core.c 185.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148
static atomic_t nr_freq_events __read_mostly;
149

P
Peter Zijlstra 已提交
150 151 152 153
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

154
/*
155
 * perf event paranoia level:
156 157
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
158
 *   1 - disallow cpu events for unpriv
159
 *   2 - disallow kernel profiling for unpriv
160
 */
161
int sysctl_perf_event_paranoid __read_mostly = 1;
162

163 164
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 166

/*
167
 * max perf event sample rate
168
 */
169 170 171 172 173 174 175 176 177
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
178 179
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
180 181 182 183 184 185

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
186
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
187
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
188
}
P
Peter Zijlstra 已提交
189

190 191
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
192 193 194 195
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
196
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
197 198 199 200 201

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
220 221 222

	return 0;
}
223

224 225 226 227 228 229 230
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
231
static DEFINE_PER_CPU(u64, running_sample_length);
232 233 234 235

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
236
	u64 local_samples_len;
P
Peter Zijlstra 已提交
237
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238

P
Peter Zijlstra 已提交
239
	if (allowed_ns == 0)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
255
	if (avg_local_sample_len <= allowed_ns)
256 257 258 259 260 261 262 263 264 265
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
P
Peter Zijlstra 已提交
266
			"perf samples too long (%lld > %lld), lowering "
267
			"kernel.perf_event_max_sample_rate to %d\n",
P
Peter Zijlstra 已提交
268
			avg_local_sample_len, allowed_ns,
269 270 271 272 273
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

274
static atomic64_t perf_event_id;
275

276 277 278 279
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
280 281 282 283 284
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
285

286
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
287

288
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
289
{
290
	return "pmu";
T
Thomas Gleixner 已提交
291 292
}

293 294 295 296 297
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
298 299 300 301 302 303
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
320 321
#ifdef CONFIG_CGROUP_PERF

322 323 324 325 326 327 328 329 330 331 332
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
333
	struct perf_cgroup_info	__percpu *info;
334 335
};

336 337 338 339 340
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
341 342 343
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
344 345
	return container_of(task_css(task, perf_subsys_id),
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
346 347 348 349 350 351 352 353
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
370 371
}

372
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
373
{
374
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
423 424
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
425
	/*
426 427
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
428
	 */
429
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
430 431
		return;

432 433 434 435 436 437
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
438 439 440
}

static inline void
441 442
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
443 444 445 446
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

447 448 449 450 451 452
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
453 454 455 456
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
457
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 491
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
492 493 494 495 496 497 498 499 500

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
501 502
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
503 504 505 506 507 508 509 510 511 512 513

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
514
				WARN_ON_ONCE(cpuctx->cgrp);
515 516 517 518
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
519 520 521 522
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
523 524
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

533 534
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
535
{
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
558 559
}

560 561
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
562
{
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
581 582 583 584 585 586 587 588
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
589 590
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
591

592
	if (!f.file)
S
Stephane Eranian 已提交
593 594
		return -EBADF;

595 596
	rcu_read_lock();

597
	css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 599 600 601
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
602 603 604 605

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

606
	/* must be done before we fput() the file */
607 608 609 610 611
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
612

S
Stephane Eranian 已提交
613 614 615 616 617 618 619 620 621
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
622
out:
623
	rcu_read_unlock();
624
	fdput(f);
S
Stephane Eranian 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

698 699
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
700 701 702
{
}

703 704
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
705 706 707 708 709 710 711 712 713 714 715
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
716 717
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
811
	int timer;
812 813 814 815 816

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

817 818 819 820 821 822 823 824 825
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
848
void perf_pmu_disable(struct pmu *pmu)
849
{
P
Peter Zijlstra 已提交
850 851 852
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
853 854
}

P
Peter Zijlstra 已提交
855
void perf_pmu_enable(struct pmu *pmu)
856
{
P
Peter Zijlstra 已提交
857 858 859
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
860 861
}

862 863 864 865 866 867 868
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
869
static void perf_pmu_rotate_start(struct pmu *pmu)
870
{
P
Peter Zijlstra 已提交
871
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872
	struct list_head *head = &__get_cpu_var(rotation_list);
873

874
	WARN_ON(!irqs_disabled());
875

876
	if (list_empty(&cpuctx->rotation_list))
877
		list_add(&cpuctx->rotation_list, head);
878 879
}

880
static void get_ctx(struct perf_event_context *ctx)
881
{
882
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 884
}

885
static void put_ctx(struct perf_event_context *ctx)
886
{
887 888 889
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
890 891
		if (ctx->task)
			put_task_struct(ctx->task);
892
		kfree_rcu(ctx, rcu_head);
893
	}
894 895
}

896
static void unclone_ctx(struct perf_event_context *ctx)
897 898 899 900 901
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
902
	ctx->generation++;
903 904
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

927
/*
928
 * If we inherit events we want to return the parent event id
929 930
 * to userspace.
 */
931
static u64 primary_event_id(struct perf_event *event)
932
{
933
	u64 id = event->id;
934

935 936
	if (event->parent)
		id = event->parent->id;
937 938 939 940

	return id;
}

941
/*
942
 * Get the perf_event_context for a task and lock it.
943 944 945
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
946
static struct perf_event_context *
P
Peter Zijlstra 已提交
947
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
948
{
949
	struct perf_event_context *ctx;
950

P
Peter Zijlstra 已提交
951
retry:
952 953 954 955 956 957 958 959 960 961 962
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
963
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
964 965 966 967
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
968
		 * perf_event_task_sched_out, though the
969 970 971 972 973 974
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
975
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
976
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
977
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
978 979
			rcu_read_unlock();
			preempt_enable();
980 981
			goto retry;
		}
982 983

		if (!atomic_inc_not_zero(&ctx->refcount)) {
984
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
985 986
			ctx = NULL;
		}
987 988
	}
	rcu_read_unlock();
989
	preempt_enable();
990 991 992 993 994 995 996 997
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
998 999
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1000
{
1001
	struct perf_event_context *ctx;
1002 1003
	unsigned long flags;

P
Peter Zijlstra 已提交
1004
	ctx = perf_lock_task_context(task, ctxn, &flags);
1005 1006
	if (ctx) {
		++ctx->pin_count;
1007
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1008 1009 1010 1011
	}
	return ctx;
}

1012
static void perf_unpin_context(struct perf_event_context *ctx)
1013 1014 1015
{
	unsigned long flags;

1016
	raw_spin_lock_irqsave(&ctx->lock, flags);
1017
	--ctx->pin_count;
1018
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1019 1020
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1032 1033 1034
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1035 1036 1037 1038

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1039 1040 1041
	return ctx ? ctx->time : 0;
}

1042 1043
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1044
 * The caller of this function needs to hold the ctx->lock.
1045 1046 1047 1048 1049 1050 1051 1052 1053
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1065
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1066 1067
	else if (ctx->is_active)
		run_end = ctx->time;
1068 1069 1070 1071
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1072 1073 1074 1075

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1076
		run_end = perf_event_time(event);
1077 1078

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1079

1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1103
/*
1104
 * Add a event from the lists for its context.
1105 1106
 * Must be called with ctx->mutex and ctx->lock held.
 */
1107
static void
1108
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1109
{
1110 1111
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1112 1113

	/*
1114 1115 1116
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1117
	 */
1118
	if (event->group_leader == event) {
1119 1120
		struct list_head *list;

1121 1122 1123
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1124 1125
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1126
	}
P
Peter Zijlstra 已提交
1127

1128
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1129 1130
		ctx->nr_cgroups++;

1131 1132 1133
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1134
	list_add_rcu(&event->event_entry, &ctx->event_list);
1135
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1136
		perf_pmu_rotate_start(ctx->pmu);
1137 1138
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1139
		ctx->nr_stat++;
1140 1141

	ctx->generation++;
1142 1143
}

J
Jiri Olsa 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1192 1193 1194 1195 1196 1197
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1198 1199 1200
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1201 1202 1203
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1204 1205 1206
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1207 1208 1209
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1210 1211 1212 1213 1214 1215 1216 1217 1218
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1219 1220 1221 1222 1223 1224
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1225 1226 1227
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1228 1229 1230 1231 1232 1233 1234 1235 1236
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1237
	event->id_header_size = size;
1238 1239
}

1240 1241
static void perf_group_attach(struct perf_event *event)
{
1242
	struct perf_event *group_leader = event->group_leader, *pos;
1243

P
Peter Zijlstra 已提交
1244 1245 1246 1247 1248 1249
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1261 1262 1263 1264 1265

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1266 1267
}

1268
/*
1269
 * Remove a event from the lists for its context.
1270
 * Must be called with ctx->mutex and ctx->lock held.
1271
 */
1272
static void
1273
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1274
{
1275
	struct perf_cpu_context *cpuctx;
1276 1277 1278 1279
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1280
		return;
1281 1282 1283

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1284
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1285
		ctx->nr_cgroups--;
1286 1287 1288 1289 1290 1291 1292 1293 1294
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1295

1296 1297 1298
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1299 1300
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1301
		ctx->nr_stat--;
1302

1303
	list_del_rcu(&event->event_entry);
1304

1305 1306
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1307

1308
	update_group_times(event);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1319 1320

	ctx->generation++;
1321 1322
}

1323
static void perf_group_detach(struct perf_event *event)
1324 1325
{
	struct perf_event *sibling, *tmp;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1342
		goto out;
1343 1344 1345 1346
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1347

1348
	/*
1349 1350
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1351
	 * to whatever list we are on.
1352
	 */
1353
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1354 1355
		if (list)
			list_move_tail(&sibling->group_entry, list);
1356
		sibling->group_leader = sibling;
1357 1358 1359

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1360
	}
1361 1362 1363 1364 1365 1366

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1367 1368
}

1369 1370 1371
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1372 1373
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1374 1375
}

1376 1377
static void
event_sched_out(struct perf_event *event,
1378
		  struct perf_cpu_context *cpuctx,
1379
		  struct perf_event_context *ctx)
1380
{
1381
	u64 tstamp = perf_event_time(event);
1382 1383 1384 1385 1386 1387 1388 1389 1390
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1391
		delta = tstamp - event->tstamp_stopped;
1392
		event->tstamp_running += delta;
1393
		event->tstamp_stopped = tstamp;
1394 1395
	}

1396
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1397
		return;
1398

1399 1400 1401 1402
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1403
	}
1404
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1405
	event->pmu->del(event, 0);
1406
	event->oncpu = -1;
1407

