core.c 186.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
122 123
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
124

125 126 127 128 129 130 131
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

132 133 134 135 136 137
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
138 139 140 141
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
142
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
143
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149
static atomic_t nr_freq_events __read_mostly;
150

P
Peter Zijlstra 已提交
151 152 153 154
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

155
/*
156
 * perf event paranoia level:
157 158
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
159
 *   1 - disallow cpu events for unpriv
160
 *   2 - disallow kernel profiling for unpriv
161
 */
162
int sysctl_perf_event_paranoid __read_mostly = 1;
163

164 165
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 167

/*
168
 * max perf event sample rate
169
 */
170 171 172 173 174 175 176 177 178
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
179 180
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 182 183 184 185 186

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
187
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
188
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189
}
P
Peter Zijlstra 已提交
190

191 192
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
193 194 195 196
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
197
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
198 199 200 201 202

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
221 222 223

	return 0;
}
224

225 226 227 228 229 230 231
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
232
static DEFINE_PER_CPU(u64, running_sample_length);
233

234
static void perf_duration_warn(struct irq_work *w)
235
{
236
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237
	u64 avg_local_sample_len;
238
	u64 local_samples_len;
239 240 241 242 243 244 245

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
246
			avg_local_sample_len, allowed_ns >> 1,
247 248 249 250 251 252 253
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
254
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 256
	u64 avg_local_sample_len;
	u64 local_samples_len;
257

P
Peter Zijlstra 已提交
258
	if (allowed_ns == 0)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
274
	if (avg_local_sample_len <= allowed_ns)
275 276 277 278 279 280 281 282 283 284
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
285

286 287 288 289 290 291
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
292 293
}

294
static atomic64_t perf_event_id;
295

296 297 298 299
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
300 301 302 303 304
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
305

306
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
307

308
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
309
{
310
	return "pmu";
T
Thomas Gleixner 已提交
311 312
}

313 314 315 316 317
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
318 319 320 321 322 323
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
340 341
#ifdef CONFIG_CGROUP_PERF

342 343 344 345 346 347 348 349 350 351 352
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
353
	struct perf_cgroup_info	__percpu *info;
354 355
};

356 357 358 359 360
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
361 362 363
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
364
	return container_of(task_css(task, perf_event_cgrp_id),
365
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
366 367 368 369 370 371 372 373
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
438 439
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
440
	/*
441 442
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
443
	 */
444
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
445 446
		return;

447 448 449 450 451 452
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
453 454 455
}

static inline void
456 457
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
458 459 460 461
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

462 463 464 465 466 467
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
468 469 470 471
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
472
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
505 506
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
516 517
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
518 519 520 521 522 523 524 525 526 527 528

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
529
				WARN_ON_ONCE(cpuctx->cgrp);
530 531 532 533
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
534 535 536 537
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
538 539
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
540 541 542 543 544 545 546 547
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

548 549
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
550
{
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
573 574
}

575 576
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
577
{
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
596 597 598 599 600 601 602 603
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
604 605
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
606

607
	if (!f.file)
S
Stephane Eranian 已提交
608 609
		return -EBADF;

610
	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
611 612 613 614
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
628
out:
629
	fdput(f);
S
Stephane Eranian 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

703 704
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
705 706 707
{
}

708 709
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
710 711 712 713 714 715 716 717 718 719 720
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
721 722
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
816
	int timer;
817 818 819 820 821

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

822 823 824 825 826 827 828 829 830
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
853
void perf_pmu_disable(struct pmu *pmu)
854
{
P
Peter Zijlstra 已提交
855 856 857
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
858 859
}

P
Peter Zijlstra 已提交
860
void perf_pmu_enable(struct pmu *pmu)
861
{
P
Peter Zijlstra 已提交
862 863 864
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
865 866
}

867 868 869 870 871 872 873
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
874
static void perf_pmu_rotate_start(struct pmu *pmu)
875
{
P
Peter Zijlstra 已提交
876
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
877
	struct list_head *head = &__get_cpu_var(rotation_list);
878

879
	WARN_ON(!irqs_disabled());
880

881
	if (list_empty(&cpuctx->rotation_list))
882
		list_add(&cpuctx->rotation_list, head);
883 884
}

885
static void get_ctx(struct perf_event_context *ctx)
886
{
887
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
888 889
}

890
static void put_ctx(struct perf_event_context *ctx)
891
{
892 893 894
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
895 896
		if (ctx->task)
			put_task_struct(ctx->task);
897
		kfree_rcu(ctx, rcu_head);
898
	}
899 900
}

901
static void unclone_ctx(struct perf_event_context *ctx)
902 903 904 905 906
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
907
	ctx->generation++;
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

932
/*
933
 * If we inherit events we want to return the parent event id
934 935
 * to userspace.
 */
936
static u64 primary_event_id(struct perf_event *event)
937
{
938
	u64 id = event->id;
939

940 941
	if (event->parent)
		id = event->parent->id;
942 943 944 945

	return id;
}

946
/*
947
 * Get the perf_event_context for a task and lock it.
948 949 950
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
951
static struct perf_event_context *
P
Peter Zijlstra 已提交
952
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
953
{
954
	struct perf_event_context *ctx;
955

P
Peter Zijlstra 已提交
956
retry:
957 958 959 960 961 962 963 964 965 966 967
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
968
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
969 970 971 972
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
973
		 * perf_event_task_sched_out, though the
974 975 976 977 978 979
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
980
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
981
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
982
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
983 984
			rcu_read_unlock();
			preempt_enable();
985 986
			goto retry;
		}
987 988

		if (!atomic_inc_not_zero(&ctx->refcount)) {
989
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
990 991
			ctx = NULL;
		}
992 993
	}
	rcu_read_unlock();
994
	preempt_enable();
995 996 997 998 999 1000 1001 1002
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1003 1004
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1005
{
1006
	struct perf_event_context *ctx;
1007 1008
	unsigned long flags;

P
Peter Zijlstra 已提交
1009
	ctx = perf_lock_task_context(task, ctxn, &flags);
1010 1011
	if (ctx) {
		++ctx->pin_count;
1012
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1013 1014 1015 1016
	}
	return ctx;
}

1017
static void perf_unpin_context(struct perf_event_context *ctx)
1018 1019 1020
{
	unsigned long flags;

1021
	raw_spin_lock_irqsave(&ctx->lock, flags);
1022
	--ctx->pin_count;
1023
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1037 1038 1039
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1040 1041 1042 1043

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1044 1045 1046
	return ctx ? ctx->time : 0;
}

1047 1048
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1049
 * The caller of this function needs to hold the ctx->lock.
1050 1051 1052 1053 1054 1055 1056 1057 1058
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1070
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1071 1072
	else if (ctx->is_active)
		run_end = ctx->time;
1073 1074 1075 1076
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1077 1078 1079 1080

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1081
		run_end = perf_event_time(event);
1082 1083

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1084

1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1099 1100 1101 1102 1103 1104 1105 1106 1107
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1108
/*
1109
 * Add a event from the lists for its context.
1110 1111
 * Must be called with ctx->mutex and ctx->lock held.
 */
1112
static void
1113
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1114
{
1115 1116
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1117 1118

	/*
1119 1120 1121
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1122
	 */
1123
	if (event->group_leader == event) {
1124 1125
		struct list_head *list;

1126 1127 1128
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1129 1130
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1131
	}
P
Peter Zijlstra 已提交
1132

1133
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1134 1135
		ctx->nr_cgroups++;

1136 1137 1138
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1139
	list_add_rcu(&event->event_entry, &ctx->event_list);
1140
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1141
		perf_pmu_rotate_start(ctx->pmu);
1142 1143
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1144
		ctx->nr_stat++;
1145 1146

	ctx->generation++;
1147 1148
}

J
Jiri Olsa 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1197 1198 1199 1200 1201 1202
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1203 1204 1205
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1206 1207 1208
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1209 1210 1211
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1212 1213 1214
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1215 1216 1217 1218 1219 1220 1221 1222 1223
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1224 1225 1226 1227 1228 1229
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1230 1231 1232
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1233 1234 1235 1236 1237 1238 1239 1240 1241
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1242
	event->id_header_size = size;
1243 1244
}

1245 1246
static void perf_group_attach(struct perf_event *event)
{
1247
	struct perf_event *group_leader = event->group_leader, *pos;
1248

P
Peter Zijlstra 已提交
1249 1250 1251 1252 1253 1254
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1266 1267 1268 1269 1270

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1271 1272
}

1273
/*
1274
 * Remove a event from the lists for its context.
1275
 * Must be called with ctx->mutex and ctx->lock held.
1276
 */
1277
static void
1278
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1279
{
1280
	struct perf_cpu_context *cpuctx;
1281 1282 1283 1284
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1285
		return;
1286 1287 1288

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1289
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1290
		ctx->nr_cgroups--;
1291 1292 1293 1294 1295 1296 1297 1298 1299
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1300

1301 1302 1303
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1304 1305
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1306
		ctx->nr_stat--;
1307

1308
	list_del_rcu(&event->event_entry);
1309

1310 1311
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1312

1313
	update_group_times(event);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1324 1325

	ctx->generation++;
1326 1327
}

1328
static void perf_group_detach(struct perf_event *event)
1329 1330
{
	struct perf_event *sibling, *tmp;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1347
		goto out;
1348 1349 1350 1351
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1352

1353
	/*
1354 1355
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1356
	 * to whatever list we are on.
1357
	 */
1358
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1359 1360
		if (list)
			list_move_tail(&sibling->group_entry, list);
1361
		sibling->group_leader = sibling;
1362 1363 1364

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1365
	}
1366 1367 1368 1369 1370 1371

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1372 1373
}

1374 1375 1376
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1377 1378
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1379 1380
}

1381 1382
static void
event_sched_out(struct perf_event *event,
1383
		  struct perf_cpu_context *cpuctx,
1384
		  struct perf_event_context *ctx)
1385
{
1386
	u64 tstamp = perf_event_time(event);
1387 1388 1389 1390 1391 1392 1393 1394 1395
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1396
		delta = tstamp - event->tstamp_stopped;
1397
		event->tstamp_running += delta;
1398
		event->tstamp_stopped = tstamp;
1399 1400
	}

1401
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1402
		return;
1403

1404 1405
	perf_pmu_disable(event->pmu);

1406 1407 1408 1409
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1410
	}
1411
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1412
	event->pmu->del(event, 0);
1413
	event->oncpu = -1;
1414

1415
	if (!is_software_event(event))
1416 1417
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1418 1419
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1420
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1421
		cpuctx->exclusive = 0;
1422 1423

	perf_pmu_enable(event->pmu);
1424 1425
}

1426
static void
1427
group_sched_out(struct perf_event *group_event,
1428
		struct perf_cpu_context *cpuctx,
1429
		struct perf_event_context *ctx)
1430
{
1431
	struct perf_event *event;
1432
	int state = group_event->state;
1433

1434
	event_sched_out(group_event, cpuctx, ctx);
1435 1436 1437 1438

	/*
	 * Schedule out siblings (if any):
	 */
1439 1440
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1441

1442
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1443 1444 1445
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1446
/*
1447
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1448
 *
1449
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1450 1451
 * remove it from the context list.
 */
1452
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1453
{
1454 1455
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1456
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1457

1458
	raw_spin_lock(&ctx->lock);
1459 1460
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1461 1462 1463 1464
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1465
	raw_spin_unlock(&ctx->lock);
1466 1467

	return 0;
T
Thomas Gleixner 已提交
1468 1469 1470 1471
}


/*
1472
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1473
 *
1474
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1475
 * call when the task is on a CPU.
1476
 *
1477 1478
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1479 1480
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1481
 * When called from perf_event_exit_task, it's OK because the
1482
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1483
 */
1484
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1485
{
1486
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1487 1488
	struct task_struct *task = ctx->task;

1489 1490
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1491 1492
	if (!task) {
		/*
1493
		 * Per cpu events are removed via an smp call and
1494
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1495
		 */
1496
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1497 1498 1499 1500
		return;
	}

retry:
1501 1502
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1503

1504
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1505
	/*
1506 1507
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1508
	 */
1509
	if (ctx->is_active) {
1510
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1511 1512 1513 1514
		goto retry;
	}

	/*
1515 1516
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1517
	 */
1518
	list_del_event(event, ctx);
1519
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1520 1521
}

1522
/*
1523
 * Cross CPU call to disable a performance event
1524
 */
1525
int __perf_event_disable(void *info)
1526
{
1527 1528
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1529
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1530 1531

	/*
1532 1533
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1534 1535 1536
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1537
	 */
1538
	if (ctx->task && cpuctx->task_ctx != ctx)
1539
		return -EINVAL;
1540

1541
	raw_spin_lock(&ctx->lock);
1542 1543

	/*
1544
	 * If the event is on, turn it off.
1545 1546
	 * If it is in error state, leave it in error state.
	 */
1547
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1548
		update_context_time(ctx);
S
Stephane Eranian 已提交
1549
		update_cgrp_time_from_event(event);
1550 1551 1552
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1553
		else
1554 1555
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1556 1557
	}

1558
	raw_spin_unlock(&ctx->lock);
1559 1560

	return 0;
1561 1562 1563
}

/*
1564
 * Disable a event.
1565
 *
1566 1567
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1568
 * remains valid.  This condition is satisifed when called through
1569 1570 1571 1572
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1573
 * is the current context on this CPU and preemption is disabled,
1574
 * hence we can't get into perf_event_task_sched_out for this context.
1575
 */
1576
void perf_event_disable(struct perf_event *event)
1577
{
1578
	struct perf_event_context *ctx = event->ctx;
1579 1580 1581 1582
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1583
		 * Disable the event on the cpu that it's on
1584
		 */
1585
		cpu_function_call(event->cpu, __perf_event_disable, event);
1586 1587 1588
		return;
	}

