))
6318
		return;
6319

6320
	perf_sample_data_init(&data, addr, 0);
6321
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6334 6335

	perf_swevent_put_recursion_context(rctx);
6336
fail:
6337
	preempt_enable_notrace();
6338 6339
}

6340
static void perf_swevent_read(struct perf_event *event)
6341 6342 6343
{
}

P
Peter Zijlstra 已提交
6344
static int perf_swevent_add(struct perf_event *event, int flags)
6345
{
6346
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6347
	struct hw_perf_event *hwc = &event->hw;
6348 6349
	struct hlist_head *head;

6350
	if (is_sampling_event(event)) {
6351
		hwc->last_period = hwc->sample_period;
6352
		perf_swevent_set_period(event);
6353
	}
6354

P
Peter Zijlstra 已提交
6355 6356
	hwc->state = !(flags & PERF_EF_START);

6357
	head = find_swevent_head(swhash, event);
6358 6359 6360 6361 6362 6363
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6364
		return -EINVAL;
6365
	}
6366 6367

	hlist_add_head_rcu(&event->hlist_entry, head);
6368
	perf_event_update_userpage(event);
6369

6370 6371 6372
	return 0;
}

P
Peter Zijlstra 已提交
6373
static void perf_swevent_del(struct perf_event *event, int flags)
6374
{
6375
	hlist_del_rcu(&event->hlist_entry);
6376 6377
}

P
Peter Zijlstra 已提交
6378
static void perf_swevent_start(struct perf_event *event, int flags)
6379
{
P
Peter Zijlstra 已提交
6380
	event->hw.state = 0;
6381
}
I
Ingo Molnar 已提交
6382

P
Peter Zijlstra 已提交
6383
static void perf_swevent_stop(struct perf_event *event, int flags)
6384
{
P
Peter Zijlstra 已提交
6385
	event->hw.state = PERF_HES_STOPPED;
6386 6387
}

6388 6389
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6390
swevent_hlist_deref(struct swevent_htable *swhash)
6391
{
6392 6393
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6394 6395
}

6396
static void swevent_hlist_release(struct swevent_htable *swhash)
6397
{
6398
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6399

6400
	if (!hlist)
6401 6402
		return;

6403
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6404
	kfree_rcu(hlist, rcu_head);
6405 6406 6407 6408
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6409
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6410

6411
	mutex_lock(&swhash->hlist_mutex);
6412

6413 6414
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6415

6416
	mutex_unlock(&swhash->hlist_mutex);
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6429
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6430 6431
	int err = 0;

6432
	mutex_lock(&swhash->hlist_mutex);
6433

6434
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6435 6436 6437 6438 6439 6440 6441
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6442
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6443
	}
6444
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6445
exit:
6446
	mutex_unlock(&swhash->hlist_mutex);
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6467
fail:
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6478
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6479

6480 6481 6482
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6483

6484 6485
	WARN_ON(event->parent);

6486
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6487 6488 6489 6490 6491
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6492
	u64 event_id = event->attr.config;
6493 6494 6495 6496

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6497 6498 6499 6500 6501 6502
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6503 6504 6505 6506 6507 6508 6509 6510 6511
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6512
	if (event_id >= PERF_COUNT_SW_MAX)
6513 6514 6515 6516 6517 6518 6519 6520 6521
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6522
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6523 6524 6525 6526 6527 6528 6529
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6530
	.task_ctx_nr	= perf_sw_context,
6531

6532 6533
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6534
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6535 6536 6537 6538
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6539 6540 6541
	.read		= perf_swevent_read,
};

6542 6543
#ifdef CONFIG_EVENT_TRACING

6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6558 6559
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6560 6561 6562 6563
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6564 6565 6566 6567 6568 6569 6570 6571 6572
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6573 6574
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6575 6576
{
	struct perf_sample_data data;
6577 6578
	struct perf_event *event;

6579 6580 6581 6582 6583
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6584
	perf_sample_data_init(&data, addr, 0);
6585 6586
	data.raw = &raw;

6587
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6588
		if (perf_tp_event_match(event, &data, regs))
6589
			perf_swevent_event(event, count, &data, regs);
6590
	}
6591

6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6617
	perf_swevent_put_recursion_context(rctx);
6618 6619 6620
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6621
static void tp_perf_event_destroy(struct perf_event *event)
6622
{
6623
	perf_trace_destroy(event);
6624 6625
}

6626
static int perf_tp_event_init(struct perf_event *event)
6627
{
6628 6629
	int err;

6630 6631 6632
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6633 6634 6635 6636 6637 6638
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6639 6640
	err = perf_trace_init(event);
	if (err)
6641
		return err;
6642

6643
	event->destroy = tp_perf_event_destroy;
6644

6645 6646 6647 6648
	return 0;
}

static struct pmu perf_tracepoint = {
6649 6650
	.task_ctx_nr	= perf_sw_context,

6651
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6652 6653 6654 6655
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6656 6657 6658 6659 6660
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6661
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6662
}
L
Li Zefan 已提交
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
		/* bpf programs can only be attached to kprobes */
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6705
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