1408
	if (!is_software_event(event))
1409 1410
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1411 1412
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1413
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1414 1415 1416
		cpuctx->exclusive = 0;
}

1417
static void
1418
group_sched_out(struct perf_event *group_event,
1419
		struct perf_cpu_context *cpuctx,
1420
		struct perf_event_context *ctx)
1421
{
1422
	struct perf_event *event;
1423
	int state = group_event->state;
1424

1425
	event_sched_out(group_event, cpuctx, ctx);
1426 1427 1428 1429

	/*
	 * Schedule out siblings (if any):
	 */
1430 1431
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1432

1433
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1434 1435 1436
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1437
/*
1438
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1439
 *
1440
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1441 1442
 * remove it from the context list.
 */
1443
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1444
{
1445 1446
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1447
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1448

1449
	raw_spin_lock(&ctx->lock);
1450 1451
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1452 1453 1454 1455
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1456
	raw_spin_unlock(&ctx->lock);
1457 1458

	return 0;
T
Thomas Gleixner 已提交
1459 1460 1461 1462
}


/*
1463
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1464
 *
1465
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1466
 * call when the task is on a CPU.
1467
 *
1468 1469
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1470 1471
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1472
 * When called from perf_event_exit_task, it's OK because the
1473
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1474
 */
1475
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1476
{
1477
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1478 1479
	struct task_struct *task = ctx->task;

1480 1481
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1482 1483
	if (!task) {
		/*
1484
		 * Per cpu events are removed via an smp call and
1485
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1486
		 */
1487
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1488 1489 1490 1491
		return;
	}

retry:
1492 1493
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1494

1495
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1496
	/*
1497 1498
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1499
	 */
1500
	if (ctx->is_active) {
1501
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1502 1503 1504 1505
		goto retry;
	}

	/*
1506 1507
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1508
	 */
1509
	list_del_event(event, ctx);
1510
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1511 1512
}

1513
/*
1514
 * Cross CPU call to disable a performance event
1515
 */
1516
int __perf_event_disable(void *info)
1517
{
1518 1519
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1520
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1521 1522

	/*
1523 1524
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1525 1526 1527
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1528
	 */
1529
	if (ctx->task && cpuctx->task_ctx != ctx)
1530
		return -EINVAL;
1531

1532
	raw_spin_lock(&ctx->lock);
1533 1534

	/*
1535
	 * If the event is on, turn it off.
1536 1537
	 * If it is in error state, leave it in error state.
	 */
1538
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1539
		update_context_time(ctx);
S
Stephane Eranian 已提交
1540
		update_cgrp_time_from_event(event);
1541 1542 1543
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1544
		else
1545 1546
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1547 1548
	}

1549
	raw_spin_unlock(&ctx->lock);
1550 1551

	return 0;
1552 1553 1554
}

/*
1555
 * Disable a event.
1556
 *
1557 1558
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1559
 * remains valid.  This condition is satisifed when called through
1560 1561 1562 1563
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1564
 * is the current context on this CPU and preemption is disabled,
1565
 * hence we can't get into perf_event_task_sched_out for this context.
1566
 */
1567
void perf_event_disable(struct perf_event *event)
1568
{
1569
	struct perf_event_context *ctx = event->ctx;
1570 1571 1572 1573
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1574
		 * Disable the event on the cpu that it's on
1575
		 */
1576
		cpu_function_call(event->cpu, __perf_event_disable, event);
1577 1578 1579
		return;
	}

P
Peter Zijlstra 已提交
1580
retry:
1581 1582
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1583

1584
	raw_spin_lock_irq(&ctx->lock);
1585
	/*
1586
	 * If the event is still active, we need to retry the cross-call.
1587
	 */
1588
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1589
		raw_spin_unlock_irq(&ctx->lock);
1590 1591 1592 1593 1594
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1595 1596 1597 1598 1599 1600 1601
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1602 1603 1604
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1605
	}
1606
	raw_spin_unlock_irq(&ctx->lock);
1607
}
1608
EXPORT_SYMBOL_GPL(perf_event_disable);
1609

S
Stephane Eranian 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1645 1646 1647 1648
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1649
static int
1650
event_sched_in(struct perf_event *event,
1651
		 struct perf_cpu_context *cpuctx,
1652
		 struct perf_event_context *ctx)
1653
{
1654 1655
	u64 tstamp = perf_event_time(event);

1656
	if (event->state <= PERF_EVENT_STATE_OFF)
1657 1658
		return 0;

1659
	event->state = PERF_EVENT_STATE_ACTIVE;
1660
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1672 1673 1674 1675 1676
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1677
	if (event->pmu->add(event, PERF_EF_START)) {
1678 1679
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1680 1681 1682
		return -EAGAIN;
	}

1683
	event->tstamp_running += tstamp - event->tstamp_stopped;
1684

S
Stephane Eranian 已提交
1685
	perf_set_shadow_time(event, ctx, tstamp);
1686

1687
	if (!is_software_event(event))
1688
		cpuctx->active_oncpu++;
1689
	ctx->nr_active++;
1690 1691
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1692

1693
	if (event->attr.exclusive)
1694 1695
		cpuctx->exclusive = 1;

1696 1697 1698
	return 0;
}

1699
static int
1700
group_sched_in(struct perf_event *group_event,
1701
	       struct perf_cpu_context *cpuctx,
1702
	       struct perf_event_context *ctx)
1703
{
1704
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1705
	struct pmu *pmu = group_event->pmu;
1706 1707
	u64 now = ctx->time;
	bool simulate = false;
1708

1709
	if (group_event->state == PERF_EVENT_STATE_OFF)
1710 1711
		return 0;

P
Peter Zijlstra 已提交
1712
	pmu->start_txn(pmu);
1713

1714
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1715
		pmu->cancel_txn(pmu);
1716
		perf_cpu_hrtimer_restart(cpuctx);
1717
		return -EAGAIN;
1718
	}
1719 1720 1721 1722

	/*
	 * Schedule in siblings as one group (if any):
	 */
1723
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1724
		if (event_sched_in(event, cpuctx, ctx)) {
1725
			partial_group = event;
1726 1727 1728 1729
			goto group_error;
		}
	}

1730
	if (!pmu->commit_txn(pmu))
1731
		return 0;
1732

1733 1734 1735 1736
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1747
	 */
1748 1749
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1750 1751 1752 1753 1754 1755 1756 1757
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1758
	}
1759
	event_sched_out(group_event, cpuctx, ctx);
1760

P
Peter Zijlstra 已提交
1761
	pmu->cancel_txn(pmu);
1762

1763 1764
	perf_cpu_hrtimer_restart(cpuctx);

1765 1766 1767
	return -EAGAIN;
}

1768
/*
1769
 * Work out whether we can put this event group on the CPU now.
1770
 */
1771
static int group_can_go_on(struct perf_event *event,
1772 1773 1774 1775
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1776
	 * Groups consisting entirely of software events can always go on.
1777
	 */
1778
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1779 1780 1781
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1782
	 * events can go on.
1783 1784 1785 1786 1787
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1788
	 * events on the CPU, it can't go on.
1789
	 */
1790
	if (event->attr.exclusive && cpuctx->active_oncpu)
1791 1792 1793 1794 1795 1796 1797 1798
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1799 1800
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1801
{
1802 1803
	u64 tstamp = perf_event_time(event);

1804
	list_add_event(event, ctx);
1805
	perf_group_attach(event);
1806 1807 1808
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1809 1810
}

1811 1812 1813 1814 1815 1816
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1830
/*
1831
 * Cross CPU call to install and enable a performance event
1832 1833
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1834
 */
1835
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1836
{
1837 1838
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1839
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1840 1841 1842
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1843
	perf_ctx_lock(cpuctx, task_ctx);
1844
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1845 1846

	/*
1847
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1848
	 */
1849
	if (task_ctx)
1850
		task_ctx_sched_out(task_ctx);
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1865 1866
		task = task_ctx->task;
	}
1867

1868
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1869

1870
	update_context_time(ctx);
S
Stephane Eranian 已提交
1871 1872 1873 1874 1875 1876
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1877

1878
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1879

1880
	/*
1881
	 * Schedule everything back in
1882
	 */
1883
	perf_event_sched_in(cpuctx, task_ctx, task);
1884 1885 1886

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1887 1888

	return 0;
T
Thomas Gleixner 已提交
1889 1890 1891
}

/*
1892
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1893
 *
1894 1895
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1896
 *
1897
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1898 1899 1900 1901
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1902 1903
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1904 1905 1906 1907
			int cpu)
{
	struct task_struct *task = ctx->task;

1908 1909
	lockdep_assert_held(&ctx->mutex);

1910
	event->ctx = ctx;
1911 1912
	if (event->cpu != -1)
		event->cpu = cpu;
1913

T
Thomas Gleixner 已提交
1914 1915
	if (!task) {
		/*
1916
		 * Per cpu events are installed via an smp call and
1917
		 * the install is always successful.
T
Thomas Gleixner 已提交
1918
		 */
1919
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1920 1921 1922 1923
		return;
	}

retry:
1924 1925
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1926

1927
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1928
	/*
1929 1930
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1931
	 */
1932
	if (ctx->is_active) {
1933
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1934 1935 1936 1937
		goto retry;
	}

	/*
1938 1939
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1940
	 */
1941
	add_event_to_ctx(event, ctx);
1942
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1943 1944
}

1945
/*
1946
 * Put a event into inactive state and update time fields.
1947 1948 1949 1950 1951 1952
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1953
static void __perf_event_mark_enabled(struct perf_event *event)
1954
{
1955
	struct perf_event *sub;
1956
	u64 tstamp = perf_event_time(event);
1957

1958
	event->state = PERF_EVENT_STATE_INACTIVE;
1959
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1960
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1961 1962
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1963
	}
1964 1965
}

1966
/*
1967
 * Cross CPU call to enable a performance event
1968
 */
1969
static int __perf_event_enable(void *info)
1970
{
1971 1972 1973
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1974
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1975
	int err;
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1987
		return -EINVAL;
1988

1989
	raw_spin_lock(&ctx->lock);
1990
	update_context_time(ctx);
1991

1992
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1993
		goto unlock;
S
Stephane Eranian 已提交
1994 1995 1996 1997

	/*
	 * set current task's cgroup time reference point
	 */
1998
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1999