P
Peter Zijlstra 已提交
1589
retry:
1590 1591
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1592

1593
	raw_spin_lock_irq(&ctx->lock);
1594
	/*
1595
	 * If the event is still active, we need to retry the cross-call.
1596
	 */
1597
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1598
		raw_spin_unlock_irq(&ctx->lock);
1599 1600 1601 1602 1603
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1604 1605 1606 1607 1608 1609 1610
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1611 1612 1613
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1614
	}
1615
	raw_spin_unlock_irq(&ctx->lock);
1616
}
1617
EXPORT_SYMBOL_GPL(perf_event_disable);
1618

S
Stephane Eranian 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1654 1655 1656 1657
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1658
static int
1659
event_sched_in(struct perf_event *event,
1660
		 struct perf_cpu_context *cpuctx,
1661
		 struct perf_event_context *ctx)
1662
{
1663
	u64 tstamp = perf_event_time(event);
1664
	int ret = 0;
1665

1666
	if (event->state <= PERF_EVENT_STATE_OFF)
1667 1668
		return 0;

1669
	event->state = PERF_EVENT_STATE_ACTIVE;
1670
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1682 1683 1684 1685 1686
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1687 1688
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1689
	if (event->pmu->add(event, PERF_EF_START)) {
1690 1691
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1692 1693
		ret = -EAGAIN;
		goto out;
1694 1695
	}

1696
	event->tstamp_running += tstamp - event->tstamp_stopped;
1697

S
Stephane Eranian 已提交
1698
	perf_set_shadow_time(event, ctx, tstamp);
1699

1700
	if (!is_software_event(event))
1701
		cpuctx->active_oncpu++;
1702
	ctx->nr_active++;
1703 1704
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1705

1706
	if (event->attr.exclusive)
1707 1708
		cpuctx->exclusive = 1;

1709 1710 1711 1712
out:
	perf_pmu_enable(event->pmu);

	return ret;
1713 1714
}

1715
static int
1716
group_sched_in(struct perf_event *group_event,
1717
	       struct perf_cpu_context *cpuctx,
1718
	       struct perf_event_context *ctx)
1719
{
1720
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1721
	struct pmu *pmu = ctx->pmu;
1722 1723
	u64 now = ctx->time;
	bool simulate = false;
1724

1725
	if (group_event->state == PERF_EVENT_STATE_OFF)
1726 1727
		return 0;

P
Peter Zijlstra 已提交
1728
	pmu->start_txn(pmu);
1729

1730
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1731
		pmu->cancel_txn(pmu);
1732
		perf_cpu_hrtimer_restart(cpuctx);
1733
		return -EAGAIN;
1734
	}
1735 1736 1737 1738

	/*
	 * Schedule in siblings as one group (if any):
	 */
1739
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1740
		if (event_sched_in(event, cpuctx, ctx)) {
1741
			partial_group = event;
1742 1743 1744 1745
			goto group_error;
		}
	}

1746
	if (!pmu->commit_txn(pmu))
1747
		return 0;
1748

1749 1750 1751 1752
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1763
	 */
1764 1765
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1766 1767 1768 1769 1770 1771 1772 1773
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1774
	}
1775
	event_sched_out(group_event, cpuctx, ctx);
1776

P
Peter Zijlstra 已提交
1777
	pmu->cancel_txn(pmu);
1778

1779 1780
	perf_cpu_hrtimer_restart(cpuctx);

1781 1782 1783
	return -EAGAIN;
}

1784
/*
1785
 * Work out whether we can put this event group on the CPU now.
1786
 */
1787
static int group_can_go_on(struct perf_event *event,
1788 1789 1790 1791
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1792
	 * Groups consisting entirely of software events can always go on.
1793
	 */
1794
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1795 1796 1797
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1798
	 * events can go on.
1799 1800 1801 1802 1803
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1804
	 * events on the CPU, it can't go on.
1805
	 */
1806
	if (event->attr.exclusive && cpuctx->active_oncpu)
1807 1808 1809 1810 1811 1812 1813 1814
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1815 1816
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1817
{
1818 1819
	u64 tstamp = perf_event_time(event);

1820
	list_add_event(event, ctx);
1821
	perf_group_attach(event);
1822 1823 1824
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1825 1826
}

1827 1828 1829 1830 1831 1832
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1846
/*
1847
 * Cross CPU call to install and enable a performance event
1848 1849
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1850
 */
1851
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1852
{
1853 1854
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1855
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1856 1857 1858
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1859
	perf_ctx_lock(cpuctx, task_ctx);
1860
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1861 1862

	/*
1863
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1864
	 */
1865
	if (task_ctx)
1866
		task_ctx_sched_out(task_ctx);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1881 1882
		task = task_ctx->task;
	}
1883

1884
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1885

1886
	update_context_time(ctx);
S
Stephane Eranian 已提交
1887 1888 1889 1890 1891 1892
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1893

1894
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1895

1896
	/*
1897
	 * Schedule everything back in
1898
	 */
1899
	perf_event_sched_in(cpuctx, task_ctx, task);
1900 1901 1902

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1903 1904

	return 0;
T
Thomas Gleixner 已提交
1905 1906 1907
}

/*
1908
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1909
 *
1910 1911
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1912
 *
1913
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1914 1915 1916 1917
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1918 1919
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1920 1921 1922 1923
			int cpu)
{
	struct task_struct *task = ctx->task;

1924 1925
	lockdep_assert_held(&ctx->mutex);

1926
	event->ctx = ctx;
1927 1928
	if (event->cpu != -1)
		event->cpu = cpu;
1929

T
Thomas Gleixner 已提交
1930 1931
	if (!task) {
		/*
1932
		 * Per cpu events are installed via an smp call and
1933
		 * the install is always successful.
T
Thomas Gleixner 已提交
1934
		 */
1935
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1936 1937 1938 1939
		return;
	}

retry:
1940 1941
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1942

1943
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1944
	/*
1945 1946
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1947
	 */
1948
	if (ctx->is_active) {
1949
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1950 1951 1952 1953
		goto retry;
	}

	/*
1954 1955
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1956
	 */
1957
	add_event_to_ctx(event, ctx);
1958
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1959 1960
}

1961
/*
1962
 * Put a event into inactive state and update time fields.
1963 1964 1965 1966 1967 1968
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1969
static void __perf_event_mark_enabled(struct perf_event *event)
1970
{
1971
	struct perf_event *sub;
1972
	u64 tstamp = perf_event_time(event);
1973

1974
	event->state = PERF_EVENT_STATE_INACTIVE;
1975
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1976
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1977 1978
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1979
	}
1980 1981
}

1982
/*
1983
 * Cross CPU call to enable a performance event
1984
 */
1985
static int __perf_event_enable(void *info)
1986
{
1987 1988 1989
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1990
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1991
	int err;
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2003
		return -EINVAL;
2004

2005
	raw_spin_lock(&ctx->lock);
2006
	update_context_time(ctx);
2007

2008
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2009
		goto unlock;
S
Stephane Eranian 已提交
2010 2011 2012 2013

	/*
	 * set current task's cgroup time reference point
	 */
2014
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2015

2016
	__perf_event_mark_enabled(event);
2017

S
Stephane Eranian 已提交
2018 2019 2020
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2021
		goto unlock;
S
Stephane Eranian 已提交
2022
	}
2023

2024
	/*
2025
	 * If the event is in a group and isn't the group leader,
2026
	 * then don't put it on unless the group is on.
2027
	 */
2028
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2029
		goto unlock;
2030

2031
	if (!group_can_go_on(event, cpuctx, 1)) {
2032
		err = -EEXIST;
2033
	} else {
2034
		if (event == leader)
2035
			err = group_sched_in(event, cpuctx, ctx);
2036
		else
2037
			err = event_sched_in(event, cpuctx, ctx);
2038
	}
2039 2040 2041

	if (err) {
		/*
2042
		 * If this event can't go on and it's part of a
2043 2044
		 * group, then the whole group has to come off.
		 */
2045
		if (leader != event) {
2046
			group_sched_out(leader, cpuctx, ctx);
2047 2048
			perf_cpu_hrtimer_restart(cpuctx);
		}
2049
		if (leader->attr.pinned) {
2050
			update_group_times(leader);
2051
			leader->state = PERF_EVENT_STATE_ERROR;
2052
		}
2053 2054
	}

P
Peter Zijlstra 已提交
2055
unlock:
2056
	raw_spin_unlock(&ctx->lock);
2057 2058

	return 0;
2059 2060 2061
}

/*
2062
 * Enable a event.
2063
 *
2064 2065
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2066
 * remains valid.  This condition is satisfied when called through
2067 2068
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2069
 */
2070
void perf_event_enable(struct perf_event *event)
2071
{
2072
	struct perf_event_context *ctx = event->ctx;
2073 2074 2075 2076
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2077
		 * Enable the event on the cpu that it's on
2078
		 */
2079
		cpu_function_call(event->cpu, __perf_event_enable, event);
2080 2081 2082
		return;
	}

2083
	raw_spin_lock_irq(&ctx->lock);
2084
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2085 2086 2087
		goto out;

	/*
2088 2089
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2090 2091 2092 2093
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2094 2095
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2096

P
Peter Zijlstra 已提交
2097
retry:
2098
	if (!ctx->is_active) {
2099
		__perf_event_mark_enabled(event);
2100 2101 2102
		goto out;
	}

2103
	raw_spin_unlock_irq(&ctx->lock);
2104 2105 2106

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2107

2108
	raw_spin_lock_irq(&ctx->lock);
2109 2110

	/*
2111
	 * If the context is active and the event is still off,
2112 2113
	 * we need to retry the cross-call.
	 */
2114 2115 2116 2117 2118 2119
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2120
		goto retry;
2121
	}
2122

P
Peter Zijlstra 已提交
2123
out:
2124
	raw_spin_unlock_irq(&ctx->lock);
2125
}
2126
EXPORT_SYMBOL_GPL(perf_event_enable);
2127

2128
int perf_event_refresh(struct perf_event *event, int refresh)
2129
{
2130
	/*
2131
	 * not supported on inherited events
2132
	 */
2133
	if (event->attr.inherit || !is_sampling_event(event))
2134 2135
		return -EINVAL;

2136 2137
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2138 2139

	return 0;
2140
}
2141
EXPORT_SYMBOL_GPL(perf_event_refresh);
2142

2143 2144 2145
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2146
{
2147
	struct perf_event *event;
2148
	int is_active = ctx->is_active;
2149

2150
	ctx->is_active &= ~event_type;
2151
	if (likely(!ctx->nr_events))
2152 2153
		return;

2154
	update_context_time(ctx);
S
Stephane Eranian 已提交
2155
	update_cgrp_time_from_cpuctx(cpuctx);
2156
	if (!ctx->nr_active)
2157
		return;
2158

P
Peter Zijlstra 已提交
2159
	perf_pmu_disable(ctx->pmu);
2160
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2161 2162
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2163
	}
2164

2165
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2166
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2167
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2168
	}
P
Peter Zijlstra 已提交
2169
	perf_pmu_enable(ctx->pmu);
2170 2171
}

2172
/*
2173 2174 2175 2176 2177 2178
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2179
 */
2180 2181
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2182
{
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2205 2206
}

2207 2208
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2209 2210 2211
{
	u64 value;

2212
	if (!event->attr.inherit_stat)
2213 2214 2215
		return;

	/*
2216
	 * Update the event value, we cannot use perf_event_read()
2217 2218
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2219
	 * we know the event must be on the current CPU, therefore we
2220 2221
	 * don't need to use it.
	 */
2222 2223
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2224 2225
		event->pmu->read(event);
		/* fall-through */
2226

2227 2228
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2229 2230 2231 2232 2233 2234 2235
		break;

	default:
		break;
	}

	/*
2236
	 * In order to keep per-task stats reliable we need to flip the event
2237 2238
	 * values when we flip the contexts.
	 */
2239 2240 2241
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2242

2243 2244
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2245

2246
	/*
2247
	 * Since we swizzled the values, update the user visible data too.
2248
	 */
2249 2250
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2251 2252
}

2253 2254
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2255
{
2256
	struct perf_event *event, *next_event;
2257 2258 2259 2260

	if (!ctx->nr_stat)
		return;

2261 2262
	update_context_time(ctx);

2263 2264
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2265

2266 2267
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2268

2269 2270
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2271

2272
		__perf_event_sync_stat(event, next_event);
2273

2274 2275
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2276 2277 2278
	}
}

2279 2280
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2281
{
P
Peter Zijlstra 已提交
2282
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2283
	struct perf_event_context *next_ctx;
2284
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2285
	struct perf_cpu_context *cpuctx;
2286
	int do_switch = 1;
T
Thomas Gleixner 已提交
2287

P
Peter Zijlstra 已提交
2288 2289
	if (likely(!ctx))
		return;
2290

P
Peter Zijlstra 已提交
2291 2292
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2293 2294
		return;

2295
	rcu_read_lock();
P
Peter Zijlstra 已提交
2296
	next_ctx = next->perf_event_ctxp[ctxn];
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2308 2309 2310 2311 2312 2313 2314 2315 2316
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2317 2318
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2319
		if (context_equiv(ctx, next_ctx)) {
2320 2321
			/*
			 * XXX do we need a memory barrier of sorts
2322
			 * wrt to rcu_dereference() of perf_event_ctxp
2323
			 */
P
Peter Zijlstra 已提交
2324 2325
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2326 2327 2328
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2329

2330
			perf_event_sync_stat(ctx, next_ctx);
2331
		}
2332 2333
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2334
	}
2335
unlock:
2336
	rcu_read_unlock();
2337

2338
	if (do_switch) {
2339
		raw_spin_lock(&ctx->lock);
2340
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2341
		cpuctx->task_ctx = NULL;
2342
		raw_spin_unlock(&ctx->lock);
2343
	}
T
Thomas Gleixner 已提交
2344 2345
}