6730
#else
L
Li Zefan 已提交
6731

6732
static inline void perf_tp_register(void)
6733 6734
{
}
L
Li Zefan 已提交
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6745 6746 6747 6748 6749 6750 6751 6752
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
6753
#endif /* CONFIG_EVENT_TRACING */
6754

6755
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6756
void perf_bp_event(struct perf_event *bp, void *data)
6757
{
6758 6759 6760
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6761
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6762

P
Peter Zijlstra 已提交
6763
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6764
		perf_swevent_event(bp, 1, &sample, regs);
6765 6766 6767
}
#endif

6768 6769 6770
/*
 * hrtimer based swevent callback
 */
6771

6772
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6773
{
6774 6775 6776 6777 6778
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6779

6780
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6781 6782 6783 6784

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6785
	event->pmu->read(event);
6786

6787
	perf_sample_data_init(&data, 0, event->hw.last_period);
6788 6789 6790
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6791
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6792
			if (__perf_event_overflow(event, 1, &data, regs))
6793 6794
				ret = HRTIMER_NORESTART;
	}
6795

6796 6797
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6798

6799
	return ret;
6800 6801
}

6802
static void perf_swevent_start_hrtimer(struct perf_event *event)
6803
{
6804
	struct hw_perf_event *hwc = &event->hw;
6805 6806 6807 6808
	s64 period;

	if (!is_sampling_event(event))
		return;
6809

6810 6811 6812 6813
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6814

6815 6816 6817 6818
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
6819 6820
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
6821
}
6822 6823

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6824
{
6825 6826
	struct hw_perf_event *hwc = &event->hw;

6827
	if (is_sampling_event(event)) {
6828
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6829
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6830 6831 6832

		hrtimer_cancel(&hwc->hrtimer);
	}
6833 6834
}

P
Peter Zijlstra 已提交
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6855
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6856 6857 6858 6859
		event->attr.freq = 0;
	}
}

6860 6861 6862 6863 6864
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6865
{
6866 6867 6868
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6869
	now = local_clock();
6870 6871
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6872 6873
}

P
Peter Zijlstra 已提交
6874
static void cpu_clock_event_start(struct perf_event *event, int flags)
6875
{
P
Peter Zijlstra 已提交
6876
	local64_set(&event->hw.prev_count, local_clock());
6877 6878 6879
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6880
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6881
{
6882 6883 6884
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6885

P
Peter Zijlstra 已提交
6886 6887 6888 6889
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
6890
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
6891 6892 6893 6894 6895 6896 6897 6898 6899

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6900 6901 6902 6903
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6904

6905 6906 6907 6908 6909 6910 6911 6912
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6913 6914 6915 6916 6917 6918
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6919 6920
	perf_swevent_init_hrtimer(event);

6921
	return 0;
6922 6923
}

6924
static struct pmu perf_cpu_clock = {
6925 6926
	.task_ctx_nr	= perf_sw_context,

6927 6928
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6929
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6930 6931 6932 6933
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6934 6935 6936 6937 6938 6939 6940 6941
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6942
{
6943 6944
	u64 prev;
	s64 delta;
6945

6946 6947 6948 6949
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6950

P
Peter Zijlstra 已提交
6951
static void task_clock_event_start(struct perf_event *event, int flags)
6952
{
P
Peter Zijlstra 已提交
6953
	local64_set(&event->hw.prev_count, event->ctx->time);
6954 6955 6956
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6957
static void task_clock_event_stop(struct perf_event *event, int flags)
6958 6959 6960
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6961 6962 6963 6964 6965 6966
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6967
	perf_event_update_userpage(event);
6968

P
Peter Zijlstra 已提交
6969 6970 6971 6972 6973 6974
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6975 6976 6977 6978
}

static void task_clock_event_read(struct perf_event *event)
{
6979 6980 6981
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6982 6983 6984 6985 6986

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6987
{
6988 6989 6990 6991 6992 6993
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6994 6995 6996 6997 6998 6999
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7000 7001
	perf_swevent_init_hrtimer(event);

7002
	return 0;
L
Li Zefan 已提交
7003 7004
}

7005
static struct pmu perf_task_clock = {
7006 7007
	.task_ctx_nr	= perf_sw_context,

7008 7009
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7010
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7011 7012 7013 7014
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7015 7016
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7017

P
Peter Zijlstra 已提交
7018
static void perf_pmu_nop_void(struct pmu *pmu)
7019 7020
{
}
L
Li Zefan 已提交
7021

P
Peter Zijlstra 已提交
7022
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7023
{
P
Peter Zijlstra 已提交
7024
	return 0;
L
Li Zefan 已提交
7025 7026
}