2000
	__perf_event_mark_enabled(event);
2001

S
Stephane Eranian 已提交
2002 2003 2004
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2005
		goto unlock;
S
Stephane Eranian 已提交
2006
	}
2007

2008
	/*
2009
	 * If the event is in a group and isn't the group leader,
2010
	 * then don't put it on unless the group is on.
2011
	 */
2012
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2013
		goto unlock;
2014

2015
	if (!group_can_go_on(event, cpuctx, 1)) {
2016
		err = -EEXIST;
2017
	} else {
2018
		if (event == leader)
2019
			err = group_sched_in(event, cpuctx, ctx);
2020
		else
2021
			err = event_sched_in(event, cpuctx, ctx);
2022
	}
2023 2024 2025

	if (err) {
		/*
2026
		 * If this event can't go on and it's part of a
2027 2028
		 * group, then the whole group has to come off.
		 */
2029
		if (leader != event) {
2030
			group_sched_out(leader, cpuctx, ctx);
2031 2032
			perf_cpu_hrtimer_restart(cpuctx);
		}
2033
		if (leader->attr.pinned) {
2034
			update_group_times(leader);
2035
			leader->state = PERF_EVENT_STATE_ERROR;
2036
		}
2037 2038
	}

P
Peter Zijlstra 已提交
2039
unlock:
2040
	raw_spin_unlock(&ctx->lock);
2041 2042

	return 0;
2043 2044 2045
}

/*
2046
 * Enable a event.
2047
 *
2048 2049
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2050
 * remains valid.  This condition is satisfied when called through
2051 2052
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2053
 */
2054
void perf_event_enable(struct perf_event *event)
2055
{
2056
	struct perf_event_context *ctx = event->ctx;
2057 2058 2059 2060
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2061
		 * Enable the event on the cpu that it's on
2062
		 */
2063
		cpu_function_call(event->cpu, __perf_event_enable, event);
2064 2065 2066
		return;
	}

2067
	raw_spin_lock_irq(&ctx->lock);
2068
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2069 2070 2071
		goto out;

	/*
2072 2073
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2074 2075 2076 2077
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2078 2079
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2080

P
Peter Zijlstra 已提交
2081
retry:
2082
	if (!ctx->is_active) {
2083
		__perf_event_mark_enabled(event);
2084 2085 2086
		goto out;
	}

2087
	raw_spin_unlock_irq(&ctx->lock);
2088 2089 2090

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2091

2092
	raw_spin_lock_irq(&ctx->lock);
2093 2094

	/*
2095
	 * If the context is active and the event is still off,
2096 2097
	 * we need to retry the cross-call.
	 */
2098 2099 2100 2101 2102 2103
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2104
		goto retry;
2105
	}
2106

P
Peter Zijlstra 已提交
2107
out:
2108
	raw_spin_unlock_irq(&ctx->lock);
2109
}
2110
EXPORT_SYMBOL_GPL(perf_event_enable);
2111

2112
int perf_event_refresh(struct perf_event *event, int refresh)
2113
{
2114
	/*
2115
	 * not supported on inherited events
2116
	 */
2117
	if (event->attr.inherit || !is_sampling_event(event))
2118 2119
		return -EINVAL;

2120 2121
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2122 2123

	return 0;
2124
}
2125
EXPORT_SYMBOL_GPL(perf_event_refresh);
2126

2127 2128 2129
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2130
{
2131
	struct perf_event *event;
2132
	int is_active = ctx->is_active;
2133

2134
	ctx->is_active &= ~event_type;
2135
	if (likely(!ctx->nr_events))
2136 2137
		return;

2138
	update_context_time(ctx);
S
Stephane Eranian 已提交
2139
	update_cgrp_time_from_cpuctx(cpuctx);
2140
	if (!ctx->nr_active)
2141
		return;
2142

P
Peter Zijlstra 已提交
2143
	perf_pmu_disable(ctx->pmu);
2144
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2145 2146
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2147
	}
2148

2149
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2150
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2151
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2152
	}
P
Peter Zijlstra 已提交
2153
	perf_pmu_enable(ctx->pmu);
2154 2155
}

2156
/*
2157 2158 2159 2160 2161 2162
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2163
 */
2164 2165
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2166
{
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2189 2190
}

2191 2192
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2193 2194 2195
{
	u64 value;

2196
	if (!event->attr.inherit_stat)
2197 2198 2199
		return;

	/*
2200
	 * Update the event value, we cannot use perf_event_read()
2201 2202
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2203
	 * we know the event must be on the current CPU, therefore we
2204 2205
	 * don't need to use it.
	 */
2206 2207
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2208 2209
		event->pmu->read(event);
		/* fall-through */
2210

2211 2212
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2213 2214 2215 2216 2217 2218 2219
		break;

	default:
		break;
	}

	/*
2220
	 * In order to keep per-task stats reliable we need to flip the event
2221 2222
	 * values when we flip the contexts.
	 */
2223 2224 2225
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2226

2227 2228
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2229

2230
	/*
2231
	 * Since we swizzled the values, update the user visible data too.
2232
	 */
2233 2234
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2235 2236
}

2237 2238
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2239
{
2240
	struct perf_event *event, *next_event;
2241 2242 2243 2244

	if (!ctx->nr_stat)
		return;

2245 2246
	update_context_time(ctx);

2247 2248
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2249

2250 2251
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2252

2253 2254
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2255

2256
		__perf_event_sync_stat(event, next_event);
2257

2258 2259
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2260 2261 2262
	}
}

2263 2264
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2265
{
P
Peter Zijlstra 已提交
2266
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2267
	struct perf_event_context *next_ctx;
2268
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2269
	struct perf_cpu_context *cpuctx;
2270
	int do_switch = 1;
T
Thomas Gleixner 已提交
2271

P
Peter Zijlstra 已提交
2272 2273
	if (likely(!ctx))
		return;
2274

P
Peter Zijlstra 已提交
2275 2276
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2277 2278
		return;

2279
	rcu_read_lock();
P
Peter Zijlstra 已提交
2280
	next_ctx = next->perf_event_ctxp[ctxn];
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2292 2293 2294 2295 2296 2297 2298 2299 2300
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2301 2302
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2303
		if (context_equiv(ctx, next_ctx)) {
2304 2305
			/*
			 * XXX do we need a memory barrier of sorts
2306
			 * wrt to rcu_dereference() of perf_event_ctxp
2307
			 */
P
Peter Zijlstra 已提交
2308 2309
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2310 2311 2312
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2313

2314
			perf_event_sync_stat(ctx, next_ctx);
2315
		}
2316 2317
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2318
	}
2319
unlock:
2320
	rcu_read_unlock();
2321

2322
	if (do_switch) {
2323
		raw_spin_lock(&ctx->lock);
2324
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2325
		cpuctx->task_ctx = NULL;
2326
		raw_spin_unlock(&ctx->lock);
2327
	}
T
Thomas Gleixner 已提交
2328 2329
}

P
Peter Zijlstra 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2344 2345
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2346 2347 2348 2349 2350
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2351 2352 2353 2354 2355 2356 2357

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2358
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2359 2360
}

2361
static void task_ctx_sched_out(struct perf_event_context *ctx)
2362
{
P
Peter Zijlstra 已提交
2363
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364

2365 2366
	if (!cpuctx->task_ctx)
		return;
2367 2368 2369 2370

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2371
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2372 2373 2374
	cpuctx->task_ctx = NULL;
}

2375 2376 2377 2378 2379 2380 2381
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2382 2383
}

2384
static void
2385
ctx_pinned_sched_in(struct perf_event_context *ctx,
2386
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2387
{
2388
	struct perf_event *event;
T
Thomas Gleixner 已提交
2389

2390 2391
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2392
			continue;
2393
		if (!event_filter_match(event))
2394 2395
			continue;

S
Stephane Eranian 已提交
2396 2397 2398 2399
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2400
		if (group_can_go_on(event, cpuctx, 1))
2401
			group_sched_in(event, cpuctx, ctx);
2402 2403 2404 2405 2406

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2407 2408 2409
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2410
		}
2411
	}
2412 2413 2414 2415
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2416
		      struct perf_cpu_context *cpuctx)
2417 2418 2419
{
	struct perf_event *event;
	int can_add_hw = 1;
2420

2421 2422 2423
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2424
			continue;
2425 2426
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2427
		 * of events:
2428
		 */
2429
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2430 2431
			continue;

S
Stephane Eranian 已提交
2432 2433 2434 2435
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2436
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2437
			if (group_sched_in(event, cpuctx, ctx))
2438
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2439
		}
T
Thomas Gleixner 已提交
2440
	}
2441 2442 2443 2444 2445
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2446 2447
	     enum event_type_t event_type,
	     struct task_struct *task)
2448
{
S
Stephane Eranian 已提交
2449
	u64 now;
2450
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2451

2452
	ctx->is_active |= event_type;
2453
	if (likely(!ctx->nr_events))
2454
		return;
2455

S
Stephane Eranian 已提交
2456 2457
	now = perf_clock();
	ctx->timestamp = now;
2458
	perf_cgroup_set_timestamp(task, ctx);
2459 2460 2461 2462
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2463
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2464
		ctx_pinned_sched_in(ctx, cpuctx);
2465 2466

	/* Then walk through the lower prio flexible groups */
2467
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2468
		ctx_flexible_sched_in(ctx, cpuctx);
2469 2470
}

2471
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2472 2473
			     enum event_type_t event_type,
			     struct task_struct *task)
2474 2475 2476
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2477
	ctx_sched_in(ctx, cpuctx, event_type, task);
2478 2479
}

S
Stephane Eranian 已提交
2480 2481
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2482
{
P
Peter Zijlstra 已提交
2483
	struct perf_cpu_context *cpuctx;
2484

P
Peter Zijlstra 已提交
2485
	cpuctx = __get_cpu_context(ctx);
2486 2487 2488
	if (cpuctx->task_ctx == ctx)
		return;

2489
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2490
	perf_pmu_disable(ctx->pmu);
2491 2492 2493 2494 2495 2496 2497
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2498 2499
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2500

2501 2502
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2503 2504 2505
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2506 2507 2508 2509
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2510
	perf_pmu_rotate_start(ctx->pmu);
2511 2512
}

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2584 2585
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2595
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2596
	}
S
Stephane Eranian 已提交
2597 2598 2599 2600 2601 2602
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2603
		perf_cgroup_sched_in(prev, task);
2604 2605 2606 2607