P
Peter Zijlstra 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2360 2361
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2362 2363 2364 2365 2366
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2367 2368 2369 2370 2371 2372 2373

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2374
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2375 2376
}

2377
static void task_ctx_sched_out(struct perf_event_context *ctx)
2378
{
P
Peter Zijlstra 已提交
2379
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2380

2381 2382
	if (!cpuctx->task_ctx)
		return;
2383 2384 2385 2386

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2387
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2388 2389 2390
	cpuctx->task_ctx = NULL;
}

2391 2392 2393 2394 2395 2396 2397
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2398 2399
}

2400
static void
2401
ctx_pinned_sched_in(struct perf_event_context *ctx,
2402
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2403
{
2404
	struct perf_event *event;
T
Thomas Gleixner 已提交
2405

2406 2407
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2408
			continue;
2409
		if (!event_filter_match(event))
2410 2411
			continue;

S
Stephane Eranian 已提交
2412 2413 2414 2415
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2416
		if (group_can_go_on(event, cpuctx, 1))
2417
			group_sched_in(event, cpuctx, ctx);
2418 2419 2420 2421 2422

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2423 2424 2425
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2426
		}
2427
	}
2428 2429 2430 2431
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2432
		      struct perf_cpu_context *cpuctx)
2433 2434 2435
{
	struct perf_event *event;
	int can_add_hw = 1;
2436

2437 2438 2439
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2440
			continue;
2441 2442
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2443
		 * of events:
2444
		 */
2445
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2446 2447
			continue;

S
Stephane Eranian 已提交
2448 2449 2450 2451
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2452
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2453
			if (group_sched_in(event, cpuctx, ctx))
2454
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2455
		}
T
Thomas Gleixner 已提交
2456
	}
2457 2458 2459 2460 2461
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2462 2463
	     enum event_type_t event_type,
	     struct task_struct *task)
2464
{
S
Stephane Eranian 已提交
2465
	u64 now;
2466
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2467

2468
	ctx->is_active |= event_type;
2469
	if (likely(!ctx->nr_events))
2470
		return;
2471

S
Stephane Eranian 已提交
2472 2473
	now = perf_clock();
	ctx->timestamp = now;
2474
	perf_cgroup_set_timestamp(task, ctx);
2475 2476 2477 2478
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2479
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2480
		ctx_pinned_sched_in(ctx, cpuctx);
2481 2482

	/* Then walk through the lower prio flexible groups */
2483
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2484
		ctx_flexible_sched_in(ctx, cpuctx);
2485 2486
}

2487
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2488 2489
			     enum event_type_t event_type,
			     struct task_struct *task)
2490 2491 2492
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2493
	ctx_sched_in(ctx, cpuctx, event_type, task);
2494 2495
}

S
Stephane Eranian 已提交
2496 2497
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2498
{
P
Peter Zijlstra 已提交
2499
	struct perf_cpu_context *cpuctx;
2500

P
Peter Zijlstra 已提交
2501
	cpuctx = __get_cpu_context(ctx);
2502 2503 2504
	if (cpuctx->task_ctx == ctx)
		return;

2505
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2506
	perf_pmu_disable(ctx->pmu);
2507 2508 2509 2510 2511 2512 2513
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2514 2515
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2516

2517 2518
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2519 2520 2521
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2522 2523 2524 2525
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2526
	perf_pmu_rotate_start(ctx->pmu);
2527 2528
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2598 2599
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2609
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2610
	}
S
Stephane Eranian 已提交
2611 2612 2613 2614 2615 2616
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2617
		perf_cgroup_sched_in(prev, task);
2618 2619 2620 2621

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2622 2623
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2651
#define REDUCE_FLS(a, b)		\
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2691 2692 2693
	if (!divisor)
		return dividend;

2694 2695 2696
	return div64_u64(dividend, divisor);
}

2697 2698 2699
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2700
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2701
{
2702
	struct hw_perf_event *hwc = &event->hw;
2703
	s64 period, sample_period;
2704 2705
	s64 delta;

2706
	period = perf_calculate_period(event, nsec, count);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2717

2718
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2719 2720 2721
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2722
		local64_set(&hwc->period_left, 0);
2723 2724 2725

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2726
	}
2727 2728
}

2729 2730 2731 2732 2733 2734 2735
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2736
{
2737 2738
	struct perf_event *event;
	struct hw_perf_event *hwc;
2739
	u64 now, period = TICK_NSEC;
2740
	s64 delta;
2741

2742 2743 2744 2745 2746 2747
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2748 2749
		return;

2750
	raw_spin_lock(&ctx->lock);
2751
	perf_pmu_disable(ctx->pmu);
2752

2753
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2754
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2755 2756
			continue;

2757
		if (!event_filter_match(event))
2758 2759
			continue;

2760 2761
		perf_pmu_disable(event->pmu);

2762
		hwc = &event->hw;
2763

2764
		if (hwc->interrupts == MAX_INTERRUPTS) {
2765
			hwc->interrupts = 0;
2766
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2767
			event->pmu->start(event, 0);
2768 2769
		}

2770
		if (!event->attr.freq || !event->attr.sample_freq)
2771
			goto next;
2772

2773 2774 2775 2776 2777
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2778
		now = local64_read(&event->count);
2779 2780
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2781

2782 2783 2784
		/*
		 * restart the event
		 * reload only if value has changed
2785 2786 2787
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2788
		 */
2789
		if (delta > 0)
2790
			perf_adjust_period(event, period, delta, false);
2791 2792

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2793 2794
	next:
		perf_pmu_enable(event->pmu);
2795
	}
2796

2797
	perf_pmu_enable(ctx->pmu);
2798
	raw_spin_unlock(&ctx->lock);
2799 2800
}

2801
/*
2802
 * Round-robin a context's events:
2803
 */
2804
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2805
{
2806 2807 2808 2809 2810 2811
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2812 2813
}

2814
/*
2815 2816 2817
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2818
 */
2819
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2820
{
P
Peter Zijlstra 已提交
2821
	struct perf_event_context *ctx = NULL;
2822
	int rotate = 0, remove = 1;
2823

2824
	if (cpuctx->ctx.nr_events) {
2825
		remove = 0;
2826 2827 2828
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2829

P
Peter Zijlstra 已提交
2830
	ctx = cpuctx->task_ctx;
2831
	if (ctx && ctx->nr_events) {
2832
		remove = 0;
2833 2834 2835
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2836

2837
	if (!rotate)
2838 2839
		goto done;

2840
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2841
	perf_pmu_disable(cpuctx->ctx.pmu);
2842

2843 2844 2845
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2846

2847 2848 2849
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2850

2851
	perf_event_sched_in(cpuctx, ctx, current);
2852

2853 2854
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2855
done:
2856 2857
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2858 2859

	return rotate;
2860 2861
}

2862 2863 2864
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2865
	if (atomic_read(&nr_freq_events) ||
2866
	    __this_cpu_read(perf_throttled_count))
2867
		return false;
2868 2869
	else
		return true;
2870 2871 2872
}
#endif

2873 2874 2875 2876
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2877 2878
	struct perf_event_context *ctx;
	int throttled;
2879

2880 2881
	WARN_ON(!irqs_disabled());

2882 2883 2884
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2885
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2886 2887 2888 2889 2890 2891
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2892
	}
T
Thomas Gleixner 已提交
2893 2894
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2905
	__perf_event_mark_enabled(event);
2906 2907 2908 2909

	return 1;
}

2910
/*
2911
 * Enable all of a task's events that have been marked enable-on-exec.
2912 2913
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2914
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2915
{
2916
	struct perf_event *event;
2917 2918
	unsigned long flags;
	int enabled = 0;
2919
	int ret;
2920 2921

	local_irq_save(flags);
2922
	if (!ctx || !ctx->nr_events)
2923 2924
		goto out;

2925 2926 2927 2928 2929 2930 2931
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2932
	perf_cgroup_sched_out(current, NULL);
2933

2934
	raw_spin_lock(&ctx->lock);
2935
	task_ctx_sched_out(ctx);
2936

2937
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2938 2939 2940
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2941 2942 2943
	}

	/*
2944
	 * Unclone this context if we enabled any event.
2945
	 */
2946 2947
	if (enabled)
		unclone_ctx(ctx);
2948

2949
	raw_spin_unlock(&ctx->lock);
2950

2951 2952 2953
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2954
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2955
out:
2956 2957 2958
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2959
/*
2960
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2961
 */
2962
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2963
{
2964 2965
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2966
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2967

2968 2969 2970 2971
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2972 2973
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2974 2975 2976 2977
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2978
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2979
	if (ctx->is_active) {
2980
		update_context_time(ctx);
S
Stephane Eranian 已提交
2981 2982
		update_cgrp_time_from_event(event);
	}
2983
	update_event_times(event);
2984 2985
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2986
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2987 2988
}

P
Peter Zijlstra 已提交
2989 2990
static inline u64 perf_event_count(struct perf_event *event)
{
2991
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2992 2993
}

2994
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2995 2996
{
	/*
2997 2998
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2999
	 */
3000 3001 3002 3003
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3004 3005 3006
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3007
		raw_spin_lock_irqsave(&ctx->lock, flags);
3008 3009 3010 3011 3012
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3013
		if (ctx->is_active) {
3014
			update_context_time(ctx);
S
Stephane Eranian 已提交
3015 3016
			update_cgrp_time_from_event(event);
		}
3017
		update_event_times(event);
3018
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3019 3020
	}

P
Peter Zijlstra 已提交
3021
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3022 3023
}

3024
/*
3025
 * Initialize the perf_event context in a task_struct:
3026
 */
3027
static void __perf_event_init_context(struct perf_event_context *ctx)
3028
{
3029
	raw_spin_lock_init(&ctx->lock);
3030
	mutex_init(&ctx->mutex);
3031 3032
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3033 3034
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3050
	}
3051 3052 3053
	ctx->pmu = pmu;

	return ctx;
3054 3055
}

3056 3057 3058 3059 3060
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3061 3062

	rcu_read_lock();
3063
	if (!vpid)
T
Thomas Gleixner 已提交
3064 3065
		task = current;
	else
3066
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3067 3068 3069 3070 3071 3072 3073 3074
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3075 3076 3077 3078
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3079 3080 3081 3082 3083 3084 3085
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3086 3087 3088
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3089
static struct perf_event_context *
M
Matt Helsley 已提交
3090
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3091
{
3092
	struct perf_event_context *ctx;
3093
	struct perf_cpu_context *cpuctx;
3094
	unsigned long flags;
P
Peter Zijlstra 已提交
3095
	int ctxn, err;
T
Thomas Gleixner 已提交
3096

3097
	if (!task) {
3098
		/* Must be root to operate on a CPU event: */
3099
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3100 3101 3102
			return ERR_PTR(-EACCES);

		/*
3103
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3104 3105 3106
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3107
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3108 3109
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3110
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3111
		ctx = &cpuctx->ctx;
3112
		get_ctx(ctx);
3113
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3114 3115 3116 3117

		return ctx;
	}

P
Peter Zijlstra 已提交
3118 3119 3120 3121 3122
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3123
retry:
P
Peter Zijlstra 已提交
3124
	ctx = perf_lock_task_context(task, ctxn, &flags);
3125
	if (ctx) {
3126
		unclone_ctx(ctx);
3127
		++ctx->pin_count;
3128
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3129
	} else {
3130
		ctx = alloc_perf_context(pmu, task);
3131 3132 3133
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3134

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3145
		else {
3146
			get_ctx(ctx);
3147
			++ctx->pin_count;
3148
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3149
		}
3150 3151 3152
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3153
			put_ctx(ctx);
3154 3155 3156 3157

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3158 3159 3160
		}
	}

T
Thomas Gleixner 已提交
3161
	return ctx;
3162

P
Peter Zijlstra 已提交
3163
errout:
3164
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3165 3166
}

L
Li Zefan 已提交
3167 3168
static void perf_event_free_filter(struct perf_event *event);

3169
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3170
{
3171
	struct perf_event *event;
P
Peter Zijlstra 已提交
3172

3173 3174 3175
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3176
	perf_event_free_filter(event);
3177
	kfree(event);
P
Peter Zijlstra 已提交
3178 3179
}

3180
static void ring_buffer_put(struct ring_buffer *rb);
3181
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3182

3183
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3184
{
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3195

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3209 3210
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3211 3212 3213 3214 3215 3216 3217
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3218

3219 3220
static void __free_event(struct perf_event *event)
{
3221
	if (!event->parent) {
3222 3223
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3224
	}
3225

3226 3227 3228 3229 3230 3231 3232 3233
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3234
static void free_event(struct perf_event *event)
3235
{
3236
	irq_work_sync(&event->pending);
3237

3238
	unaccount_event(event);
3239

3240
	if (event->rb) {
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3257 3258
	}

S
Stephane Eranian 已提交
3259 3260 3261
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3262

3263
	__free_event(event);
3264 3265
}

3266
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3267
{
3268
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3269

3270
	WARN_ON_ONCE(ctx->parent_ctx);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3284
	raw_spin_lock_irq(&ctx->lock);
3285
	perf_group_detach(event);
3286
	raw_spin_unlock_irq(&ctx->lock);
3287
	perf_remove_from_context(event);
3288
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3289

3290
	free_event(event);
T
Thomas Gleixner 已提交
3291 3292 3293

	return 0;
}
3294
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3295

3296 3297 3298
/*
 * Called when the last reference to the file is gone.
 */
3299
static void put_event(struct perf_event *event)
3300
{
P
Peter Zijlstra 已提交
3301
	struct task_struct *owner;
3302

3303 3304
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3305

P
Peter Zijlstra 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3339 3340 3341 3342 3343 3344 3345
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3346 3347
}

3348
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3349
{
3350
	struct perf_event *child;
3351 3352
	u64 total = 0;

3353 3354 3355
	*enabled = 0;
	*running = 0;