P
Peter Zijlstra 已提交
7027
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
7028
{
P
Peter Zijlstra 已提交
7029
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7030 7031
}

P
Peter Zijlstra 已提交
7032 7033 7034 7035 7036
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
7037

P
Peter Zijlstra 已提交
7038
static void perf_pmu_cancel_txn(struct pmu *pmu)
7039
{
P
Peter Zijlstra 已提交
7040
	perf_pmu_enable(pmu);
7041 7042
}

7043 7044
static int perf_event_idx_default(struct perf_event *event)
{
7045
	return 0;
7046 7047
}

P
Peter Zijlstra 已提交
7048 7049 7050 7051
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7052
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7053
{
P
Peter Zijlstra 已提交
7054
	struct pmu *pmu;
7055

P
Peter Zijlstra 已提交
7056 7057
	if (ctxn < 0)
		return NULL;
7058

P
Peter Zijlstra 已提交
7059 7060 7061 7062
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7063

P
Peter Zijlstra 已提交
7064
	return NULL;
7065 7066
}

7067
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7068
{
7069 7070 7071 7072 7073 7074 7075
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7076 7077
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7078 7079 7080 7081 7082 7083
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7084

P
Peter Zijlstra 已提交
7085
	mutex_lock(&pmus_lock);
7086
	/*
P
Peter Zijlstra 已提交
7087
	 * Like a real lame refcount.
7088
	 */
7089 7090 7091
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7092
			goto out;
7093
		}
P
Peter Zijlstra 已提交
7094
	}
7095

7096
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7097 7098
out:
	mutex_unlock(&pmus_lock);
7099
}
P
Peter Zijlstra 已提交
7100
static struct idr pmu_idr;
7101

P
Peter Zijlstra 已提交
7102 7103 7104 7105 7106 7107 7108
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7109
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7110

7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7121 7122
static DEFINE_MUTEX(mux_interval_mutex);

7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7142
	mutex_lock(&mux_interval_mutex);
7143 7144 7145
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7146 7147
	get_online_cpus();
	for_each_online_cpu(cpu) {
7148 7149 7150 7151
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7152 7153
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7154
	}
7155 7156
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7157 7158 7159

	return count;
}
7160
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7161

7162 7163 7164 7165
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7166
};
7167
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7168 7169 7170 7171

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7172
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7188
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7209
static struct lock_class_key cpuctx_mutex;
7210
static struct lock_class_key cpuctx_lock;
7211

7212
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7213
{
P
Peter Zijlstra 已提交
7214
	int cpu, ret;
7215

7216
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7217 7218 7219 7220
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7221

P
Peter Zijlstra 已提交
7222 7223 7224 7225 7226 7227
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7228 7229 7230
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7231 7232 7233 7234 7235
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7236 7237 7238 7239 7240 7241
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7242
skip_type:
P
Peter Zijlstra 已提交
7243 7244 7245
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7246

W
Wei Yongjun 已提交
7247
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7248 7249
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7250
		goto free_dev;
7251

P
Peter Zijlstra 已提交
7252 7253 7254 7255
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7256
		__perf_event_init_context(&cpuctx->ctx);
7257
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7258
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7259
		cpuctx->ctx.pmu = pmu;
7260

7261
		__perf_mux_hrtimer_init(cpuctx, cpu);
7262

7263
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7264
	}
7265

P
Peter Zijlstra 已提交
7266
got_cpu_context:
P
Peter Zijlstra 已提交
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7281
		}
7282
	}
7283

P
Peter Zijlstra 已提交
7284 7285 7286 7287 7288
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7289 7290 7291
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7292
	list_add_rcu(&pmu->entry, &pmus);
7293
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7294 7295
	ret = 0;
unlock:
7296 7297
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7298
	return ret;
P
Peter Zijlstra 已提交
7299

P
Peter Zijlstra 已提交
7300 7301 7302 7303
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7304 7305 7306 7307
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7308 7309 7310
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7311
}
7312
EXPORT_SYMBOL_GPL(perf_pmu_register);
7313

7314
void perf_pmu_unregister(struct pmu *pmu)
7315
{
7316 7317 7318
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7319

7320
	/*
P
Peter Zijlstra 已提交
7321 7322
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7323
	 */
7324
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7325
	synchronize_rcu();
7326

P
Peter Zijlstra 已提交
7327
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7328 7329
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7330 7331
	device_del(pmu->dev);
	put_device(pmu->dev);
7332
	free_pmu_context(pmu);
7333
}
7334
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7335

7336 7337
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7338
	struct perf_event_context *ctx = NULL;
7339 7340 7341 7342
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7343 7344 7345 7346 7347 7348

	if (event->group_leader != event) {
		ctx = perf_event_ctx_lock(event->group_leader);
		BUG_ON(!ctx);
	}

7349 7350
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7351 7352 7353 7354