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2608 2609
}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2637
#define REDUCE_FLS(a, b)		\
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2677 2678 2679
	if (!divisor)
		return dividend;

2680 2681 2682
	return div64_u64(dividend, divisor);
}

2683 2684 2685
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2686
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2687
{
2688
	struct hw_perf_event *hwc = &event->hw;
2689
	s64 period, sample_period;
2690 2691
	s64 delta;

2692
	period = perf_calculate_period(event, nsec, count);
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2703

2704
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2705 2706 2707
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2708
		local64_set(&hwc->period_left, 0);
2709 2710 2711

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2712
	}
2713 2714
}

2715 2716 2717 2718 2719 2720 2721
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2722
{
2723 2724
	struct perf_event *event;
	struct hw_perf_event *hwc;
2725
	u64 now, period = TICK_NSEC;
2726
	s64 delta;
2727

2728 2729 2730 2731 2732 2733
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2734 2735
		return;

2736
	raw_spin_lock(&ctx->lock);
2737
	perf_pmu_disable(ctx->pmu);
2738

2739
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2740
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2741 2742
			continue;

2743
		if (!event_filter_match(event))
2744 2745
			continue;

2746
		hwc = &event->hw;
2747

2748
		if (hwc->interrupts == MAX_INTERRUPTS) {
2749
			hwc->interrupts = 0;
2750
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2751
			event->pmu->start(event, 0);
2752 2753
		}

2754
		if (!event->attr.freq || !event->attr.sample_freq)
2755 2756
			continue;

2757 2758 2759 2760 2761
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2762
		now = local64_read(&event->count);
2763 2764
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2765

2766 2767 2768
		/*
		 * restart the event
		 * reload only if value has changed
2769 2770 2771
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2772
		 */
2773
		if (delta > 0)
2774
			perf_adjust_period(event, period, delta, false);
2775 2776

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2777
	}
2778

2779
	perf_pmu_enable(ctx->pmu);
2780
	raw_spin_unlock(&ctx->lock);
2781 2782
}

2783
/*
2784
 * Round-robin a context's events:
2785
 */
2786
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2787
{
2788 2789 2790 2791 2792 2793
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2794 2795
}

2796
/*
2797 2798 2799
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2800
 */
2801
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2802
{
P
Peter Zijlstra 已提交
2803
	struct perf_event_context *ctx = NULL;
2804
	int rotate = 0, remove = 1;
2805

2806
	if (cpuctx->ctx.nr_events) {
2807
		remove = 0;
2808 2809 2810
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2811

P
Peter Zijlstra 已提交
2812
	ctx = cpuctx->task_ctx;
2813
	if (ctx && ctx->nr_events) {
2814
		remove = 0;
2815 2816 2817
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2818

2819
	if (!rotate)
2820 2821
		goto done;

2822
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2823
	perf_pmu_disable(cpuctx->ctx.pmu);
2824

2825 2826 2827
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2828

2829 2830 2831
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2832

2833
	perf_event_sched_in(cpuctx, ctx, current);
2834

2835 2836
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2837
done:
2838 2839
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2840 2841

	return rotate;
2842 2843
}

2844 2845 2846
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2847
	if (atomic_read(&nr_freq_events) ||
2848
	    __this_cpu_read(perf_throttled_count))
2849
		return false;
2850 2851
	else
		return true;
2852 2853 2854
}
#endif

2855 2856 2857 2858
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2859 2860
	struct perf_event_context *ctx;
	int throttled;
2861

2862 2863
	WARN_ON(!irqs_disabled());

2864 2865 2866
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2867
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2868 2869 2870 2871 2872 2873
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2874
	}
T
Thomas Gleixner 已提交
2875 2876
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2887
	__perf_event_mark_enabled(event);
2888 2889 2890 2891

	return 1;
}

2892
/*
2893
 * Enable all of a task's events that have been marked enable-on-exec.
2894 2895
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2896
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2897
{
2898
	struct perf_event *event;
2899 2900
	unsigned long flags;
	int enabled = 0;
2901
	int ret;
2902 2903

	local_irq_save(flags);
2904
	if (!ctx || !ctx->nr_events)
2905 2906
		goto out;

2907 2908 2909 2910 2911 2912 2913
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2914
	perf_cgroup_sched_out(current, NULL);
2915

2916
	raw_spin_lock(&ctx->lock);
2917
	task_ctx_sched_out(ctx);
2918

2919
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2920 2921 2922
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2923 2924 2925
	}

	/*
2926
	 * Unclone this context if we enabled any event.
2927
	 */
2928 2929
	if (enabled)
		unclone_ctx(ctx);
2930

2931
	raw_spin_unlock(&ctx->lock);
2932

2933 2934 2935
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2936
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2937
out:
2938 2939 2940
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2941
/*
2942
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2943
 */
2944
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2945
{
2946 2947
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2948
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2949

2950 2951 2952 2953
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2954 2955
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2956 2957 2958 2959
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2960
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2961
	if (ctx->is_active) {
2962
		update_context_time(ctx);
S
Stephane Eranian 已提交
2963 2964
		update_cgrp_time_from_event(event);
	}
2965
	update_event_times(event);
2966 2967
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2968
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2969 2970
}

P
Peter Zijlstra 已提交
2971 2972
static inline u64 perf_event_count(struct perf_event *event)
{
2973
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2974 2975
}

2976
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2977 2978
{
	/*
2979 2980
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2981
	 */
2982 2983 2984 2985
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2986 2987 2988
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2989
		raw_spin_lock_irqsave(&ctx->lock, flags);
2990 2991 2992 2993 2994
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2995
		if (ctx->is_active) {
2996
			update_context_time(ctx);
S
Stephane Eranian 已提交
2997 2998
			update_cgrp_time_from_event(event);
		}
2999
		update_event_times(event);
3000
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3001 3002
	}

P
Peter Zijlstra 已提交
3003
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3004 3005
}

3006
/*
3007
 * Initialize the perf_event context in a task_struct:
3008
 */
3009
static void __perf_event_init_context(struct perf_event_context *ctx)
3010
{
3011
	raw_spin_lock_init(&ctx->lock);
3012
	mutex_init(&ctx->mutex);
3013 3014
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3015 3016
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3032
	}
3033 3034 3035
	ctx->pmu = pmu;

	return ctx;
3036 3037
}

3038 3039 3040 3041 3042
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3043 3044

	rcu_read_lock();
3045
	if (!vpid)
T
Thomas Gleixner 已提交
3046 3047
		task = current;
	else
3048
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3049 3050 3051 3052 3053 3054 3055 3056
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3057 3058 3059 3060
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3061 3062 3063 3064 3065 3066 3067
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3068 3069 3070
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3071
static struct perf_event_context *
M
Matt Helsley 已提交
3072
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3073
{
3074
	struct perf_event_context *ctx;
3075
	struct perf_cpu_context *cpuctx;
3076
	unsigned long flags;
P
Peter Zijlstra 已提交
3077
	int ctxn, err;
T
Thomas Gleixner 已提交
3078

3079
	if (!task) {
3080
		/* Must be root to operate on a CPU event: */
3081
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3082 3083 3084
			return ERR_PTR(-EACCES);

		/*
3085
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3086 3087 3088
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3089
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3090 3091
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3092
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3093
		ctx = &cpuctx->ctx;
3094
		get_ctx(ctx);
3095
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3096 3097 3098 3099

		return ctx;
	}

P
Peter Zijlstra 已提交
3100 3101 3102 3103 3104
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3105
retry:
P
Peter Zijlstra 已提交
3106
	ctx = perf_lock_task_context(task, ctxn, &flags);
3107
	if (ctx) {
3108
		unclone_ctx(ctx);
3109
		++ctx->pin_count;
3110
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3111
	} else {
3112
		ctx = alloc_perf_context(pmu, task);
3113 3114 3115
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3116

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3127
		else {
3128
			get_ctx(ctx);
3129
			++ctx->pin_count;
3130
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3131
		}
3132 3133 3134
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3135
			put_ctx(ctx);
3136 3137 3138 3139

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3140 3141 3142
		}
	}

T
Thomas Gleixner 已提交
3143
	return ctx;
3144

P
Peter Zijlstra 已提交
3145
errout:
3146
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3147 3148
}

L
Li Zefan 已提交
3149 3150
static void perf_event_free_filter(struct perf_event *event);

3151
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3152
{
3153
	struct perf_event *event;
P
Peter Zijlstra 已提交
3154

3155 3156 3157
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3158
	perf_event_free_filter(event);
3159
	kfree(event);
P
Peter Zijlstra 已提交
3160 3161
}

3162
static void ring_buffer_put(struct ring_buffer *rb);
3163
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3164

3165
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3166
{
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3191 3192
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3193 3194 3195 3196 3197 3198 3199
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3200

3201 3202
static void __free_event(struct perf_event *event)
{
3203
	if (!event->parent) {
3204 3205
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3206
	}
3207

3208 3209 3210 3211 3212 3213 3214 3215
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3216
static void free_event(struct perf_event *event)
3217
{
3218
	irq_work_sync(&event->pending);
3219

3220
	unaccount_event(event);
3221

3222
	if (event->rb) {
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3239 3240
	}

S
Stephane Eranian 已提交
3241 3242 3243
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3244

3245
	__free_event(event);
3246 3247
}

3248
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3249
{
3250
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3251

3252
	WARN_ON_ONCE(ctx->parent_ctx);
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3266
	raw_spin_lock_irq(&ctx->lock);
3267
	perf_group_detach(event);
3268
	raw_spin_unlock_irq(&ctx->lock);
3269
	perf_remove_from_context(event);
3270
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3271

3272
	free_event(event);
T
Thomas Gleixner 已提交
3273 3274 3275

	return 0;
}
3276
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3277

3278 3279 3280
/*
 * Called when the last reference to the file is gone.
 */
3281
static void put_event(struct perf_event *event)
3282
{
P
Peter Zijlstra 已提交
3283
	struct task_struct *owner;
3284

3285 3286
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3287

P
Peter Zijlstra 已提交
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3321 3322 3323 3324 3325 3326 3327
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3328 3329
}

3330
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3331
{
3332
	struct perf_event *child;
3333 3334
	u64 total = 0;

3335 3336 3337
	*enabled = 0;
	*running = 0;