3356
	mutex_lock(&event->child_mutex);
3357
	total += perf_event_read(event);
3358 3359 3360 3361 3362 3363
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3364
		total += perf_event_read(child);
3365 3366 3367
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3368
	mutex_unlock(&event->child_mutex);
3369 3370 3371

	return total;
}
3372
EXPORT_SYMBOL_GPL(perf_event_read_value);
3373

3374
static int perf_event_read_group(struct perf_event *event,
3375 3376
				   u64 read_format, char __user *buf)
{
3377
	struct perf_event *leader = event->group_leader, *sub;
3378 3379
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3380
	u64 values[5];
3381
	u64 count, enabled, running;
3382

3383
	mutex_lock(&ctx->mutex);
3384
	count = perf_event_read_value(leader, &enabled, &running);
3385 3386

	values[n++] = 1 + leader->nr_siblings;
3387 3388 3389 3390
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3391 3392 3393
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3394 3395 3396 3397

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3398
		goto unlock;
3399

3400
	ret = size;
3401

3402
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3403
		n = 0;
3404

3405
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3406 3407 3408 3409 3410
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3411
		if (copy_to_user(buf + ret, values, size)) {
3412 3413 3414
			ret = -EFAULT;
			goto unlock;
		}
3415 3416

		ret += size;
3417
	}
3418 3419
unlock:
	mutex_unlock(&ctx->mutex);
3420

3421
	return ret;
3422 3423
}

3424
static int perf_event_read_one(struct perf_event *event,
3425 3426
				 u64 read_format, char __user *buf)
{
3427
	u64 enabled, running;
3428 3429 3430
	u64 values[4];
	int n = 0;

3431 3432 3433 3434 3435
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3436
	if (read_format & PERF_FORMAT_ID)
3437
		values[n++] = primary_event_id(event);
3438 3439 3440 3441 3442 3443 3444

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3445
/*
3446
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3447 3448
 */
static ssize_t
3449
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3450
{
3451
	u64 read_format = event->attr.read_format;
3452
	int ret;
T
Thomas Gleixner 已提交
3453

3454
	/*
3455
	 * Return end-of-file for a read on a event that is in
3456 3457 3458
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3459
	if (event->state == PERF_EVENT_STATE_ERROR)
3460 3461
		return 0;

3462
	if (count < event->read_size)
3463 3464
		return -ENOSPC;

3465
	WARN_ON_ONCE(event->ctx->parent_ctx);
3466
	if (read_format & PERF_FORMAT_GROUP)
3467
		ret = perf_event_read_group(event, read_format, buf);
3468
	else
3469
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3470

3471
	return ret;
T
Thomas Gleixner 已提交
3472 3473 3474 3475 3476
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3477
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3478

3479
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3480 3481 3482 3483
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3484
	struct perf_event *event = file->private_data;
3485
	struct ring_buffer *rb;
3486
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3487

3488
	/*
3489 3490
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3491 3492
	 */
	mutex_lock(&event->mmap_mutex);
3493 3494
	rb = event->rb;
	if (rb)
3495
		events = atomic_xchg(&rb->poll, 0);
3496 3497
	mutex_unlock(&event->mmap_mutex);

3498
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3499 3500 3501 3502

	return events;
}

3503
static void perf_event_reset(struct perf_event *event)
3504
{
3505
	(void)perf_event_read(event);
3506
	local64_set(&event->count, 0);
3507
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3508 3509
}

3510
/*
3511 3512 3513 3514
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3515
 */
3516 3517
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3518
{
3519
	struct perf_event *child;
P
Peter Zijlstra 已提交
3520

3521 3522 3523 3524
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3525
		func(child);
3526
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3527 3528
}

3529 3530
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3531
{
3532 3533
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3534

3535 3536
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3537
	event = event->group_leader;
3538

3539 3540
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3541
		perf_event_for_each_child(sibling, func);
3542
	mutex_unlock(&ctx->mutex);
3543 3544
}

3545
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3546
{
3547
	struct perf_event_context *ctx = event->ctx;
3548
	int ret = 0, active;
3549 3550
	u64 value;

3551
	if (!is_sampling_event(event))
3552 3553
		return -EINVAL;

3554
	if (copy_from_user(&value, arg, sizeof(value)))
3555 3556 3557 3558 3559
		return -EFAULT;

	if (!value)
		return -EINVAL;

3560
	raw_spin_lock_irq(&ctx->lock);
3561 3562
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3563 3564 3565 3566
			ret = -EINVAL;
			goto unlock;
		}

3567
		event->attr.sample_freq = value;
3568
	} else {
3569 3570
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3571
	}
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3586
unlock:
3587
	raw_spin_unlock_irq(&ctx->lock);
3588 3589 3590 3591

	return ret;
}

3592 3593
static const struct file_operations perf_fops;

3594
static inline int perf_fget_light(int fd, struct fd *p)
3595
{
3596 3597 3598
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3599

3600 3601 3602
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3603
	}
3604 3605
	*p = f;
	return 0;
3606 3607 3608 3609
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3610
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3611

3612 3613
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3614 3615
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3616
	u32 flags = arg;
3617 3618

	switch (cmd) {
3619 3620
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3621
		break;
3622 3623
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3624
		break;
3625 3626
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3627
		break;
P
Peter Zijlstra 已提交
3628

3629 3630
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3631

3632 3633
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3634

3635 3636 3637 3638 3639 3640 3641 3642 3643
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3644
	case PERF_EVENT_IOC_SET_OUTPUT:
3645 3646 3647
	{
		int ret;
		if (arg != -1) {
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3658 3659 3660
		}
		return ret;
	}
3661

L
Li Zefan 已提交
3662 3663 3664
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3665
	default:
P
Peter Zijlstra 已提交
3666
		return -ENOTTY;
3667
	}
P
Peter Zijlstra 已提交
3668 3669

	if (flags & PERF_IOC_FLAG_GROUP)
3670
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3671
	else
3672
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3673 3674

	return 0;
3675 3676
}

3677
int perf_event_task_enable(void)
3678
{
3679
	struct perf_event *event;
3680

3681 3682 3683 3684
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3685 3686 3687 3688

	return 0;
}

3689
int perf_event_task_disable(void)
3690
{
3691
	struct perf_event *event;
3692

3693 3694 3695 3696
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3697 3698 3699 3700

	return 0;
}

3701
static int perf_event_index(struct perf_event *event)
3702
{
P
Peter Zijlstra 已提交
3703 3704 3705
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3706
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3707 3708
		return 0;

3709
	return event->pmu->event_idx(event);
3710 3711
}

3712
static void calc_timer_values(struct perf_event *event,
3713
				u64 *now,
3714 3715
				u64 *enabled,
				u64 *running)
3716
{
3717
	u64 ctx_time;
3718

3719 3720
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3721 3722 3723 3724
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3745
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3746 3747 3748
{
}

3749 3750 3751 3752 3753
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3754
void perf_event_update_userpage(struct perf_event *event)
3755
{
3756
	struct perf_event_mmap_page *userpg;
3757
	struct ring_buffer *rb;
3758
	u64 enabled, running, now;
3759 3760

	rcu_read_lock();
3761 3762 3763 3764
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3765 3766 3767 3768 3769 3770 3771 3772 3773
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3774
	calc_timer_values(event, &now, &enabled, &running);
3775

3776
	userpg = rb->user_page;
3777 3778 3779 3780 3781
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3782
	++userpg->lock;
3783
	barrier();
3784
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3785
	userpg->offset = perf_event_count(event);
3786
	if (userpg->index)
3787
		userpg->offset -= local64_read(&event->hw.prev_count);
3788

3789
	userpg->time_enabled = enabled +
3790
			atomic64_read(&event->child_total_time_enabled);
3791

3792
	userpg->time_running = running +
3793
			atomic64_read(&event->child_total_time_running);
3794

3795
	arch_perf_update_userpage(userpg, now);
3796

3797
	barrier();
3798
	++userpg->lock;
3799
	preempt_enable();
3800
unlock:
3801
	rcu_read_unlock();
3802 3803
}

3804 3805 3806
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3807
	struct ring_buffer *rb;
3808 3809 3810 3811 3812 3813 3814 3815 3816
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3817 3818
	rb = rcu_dereference(event->rb);
	if (!rb)
3819 3820 3821 3822 3823
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3824
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3839 3840 3841 3842 3843 3844 3845 3846 3847
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3848 3849
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3850 3851 3852
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3853
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3872 3873 3874 3875
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3876 3877 3878
	rcu_read_unlock();
}

3879
static void rb_free_rcu(struct rcu_head *rcu_head)
3880
{
3881
	struct ring_buffer *rb;
3882

3883 3884
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3885 3886
}

3887
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3888
{
3889
	struct ring_buffer *rb;
3890

3891
	rcu_read_lock();
3892 3893 3894 3895
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3896 3897 3898
	}
	rcu_read_unlock();

3899
	return rb;
3900 3901
}

3902
static void ring_buffer_put(struct ring_buffer *rb)
3903
{
3904
	if (!atomic_dec_and_test(&rb->refcount))
3905
		return;
3906

3907
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3908

3909
	call_rcu(&rb->rcu_head, rb_free_rcu);
3910 3911 3912 3913
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3914
	struct perf_event *event = vma->vm_file->private_data;
3915

3916
	atomic_inc(&event->mmap_count);
3917
	atomic_inc(&event->rb->mmap_count);
3918 3919
}

3920 3921 3922 3923 3924 3925 3926 3927
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3928 3929
static void perf_mmap_close(struct vm_area_struct *vma)
{
3930
	struct perf_event *event = vma->vm_file->private_data;
3931

3932 3933 3934 3935
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3969

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3985
		}
3986
		mutex_unlock(&event->mmap_mutex);
3987
		put_event(event);
3988

3989 3990 3991 3992 3993
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3994
	}
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
4011 4012
}

4013
static const struct vm_operations_struct perf_mmap_vmops = {
4014 4015 4016 4017
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4018 4019 4020 4021
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4022
	struct perf_event *event = file->private_data;
4023
	unsigned long user_locked, user_lock_limit;
4024
	struct user_struct *user = current_user();
4025
	unsigned long locked, lock_limit;
4026
	struct ring_buffer *rb;
4027 4028
	unsigned long vma_size;
	unsigned long nr_pages;
4029
	long user_extra, extra;
4030
	int ret = 0, flags = 0;
4031

4032 4033 4034
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4035
	 * same rb.
4036 4037 4038 4039
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4040
	if (!(vma->vm_flags & VM_SHARED))
4041
		return -EINVAL;
4042 4043 4044 4045

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4046
	/*
4047
	 * If we have rb pages ensure they're a power-of-two number, so we
4048 4049 4050
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4051 4052
		return -EINVAL;

4053
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4054 4055
		return -EINVAL;

4056 4057
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4058

4059
	WARN_ON_ONCE(event->ctx->parent_ctx);
4060
again:
4061
	mutex_lock(&event->mmap_mutex);
4062
	if (event->rb) {
4063
		if (event->rb->nr_pages != nr_pages) {
4064
			ret = -EINVAL;
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4078 4079 4080
		goto unlock;
	}

4081
	user_extra = nr_pages + 1;
4082
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4083 4084 4085 4086 4087 4088

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4089
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4090

4091 4092 4093
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4094

4095
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4096
	lock_limit >>= PAGE_SHIFT;
4097
	locked = vma->vm_mm->pinned_vm + extra;
4098

4099 4100
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4101 4102 4103
		ret = -EPERM;
		goto unlock;
	}
4104

4105
	WARN_ON(event->rb);
4106

4107
	if (vma->vm_flags & VM_WRITE)
4108
		flags |= RING_BUFFER_WRITABLE;
4109

4110 4111 4112 4113
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4114
	if (!rb) {
4115
		ret = -ENOMEM;
4116
		goto unlock;
4117
	}
P
Peter Zijlstra 已提交
4118

4119
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4120 4121
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4122

4123
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4124 4125
	vma->vm_mm->pinned_vm += extra;

4126
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4127
	rcu_assign_pointer(event->rb, rb);
4128

4129
	perf_event_init_userpage(event);
4130 4131
	perf_event_update_userpage(event);

4132
unlock:
4133 4134
	if (!ret)
		atomic_inc(&event->mmap_count);
4135
	mutex_unlock(&event->mmap_mutex);
4136

4137 4138 4139 4140
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4141
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4142
	vma->vm_ops = &perf_mmap_vmops;
4143 4144

	return ret;
4145 4146
}

P
Peter Zijlstra 已提交
4147 4148
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4149
	struct inode *inode = file_inode(filp);
4150
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4151 4152 4153
	int retval;

	mutex_lock(&inode->i_mutex);
4154
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4155 4156 4157 4158 4159 4160 4161 4162
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4163
static const struct file_operations perf_fops = {
4164
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4165 4166 4167
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4168 4169
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4170
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4171
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4172 4173
};

4174
/*
4175
 * Perf event wakeup
4176 4177 4178 4179 4180
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4181
void perf_event_wakeup(struct perf_event *event)
4182
{
4183
	ring_buffer_wakeup(event);
4184

4185 4186 4187
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4188
	}
4189 4190
}

4191
static void perf_pending_event(struct irq_work *entry)
4192
{
4193 4194
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4195

4196 4197 4198
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4199 4200
	}

4201 4202 4203
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4204 4205 4206
	}
}

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4354 4355 4356
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4372
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4384 4385 4386
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4411 4412 4413

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4414 4415
}

4416 4417 4418
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4419 4420 4421 4422 4423
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4424
static void perf_output_read_one(struct perf_output_handle *handle,
4425 4426
				 struct perf_event *event,
				 u64 enabled, u64 running)
4427
{
4428
	u64 read_format = event->attr.read_format;
4429 4430 4431
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4432
	values[n++] = perf_event_count(event);
4433
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4434
		values[n++] = enabled +
4435
			atomic64_read(&event->child_total_time_enabled);
4436 4437
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4438
		values[n++] = running +
4439
			atomic64_read(&event->child_total_time_running);
4440 4441
	}
	if (read_format & PERF_FORMAT_ID)
4442
		values[n++] = primary_event_id(event);
4443