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7355 7356 7357 7358 7359 7360
	if (ret)
		module_put(pmu->module);

	return ret;
}

7361 7362 7363 7364
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7365
	int ret;
7366 7367

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7368 7369 7370 7371

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7372
	if (pmu) {
7373
		ret = perf_try_init_event(pmu, event);
7374 7375
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7376
		goto unlock;
7377
	}
P
Peter Zijlstra 已提交
7378

7379
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7380
		ret = perf_try_init_event(pmu, event);
7381
		if (!ret)
P
Peter Zijlstra 已提交
7382
			goto unlock;
7383

7384 7385
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7386
			goto unlock;
7387
		}
7388
	}
P
Peter Zijlstra 已提交
7389 7390
	pmu = ERR_PTR(-ENOENT);
unlock:
7391
	srcu_read_unlock(&pmus_srcu, idx);
7392

7393
	return pmu;
7394 7395
}

7396 7397 7398 7399 7400 7401 7402 7403 7404
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7405 7406
static void account_event(struct perf_event *event)
{
7407 7408 7409
	if (event->parent)
		return;

7410 7411 7412 7413 7414 7415 7416 7417
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7418 7419 7420 7421
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7422
	if (has_branch_stack(event))
7423
		static_key_slow_inc(&perf_sched_events.key);
7424
	if (is_cgroup_event(event))
7425
		static_key_slow_inc(&perf_sched_events.key);
7426 7427

	account_event_cpu(event, event->cpu);
7428 7429
}

T
Thomas Gleixner 已提交
7430
/*
7431
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7432
 */
7433
static struct perf_event *
7434
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7435 7436 7437
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7438
		 perf_overflow_handler_t overflow_handler,
7439
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7440
{
P
Peter Zijlstra 已提交
7441
	struct pmu *pmu;
7442 7443
	struct perf_event *event;
	struct hw_perf_event *hwc;
7444
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7445

7446 7447 7448 7449 7450
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7451
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7452
	if (!event)
7453
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7454

7455
	/*
7456
	 * Single events are their own group leaders, with an
7457 7458 7459
	 * empty sibling list:
	 */
	if (!group_leader)
7460
		group_leader = event;
7461

7462 7463
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7464

7465 7466 7467
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7468
	INIT_LIST_HEAD(&event->rb_entry);
7469
	INIT_LIST_HEAD(&event->active_entry);
7470 7471
	INIT_HLIST_NODE(&event->hlist_entry);

7472

7473
	init_waitqueue_head(&event->waitq);
7474
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7475

7476
	mutex_init(&event->mmap_mutex);
7477

7478
	atomic_long_set(&event->refcount, 1);
7479 7480 7481 7482 7483
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7484

7485
	event->parent		= parent_event;
7486

7487
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7488
	event->id		= atomic64_inc_return(&perf_event_id);
7489

7490
	event->state		= PERF_EVENT_STATE_INACTIVE;
7491

7492 7493 7494
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7495 7496 7497
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7498
		 */
7499
		event->hw.target = task;
7500 7501
	}

7502 7503 7504 7505
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7506
	if (!overflow_handler && parent_event) {
7507
		overflow_handler = parent_event->overflow_handler;
7508 7509
		context = parent_event->overflow_handler_context;
	}
7510

7511
	event->overflow_handler	= overflow_handler;
7512
	event->overflow_handler_context = context;
7513

J
Jiri Olsa 已提交
7514
	perf_event__state_init(event);
7515

7516
	pmu = NULL;
7517

7518
	hwc = &event->hw;
7519
	hwc->sample_period = attr->sample_period;
7520
	if (attr->freq && attr->sample_freq)
7521
		hwc->sample_period = 1;
7522
	hwc->last_period = hwc->sample_period;
7523

7524
	local64_set(&hwc->period_left, hwc->sample_period);
7525

7526
	/*
7527
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7528
	 */
7529
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7530
		goto err_ns;
7531 7532 7533

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7534

7535 7536 7537 7538 7539 7540
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7541
	pmu = perf_init_event(event);
7542
	if (!pmu)
7543 7544
		goto err_ns;
	else if (IS_ERR(pmu)) {
7545
		err = PTR_ERR(pmu);
7546
		goto err_ns;
I
Ingo Molnar 已提交
7547
	}
7548

7549 7550 7551 7552
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7553
	if (!event->parent) {
7554 7555
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7556
			if (err)
7557
				goto err_per_task;
7558
		}
7559
	}
7560

7561
	return event;
7562

7563 7564 7565
err_per_task:
	exclusive_event_destroy(event);

7566 7567 7568
err_pmu:
	if (event->destroy)
		event->destroy(event);
7569
	module_put(pmu->module);
7570
err_ns:
7571 7572
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7573 7574 7575 7576 7577
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7578 7579
}

7580 7581
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7582 7583
{
	u32 size;
7584
	int ret;
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7609 7610 7611
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7612 7613
	 */
	if (size > sizeof(*attr)) {
7614 7615 7616
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7617