3338
	mutex_lock(&event->child_mutex);
3339
	total += perf_event_read(event);
3340 3341 3342 3343 3344 3345
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3346
		total += perf_event_read(child);
3347 3348 3349
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3350
	mutex_unlock(&event->child_mutex);
3351 3352 3353

	return total;
}
3354
EXPORT_SYMBOL_GPL(perf_event_read_value);
3355

3356
static int perf_event_read_group(struct perf_event *event,
3357 3358
				   u64 read_format, char __user *buf)
{
3359
	struct perf_event *leader = event->group_leader, *sub;
3360 3361
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3362
	u64 values[5];
3363
	u64 count, enabled, running;
3364

3365
	mutex_lock(&ctx->mutex);
3366
	count = perf_event_read_value(leader, &enabled, &running);
3367 3368

	values[n++] = 1 + leader->nr_siblings;
3369 3370 3371 3372
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3373 3374 3375
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3376 3377 3378 3379

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3380
		goto unlock;
3381

3382
	ret = size;
3383

3384
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3385
		n = 0;
3386

3387
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3388 3389 3390 3391 3392
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3393
		if (copy_to_user(buf + ret, values, size)) {
3394 3395 3396
			ret = -EFAULT;
			goto unlock;
		}
3397 3398

		ret += size;
3399
	}
3400 3401
unlock:
	mutex_unlock(&ctx->mutex);
3402

3403
	return ret;
3404 3405
}

3406
static int perf_event_read_one(struct perf_event *event,
3407 3408
				 u64 read_format, char __user *buf)
{
3409
	u64 enabled, running;
3410 3411 3412
	u64 values[4];
	int n = 0;

3413 3414 3415 3416 3417
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3418
	if (read_format & PERF_FORMAT_ID)
3419
		values[n++] = primary_event_id(event);
3420 3421 3422 3423 3424 3425 3426

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3427
/*
3428
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3429 3430
 */
static ssize_t
3431
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3432
{
3433
	u64 read_format = event->attr.read_format;
3434
	int ret;
T
Thomas Gleixner 已提交
3435

3436
	/*
3437
	 * Return end-of-file for a read on a event that is in
3438 3439 3440
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3441
	if (event->state == PERF_EVENT_STATE_ERROR)
3442 3443
		return 0;

3444
	if (count < event->read_size)
3445 3446
		return -ENOSPC;

3447
	WARN_ON_ONCE(event->ctx->parent_ctx);
3448
	if (read_format & PERF_FORMAT_GROUP)
3449
		ret = perf_event_read_group(event, read_format, buf);
3450
	else
3451
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3452

3453
	return ret;
T
Thomas Gleixner 已提交
3454 3455 3456 3457 3458
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3459
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3460

3461
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3462 3463 3464 3465
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3466
	struct perf_event *event = file->private_data;
3467
	struct ring_buffer *rb;
3468
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3469

3470
	/*
3471 3472
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3473 3474
	 */
	mutex_lock(&event->mmap_mutex);
3475 3476
	rb = event->rb;
	if (rb)
3477
		events = atomic_xchg(&rb->poll, 0);
3478 3479
	mutex_unlock(&event->mmap_mutex);

3480
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3481 3482 3483 3484

	return events;
}

3485
static void perf_event_reset(struct perf_event *event)
3486
{
3487
	(void)perf_event_read(event);
3488
	local64_set(&event->count, 0);
3489
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3490 3491
}

3492
/*
3493 3494 3495 3496
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3497
 */
3498 3499
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3500
{
3501
	struct perf_event *child;
P
Peter Zijlstra 已提交
3502

3503 3504 3505 3506
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3507
		func(child);
3508
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3509 3510
}

3511 3512
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3513
{
3514 3515
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3516

3517 3518
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3519
	event = event->group_leader;
3520

3521 3522
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3523
		perf_event_for_each_child(sibling, func);
3524
	mutex_unlock(&ctx->mutex);
3525 3526
}

3527
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3528
{
3529
	struct perf_event_context *ctx = event->ctx;
3530
	int ret = 0, active;
3531 3532
	u64 value;

3533
	if (!is_sampling_event(event))
3534 3535
		return -EINVAL;

3536
	if (copy_from_user(&value, arg, sizeof(value)))
3537 3538 3539 3540 3541
		return -EFAULT;

	if (!value)
		return -EINVAL;

3542
	raw_spin_lock_irq(&ctx->lock);
3543 3544
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3545 3546 3547 3548
			ret = -EINVAL;
			goto unlock;
		}

3549
		event->attr.sample_freq = value;
3550
	} else {
3551 3552
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3553
	}
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3568
unlock:
3569
	raw_spin_unlock_irq(&ctx->lock);
3570 3571 3572 3573

	return ret;
}

3574 3575
static const struct file_operations perf_fops;

3576
static inline int perf_fget_light(int fd, struct fd *p)
3577
{
3578 3579 3580
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3581

3582 3583 3584
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3585
	}
3586 3587
	*p = f;
	return 0;
3588 3589 3590 3591
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3592
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3593

3594 3595
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3596 3597
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3598
	u32 flags = arg;
3599 3600

	switch (cmd) {
3601 3602
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3603
		break;
3604 3605
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3606
		break;
3607 3608
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3609
		break;
P
Peter Zijlstra 已提交
3610

3611 3612
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3613

3614 3615
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3616

3617 3618 3619 3620 3621 3622 3623 3624 3625
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3626
	case PERF_EVENT_IOC_SET_OUTPUT:
3627 3628 3629
	{
		int ret;
		if (arg != -1) {
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3640 3641 3642
		}
		return ret;
	}
3643

L
Li Zefan 已提交
3644 3645 3646
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3647
	default:
P
Peter Zijlstra 已提交
3648
		return -ENOTTY;
3649
	}
P
Peter Zijlstra 已提交
3650 3651

	if (flags & PERF_IOC_FLAG_GROUP)
3652
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3653
	else
3654
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3655 3656

	return 0;
3657 3658
}

3659
int perf_event_task_enable(void)
3660
{
3661
	struct perf_event *event;
3662

3663 3664 3665 3666
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3667 3668 3669 3670

	return 0;
}

3671
int perf_event_task_disable(void)
3672
{
3673
	struct perf_event *event;
3674

3675 3676 3677 3678
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3679 3680 3681 3682

	return 0;
}

3683
static int perf_event_index(struct perf_event *event)
3684
{
P
Peter Zijlstra 已提交
3685 3686 3687
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3688
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3689 3690
		return 0;

3691
	return event->pmu->event_idx(event);
3692 3693
}

3694
static void calc_timer_values(struct perf_event *event,
3695
				u64 *now,
3696 3697
				u64 *enabled,
				u64 *running)
3698
{
3699
	u64 ctx_time;
3700

3701 3702
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3703 3704 3705 3706
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3727
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3728 3729 3730
{
}

3731 3732 3733 3734 3735
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3736
void perf_event_update_userpage(struct perf_event *event)
3737
{
3738
	struct perf_event_mmap_page *userpg;
3739
	struct ring_buffer *rb;
3740
	u64 enabled, running, now;
3741 3742

	rcu_read_lock();
3743 3744 3745 3746
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3747 3748 3749 3750 3751 3752 3753 3754 3755
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3756
	calc_timer_values(event, &now, &enabled, &running);
3757

3758
	userpg = rb->user_page;
3759 3760 3761 3762 3763
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3764
	++userpg->lock;
3765
	barrier();
3766
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3767
	userpg->offset = perf_event_count(event);
3768
	if (userpg->index)
3769
		userpg->offset -= local64_read(&event->hw.prev_count);
3770

3771
	userpg->time_enabled = enabled +
3772
			atomic64_read(&event->child_total_time_enabled);
3773

3774
	userpg->time_running = running +
3775
			atomic64_read(&event->child_total_time_running);
3776

3777
	arch_perf_update_userpage(userpg, now);
3778

3779
	barrier();
3780
	++userpg->lock;
3781
	preempt_enable();
3782
unlock:
3783
	rcu_read_unlock();
3784 3785
}

3786 3787 3788
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3789
	struct ring_buffer *rb;
3790 3791 3792 3793 3794 3795 3796 3797 3798
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3799 3800
	rb = rcu_dereference(event->rb);
	if (!rb)
3801 3802 3803 3804 3805
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3806
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3821 3822 3823 3824 3825 3826 3827 3828 3829
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3830 3831
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3832 3833 3834
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3835
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3854 3855 3856 3857
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3858 3859 3860
	rcu_read_unlock();
}

3861
static void rb_free_rcu(struct rcu_head *rcu_head)
3862
{
3863
	struct ring_buffer *rb;
3864

3865 3866
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3867 3868
}

3869
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3870
{
3871
	struct ring_buffer *rb;
3872

3873
	rcu_read_lock();
3874 3875 3876 3877
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3878 3879 3880
	}
	rcu_read_unlock();

3881
	return rb;
3882 3883
}

3884
static void ring_buffer_put(struct ring_buffer *rb)
3885
{
3886
	if (!atomic_dec_and_test(&rb->refcount))
3887
		return;
3888

3889
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3890

3891
	call_rcu(&rb->rcu_head, rb_free_rcu);
3892 3893 3894 3895
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3896
	struct perf_event *event = vma->vm_file->private_data;
3897

3898
	atomic_inc(&event->mmap_count);
3899
	atomic_inc(&event->rb->mmap_count);
3900 3901
}

3902 3903 3904 3905 3906 3907 3908 3909
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3910 3911
static void perf_mmap_close(struct vm_area_struct *vma)
{
3912
	struct perf_event *event = vma->vm_file->private_data;
3913

3914 3915 3916 3917
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3918

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3934

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3951

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3967
		}
3968
		mutex_unlock(&event->mmap_mutex);
3969
		put_event(event);
3970

3971 3972 3973 3974 3975
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3976
	}
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3993 3994
}

3995
static const struct vm_operations_struct perf_mmap_vmops = {
3996 3997 3998 3999
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4000 4001 4002 4003
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4004
	struct perf_event *event = file->private_data;
4005
	unsigned long user_locked, user_lock_limit;
4006
	struct user_struct *user = current_user();
4007
	unsigned long locked, lock_limit;
4008
	struct ring_buffer *rb;
4009 4010
	unsigned long vma_size;
	unsigned long nr_pages;
4011
	long user_extra, extra;
4012
	int ret = 0, flags = 0;
4013

4014 4015 4016
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4017
	 * same rb.
4018 4019 4020 4021
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4022
	if (!(vma->vm_flags & VM_SHARED))
4023
		return -EINVAL;
4024 4025 4026 4027