4444
	__output_copy(handle, values, n * sizeof(u64));
4445 4446 4447
}

/*
4448
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4449 4450
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4451 4452
			    struct perf_event *event,
			    u64 enabled, u64 running)
4453
{
4454 4455
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4456 4457 4458 4459 4460 4461
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4462
		values[n++] = enabled;
4463 4464

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4465
		values[n++] = running;
4466

4467
	if (leader != event)
4468 4469
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4470
	values[n++] = perf_event_count(leader);
4471
	if (read_format & PERF_FORMAT_ID)
4472
		values[n++] = primary_event_id(leader);
4473

4474
	__output_copy(handle, values, n * sizeof(u64));
4475

4476
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4477 4478
		n = 0;

4479 4480
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4481 4482
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4483
		values[n++] = perf_event_count(sub);
4484
		if (read_format & PERF_FORMAT_ID)
4485
			values[n++] = primary_event_id(sub);
4486

4487
		__output_copy(handle, values, n * sizeof(u64));
4488 4489 4490
	}
}

4491 4492 4493
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4494
static void perf_output_read(struct perf_output_handle *handle,
4495
			     struct perf_event *event)
4496
{
4497
	u64 enabled = 0, running = 0, now;
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4509
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4510
		calc_timer_values(event, &now, &enabled, &running);
4511

4512
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4513
		perf_output_read_group(handle, event, enabled, running);
4514
	else
4515
		perf_output_read_one(handle, event, enabled, running);
4516 4517
}

4518 4519 4520
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4521
			struct perf_event *event)
4522 4523 4524 4525 4526
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4527 4528 4529
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4555
		perf_output_read(handle, event);
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4566
			__output_copy(handle, data->callchain, size);
4567 4568 4569 4570 4571 4572 4573 4574 4575
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4576 4577
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4589

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4624

4625
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4626 4627 4628
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4629
	}
A
Andi Kleen 已提交
4630 4631 4632

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4633 4634 4635

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4636

A
Andi Kleen 已提交
4637 4638 4639
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4653 4654 4655 4656
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4657
			 struct perf_event *event,
4658
			 struct pt_regs *regs)
4659
{
4660
	u64 sample_type = event->attr.sample_type;
4661

4662
	header->type = PERF_RECORD_SAMPLE;
4663
	header->size = sizeof(*header) + event->header_size;
4664 4665 4666

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4667

4668
	__perf_event_header__init_id(header, data, event);
4669

4670
	if (sample_type & PERF_SAMPLE_IP)
4671 4672
		data->ip = perf_instruction_pointer(regs);

4673
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4674
		int size = 1;
4675

4676
		data->callchain = perf_callchain(event, regs);
4677 4678 4679 4680 4681

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4682 4683
	}

4684
	if (sample_type & PERF_SAMPLE_RAW) {
4685 4686 4687 4688 4689 4690 4691 4692
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4693
		header->size += size;
4694
	}
4695 4696 4697 4698 4699 4700 4701 4702 4703

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4747
}
4748

4749
static void perf_event_output(struct perf_event *event,
4750 4751 4752 4753 4754
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4755

4756 4757 4758
	/* protect the callchain buffers */
	rcu_read_lock();

4759
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4760

4761
	if (perf_output_begin(&handle, event, header.size))
4762
		goto exit;
4763

4764
	perf_output_sample(&handle, &header, data, event);
4765

4766
	perf_output_end(&handle);
4767 4768 4769

exit:
	rcu_read_unlock();
4770 4771
}

4772
/*
4773
 * read event_id
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4784
perf_event_read_event(struct perf_event *event,
4785 4786 4787
			struct task_struct *task)
{
	struct perf_output_handle handle;
4788
	struct perf_sample_data sample;
4789
	struct perf_read_event read_event = {
4790
		.header = {
4791
			.type = PERF_RECORD_READ,
4792
			.misc = 0,
4793
			.size = sizeof(read_event) + event->read_size,
4794
		},
4795 4796
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4797
	};
4798
	int ret;
4799

4800
	perf_event_header__init_id(&read_event.header, &sample, event);
4801
	ret = perf_output_begin(&handle, event, read_event.header.size);
4802 4803 4804
	if (ret)
		return;

4805
	perf_output_put(&handle, read_event);
4806
	perf_output_read(&handle, event);
4807
	perf_event__output_id_sample(event, &handle, &sample);
4808

4809 4810 4811
	perf_output_end(&handle);
}

4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4826
		output(event, data);
4827 4828 4829 4830
	}
}

static void
4831
perf_event_aux(perf_event_aux_output_cb output, void *data,
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4844
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4845 4846 4847 4848 4849 4850 4851
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4852
			perf_event_aux_ctx(ctx, output, data);
4853 4854 4855 4856 4857 4858
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4859
		perf_event_aux_ctx(task_ctx, output, data);
4860 4861 4862 4863 4864
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4865
/*
P
Peter Zijlstra 已提交
4866 4867
 * task tracking -- fork/exit
 *
4868
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4869 4870
 */

P
Peter Zijlstra 已提交
4871
struct perf_task_event {
4872
	struct task_struct		*task;
4873
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4874 4875 4876 4877 4878 4879

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4880 4881
		u32				tid;
		u32				ptid;
4882
		u64				time;
4883
	} event_id;
P
Peter Zijlstra 已提交
4884 4885
};

4886 4887
static int perf_event_task_match(struct perf_event *event)
{
4888 4889 4890
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4891 4892
}

4893
static void perf_event_task_output(struct perf_event *event,
4894
				   void *data)
P
Peter Zijlstra 已提交
4895
{
4896
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4897
	struct perf_output_handle handle;
4898
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4899
	struct task_struct *task = task_event->task;
4900
	int ret, size = task_event->event_id.header.size;
4901

4902 4903 4904
	if (!perf_event_task_match(event))
		return;

4905
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4906

4907
	ret = perf_output_begin(&handle, event,
4908
				task_event->event_id.header.size);
4909
	if (ret)
4910
		goto out;
P
Peter Zijlstra 已提交
4911

4912 4913
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4914

4915 4916
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4917

4918
	perf_output_put(&handle, task_event->event_id);
4919

4920 4921
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4922
	perf_output_end(&handle);
4923 4924
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4925 4926
}

4927 4928
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4929
			      int new)
P
Peter Zijlstra 已提交
4930
{
P
Peter Zijlstra 已提交
4931
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4932

4933 4934 4935
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4936 4937
		return;

P
Peter Zijlstra 已提交
4938
	task_event = (struct perf_task_event){
4939 4940
		.task	  = task,
		.task_ctx = task_ctx,
4941
		.event_id    = {
P
Peter Zijlstra 已提交
4942
			.header = {
4943
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4944
				.misc = 0,
4945
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4946
			},
4947 4948
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4949 4950
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4951
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4952 4953 4954
		},
	};

4955
	perf_event_aux(perf_event_task_output,
4956 4957
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4958 4959
}

4960
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4961
{
4962
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4963 4964
}

4965 4966 4967 4968 4969
/*
 * comm tracking
 */

struct perf_comm_event {
4970 4971
	struct task_struct	*task;
	char			*comm;
4972 4973 4974 4975 4976 4977 4978
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4979
	} event_id;
4980 4981
};

4982 4983 4984 4985 4986
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4987
static void perf_event_comm_output(struct perf_event *event,
4988
				   void *data)
4989
{
4990
	struct perf_comm_event *comm_event = data;
4991
	struct perf_output_handle handle;
4992
	struct perf_sample_data sample;
4993
	int size = comm_event->event_id.header.size;
4994 4995
	int ret;

4996 4997 4998
	if (!perf_event_comm_match(event))
		return;

4999 5000
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5001
				comm_event->event_id.header.size);
5002 5003

	if (ret)
5004
		goto out;
5005

5006 5007
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5008

5009
	perf_output_put(&handle, comm_event->event_id);
5010
	__output_copy(&handle, comm_event->comm,
5011
				   comm_event->comm_size);
5012 5013 5014

	perf_event__output_id_sample(event, &handle, &sample);

5015
	perf_output_end(&handle);
5016 5017
out:
	comm_event->event_id.header.size = size;
5018 5019
}

5020
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5021
{
5022
	char comm[TASK_COMM_LEN];
5023 5024
	unsigned int size;

5025
	memset(comm, 0, sizeof(comm));
5026
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5027
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5028 5029 5030 5031

	comm_event->comm = comm;
	comm_event->comm_size = size;

5032
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5033

5034
	perf_event_aux(perf_event_comm_output,
5035 5036
		       comm_event,
		       NULL);
5037 5038
}

5039
void perf_event_comm(struct task_struct *task)
5040
{
5041
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5042 5043
	struct perf_event_context *ctx;
	int ctxn;
5044

5045
	rcu_read_lock();
P
Peter Zijlstra 已提交
5046 5047 5048 5049
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5050

P
Peter Zijlstra 已提交
5051 5052
		perf_event_enable_on_exec(ctx);
	}
5053
	rcu_read_unlock();
5054

5055
	if (!atomic_read(&nr_comm_events))
5056
		return;
5057

5058
	comm_event = (struct perf_comm_event){
5059
		.task	= task,
5060 5061
		/* .comm      */
		/* .comm_size */
5062
		.event_id  = {
5063
			.header = {
5064
				.type = PERF_RECORD_COMM,
5065 5066 5067 5068 5069
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5070 5071 5072
		},
	};

5073
	perf_event_comm_event(&comm_event);
5074 5075
}

5076 5077 5078 5079 5080
/*
 * mmap tracking
 */

struct perf_mmap_event {
5081 5082 5083 5084
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5085 5086 5087
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5088 5089 5090 5091 5092 5093 5094 5095 5096

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5097
	} event_id;
5098 5099
};

5100 5101 5102 5103 5104 5105 5106 5107
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5108
	       (executable && (event->attr.mmap || event->attr.mmap2));
5109 5110
}

5111
static void perf_event_mmap_output(struct perf_event *event,
5112
				   void *data)
5113
{
5114
	struct perf_mmap_event *mmap_event = data;
5115
	struct perf_output_handle handle;
5116
	struct perf_sample_data sample;
5117
	int size = mmap_event->event_id.header.size;
5118
	int ret;
5119

5120 5121 5122
	if (!perf_event_mmap_match(event, data))
		return;

5123 5124 5125 5126 5127
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5128
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5129 5130
	}

5131 5132
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5133
				mmap_event->event_id.header.size);
5134
	if (ret)
5135
		goto out;
5136

5137 5138
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5139

5140
	perf_output_put(&handle, mmap_event->event_id);
5141 5142 5143 5144 5145 5146 5147 5148

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5149
	__output_copy(&handle, mmap_event->file_name,
5150
				   mmap_event->file_size);
5151 5152 5153

	perf_event__output_id_sample(event, &handle, &sample);

5154
	perf_output_end(&handle);
5155 5156
out:
	mmap_event->event_id.header.size = size;
5157 5158
}

5159
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5160
{
5161 5162
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5163 5164
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5165 5166 5167
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5168
	char *name;
5169

5170
	if (file) {
5171 5172
		struct inode *inode;
		dev_t dev;
5173

5174
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5175
		if (!buf) {
5176 5177
			name = "//enomem";
			goto cpy_name;
5178
		}
5179
		/*
5180
		 * d_path() works from the end of the rb backwards, so we
5181 5182 5183
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5184
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5185
		if (IS_ERR(name)) {
5186 5187
			name = "//toolong";
			goto cpy_name;
5188
		}
5189 5190 5191 5192 5193 5194
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5195
		goto got_name;
5196
	} else {
5197
		name = (char *)arch_vma_name(vma);
5198 5199
		if (name)
			goto cpy_name;
5200

5201
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5202
				vma->vm_end >= vma->vm_mm->brk) {
5203 5204
			name = "[heap]";
			goto cpy_name;
5205 5206
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5207
				vma->vm_end >= vma->vm_mm->start_stack) {
5208 5209
			name = "[stack]";
			goto cpy_name;
5210 5211
		}

5212 5213
		name = "//anon";
		goto cpy_name;
5214 5215
	}

5216 5217 5218
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5219
got_name:
5220 5221 5222 5223 5224 5225 5226 5227
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5228 5229 5230

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5231 5232 5233 5234
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5235

5236 5237 5238
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5239
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5240

5241
	perf_event_aux(perf_event_mmap_output,
5242 5243
		       mmap_event,
		       NULL);
5244

5245 5246 5247
	kfree(buf);
}

5248
void perf_event_mmap(struct vm_area_struct *vma)
5249
{
5250 5251
	struct perf_mmap_event mmap_event;

5252
	if (!atomic_read(&nr_mmap_events))
5253 5254 5255
		return;

	mmap_event = (struct perf_mmap_event){
5256
		.vma	= vma,
5257 5258
		/* .file_name */
		/* .file_size */
5259
		.event_id  = {
5260
			.header = {
5261
				.type = PERF_RECORD_MMAP,
5262
				.misc = PERF_RECORD_MISC_USER,
5263 5264 5265 5266
				/* .size */
			},
			/* .pid */
			/* .tid */
5267 5268
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5269
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5270
		},
5271 5272 5273 5274
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5275 5276
	};

5277
	perf_event_mmap_event(&mmap_event);
5278 5279
}

5280 5281 5282 5283
/*
 * IRQ throttle logging
 */

5284
static void perf_log_throttle(struct perf_event *event, int enable)
5285 5286
{
	struct perf_output_handle handle;
5287
	struct perf_sample_data sample;
5288 5289 5290 5291 5292
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5293
		u64				id;
5294
		u64				stream_id;
5295 5296
	} throttle_event = {
		.header = {
5297
			.type = PERF_RECORD_THROTTLE,
5298 5299 5300
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5301
		.time		= perf_clock(),
5302 5303
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5304 5305
	};