7618 7619
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7620

7621
		for (; addr < end; addr++) {
7622 7623 7624 7625 7626 7627
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7628
		size = sizeof(*attr);
7629 7630 7631 7632 7633 7634
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7635
	if (attr->__reserved_1)
7636 7637 7638 7639 7640 7641 7642 7643
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7672 7673
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7674 7675
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7676
	}
7677

7678
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7679
		ret = perf_reg_validate(attr->sample_regs_user);
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7698

7699 7700
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7701 7702 7703 7704 7705 7706 7707 7708 7709
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7710 7711
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7712
{
7713
	struct ring_buffer *rb = NULL;
7714 7715
	int ret = -EINVAL;

7716
	if (!output_event)
7717 7718
		goto set;

7719 7720
	/* don't allow circular references */
	if (event == output_event)
7721 7722
		goto out;

7723 7724 7725 7726 7727 7728 7729
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7730
	 * If its not a per-cpu rb, it must be the same task.
7731 7732 7733 7734
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7735 7736 7737 7738 7739 7740
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

7741 7742 7743 7744 7745 7746 7747
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

7748
set:
7749
	mutex_lock(&event->mmap_mutex);
7750 7751 7752
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7753

7754
	if (output_event) {
7755 7756 7757
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7758
			goto unlock;
7759 7760
	}

7761
	ring_buffer_attach(event, rb);
7762

7763
	ret = 0;
7764 7765 7766
unlock:
	mutex_unlock(&event->mmap_mutex);

7767 7768 7769 7770
out:
	return ret;
}

P
Peter Zijlstra 已提交
7771 7772 7773 7774 7775 7776 7777 7778 7779
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
7817
/**
7818
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7819
 *
7820
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7821
 * @pid:		target pid
I
Ingo Molnar 已提交
7822
 * @cpu:		target cpu
7823
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7824
 */
7825 7826
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7827
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7828
{
7829 7830
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7831
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7832
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7833
	struct file *event_file = NULL;
7834
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7835
	struct task_struct *task = NULL;
7836
	struct pmu *pmu;
7837
	int event_fd;
7838
	int move_group = 0;
7839
	int err;
7840
	int f_flags = O_RDWR;
7841
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
7842

7843
	/* for future expandability... */
S
Stephane Eranian 已提交
7844
	if (flags & ~PERF_FLAG_ALL)
7845 7846
		return -EINVAL;

7847 7848 7849
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7850

7851 7852 7853 7854 7855
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7856
	if (attr.freq) {
7857
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7858
			return -EINVAL;
7859 7860 7861
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7862 7863
	}

S
Stephane Eranian 已提交
7864 7865 7866 7867 7868 7869 7870 7871 7872
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7873 7874 7875 7876
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7877 7878 7879
	if (event_fd < 0)
		return event_fd;

7880
	if (group_fd != -1) {
7881 7882
		err = perf_fget_light(group_fd, &group);
		if (err)
7883
			goto err_fd;
7884
		group_leader = group.file->private_data;
7885 7886 7887 7888 7889 7890
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7891
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7892 7893 7894 7895 7896 7897 7898
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7899 7900 7901 7902 7903 7904
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7905 7906
	get_online_cpus();

7907 7908 7909
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

7910
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7911
				 NULL, NULL, cgroup_fd);
7912 7913
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7914
		goto err_cpus;
7915 7916
	}

7917 7918 7919 7920 7921 7922 7923
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7924 7925
	account_event(event);

7926 7927 7928 7929 7930
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7931

7932 7933 7934 7935 7936 7937
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7960 7961 7962 7963

	/*
	 * Get the target context (task or percpu):
	 */
7964
	ctx = find_get_context(pmu, task, event);
7965 7966
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7967
		goto err_alloc;
7968 7969
	}

7970 7971 7972 7973 7974
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

7975 7976 7977 7978 7979
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7980
	/*
7981
	 * Look up the group leader (we will attach this event to it):
7982
	 */
7983
	if (group_leader) {
7984
		err = -EINVAL;
7985 7986

		/*
I
Ingo Molnar 已提交
7987 7988 7989 7990
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7991
			goto err_context;
7992 7993 7994 7995 7996

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
7997 7998 7999
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8000
		 */
8001
		if (move_group) {
8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8015 8016 8017 8018 8019 8020
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8021 8022 8023
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8024
		if (attr.exclusive || attr.pinned)
8025
			goto err_context;
8026 8027 8028 8029 8030
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8031
			goto err_context;
8032
	}
T
Thomas Gleixner 已提交
8033

8034 8035
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8036 8037
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8038
		goto err_context;
8039
	}
8040

8041
	if (move_group) {
P
Peter Zijlstra 已提交
8042 8043 8044 8045 8046 8047 8048
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8049

8050
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8051

8052 8053
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8054
			perf_remove_from_context(sibling, false);
8055 8056
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8057 8058
	} else {
		mutex_lock(&ctx->mutex);
8059
	}
8060