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4028
	/*
4029
	 * If we have rb pages ensure they're a power-of-two number, so we
4030 4031 4032
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4033 4034
		return -EINVAL;

4035
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4036 4037
		return -EINVAL;

4038 4039
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4040

4041
	WARN_ON_ONCE(event->ctx->parent_ctx);
4042
again:
4043
	mutex_lock(&event->mmap_mutex);
4044
	if (event->rb) {
4045
		if (event->rb->nr_pages != nr_pages) {
4046
			ret = -EINVAL;
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4060 4061 4062
		goto unlock;
	}

4063
	user_extra = nr_pages + 1;
4064
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4065 4066 4067 4068 4069 4070

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4071
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4072

4073 4074 4075
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4076

4077
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4078
	lock_limit >>= PAGE_SHIFT;
4079
	locked = vma->vm_mm->pinned_vm + extra;
4080

4081 4082
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4083 4084 4085
		ret = -EPERM;
		goto unlock;
	}
4086

4087
	WARN_ON(event->rb);
4088

4089
	if (vma->vm_flags & VM_WRITE)
4090
		flags |= RING_BUFFER_WRITABLE;
4091

4092 4093 4094 4095
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4096
	if (!rb) {
4097
		ret = -ENOMEM;
4098
		goto unlock;
4099
	}
P
Peter Zijlstra 已提交
4100

4101
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4102 4103
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4104

4105
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4106 4107
	vma->vm_mm->pinned_vm += extra;

4108
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4109
	rcu_assign_pointer(event->rb, rb);
4110

4111
	perf_event_init_userpage(event);
4112 4113
	perf_event_update_userpage(event);

4114
unlock:
4115 4116
	if (!ret)
		atomic_inc(&event->mmap_count);
4117
	mutex_unlock(&event->mmap_mutex);
4118

4119 4120 4121 4122
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4123
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4124
	vma->vm_ops = &perf_mmap_vmops;
4125 4126

	return ret;
4127 4128
}

P
Peter Zijlstra 已提交
4129 4130
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4131
	struct inode *inode = file_inode(filp);
4132
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4133 4134 4135
	int retval;

	mutex_lock(&inode->i_mutex);
4136
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4137 4138 4139 4140 4141 4142 4143 4144
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4145
static const struct file_operations perf_fops = {
4146
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4147 4148 4149
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4150 4151
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4152
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4153
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4154 4155
};

4156
/*
4157
 * Perf event wakeup
4158 4159 4160 4161 4162
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4163
void perf_event_wakeup(struct perf_event *event)
4164
{
4165
	ring_buffer_wakeup(event);
4166

4167 4168 4169
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4170
	}
4171 4172
}

4173
static void perf_pending_event(struct irq_work *entry)
4174
{
4175 4176
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4177

4178 4179 4180
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4181 4182
	}

4183 4184 4185
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4186 4187 4188
	}
}

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4336 4337 4338
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4354
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4366 4367 4368
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4393 4394 4395

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4396 4397
}

4398 4399 4400
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4401 4402 4403 4404 4405
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4406
static void perf_output_read_one(struct perf_output_handle *handle,
4407 4408
				 struct perf_event *event,
				 u64 enabled, u64 running)
4409
{
4410
	u64 read_format = event->attr.read_format;
4411 4412 4413
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4414
	values[n++] = perf_event_count(event);
4415
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4416
		values[n++] = enabled +
4417
			atomic64_read(&event->child_total_time_enabled);
4418 4419
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4420
		values[n++] = running +
4421
			atomic64_read(&event->child_total_time_running);
4422 4423
	}
	if (read_format & PERF_FORMAT_ID)
4424
		values[n++] = primary_event_id(event);
4425

4426
	__output_copy(handle, values, n * sizeof(u64));
4427 4428 4429
}

/*
4430
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4431 4432
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4433 4434
			    struct perf_event *event,
			    u64 enabled, u64 running)
4435
{
4436 4437
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4438 4439 4440 4441 4442 4443
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4444
		values[n++] = enabled;
4445 4446

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4447
		values[n++] = running;
4448

4449
	if (leader != event)
4450 4451
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4452
	values[n++] = perf_event_count(leader);
4453
	if (read_format & PERF_FORMAT_ID)
4454
		values[n++] = primary_event_id(leader);
4455

4456
	__output_copy(handle, values, n * sizeof(u64));
4457

4458
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4459 4460
		n = 0;

4461 4462
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4463 4464
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4465
		values[n++] = perf_event_count(sub);
4466
		if (read_format & PERF_FORMAT_ID)
4467
			values[n++] = primary_event_id(sub);
4468

4469
		__output_copy(handle, values, n * sizeof(u64));
4470 4471 4472
	}
}

4473 4474 4475
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4476
static void perf_output_read(struct perf_output_handle *handle,
4477
			     struct perf_event *event)
4478
{
4479
	u64 enabled = 0, running = 0, now;
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4491
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4492
		calc_timer_values(event, &now, &enabled, &running);
4493

4494
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4495
		perf_output_read_group(handle, event, enabled, running);
4496
	else
4497
		perf_output_read_one(handle, event, enabled, running);
4498 4499
}

4500 4501 4502
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4503
			struct perf_event *event)
4504 4505 4506 4507 4508
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4509 4510 4511
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4537
		perf_output_read(handle, event);
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4548
			__output_copy(handle, data->callchain, size);
4549 4550 4551 4552 4553 4554 4555 4556 4557
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4558 4559
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4571

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4606

4607
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4608 4609 4610
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4611
	}
A
Andi Kleen 已提交
4612 4613 4614

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4615 4616 4617

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4618

A
Andi Kleen 已提交
4619 4620 4621
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4635 4636 4637 4638
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4639
			 struct perf_event *event,
4640
			 struct pt_regs *regs)
4641
{
4642
	u64 sample_type = event->attr.sample_type;
4643

4644
	header->type = PERF_RECORD_SAMPLE;
4645
	header->size = sizeof(*header) + event->header_size;
4646 4647 4648

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4649

4650
	__perf_event_header__init_id(header, data, event);
4651

4652
	if (sample_type & PERF_SAMPLE_IP)
4653 4654
		data->ip = perf_instruction_pointer(regs);

4655
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4656
		int size = 1;
4657

4658
		data->callchain = perf_callchain(event, regs);
4659 4660 4661 4662 4663

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4664 4665
	}

4666
	if (sample_type & PERF_SAMPLE_RAW) {
4667 4668 4669 4670 4671 4672 4673 4674
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4675
		header->size += size;
4676
	}
4677 4678 4679 4680 4681 4682 4683 4684 4685

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4729
}
4730

4731
static void perf_event_output(struct perf_event *event,
4732 4733 4734 4735 4736
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4737

4738 4739 4740
	/* protect the callchain buffers */
	rcu_read_lock();

4741
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4742

4743
	if (perf_output_begin(&handle, event, header.size))
4744
		goto exit;
4745

4746
	perf_output_sample(&handle, &header, data, event);
4747

4748
	perf_output_end(&handle);
4749 4750 4751

exit:
	rcu_read_unlock();
4752 4753
}

4754
/*
4755
 * read event_id
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4766
perf_event_read_event(struct perf_event *event,
4767 4768 4769
			struct task_struct *task)
{
	struct perf_output_handle handle;
4770
	struct perf_sample_data sample;
4771
	struct perf_read_event read_event = {
4772
		.header = {
4773
			.type = PERF_RECORD_READ,
4774
			.misc = 0,
4775
			.size = sizeof(read_event) + event->read_size,
4776
		},
4777 4778
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4779
	};
4780
	int ret;
4781

4782
	perf_event_header__init_id(&read_event.header, &sample, event);
4783
	ret = perf_output_begin(&handle, event, read_event.header.size);
4784 4785 4786
	if (ret)
		return;

4787
	perf_output_put(&handle, read_event);
4788
	perf_output_read(&handle, event);
4789
	perf_event__output_id_sample(event, &handle, &sample);
4790

4791 4792 4793
	perf_output_end(&handle);
}

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4808
		output(event, data);
4809 4810 4811 4812
	}
}

static void
4813
perf_event_aux(perf_event_aux_output_cb output, void *data,
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4826
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4827 4828 4829 4830 4831 4832 4833
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4834
			perf_event_aux_ctx(ctx, output, data);
4835 4836 4837 4838 4839 4840
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4841
		perf_event_aux_ctx(task_ctx, output, data);
4842 4843 4844 4845 4846
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4847
/*
P
Peter Zijlstra 已提交
4848 4849
 * task tracking -- fork/exit
 *
4850
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4851 4852
 */

P
Peter Zijlstra 已提交
4853
struct perf_task_event {
4854
	struct task_struct		*task;
4855
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4856 4857 4858 4859 4860 4861

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4862 4863
		u32				tid;
		u32				ptid;
4864
		u64				time;
4865
	} event_id;
P
Peter Zijlstra 已提交
4866 4867
};

4868 4869
static int perf_event_task_match(struct perf_event *event)
{
4870 4871 4872
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4873 4874
}

4875
static void perf_event_task_output(struct perf_event *event,
4876
				   void *data)
P
Peter Zijlstra 已提交
4877
{
4878
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4879
	struct perf_output_handle handle;
4880
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4881
	struct task_struct *task = task_event->task;
4882
	int ret, size = task_event->event_id.header.size;
4883

4884 4885 4886
	if (!perf_event_task_match(event))
		return;

4887
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4888

4889
	ret = perf_output_begin(&handle, event,
4890
				task_event->event_id.header.size);
4891
	if (ret)
4892
		goto out;
P
Peter Zijlstra 已提交
4893

4894 4895
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4896

4897 4898
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4899

4900
	perf_output_put(&handle, task_event->event_id);
4901

4902 4903
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4904
	perf_output_end(&handle);
4905 4906
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4907 4908
}

4909 4910
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4911
			      int new)
P
Peter Zijlstra 已提交
4912
{
P
Peter Zijlstra 已提交
4913
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4914

4915 4916 4917
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4918 4919
		return;

P
Peter Zijlstra 已提交
4920
	task_event = (struct perf_task_event){
4921 4922
		.task	  = task,
		.task_ctx = task_ctx,
4923
		.event_id    = {
P
Peter Zijlstra 已提交
4924
			.header = {
4925
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4926
				.misc = 0,
4927
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4928
			},
4929 4930
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4931 4932
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4933
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4934 4935 4936
		},
	};