5306
	if (enable)
5307
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5308

5309 5310 5311
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5312
				throttle_event.header.size);
5313 5314 5315 5316
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5317
	perf_event__output_id_sample(event, &handle, &sample);
5318 5319 5320
	perf_output_end(&handle);
}

5321
/*
5322
 * Generic event overflow handling, sampling.
5323 5324
 */

5325
static int __perf_event_overflow(struct perf_event *event,
5326 5327
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5328
{
5329 5330
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5331
	u64 seq;
5332 5333
	int ret = 0;

5334 5335 5336 5337 5338 5339 5340
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5341 5342 5343 5344 5345 5346 5347 5348 5349
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5350 5351
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5352
			tick_nohz_full_kick();
5353 5354
			ret = 1;
		}
5355
	}
5356

5357
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5358
		u64 now = perf_clock();
5359
		s64 delta = now - hwc->freq_time_stamp;
5360

5361
		hwc->freq_time_stamp = now;
5362

5363
		if (delta > 0 && delta < 2*TICK_NSEC)
5364
			perf_adjust_period(event, delta, hwc->last_period, true);
5365 5366
	}

5367 5368
	/*
	 * XXX event_limit might not quite work as expected on inherited
5369
	 * events
5370 5371
	 */

5372 5373
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5374
		ret = 1;
5375
		event->pending_kill = POLL_HUP;
5376 5377
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5378 5379
	}

5380
	if (event->overflow_handler)
5381
		event->overflow_handler(event, data, regs);
5382
	else
5383
		perf_event_output(event, data, regs);
5384

P
Peter Zijlstra 已提交
5385
	if (event->fasync && event->pending_kill) {
5386 5387
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5388 5389
	}

5390
	return ret;
5391 5392
}

5393
int perf_event_overflow(struct perf_event *event,
5394 5395
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5396
{
5397
	return __perf_event_overflow(event, 1, data, regs);
5398 5399
}

5400
/*
5401
 * Generic software event infrastructure
5402 5403
 */

5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5415
/*
5416 5417
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5418 5419 5420 5421
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5422
u64 perf_swevent_set_period(struct perf_event *event)
5423
{
5424
	struct hw_perf_event *hwc = &event->hw;
5425 5426 5427 5428 5429
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5430 5431

again:
5432
	old = val = local64_read(&hwc->period_left);
5433 5434
	if (val < 0)
		return 0;
5435

5436 5437 5438
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5439
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5440
		goto again;
5441

5442
	return nr;
5443 5444
}

5445
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5446
				    struct perf_sample_data *data,
5447
				    struct pt_regs *regs)
5448
{
5449
	struct hw_perf_event *hwc = &event->hw;
5450
	int throttle = 0;
5451

5452 5453
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5454

5455 5456
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5457

5458
	for (; overflow; overflow--) {
5459
		if (__perf_event_overflow(event, throttle,
5460
					    data, regs)) {
5461 5462 5463 5464 5465 5466
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5467
		throttle = 1;
5468
	}
5469 5470
}

P
Peter Zijlstra 已提交
5471
static void perf_swevent_event(struct perf_event *event, u64 nr,
5472
			       struct perf_sample_data *data,
5473
			       struct pt_regs *regs)
5474
{
5475
	struct hw_perf_event *hwc = &event->hw;
5476

5477
	local64_add(nr, &event->count);
5478

5479 5480 5481
	if (!regs)
		return;

5482
	if (!is_sampling_event(event))
5483
		return;
5484

5485 5486 5487 5488 5489 5490
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5491
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5492
		return perf_swevent_overflow(event, 1, data, regs);
5493

5494
	if (local64_add_negative(nr, &hwc->period_left))
5495
		return;
5496

5497
	perf_swevent_overflow(event, 0, data, regs);
5498 5499
}

5500 5501 5502
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5503
	if (event->hw.state & PERF_HES_STOPPED)
5504
		return 1;
P
Peter Zijlstra 已提交
5505

5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5517
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5518
				enum perf_type_id type,
L
Li Zefan 已提交
5519 5520 5521
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5522
{
5523
	if (event->attr.type != type)
5524
		return 0;
5525

5526
	if (event->attr.config != event_id)
5527 5528
		return 0;

5529 5530
	if (perf_exclude_event(event, regs))
		return 0;
5531 5532 5533 5534

	return 1;
}

5535 5536 5537 5538 5539 5540 5541
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5542 5543
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5544
{
5545 5546 5547 5548
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5549

5550 5551
/* For the read side: events when they trigger */
static inline struct hlist_head *
5552
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5553 5554
{
	struct swevent_hlist *hlist;
5555

5556
	hlist = rcu_dereference(swhash->swevent_hlist);
5557 5558 5559
	if (!hlist)
		return NULL;

5560 5561 5562 5563 5564
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5565
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5576
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5577 5578 5579 5580 5581
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5582 5583 5584
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5585
				    u64 nr,
5586 5587
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5588
{
5589
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5590
	struct perf_event *event;
5591
	struct hlist_head *head;
5592

5593
	rcu_read_lock();
5594
	head = find_swevent_head_rcu(swhash, type, event_id);
5595 5596 5597
	if (!head)
		goto end;

5598
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5599
		if (perf_swevent_match(event, type, event_id, data, regs))
5600
			perf_swevent_event(event, nr, data, regs);
5601
	}
5602 5603
end:
	rcu_read_unlock();
5604 5605
}

5606
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5607
{
5608
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5609

5610
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5611
}
I
Ingo Molnar 已提交
5612
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5613

5614
inline void perf_swevent_put_recursion_context(int rctx)
5615
{
5616
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5617

5618
	put_recursion_context(swhash->recursion, rctx);
5619
}
5620

5621
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5622
{
5623
	struct perf_sample_data data;
5624 5625
	int rctx;

5626
	preempt_disable_notrace();
5627 5628 5629
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5630

5631
	perf_sample_data_init(&data, addr, 0);
5632

5633
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5634 5635

	perf_swevent_put_recursion_context(rctx);
5636
	preempt_enable_notrace();
5637 5638
}

5639
static void perf_swevent_read(struct perf_event *event)
5640 5641 5642
{
}

P
Peter Zijlstra 已提交
5643
static int perf_swevent_add(struct perf_event *event, int flags)
5644
{
5645
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5646
	struct hw_perf_event *hwc = &event->hw;
5647 5648
	struct hlist_head *head;

5649
	if (is_sampling_event(event)) {
5650
		hwc->last_period = hwc->sample_period;
5651
		perf_swevent_set_period(event);
5652
	}
5653

P
Peter Zijlstra 已提交
5654 5655
	hwc->state = !(flags & PERF_EF_START);

5656
	head = find_swevent_head(swhash, event);
5657 5658 5659 5660 5661
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5662 5663 5664
	return 0;
}

P
Peter Zijlstra 已提交
5665
static void perf_swevent_del(struct perf_event *event, int flags)
5666
{
5667
	hlist_del_rcu(&event->hlist_entry);
5668 5669
}

P
Peter Zijlstra 已提交
5670
static void perf_swevent_start(struct perf_event *event, int flags)
5671
{
P
Peter Zijlstra 已提交
5672
	event->hw.state = 0;
5673
}
I
Ingo Molnar 已提交
5674

P
Peter Zijlstra 已提交
5675
static void perf_swevent_stop(struct perf_event *event, int flags)
5676
{
P
Peter Zijlstra 已提交
5677
	event->hw.state = PERF_HES_STOPPED;
5678 5679
}

5680 5681
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5682
swevent_hlist_deref(struct swevent_htable *swhash)
5683
{
5684 5685
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5686 5687
}

5688
static void swevent_hlist_release(struct swevent_htable *swhash)
5689
{
5690
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5691

5692
	if (!hlist)
5693 5694
		return;

5695
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5696
	kfree_rcu(hlist, rcu_head);
5697 5698 5699 5700
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5701
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5702

5703
	mutex_lock(&swhash->hlist_mutex);
5704

5705 5706
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5707

5708
	mutex_unlock(&swhash->hlist_mutex);
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5721
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5722 5723
	int err = 0;

5724
	mutex_lock(&swhash->hlist_mutex);
5725

5726
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5727 5728 5729 5730 5731 5732 5733
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5734
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5735
	}
5736
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5737
exit:
5738
	mutex_unlock(&swhash->hlist_mutex);
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5759
fail:
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5770
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5771

5772 5773 5774
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5775

5776 5777
	WARN_ON(event->parent);

5778
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5779 5780 5781 5782 5783
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5784
	u64 event_id = event->attr.config;
5785 5786 5787 5788

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5789 5790 5791 5792 5793 5794
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5795 5796 5797 5798 5799 5800 5801 5802 5803
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5804
	if (event_id >= PERF_COUNT_SW_MAX)
5805 5806 5807 5808 5809 5810 5811 5812 5813
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5814
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5815 5816 5817 5818 5819 5820
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5821 5822 5823 5824 5825
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5826
static struct pmu perf_swevent = {
5827
	.task_ctx_nr	= perf_sw_context,
5828

5829
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5830 5831 5832 5833
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5834
	.read		= perf_swevent_read,
5835 5836

	.event_idx	= perf_swevent_event_idx,
5837 5838
};

5839 5840
#ifdef CONFIG_EVENT_TRACING

5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5855 5856
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5857 5858 5859 5860
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5861 5862 5863 5864 5865 5866 5867 5868 5869
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5870 5871
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5872 5873
{
	struct perf_sample_data data;
5874 5875
	struct perf_event *event;

5876 5877 5878 5879 5880
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5881
	perf_sample_data_init(&data, addr, 0);
5882 5883
	data.raw = &raw;

5884
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5885
		if (perf_tp_event_match(event, &data, regs))
5886
			perf_swevent_event(event, count, &data, regs);
5887
	}
5888

5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5914
	perf_swevent_put_recursion_context(rctx);
5915 5916 5917
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5918
static void tp_perf_event_destroy(struct perf_event *event)
5919
{
5920
	perf_trace_destroy(event);
5921 5922
}

5923
static int perf_tp_event_init(struct perf_event *event)
5924
{
5925 5926
	int err;

5927 5928 5929
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5930 5931 5932 5933 5934 5935
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5936 5937
	err = perf_trace_init(event);
	if (err)
5938
		return err;
5939

5940
	event->destroy = tp_perf_event_destroy;
5941

5942 5943 5944 5945
	return 0;
}

static struct pmu perf_tracepoint = {
5946 5947
	.task_ctx_nr	= perf_sw_context,

5948
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5949 5950 5951 5952
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5953
	.read		= perf_swevent_read,
5954 5955

	.event_idx	= perf_swevent_event_idx,
5956 5957 5958 5959
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5960
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5961
}
L
Li Zefan 已提交
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5986
#else
L
Li Zefan 已提交
5987

5988
static inline void perf_tp_register(void)
5989 5990
{
}
L
Li Zefan 已提交
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6001
#endif /* CONFIG_EVENT_TRACING */
6002

6003
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6004
void perf_bp_event(struct perf_event *bp, void *data)
6005
{
6006 6007 6008
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6009
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6010

P
Peter Zijlstra 已提交
6011
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6012
		perf_swevent_event(bp, 1, &sample, regs);
6013 6014 6015
}
#endif

6016 6017 6018
/*
 * hrtimer based swevent callback
 */
6019

6020
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6021
{
6022 6023 6024 6025 6026
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6027

6028
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6029 6030 6031 6032

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6033
	event->pmu->read(event);
6034

6035
	perf_sample_data_init(&data, 0, event->hw.last_period);
6036 6037 6038
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6039
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6040
			if (__perf_event_overflow(event, 1, &data, regs))
6041 6042
				ret = HRTIMER_NORESTART;
	}
6043

6044 6045
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6046

6047
	return ret;
6048 6049
}

6050
static void perf_swevent_start_hrtimer(struct perf_event *event)
6051
{
6052
	struct hw_perf_event *hwc = &event->hw;
6053 6054 6055 6056
	s64 period;

	if (!is_sampling_event(event))
		return;
6057

6058 6059 6060 6061
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6062

6063 6064 6065 6066 6067
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6068
				ns_to_ktime(period), 0,
6069
				HRTIMER_MODE_REL_PINNED, 0);
6070
}
6071 6072

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6073
{
6074 6075
	struct hw_perf_event *hwc = &event->hw;

6076
	if (is_sampling_event(event)) {
6077
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6078
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6079 6080 6081

		hrtimer_cancel(&hwc->hrtimer);
	}
6082 6083
}

P
Peter Zijlstra 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6104
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6105 6106 6107 6108
		event->attr.freq = 0;
	}
}

6109 6110 6111 6112 6113
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6114
{
6115 6116 6117
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6118
	now = local_clock();
6119 6120
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6121 6122
}

P
Peter Zijlstra 已提交
6123
static void cpu_clock_event_start(struct perf_event *event, int flags)
6124
{
P
Peter Zijlstra 已提交
6125
	local64_set(&event->hw.prev_count, local_clock());
6126 6127 6128
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6129
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6130
{
6131 6132 6133
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6134

P
Peter Zijlstra 已提交
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6148 6149 6150 6151
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6152

6153 6154 6155 6156 6157 6158 6159 6160
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6161 6162 6163 6164 6165 6166
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6167 6168
	perf_swevent_init_hrtimer(event);

6169
	return 0;
6170 6171
}

6172
static struct pmu perf_cpu_clock = {
6173 6174
	.task_ctx_nr	= perf_sw_context,

6175
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6176 6177 6178 6179
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6180
	.read		= cpu_clock_event_read,
6181 6182