8061
	WARN_ON_ONCE(ctx->parent_ctx);
8062 8063

	if (move_group) {
P
Peter Zijlstra 已提交
8064 8065 8066 8067
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8068
		synchronize_rcu();
P
Peter Zijlstra 已提交
8069

8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8080 8081
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8082
			perf_event__state_init(sibling);
8083
			perf_install_in_context(ctx, sibling, sibling->cpu);
8084 8085
			get_ctx(ctx);
		}
8086 8087 8088 8089 8090 8091 8092 8093 8094

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8095 8096
	}

8097 8098 8099 8100 8101 8102 8103
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8104
	perf_install_in_context(ctx, event, event->cpu);
8105
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8106 8107 8108 8109 8110

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8111
	mutex_unlock(&ctx->mutex);
8112

8113 8114
	put_online_cpus();

8115
	event->owner = current;
P
Peter Zijlstra 已提交
8116

8117 8118 8119
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8120

8121 8122 8123 8124
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8125
	perf_event__id_header_size(event);
8126

8127 8128 8129 8130 8131 8132
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8133
	fdput(group);
8134 8135
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8136

8137
err_context:
8138
	perf_unpin_context(ctx);
8139
	put_ctx(ctx);
8140
err_alloc:
8141
	free_event(event);
8142
err_cpus:
8143
	put_online_cpus();
8144
err_task:
P
Peter Zijlstra 已提交
8145 8146
	if (task)
		put_task_struct(task);
8147
err_group_fd:
8148
	fdput(group);
8149 8150
err_fd:
	put_unused_fd(event_fd);
8151
	return err;
T
Thomas Gleixner 已提交
8152 8153
}

8154 8155 8156 8157 8158
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8159
 * @task: task to profile (NULL for percpu)
8160 8161 8162
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8163
				 struct task_struct *task,
8164 8165
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8166 8167
{
	struct perf_event_context *ctx;
8168
	struct perf_event *event;
8169
	int err;
8170

8171 8172 8173
	/*
	 * Get the target context (task or percpu):
	 */
8174

8175
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8176
				 overflow_handler, context, -1);
8177 8178 8179 8180
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8181

8182 8183 8184
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8185 8186
	account_event(event);

8187
	ctx = find_get_context(event->pmu, task, event);
8188 8189
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8190
		goto err_free;
8191
	}
8192 8193 8194

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8195 8196 8197 8198 8199 8200 8201 8202
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8203
	perf_install_in_context(ctx, event, cpu);
8204
	perf_unpin_context(ctx);
8205 8206 8207 8208
	mutex_unlock(&ctx->mutex);

	return event;

8209 8210 8211
err_free:
	free_event(event);
err:
8212
	return ERR_PTR(err);
8213
}
8214
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8215

8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8226 8227 8228 8229 8230
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8231 8232
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8233
		perf_remove_from_context(event, false);
8234
		unaccount_event_cpu(event, src_cpu);
8235
		put_ctx(src_ctx);
8236
		list_add(&event->migrate_entry, &events);
8237 8238
	}

8239 8240 8241
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8242 8243
	synchronize_rcu();

8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8268 8269
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8270 8271
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8272
		account_event_cpu(event, dst_cpu);
8273 8274 8275 8276
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8277
	mutex_unlock(&src_ctx->mutex);
8278 8279 8280
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8281
static void sync_child_event(struct perf_event *child_event,
8282
			       struct task_struct *child)
8283
{
8284
	struct perf_event *parent_event = child_event->parent;
8285
	u64 child_val;
8286

8287 8288
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8289

P
Peter Zijlstra 已提交
8290
	child_val = perf_event_count(child_event);
8291 8292 8293 8294

	/*
	 * Add back the child's count to the parent's count:
	 */
8295
	atomic64_add(child_val, &parent_event->child_count);
8296 8297 8298 8299
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8300 8301

	/*
8302
	 * Remove this event from the parent's list
8303
	 */
8304 8305 8306 8307
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8308

8309 8310 8311 8312 8313 8314
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8315
	/*
8316
	 * Release the parent event, if this was the last
8317 8318
	 * reference to it.
	 */
8319
	put_event(parent_event);
8320 8321
}

8322
static void
8323 8324
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8325
			 struct task_struct *child)
8326
{
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8340

8341
	/*
8342
	 * It can happen that the parent exits first, and has events
8343
	 * that are still around due to the child reference. These
8344
	 * events need to be zapped.
8345
	 */
8346
	if (child_event->parent) {
8347 8348
		sync_child_event(child_event, child);
		free_event(child_event);
8349 8350 8351
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8352
	}
8353 8354
}

P
Peter Zijlstra 已提交
8355
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8356
{
8357
	struct perf_event *child_event, *next;
8358
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8359
	unsigned long flags;
8360