4937
	perf_event_aux(perf_event_task_output,
4938 4939
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4940 4941
}

4942
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4943
{
4944
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4945 4946
}

4947 4948 4949 4950 4951
/*
 * comm tracking
 */

struct perf_comm_event {
4952 4953
	struct task_struct	*task;
	char			*comm;
4954 4955 4956 4957 4958 4959 4960
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4961
	} event_id;
4962 4963
};

4964 4965 4966 4967 4968
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4969
static void perf_event_comm_output(struct perf_event *event,
4970
				   void *data)
4971
{
4972
	struct perf_comm_event *comm_event = data;
4973
	struct perf_output_handle handle;
4974
	struct perf_sample_data sample;
4975
	int size = comm_event->event_id.header.size;
4976 4977
	int ret;

4978 4979 4980
	if (!perf_event_comm_match(event))
		return;

4981 4982
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4983
				comm_event->event_id.header.size);
4984 4985

	if (ret)
4986
		goto out;
4987

4988 4989
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4990

4991
	perf_output_put(&handle, comm_event->event_id);
4992
	__output_copy(&handle, comm_event->comm,
4993
				   comm_event->comm_size);
4994 4995 4996

	perf_event__output_id_sample(event, &handle, &sample);

4997
	perf_output_end(&handle);
4998 4999
out:
	comm_event->event_id.header.size = size;
5000 5001
}

5002
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5003
{
5004
	char comm[TASK_COMM_LEN];
5005 5006
	unsigned int size;

5007
	memset(comm, 0, sizeof(comm));
5008
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5009
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5010 5011 5012 5013

	comm_event->comm = comm;
	comm_event->comm_size = size;

5014
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5015

5016
	perf_event_aux(perf_event_comm_output,
5017 5018
		       comm_event,
		       NULL);
5019 5020
}

5021
void perf_event_comm(struct task_struct *task)
5022
{
5023
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5024 5025
	struct perf_event_context *ctx;
	int ctxn;
5026

5027
	rcu_read_lock();
P
Peter Zijlstra 已提交
5028 5029 5030 5031
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5032

P
Peter Zijlstra 已提交
5033 5034
		perf_event_enable_on_exec(ctx);
	}
5035
	rcu_read_unlock();
5036

5037
	if (!atomic_read(&nr_comm_events))
5038
		return;
5039

5040
	comm_event = (struct perf_comm_event){
5041
		.task	= task,
5042 5043
		/* .comm      */
		/* .comm_size */
5044
		.event_id  = {
5045
			.header = {
5046
				.type = PERF_RECORD_COMM,
5047 5048 5049 5050 5051
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5052 5053 5054
		},
	};

5055
	perf_event_comm_event(&comm_event);
5056 5057
}

5058 5059 5060 5061 5062
/*
 * mmap tracking
 */

struct perf_mmap_event {
5063 5064 5065 5066
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5067 5068 5069
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5070 5071 5072 5073 5074 5075 5076 5077 5078

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5079
	} event_id;
5080 5081
};

5082 5083 5084 5085 5086 5087 5088 5089
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5090
	       (executable && (event->attr.mmap || event->attr.mmap2));
5091 5092
}

5093
static void perf_event_mmap_output(struct perf_event *event,
5094
				   void *data)
5095
{
5096
	struct perf_mmap_event *mmap_event = data;
5097
	struct perf_output_handle handle;
5098
	struct perf_sample_data sample;
5099
	int size = mmap_event->event_id.header.size;
5100
	int ret;
5101

5102 5103 5104
	if (!perf_event_mmap_match(event, data))
		return;

5105 5106 5107 5108 5109
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5110
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5111 5112
	}

5113 5114
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5115
				mmap_event->event_id.header.size);
5116
	if (ret)
5117
		goto out;
5118

5119 5120
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5121

5122
	perf_output_put(&handle, mmap_event->event_id);
5123 5124 5125 5126 5127 5128 5129 5130

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5131
	__output_copy(&handle, mmap_event->file_name,
5132
				   mmap_event->file_size);
5133 5134 5135

	perf_event__output_id_sample(event, &handle, &sample);

5136
	perf_output_end(&handle);
5137 5138
out:
	mmap_event->event_id.header.size = size;
5139 5140
}

5141
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5142
{
5143 5144
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5145 5146
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5147 5148 5149
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5150
	char *name;
5151

5152
	if (file) {
5153 5154
		struct inode *inode;
		dev_t dev;
5155

5156
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5157
		if (!buf) {
5158 5159
			name = "//enomem";
			goto cpy_name;
5160
		}
5161
		/*
5162
		 * d_path() works from the end of the rb backwards, so we
5163 5164 5165
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5166
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5167
		if (IS_ERR(name)) {
5168 5169
			name = "//toolong";
			goto cpy_name;
5170
		}
5171 5172 5173 5174 5175 5176
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5177
		goto got_name;
5178
	} else {
5179
		name = (char *)arch_vma_name(vma);
5180 5181
		if (name)
			goto cpy_name;
5182

5183
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5184
				vma->vm_end >= vma->vm_mm->brk) {
5185 5186
			name = "[heap]";
			goto cpy_name;
5187 5188
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5189
				vma->vm_end >= vma->vm_mm->start_stack) {
5190 5191
			name = "[stack]";
			goto cpy_name;
5192 5193
		}

5194 5195
		name = "//anon";
		goto cpy_name;
5196 5197
	}

5198 5199 5200
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5201
got_name:
5202 5203 5204 5205 5206 5207 5208 5209
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5210 5211 5212

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5213 5214 5215 5216
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5217

5218 5219 5220
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5221
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5222

5223
	perf_event_aux(perf_event_mmap_output,
5224 5225
		       mmap_event,
		       NULL);
5226

5227 5228 5229
	kfree(buf);
}

5230
void perf_event_mmap(struct vm_area_struct *vma)
5231
{
5232 5233
	struct perf_mmap_event mmap_event;

5234
	if (!atomic_read(&nr_mmap_events))
5235 5236 5237
		return;

	mmap_event = (struct perf_mmap_event){
5238
		.vma	= vma,
5239 5240
		/* .file_name */
		/* .file_size */
5241
		.event_id  = {
5242
			.header = {
5243
				.type = PERF_RECORD_MMAP,
5244
				.misc = PERF_RECORD_MISC_USER,
5245 5246 5247 5248
				/* .size */
			},
			/* .pid */
			/* .tid */
5249 5250
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5251
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5252
		},
5253 5254 5255 5256
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5257 5258
	};

5259
	perf_event_mmap_event(&mmap_event);
5260 5261
}

5262 5263 5264 5265
/*
 * IRQ throttle logging
 */

5266
static void perf_log_throttle(struct perf_event *event, int enable)
5267 5268
{
	struct perf_output_handle handle;
5269
	struct perf_sample_data sample;
5270 5271 5272 5273 5274
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5275
		u64				id;
5276
		u64				stream_id;
5277 5278
	} throttle_event = {
		.header = {
5279
			.type = PERF_RECORD_THROTTLE,
5280 5281 5282
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5283
		.time		= perf_clock(),
5284 5285
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5286 5287
	};

5288
	if (enable)
5289
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5290

5291 5292 5293
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5294
				throttle_event.header.size);
5295 5296 5297 5298
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5299
	perf_event__output_id_sample(event, &handle, &sample);
5300 5301 5302
	perf_output_end(&handle);
}

5303
/*
5304
 * Generic event overflow handling, sampling.
5305 5306
 */

5307
static int __perf_event_overflow(struct perf_event *event,
5308 5309
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5310
{
5311 5312
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5313
	u64 seq;
5314 5315
	int ret = 0;

5316 5317 5318 5319 5320 5321 5322
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5323 5324 5325 5326 5327 5328 5329 5330 5331
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5332 5333
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5334
			tick_nohz_full_kick();
5335 5336
			ret = 1;
		}
5337
	}
5338

5339
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5340
		u64 now = perf_clock();
5341
		s64 delta = now - hwc->freq_time_stamp;
5342

5343
		hwc->freq_time_stamp = now;
5344

5345
		if (delta > 0 && delta < 2*TICK_NSEC)
5346
			perf_adjust_period(event, delta, hwc->last_period, true);
5347 5348
	}

5349 5350
	/*
	 * XXX event_limit might not quite work as expected on inherited
5351
	 * events
5352 5353
	 */

5354 5355
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5356
		ret = 1;
5357
		event->pending_kill = POLL_HUP;
5358 5359
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5360 5361
	}

5362
	if (event->overflow_handler)
5363
		event->overflow_handler(event, data, regs);
5364
	else
5365
		perf_event_output(event, data, regs);
5366

P
Peter Zijlstra 已提交
5367
	if (event->fasync && event->pending_kill) {
5368 5369
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5370 5371
	}

5372
	return ret;
5373 5374
}

5375
int perf_event_overflow(struct perf_event *event,
5376 5377
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5378
{
5379
	return __perf_event_overflow(event, 1, data, regs);
5380 5381
}

5382
/*
5383
 * Generic software event infrastructure
5384 5385
 */

5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5397
/*
5398 5399
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5400 5401 5402 5403
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5404
u64 perf_swevent_set_period(struct perf_event *event)
5405
{
5406
	struct hw_perf_event *hwc = &event->hw;
5407 5408 5409 5410 5411
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5412 5413

again:
5414
	old = val = local64_read(&hwc->period_left);
5415 5416
	if (val < 0)
		return 0;
5417

5418 5419 5420
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5421
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5422
		goto again;
5423

5424
	return nr;
5425 5426
}

5427
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5428
				    struct perf_sample_data *data,
5429
				    struct pt_regs *regs)
5430
{
5431
	struct hw_perf_event *hwc = &event->hw;
5432
	int throttle = 0;
5433

5434 5435
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5436

5437 5438
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5439

5440
	for (; overflow; overflow--) {
5441
		if (__perf_event_overflow(event, throttle,
5442
					    data, regs)) {
5443 5444 5445 5446 5447 5448
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5449
		throttle = 1;
5450
	}
5451 5452
}

P
Peter Zijlstra 已提交
5453
static void perf_swevent_event(struct perf_event *event, u64 nr,
5454
			       struct perf_sample_data *data,
5455
			       struct pt_regs *regs)
5456
{
5457
	struct hw_perf_event *hwc = &event->hw;
5458

5459
	local64_add(nr, &event->count);
5460

5461 5462 5463
	if (!regs)
		return;