	.event_idx	= perf_swevent_event_idx,
6183 6184 6185 6186 6187 6188 6189
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6190
{
6191 6192
	u64 prev;
	s64 delta;
6193

6194 6195 6196 6197
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6198

P
Peter Zijlstra 已提交
6199
static void task_clock_event_start(struct perf_event *event, int flags)
6200
{
P
Peter Zijlstra 已提交
6201
	local64_set(&event->hw.prev_count, event->ctx->time);
6202 6203 6204
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6205
static void task_clock_event_stop(struct perf_event *event, int flags)
6206 6207 6208
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6209 6210 6211 6212 6213 6214
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6215

P
Peter Zijlstra 已提交
6216 6217 6218 6219 6220 6221
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6222 6223 6224 6225
}

static void task_clock_event_read(struct perf_event *event)
{
6226 6227 6228
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6229 6230 6231 6232 6233

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6234
{
6235 6236 6237 6238 6239 6240
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6241 6242 6243 6244 6245 6246
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6247 6248
	perf_swevent_init_hrtimer(event);

6249
	return 0;
L
Li Zefan 已提交
6250 6251
}

6252
static struct pmu perf_task_clock = {
6253 6254
	.task_ctx_nr	= perf_sw_context,

6255
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6256 6257 6258 6259
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6260
	.read		= task_clock_event_read,
6261 6262

	.event_idx	= perf_swevent_event_idx,
6263
};
L
Li Zefan 已提交
6264

P
Peter Zijlstra 已提交
6265
static void perf_pmu_nop_void(struct pmu *pmu)
6266 6267
{
}
L
Li Zefan 已提交
6268

P
Peter Zijlstra 已提交
6269
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6270
{
P
Peter Zijlstra 已提交
6271
	return 0;
L
Li Zefan 已提交
6272 6273
}

P
Peter Zijlstra 已提交
6274
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6275
{
P
Peter Zijlstra 已提交
6276
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6277 6278
}

P
Peter Zijlstra 已提交
6279 6280 6281 6282 6283
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6284

P
Peter Zijlstra 已提交
6285
static void perf_pmu_cancel_txn(struct pmu *pmu)
6286
{
P
Peter Zijlstra 已提交
6287
	perf_pmu_enable(pmu);
6288 6289
}

6290 6291 6292 6293 6294
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6295 6296 6297 6298
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6299
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6300
{
P
Peter Zijlstra 已提交
6301
	struct pmu *pmu;
6302

P
Peter Zijlstra 已提交
6303 6304
	if (ctxn < 0)
		return NULL;
6305

P
Peter Zijlstra 已提交
6306 6307 6308 6309
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6310

P
Peter Zijlstra 已提交
6311
	return NULL;
6312 6313
}

6314
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6315
{
6316 6317 6318 6319 6320 6321 6322
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6323 6324
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6325 6326 6327 6328 6329 6330
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6331

P
Peter Zijlstra 已提交
6332
	mutex_lock(&pmus_lock);
6333
	/*
P
Peter Zijlstra 已提交
6334
	 * Like a real lame refcount.
6335
	 */
6336 6337 6338
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6339
			goto out;
6340
		}
P
Peter Zijlstra 已提交
6341
	}
6342

6343
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6344 6345
out:
	mutex_unlock(&pmus_lock);
6346
}
P
Peter Zijlstra 已提交
6347
static struct idr pmu_idr;
6348

P
Peter Zijlstra 已提交
6349 6350 6351 6352 6353 6354 6355
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6356
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6357

6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6401
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6402

6403 6404 6405 6406
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6407
};
6408
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6409 6410 6411 6412

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6413
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6429
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6450
static struct lock_class_key cpuctx_mutex;
6451
static struct lock_class_key cpuctx_lock;
6452

6453
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6454
{
P
Peter Zijlstra 已提交
6455
	int cpu, ret;
6456

6457
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6458 6459 6460 6461
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6462

P
Peter Zijlstra 已提交
6463 6464 6465 6466 6467 6468
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6469 6470 6471
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6472 6473 6474 6475 6476
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6477 6478 6479 6480 6481 6482
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6483
skip_type:
P
Peter Zijlstra 已提交
6484 6485 6486
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6487

W
Wei Yongjun 已提交
6488
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6489 6490
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6491
		goto free_dev;
6492

P
Peter Zijlstra 已提交
6493 6494 6495 6496
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6497
		__perf_event_init_context(&cpuctx->ctx);
6498
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6499
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6500
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6501
		cpuctx->ctx.pmu = pmu;
6502 6503 6504

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6505
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6506
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6507
	}
6508

P
Peter Zijlstra 已提交
6509
got_cpu_context:
P
Peter Zijlstra 已提交
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6524
		}
6525
	}
6526

P
Peter Zijlstra 已提交
6527 6528 6529 6530 6531
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6532 6533 6534
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6535
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6536 6537
	ret = 0;
unlock:
6538 6539
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6540
	return ret;
P
Peter Zijlstra 已提交
6541

P
Peter Zijlstra 已提交
6542 6543 6544 6545
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6546 6547 6548 6549
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6550 6551 6552
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6553 6554
}

6555
void perf_pmu_unregister(struct pmu *pmu)
6556
{
6557 6558 6559
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6560

6561
	/*
P
Peter Zijlstra 已提交
6562 6563
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6564
	 */
6565
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6566
	synchronize_rcu();
6567

P
Peter Zijlstra 已提交
6568
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6569 6570
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6571 6572
	device_del(pmu->dev);
	put_device(pmu->dev);
6573
	free_pmu_context(pmu);
6574
}
6575

6576 6577 6578 6579
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6580
	int ret;
6581 6582

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6583 6584 6585 6586

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6587
	if (pmu) {
6588
		event->pmu = pmu;
6589 6590 6591
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6592
		goto unlock;
6593
	}
P
Peter Zijlstra 已提交
6594

6595
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6596
		event->pmu = pmu;
6597
		ret = pmu->event_init(event);
6598
		if (!ret)
P
Peter Zijlstra 已提交
6599
			goto unlock;
6600

6601 6602
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6603
			goto unlock;
6604
		}
6605
	}
P
Peter Zijlstra 已提交
6606 6607
	pmu = ERR_PTR(-ENOENT);
unlock:
6608
	srcu_read_unlock(&pmus_srcu, idx);
6609

6610
	return pmu;
6611 6612
}

6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6626 6627
static void account_event(struct perf_event *event)
{
6628 6629 6630
	if (event->parent)
		return;

6631 6632 6633 6634 6635 6636 6637 6638
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6639 6640 6641 6642
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6643
	if (has_branch_stack(event))
6644
		static_key_slow_inc(&perf_sched_events.key);
6645
	if (is_cgroup_event(event))
6646
		static_key_slow_inc(&perf_sched_events.key);
6647 6648

	account_event_cpu(event, event->cpu);
6649 6650
}

T
Thomas Gleixner 已提交
6651
/*
6652
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6653
 */
6654
static struct perf_event *
6655
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6656 6657 6658
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6659 6660
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6661
{
P
Peter Zijlstra 已提交
6662
	struct pmu *pmu;
6663 6664
	struct perf_event *event;
	struct hw_perf_event *hwc;
6665
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6666

6667 6668 6669 6670 6671
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6672
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6673
	if (!event)
6674
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6675

6676
	/*
6677
	 * Single events are their own group leaders, with an
6678 6679 6680
	 * empty sibling list:
	 */
	if (!group_leader)
6681
		group_leader = event;
6682

6683 6684
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6685

6686 6687 6688
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6689
	INIT_LIST_HEAD(&event->rb_entry);
6690
	INIT_LIST_HEAD(&event->active_entry);
6691 6692
	INIT_HLIST_NODE(&event->hlist_entry);

6693

6694
	init_waitqueue_head(&event->waitq);
6695
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6696

6697
	mutex_init(&event->mmap_mutex);
6698

6699
	atomic_long_set(&event->refcount, 1);
6700 6701 6702 6703 6704
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6705

6706
	event->parent		= parent_event;
6707

6708
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6709
	event->id		= atomic64_inc_return(&perf_event_id);
6710

6711
	event->state		= PERF_EVENT_STATE_INACTIVE;
6712

6713 6714
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6715 6716 6717

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6718 6719 6720 6721
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6722
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6723 6724 6725 6726
			event->hw.bp_target = task;
#endif
	}

6727
	if (!overflow_handler && parent_event) {
6728
		overflow_handler = parent_event->overflow_handler;
6729 6730
		context = parent_event->overflow_handler_context;
	}
6731

6732
	event->overflow_handler	= overflow_handler;
6733
	event->overflow_handler_context = context;
6734

J
Jiri Olsa 已提交
6735
	perf_event__state_init(event);
6736

6737
	pmu = NULL;
6738

6739
	hwc = &event->hw;
6740
	hwc->sample_period = attr->sample_period;
6741
	if (attr->freq && attr->sample_freq)
6742
		hwc->sample_period = 1;
6743
	hwc->last_period = hwc->sample_period;
6744

6745
	local64_set(&hwc->period_left, hwc->sample_period);
6746

6747
	/*
6748
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6749
	 */
6750
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6751
		goto err_ns;
6752

6753
	pmu = perf_init_event(event);
6754
	if (!pmu)
6755 6756
		goto err_ns;
	else if (IS_ERR(pmu)) {
6757
		err = PTR_ERR(pmu);
6758
		goto err_ns;
I
Ingo Molnar 已提交
6759
	}
6760

6761
	if (!event->parent) {
6762 6763
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6764 6765
			if (err)
				goto err_pmu;
6766
		}
6767
	}
6768

6769
	return event;
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6780 6781
}

6782 6783
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6784 6785
{
	u32 size;
6786
	int ret;
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6811 6812 6813
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6814 6815
	 */
	if (size > sizeof(*attr)) {
6816 6817 6818
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6819

6820 6821
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6822

6823
		for (; addr < end; addr++) {
6824 6825 6826 6827 6828 6829
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6830
		size = sizeof(*attr);
6831 6832 6833 6834 6835 6836
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6837 6838 6839 6840
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6841
	if (attr->__reserved_1)
6842 6843 6844 6845 6846 6847 6848 6849
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6878 6879
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6880 6881
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6882
	}
6883

6884
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6885
		ret = perf_reg_validate(attr->sample_regs_user);
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6904

6905 6906 6907 6908 6909 6910 6911 6912 6913
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6914 6915
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6916
{
6917
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6918 6919
	int ret = -EINVAL;

6920
	if (!output_event)
6921 6922
		goto set;

6923 6924
	/* don't allow circular references */
	if (event == output_event)
6925 6926
		goto out;

6927 6928 6929 6930 6931 6932 6933
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6934
	 * If its not a per-cpu rb, it must be the same task.
6935 6936 6937 6938
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6939
set:
6940
	mutex_lock(&event->mmap_mutex);
6941 6942 6943
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6944

6945 6946
	old_rb = event->rb;

6947
	if (output_event) {
6948 6949 6950
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6951
			goto unlock;
6952 6953
	}

6954 6955
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6972
	ret = 0;
6973 6974 6975
unlock:
	mutex_unlock(&event->mmap_mutex);

6976 6977 6978 6979
out:
	return ret;
}

T
Thomas Gleixner 已提交
6980
/**
6981
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6982
 *
6983
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6984
 * @pid:		target pid
I
Ingo Molnar 已提交
6985
 * @cpu:		target cpu
6986
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6987
 */
6988 6989
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6990
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6991
{
6992 6993
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6994 6995 6996
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6997
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6998
	struct task_struct *task = NULL;
6999
	struct pmu *pmu;
7000
	int event_fd;
7001
	int move_group = 0;
7002
	int err;
7003
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7004

7005
	/* for future expandability... */
S
Stephane Eranian 已提交
7006
	if (flags & ~PERF_FLAG_ALL)
7007 7008
		return -EINVAL;

7009 7010 7011
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7012

7013 7014 7015 7016 7017
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7018
	if (attr.freq) {
7019
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7020 7021 7022
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7023 7024 7025 7026 7027 7028 7029 7030 7031
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7032 7033 7034 7035
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7036 7037 7038
	if (event_fd < 0)
		return event_fd;

7039
	if (group_fd != -1) {
7040 7041
		err = perf_fget_light(group_fd, &group);
		if (err)
7042
			goto err_fd;
7043
		group_leader = group.file->private_data;
7044 7045 7046 7047 7048 7049
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7050
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7051 7052 7053 7054 7055 7056 7057
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7058 7059
	get_online_cpus();

7060 7061
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7062 7063
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7064
		goto err_task;
7065 7066
	}

S
Stephane Eranian 已提交
7067 7068
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7069 7070 7071 7072
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7073 7074
	}

7075 7076
	account_event(event);

7077 7078 7079 7080 7081
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7105 7106 7107 7108

	/*
	 * Get the target context (task or percpu):
	 */
7109
	ctx = find_get_context(pmu, task, event->cpu);
7110 7111
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7112
		goto err_alloc;
7113 7114
	}

7115 7116 7117 7118 7119
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7120
	/*
7121
	 * Look up the group leader (we will attach this event to it):
7122
	 */
7123
	if (group_leader) {
7124
		err = -EINVAL;
7125 7126

		/*
I
Ingo Molnar 已提交
7127 7128 7129 7130
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7131
			goto err_context;
I
Ingo Molnar 已提交
7132 7133 7134
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7135
		 */
7136 7137 7138 7139 7140 7141 7142 7143
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7144 7145 7146
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7147
		if (attr.exclusive || attr.pinned)
7148
			goto err_context;
7149 7150 7151 7152 7153
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7154
			goto err_context;
7155
	}
T
Thomas Gleixner 已提交
7156

7157 7158
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7159 7160
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7161
		goto err_context;
7162
	}
7163

7164 7165 7166 7167
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7168
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7169 7170 7171 7172 7173 7174 7175