P
Peter Zijlstra 已提交
8361
	if (likely(!child->perf_event_ctxp[ctxn])) {
8362
		perf_event_task(child, NULL, 0);
8363
		return;
P
Peter Zijlstra 已提交
8364
	}
8365

8366
	local_irq_save(flags);
8367 8368 8369 8370 8371 8372
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8373
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8374 8375 8376

	/*
	 * Take the context lock here so that if find_get_context is
8377
	 * reading child->perf_event_ctxp, we wait until it has
8378 8379
	 * incremented the context's refcount before we do put_ctx below.
	 */
8380
	raw_spin_lock(&child_ctx->lock);
8381
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8382
	child->perf_event_ctxp[ctxn] = NULL;
8383

8384 8385 8386
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8387
	 * the events from it.
8388
	 */
8389
	clone_ctx = unclone_ctx(child_ctx);
8390
	update_context_time(child_ctx);
8391
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8392

8393 8394
	if (clone_ctx)
		put_ctx(clone_ctx);
8395

P
Peter Zijlstra 已提交
8396
	/*
8397 8398 8399
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8400
	 */
8401
	perf_event_task(child, child_ctx, 0);
8402

8403 8404 8405
	/*
	 * We can recurse on the same lock type through:
	 *
8406 8407
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8408 8409
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8410 8411 8412
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8413
	mutex_lock(&child_ctx->mutex);
8414

8415
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8416
		__perf_event_exit_task(child_event, child_ctx, child);
8417

8418 8419 8420
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8421 8422
}

P
Peter Zijlstra 已提交
8423 8424 8425 8426 8427
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8428
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8429 8430
	int ctxn;

P
Peter Zijlstra 已提交
8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8446 8447 8448 8449
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8462
	put_event(parent);
8463

P
Peter Zijlstra 已提交
8464
	raw_spin_lock_irq(&ctx->lock);
8465
	perf_group_detach(event);
8466
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8467
	raw_spin_unlock_irq(&ctx->lock);
8468 8469 8470
	free_event(event);
}

8471
/*
P
Peter Zijlstra 已提交
8472
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8473
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8474 8475 8476
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8477
 */
8478
void perf_event_free_task(struct task_struct *task)
8479
{
P
Peter Zijlstra 已提交
8480
	struct perf_event_context *ctx;
8481
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8482
	int ctxn;
8483

P
Peter Zijlstra 已提交
8484 8485 8486 8487
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8488

P
Peter Zijlstra 已提交
8489
		mutex_lock(&ctx->mutex);
8490
again:
P
Peter Zijlstra 已提交
8491 8492 8493
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8494

P
Peter Zijlstra 已提交
8495 8496 8497
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8498

P
Peter Zijlstra 已提交
8499 8500 8501
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8502

P
Peter Zijlstra 已提交
8503
		mutex_unlock(&ctx->mutex);
8504

P
Peter Zijlstra 已提交
8505 8506
		put_ctx(ctx);
	}
8507 8508
}

8509 8510 8511 8512 8513 8514 8515 8516
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8528
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8529
	struct perf_event *child_event;
8530
	unsigned long flags;
P
Peter Zijlstra 已提交
8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8543
					   child,
P
Peter Zijlstra 已提交
8544
					   group_leader, parent_event,
8545
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8546 8547
	if (IS_ERR(child_event))
		return child_event;
8548

8549 8550
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8551 8552 8553 8554
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8555 8556 8557 8558 8559 8560 8561
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8562
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8579 8580
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8581

8582 8583 8584 8585
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8586
	perf_event__id_header_size(child_event);
8587

P
Peter Zijlstra 已提交
8588 8589 8590
	/*
	 * Link it up in the child's context:
	 */
8591
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8592
	add_event_to_ctx(child_event, child_ctx);
8593
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8627 8628 8629 8630 8631
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8632
		   struct task_struct *child, int ctxn,
8633 8634 8635
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8636
	struct perf_event_context *child_ctx;
8637 8638 8639 8640

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8641 8642
	}

8643
	child_ctx = child->perf_event_ctxp[ctxn];
8644 8645 8646 8647 8648 8649 8650
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8651

8652
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8653 8654
		if (!child_ctx)
			return -ENOMEM;
8655

P
Peter Zijlstra 已提交
8656
		child->perf_event_ctxp[ctxn] = child_ctx;
8657 8658 8659 8660 8661 8662 8663 8664 8665
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8666 8667
}

8668
/*
8669
 * Initialize the perf_event context in task_struct
8670
 */
8671
static int perf_event_init_context(struct task_struct *child, int ctxn)
8672
{
8673
	struct perf_event_context *child_ctx, *parent_ctx;
8674 8675
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8676
	struct task_struct *parent = current;
8677
	int inherited_all = 1;
8678
	unsigned long flags;
8679
	int ret = 0;
8680