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7176 7177
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7178
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7179
			perf_event__state_init(sibling);
7180 7181 7182 7183
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7184
	}
7185

7186
	WARN_ON_ONCE(ctx->parent_ctx);
7187
	mutex_lock(&ctx->mutex);
7188 7189

	if (move_group) {
7190
		synchronize_rcu();
7191
		perf_install_in_context(ctx, group_leader, event->cpu);
7192 7193 7194
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7195
			perf_install_in_context(ctx, sibling, event->cpu);
7196 7197 7198 7199
			get_ctx(ctx);
		}
	}

7200
	perf_install_in_context(ctx, event, event->cpu);
7201
	perf_unpin_context(ctx);
7202
	mutex_unlock(&ctx->mutex);
7203

7204 7205
	put_online_cpus();

7206
	event->owner = current;
P
Peter Zijlstra 已提交
7207

7208 7209 7210
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7211

7212 7213 7214 7215
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7216
	perf_event__id_header_size(event);
7217

7218 7219 7220 7221 7222 7223
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7224
	fdput(group);
7225 7226
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7227

7228
err_context:
7229
	perf_unpin_context(ctx);
7230
	put_ctx(ctx);
7231
err_alloc:
7232
	free_event(event);
P
Peter Zijlstra 已提交
7233
err_task:
7234
	put_online_cpus();
P
Peter Zijlstra 已提交
7235 7236
	if (task)
		put_task_struct(task);
7237
err_group_fd:
7238
	fdput(group);
7239 7240
err_fd:
	put_unused_fd(event_fd);
7241
	return err;
T
Thomas Gleixner 已提交
7242 7243
}

7244 7245 7246 7247 7248
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7249
 * @task: task to profile (NULL for percpu)
7250 7251 7252
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7253
				 struct task_struct *task,
7254 7255
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7256 7257
{
	struct perf_event_context *ctx;
7258
	struct perf_event *event;
7259
	int err;
7260

7261 7262 7263
	/*
	 * Get the target context (task or percpu):
	 */
7264

7265 7266
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7267 7268 7269 7270
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7271

7272 7273
	account_event(event);

M
Matt Helsley 已提交
7274
	ctx = find_get_context(event->pmu, task, cpu);
7275 7276
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7277
		goto err_free;
7278
	}
7279 7280 7281 7282

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7283
	perf_unpin_context(ctx);
7284 7285 7286 7287
	mutex_unlock(&ctx->mutex);

	return event;

7288 7289 7290
err_free:
	free_event(event);
err:
7291
	return ERR_PTR(err);
7292
}
7293
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7294

7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7309
		unaccount_event_cpu(event, src_cpu);
7310
		put_ctx(src_ctx);
7311
		list_add(&event->migrate_entry, &events);
7312 7313 7314 7315 7316 7317
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7318 7319
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7320 7321
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7322
		account_event_cpu(event, dst_cpu);
7323 7324 7325 7326 7327 7328 7329
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7330
static void sync_child_event(struct perf_event *child_event,
7331
			       struct task_struct *child)
7332
{
7333
	struct perf_event *parent_event = child_event->parent;
7334
	u64 child_val;
7335

7336 7337
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7338

P
Peter Zijlstra 已提交
7339
	child_val = perf_event_count(child_event);
7340 7341 7342 7343

	/*
	 * Add back the child's count to the parent's count:
	 */
7344
	atomic64_add(child_val, &parent_event->child_count);
7345 7346 7347 7348
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7349 7350

	/*
7351
	 * Remove this event from the parent's list
7352
	 */
7353 7354 7355 7356
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7357 7358

	/*
7359
	 * Release the parent event, if this was the last
7360 7361
	 * reference to it.
	 */
7362
	put_event(parent_event);
7363 7364
}

7365
static void
7366 7367
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7368
			 struct task_struct *child)
7369
{
7370 7371 7372 7373 7374
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7375

7376
	perf_remove_from_context(child_event);
7377

7378
	/*
7379
	 * It can happen that the parent exits first, and has events
7380
	 * that are still around due to the child reference. These
7381
	 * events need to be zapped.
7382
	 */
7383
	if (child_event->parent) {
7384 7385
		sync_child_event(child_event, child);
		free_event(child_event);
7386
	}
7387 7388
}

P
Peter Zijlstra 已提交
7389
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7390
{
7391 7392
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7393
	unsigned long flags;
7394

P
Peter Zijlstra 已提交
7395
	if (likely(!child->perf_event_ctxp[ctxn])) {
7396
		perf_event_task(child, NULL, 0);
7397
		return;
P
Peter Zijlstra 已提交
7398
	}
7399

7400
	local_irq_save(flags);
7401 7402 7403 7404 7405 7406
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7407
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7408 7409 7410

	/*
	 * Take the context lock here so that if find_get_context is
7411
	 * reading child->perf_event_ctxp, we wait until it has
7412 7413
	 * incremented the context's refcount before we do put_ctx below.
	 */
7414
	raw_spin_lock(&child_ctx->lock);
7415
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7416
	child->perf_event_ctxp[ctxn] = NULL;
7417 7418 7419
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7420
	 * the events from it.
7421 7422
	 */
	unclone_ctx(child_ctx);
7423
	update_context_time(child_ctx);
7424
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7425 7426

	/*
7427 7428 7429
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7430
	 */
7431
	perf_event_task(child, child_ctx, 0);
7432

7433 7434 7435
	/*
	 * We can recurse on the same lock type through:
	 *
7436 7437
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7438 7439
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7440 7441 7442
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7443
	mutex_lock(&child_ctx->mutex);
7444

7445
again:
7446 7447 7448 7449 7450
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7451
				 group_entry)
7452
		__perf_event_exit_task(child_event, child_ctx, child);
7453 7454

	/*
7455
	 * If the last event was a group event, it will have appended all
7456 7457 7458
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7459 7460
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7461
		goto again;
7462 7463 7464 7465

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7466 7467
}

P
Peter Zijlstra 已提交
7468 7469 7470 7471 7472
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7473
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7474 7475
	int ctxn;

P
Peter Zijlstra 已提交
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7491 7492 7493 7494
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7507
	put_event(parent);
7508

7509
	perf_group_detach(event);
7510 7511 7512 7513
	list_del_event(event, ctx);
	free_event(event);
}

7514 7515
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7516
 * perf_event_init_task below, used by fork() in case of fail.
7517
 */
7518
void perf_event_free_task(struct task_struct *task)
7519
{
P
Peter Zijlstra 已提交
7520
	struct perf_event_context *ctx;
7521
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7522
	int ctxn;
7523

P
Peter Zijlstra 已提交
7524 7525 7526 7527
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7528

P
Peter Zijlstra 已提交
7529
		mutex_lock(&ctx->mutex);
7530
again:
P
Peter Zijlstra 已提交
7531 7532 7533
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7534

P
Peter Zijlstra 已提交
7535 7536 7537
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7538

P
Peter Zijlstra 已提交
7539 7540 7541
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7542

P
Peter Zijlstra 已提交
7543
		mutex_unlock(&ctx->mutex);
7544

P
Peter Zijlstra 已提交
7545 7546
		put_ctx(ctx);
	}
7547 7548
}

7549 7550 7551 7552 7553 7554 7555 7556
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7569
	unsigned long flags;
P
Peter Zijlstra 已提交
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7582
					   child,
P
Peter Zijlstra 已提交
7583
					   group_leader, parent_event,
7584
				           NULL, NULL);
P
Peter Zijlstra 已提交
7585 7586
	if (IS_ERR(child_event))
		return child_event;
7587 7588 7589 7590 7591 7592

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7617 7618
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7619

7620 7621 7622 7623
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7624
	perf_event__id_header_size(child_event);
7625

P
Peter Zijlstra 已提交
7626 7627 7628
	/*
	 * Link it up in the child's context:
	 */
7629
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7630
	add_event_to_ctx(child_event, child_ctx);
7631
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7665 7666 7667 7668 7669
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7670
		   struct task_struct *child, int ctxn,
7671 7672 7673
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7674
	struct perf_event_context *child_ctx;
7675 7676 7677 7678

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7679 7680
	}

7681
	child_ctx = child->perf_event_ctxp[ctxn];
7682 7683 7684 7685 7686 7687 7688
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7689

7690
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7691 7692
		if (!child_ctx)
			return -ENOMEM;
7693

P
Peter Zijlstra 已提交
7694
		child->perf_event_ctxp[ctxn] = child_ctx;
7695 7696 7697 7698 7699 7700 7701 7702 7703
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7704 7705
}

7706
/*
7707
 * Initialize the perf_event context in task_struct
7708
 */
P
Peter Zijlstra 已提交
7709
int perf_event_init_context(struct task_struct *child, int ctxn)
7710
{
7711
	struct perf_event_context *child_ctx, *parent_ctx;
7712 7713
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7714
	struct task_struct *parent = current;
7715
	int inherited_all = 1;
7716
	unsigned long flags;
7717
	int ret = 0;
7718

P
Peter Zijlstra 已提交
7719
	if (likely(!parent->perf_event_ctxp[ctxn]))
7720 7721
		return 0;

7722
	/*
7723 7724
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7725
	 */
P
Peter Zijlstra 已提交
7726
	parent_ctx = perf_pin_task_context(parent, ctxn);
7727

7728 7729 7730 7731 7732 7733 7734
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7735 7736 7737 7738
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7739
	mutex_lock(&parent_ctx->mutex);
7740 7741 7742 7743 7744

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7745
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7746 7747
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7748 7749 7750
		if (ret)
			break;
	}
7751

7752 7753 7754 7755 7756 7757 7758 7759 7760
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7761
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7762 7763
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7764
		if (ret)
7765
			break;
7766 7767
	}

7768 7769 7770
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7771
	child_ctx = child->perf_event_ctxp[ctxn];
7772

7773
	if (child_ctx && inherited_all) {
7774 7775 7776
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7777 7778 7779
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7780
		 */
P
Peter Zijlstra 已提交
7781
		cloned_ctx = parent_ctx->parent_ctx;
7782 7783
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7784
			child_ctx->parent_gen = parent_ctx->parent_gen;
7785 7786 7787 7788 7789
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7790 7791
	}

P
Peter Zijlstra 已提交
7792
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7793
	mutex_unlock(&parent_ctx->mutex);
7794

7795
	perf_unpin_context(parent_ctx);
7796
	put_ctx(parent_ctx);
7797

7798
	return ret;
7799 7800
}

P
Peter Zijlstra 已提交
7801 7802 7803 7804 7805 7806 7807
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7808 7809 7810 7811
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7812 7813 7814 7815 7816 7817 7818 7819 7820
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7821 7822
static void __init perf_event_init_all_cpus(void)
{
7823
	struct swevent_htable *swhash;
7824 7825 7826
	int cpu;

	for_each_possible_cpu(cpu) {
7827 7828
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7829
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7830 7831 7832
	}
}

7833
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7834
{
P
Peter Zijlstra 已提交
7835
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7836

7837
	mutex_lock(&swhash->hlist_mutex);
7838
	if (swhash->hlist_refcount > 0) {
7839 7840
		struct swevent_hlist *hlist;

7841 7842 7843
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7844
	}
7845
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7846 7847
}

P
Peter Zijlstra 已提交
7848
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7849
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7850
{
7851 7852 7853 7854 7855 7856 7857
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7858
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7859
{
P
Peter Zijlstra 已提交
7860
	struct perf_event_context *ctx = __info;
P
Peter Zijlstra 已提交
7861
	struct perf_event *event;
T
Thomas Gleixner 已提交
7862

P
Peter Zijlstra 已提交
7863
	perf_pmu_rotate_stop(ctx->pmu);
7864

P
Peter Zijlstra 已提交
7865 7866
	rcu_read_lock();
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry)
7867
		__perf_remove_from_context(event);
P
Peter Zijlstra 已提交
7868
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7869
}
P
Peter Zijlstra 已提交
7870 7871 7872 7873 7874 7875 7876 7877 7878

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7879
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7880 7881 7882 7883 7884 7885 7886 7887

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7888
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7889
{
7890
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7891

P
Peter Zijlstra 已提交
7892 7893
	perf_event_exit_cpu_context(cpu);

7894 7895 7896
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7897 7898
}
#else
7899
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7900 7901
#endif

P
Peter Zijlstra 已提交
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7922
static int
T
Thomas Gleixner 已提交
7923 7924 7925 7926
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7927
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7928 7929

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7930
	case CPU_DOWN_FAILED:
7931
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7932 7933
		break;

P
Peter Zijlstra 已提交
7934
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7935
	case CPU_DOWN_PREPARE:
7936
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7937 7938 7939 7940 7941 7942 7943 7944
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7945
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7946
{
7947 7948
	int ret;

P
Peter Zijlstra 已提交
7949 7950
	idr_init(&pmu_idr);

7951
	perf_event_init_all_cpus();
7952
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7953 7954 7955
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7956 7957
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7958
	register_reboot_notifier(&perf_reboot_notifier);
7959 7960 7961

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7962 7963 7964

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7965 7966 7967 7968 7969 7970 7971

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7972
}
P
Peter Zijlstra 已提交
7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8001 8002

#ifdef CONFIG_CGROUP_PERF
8003 8004
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8005 8006 8007
{
	struct perf_cgroup *jc;

8008
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8021
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8022
{
8023 8024
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8036 8037
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8038
{
8039 8040
	struct task_struct *task;

8041
	cgroup_taskset_for_each(task, tset)
8042
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8043 8044
}

8045 8046
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8047
			     struct task_struct *task)
S
Stephane Eranian 已提交
8048 8049 8050 8051 8052 8053 8054 8055 8056
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8057
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8058 8059
}

8060
struct cgroup_subsys perf_event_cgrp_subsys = {
8061 8062
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8063
	.exit		= perf_cgroup_exit,
8064
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8065 8066
};
#endif /* CONFIG_CGROUP_PERF */