P
Peter Zijlstra 已提交
8681
	if (likely(!parent->perf_event_ctxp[ctxn]))
8682 8683
		return 0;

8684
	/*
8685 8686
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8687
	 */
P
Peter Zijlstra 已提交
8688
	parent_ctx = perf_pin_task_context(parent, ctxn);
8689 8690
	if (!parent_ctx)
		return 0;
8691

8692 8693 8694 8695 8696 8697 8698
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8699 8700 8701 8702
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8703
	mutex_lock(&parent_ctx->mutex);
8704 8705 8706 8707 8708

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8709
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8710 8711
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8712 8713 8714
		if (ret)
			break;
	}
8715

8716 8717 8718 8719 8720 8721 8722 8723 8724
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8725
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8726 8727
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8728
		if (ret)
8729
			break;
8730 8731
	}

8732 8733 8734
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8735
	child_ctx = child->perf_event_ctxp[ctxn];
8736

8737
	if (child_ctx && inherited_all) {
8738 8739 8740
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8741 8742 8743
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8744
		 */
P
Peter Zijlstra 已提交
8745
		cloned_ctx = parent_ctx->parent_ctx;
8746 8747
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8748
			child_ctx->parent_gen = parent_ctx->parent_gen;
8749 8750 8751 8752 8753
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8754 8755
	}

P
Peter Zijlstra 已提交
8756
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8757
	mutex_unlock(&parent_ctx->mutex);
8758

8759
	perf_unpin_context(parent_ctx);
8760
	put_ctx(parent_ctx);
8761

8762
	return ret;
8763 8764
}

P
Peter Zijlstra 已提交
8765 8766 8767 8768 8769 8770 8771
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8772 8773 8774 8775
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8776 8777
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8778 8779
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8780
			return ret;
P
Peter Zijlstra 已提交
8781
		}
P
Peter Zijlstra 已提交
8782 8783 8784 8785 8786
	}

	return 0;
}

8787 8788
static void __init perf_event_init_all_cpus(void)
{
8789
	struct swevent_htable *swhash;
8790 8791 8792
	int cpu;

	for_each_possible_cpu(cpu) {
8793 8794
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8795
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8796 8797 8798
	}
}

8799
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8800
{
P
Peter Zijlstra 已提交
8801
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8802

8803
	mutex_lock(&swhash->hlist_mutex);
8804
	swhash->online = true;
8805
	if (swhash->hlist_refcount > 0) {
8806 8807
		struct swevent_hlist *hlist;

8808 8809 8810
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8811
	}
8812
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8813 8814
}

P
Peter Zijlstra 已提交
8815
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8816
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8817
{
8818
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8819
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8820

P
Peter Zijlstra 已提交
8821
	rcu_read_lock();
8822 8823
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8824
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8825
}
P
Peter Zijlstra 已提交
8826 8827 8828 8829 8830 8831 8832 8833 8834

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8835
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8836 8837 8838 8839 8840 8841 8842 8843

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8844
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8845
{
8846
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8847

P
Peter Zijlstra 已提交
8848 8849
	perf_event_exit_cpu_context(cpu);

8850
	mutex_lock(&swhash->hlist_mutex);
8851
	swhash->online = false;
8852 8853
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8854 8855
}
#else
8856
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8857 8858
#endif

P
Peter Zijlstra 已提交
8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8879
static int
T
Thomas Gleixner 已提交
8880 8881 8882 8883
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8884
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8885 8886

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8887
	case CPU_DOWN_FAILED:
8888
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8889 8890
		break;

P
Peter Zijlstra 已提交
8891
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8892
	case CPU_DOWN_PREPARE:
8893
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8894 8895 8896 8897 8898 8899 8900 8901
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8902
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8903
{
8904 8905
	int ret;

P
Peter Zijlstra 已提交
8906 8907
	idr_init(&pmu_idr);

8908
	perf_event_init_all_cpus();
8909
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8910 8911 8912
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8913 8914
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8915
	register_reboot_notifier(&perf_reboot_notifier);
8916 8917 8918

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8919 8920 8921

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8922 8923 8924 8925 8926 8927 8928

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8929
}
P
Peter Zijlstra 已提交
8930

8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8970 8971

#ifdef CONFIG_CGROUP_PERF
8972 8973
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8974 8975 8976
{
	struct perf_cgroup *jc;

8977
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8990
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8991
{
8992 8993
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9005 9006
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9007
{
9008 9009
	struct task_struct *task;

9010
	cgroup_taskset_for_each(task, tset)
9011
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9012 9013
}

9014 9015
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9016
			     struct task_struct *task)
S
Stephane Eranian 已提交
9017 9018 9019 9020 9021 9022 9023 9024 9025
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

9026
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9027 9028
}

9029
struct cgroup_subsys perf_event_cgrp_subsys = {
9030 9031
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9032
	.exit		= perf_cgroup_exit,
9033
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9034 9035
};
#endif /* CONFIG_CGROUP_PERF */