5464
	if (!is_sampling_event(event))
5465
		return;
5466

5467 5468 5469 5470 5471 5472
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5473
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5474
		return perf_swevent_overflow(event, 1, data, regs);
5475

5476
	if (local64_add_negative(nr, &hwc->period_left))
5477
		return;
5478

5479
	perf_swevent_overflow(event, 0, data, regs);
5480 5481
}

5482 5483 5484
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5485
	if (event->hw.state & PERF_HES_STOPPED)
5486
		return 1;
P
Peter Zijlstra 已提交
5487

5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5499
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5500
				enum perf_type_id type,
L
Li Zefan 已提交
5501 5502 5503
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5504
{
5505
	if (event->attr.type != type)
5506
		return 0;
5507

5508
	if (event->attr.config != event_id)
5509 5510
		return 0;

5511 5512
	if (perf_exclude_event(event, regs))
		return 0;
5513 5514 5515 5516

	return 1;
}

5517 5518 5519 5520 5521 5522 5523
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5524 5525
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5526
{
5527 5528 5529 5530
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5531

5532 5533
/* For the read side: events when they trigger */
static inline struct hlist_head *
5534
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5535 5536
{
	struct swevent_hlist *hlist;
5537

5538
	hlist = rcu_dereference(swhash->swevent_hlist);
5539 5540 5541
	if (!hlist)
		return NULL;

5542 5543 5544 5545 5546
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5547
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5558
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5559 5560 5561 5562 5563
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5564 5565 5566
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5567
				    u64 nr,
5568 5569
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5570
{
5571
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5572
	struct perf_event *event;
5573
	struct hlist_head *head;
5574

5575
	rcu_read_lock();
5576
	head = find_swevent_head_rcu(swhash, type, event_id);
5577 5578 5579
	if (!head)
		goto end;

5580
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5581
		if (perf_swevent_match(event, type, event_id, data, regs))
5582
			perf_swevent_event(event, nr, data, regs);
5583
	}
5584 5585
end:
	rcu_read_unlock();
5586 5587
}

5588
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5589
{
5590
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5591

5592
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5593
}
I
Ingo Molnar 已提交
5594
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5595

5596
inline void perf_swevent_put_recursion_context(int rctx)
5597
{
5598
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5599

5600
	put_recursion_context(swhash->recursion, rctx);
5601
}
5602

5603
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5604
{
5605
	struct perf_sample_data data;
5606 5607
	int rctx;

5608
	preempt_disable_notrace();
5609 5610 5611
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5612

5613
	perf_sample_data_init(&data, addr, 0);
5614

5615
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5616 5617

	perf_swevent_put_recursion_context(rctx);
5618
	preempt_enable_notrace();
5619 5620
}

5621
static void perf_swevent_read(struct perf_event *event)
5622 5623 5624
{
}

P
Peter Zijlstra 已提交
5625
static int perf_swevent_add(struct perf_event *event, int flags)
5626
{
5627
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5628
	struct hw_perf_event *hwc = &event->hw;
5629 5630
	struct hlist_head *head;

5631
	if (is_sampling_event(event)) {
5632
		hwc->last_period = hwc->sample_period;
5633
		perf_swevent_set_period(event);
5634
	}
5635

P
Peter Zijlstra 已提交
5636 5637
	hwc->state = !(flags & PERF_EF_START);

5638
	head = find_swevent_head(swhash, event);
5639 5640 5641 5642 5643
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5644 5645 5646
	return 0;
}

P
Peter Zijlstra 已提交
5647
static void perf_swevent_del(struct perf_event *event, int flags)
5648
{
5649
	hlist_del_rcu(&event->hlist_entry);
5650 5651
}

P
Peter Zijlstra 已提交
5652
static void perf_swevent_start(struct perf_event *event, int flags)
5653
{
P
Peter Zijlstra 已提交
5654
	event->hw.state = 0;
5655
}
I
Ingo Molnar 已提交
5656

P
Peter Zijlstra 已提交
5657
static void perf_swevent_stop(struct perf_event *event, int flags)
5658
{
P
Peter Zijlstra 已提交
5659
	event->hw.state = PERF_HES_STOPPED;
5660 5661
}

5662 5663
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5664
swevent_hlist_deref(struct swevent_htable *swhash)
5665
{
5666 5667
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5668 5669
}

5670
static void swevent_hlist_release(struct swevent_htable *swhash)
5671
{
5672
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5673

5674
	if (!hlist)
5675 5676
		return;

5677
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5678
	kfree_rcu(hlist, rcu_head);
5679 5680 5681 5682
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5683
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5684

5685
	mutex_lock(&swhash->hlist_mutex);
5686

5687 5688
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5689

5690
	mutex_unlock(&swhash->hlist_mutex);
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5703
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5704 5705
	int err = 0;

5706
	mutex_lock(&swhash->hlist_mutex);
5707

5708
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5709 5710 5711 5712 5713 5714 5715
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5716
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5717
	}
5718
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5719
exit:
5720
	mutex_unlock(&swhash->hlist_mutex);
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5741
fail:
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5752
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5753

5754 5755 5756
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5757

5758 5759
	WARN_ON(event->parent);

5760
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5761 5762 5763 5764 5765
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5766
	u64 event_id = event->attr.config;
5767 5768 5769 5770

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5771 5772 5773 5774 5775 5776
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5777 5778 5779 5780 5781 5782 5783 5784 5785
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5786
	if (event_id >= PERF_COUNT_SW_MAX)
5787 5788 5789 5790 5791 5792 5793 5794 5795
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5796
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5797 5798 5799 5800 5801 5802
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5803 5804 5805 5806 5807
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5808
static struct pmu perf_swevent = {
5809
	.task_ctx_nr	= perf_sw_context,
5810

5811
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5812 5813 5814 5815
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5816
	.read		= perf_swevent_read,
5817 5818

	.event_idx	= perf_swevent_event_idx,
5819 5820
};

5821 5822
#ifdef CONFIG_EVENT_TRACING

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5837 5838
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5839 5840 5841 5842
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5843 5844 5845 5846 5847 5848 5849 5850 5851
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5852 5853
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5854 5855
{
	struct perf_sample_data data;
5856 5857
	struct perf_event *event;

5858 5859 5860 5861 5862
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5863
	perf_sample_data_init(&data, addr, 0);
5864 5865
	data.raw = &raw;

5866
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5867
		if (perf_tp_event_match(event, &data, regs))
5868
			perf_swevent_event(event, count, &data, regs);
5869
	}
5870

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5896
	perf_swevent_put_recursion_context(rctx);
5897 5898 5899
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5900
static void tp_perf_event_destroy(struct perf_event *event)
5901
{
5902
	perf_trace_destroy(event);
5903 5904
}

5905
static int perf_tp_event_init(struct perf_event *event)
5906
{
5907 5908
	int err;

5909 5910 5911
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5912 5913 5914 5915 5916 5917
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5918 5919
	err = perf_trace_init(event);
	if (err)
5920
		return err;
5921

5922
	event->destroy = tp_perf_event_destroy;
5923

5924 5925 5926 5927
	return 0;
}

static struct pmu perf_tracepoint = {
5928 5929
	.task_ctx_nr	= perf_sw_context,

5930
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5931 5932 5933 5934
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5935
	.read		= perf_swevent_read,
5936 5937

	.event_idx	= perf_swevent_event_idx,
5938 5939 5940 5941
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5942
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5943
}
L
Li Zefan 已提交
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5968
#else
L
Li Zefan 已提交
5969

5970
static inline void perf_tp_register(void)
5971 5972
{
}
L
Li Zefan 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5983
#endif /* CONFIG_EVENT_TRACING */
5984

5985
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5986
void perf_bp_event(struct perf_event *bp, void *data)
5987
{
5988 5989 5990
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5991
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5992

P
Peter Zijlstra 已提交
5993
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5994
		perf_swevent_event(bp, 1, &sample, regs);
5995 5996 5997
}
#endif

5998 5999 6000
/*
 * hrtimer based swevent callback
 */
6001

6002
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6003
{
6004 6005 6006 6007 6008
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6009

6010
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6011 6012 6013 6014

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6015
	event->pmu->read(event);
6016

6017
	perf_sample_data_init(&data, 0, event->hw.last_period);
6018 6019 6020
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6021
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6022
			if (__perf_event_overflow(event, 1, &data, regs))
6023 6024
				ret = HRTIMER_NORESTART;
	}
6025

6026 6027
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6028

6029
	return ret;
6030 6031
}

6032
static void perf_swevent_start_hrtimer(struct perf_event *event)
6033
{
6034
	struct hw_perf_event *hwc = &event->hw;
6035 6036 6037 6038
	s64 period;

	if (!is_sampling_event(event))
		return;
6039

6040 6041 6042 6043
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6044

6045 6046 6047 6048 6049
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6050
				ns_to_ktime(period), 0,
6051
				HRTIMER_MODE_REL_PINNED, 0);
6052
}
6053 6054

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6055
{
6056 6057
	struct hw_perf_event *hwc = &event->hw;

6058
	if (is_sampling_event(event)) {
6059
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6060
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6061 6062 6063

		hrtimer_cancel(&hwc->hrtimer);
	}
6064 6065
}

P
Peter Zijlstra 已提交
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6086
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6087 6088 6089 6090
		event->attr.freq = 0;
	}
}

6091 6092 6093 6094 6095
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6096
{
6097 6098 6099
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6100
	now = local_clock();
6101 6102
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6103 6104
}

P
Peter Zijlstra 已提交
6105
static void cpu_clock_event_start(struct perf_event *event, int flags)
6106
{
P
Peter Zijlstra 已提交
6107
	local64_set(&event->hw.prev_count, local_clock());
6108 6109 6110
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6111
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6112
{
6113 6114 6115
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6116

P
Peter Zijlstra 已提交
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6130 6131 6132 6133
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6134

6135 6136 6137 6138 6139 6140 6141 6142
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6143 6144 6145 6146 6147 6148
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6149 6150
	perf_swevent_init_hrtimer(event);

6151
	return 0;
6152 6153
}

6154
static struct pmu perf_cpu_clock = {
6155 6156
	.task_ctx_nr	= perf_sw_context,

6157
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6158 6159 6160 6161
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6162
	.read		= cpu_clock_event_read,
6163 6164

	.event_idx	= perf_swevent_event_idx,
6165 6166 6167 6168 6169 6170 6171
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6172
{
6173 6174
	u64 prev;
	s64 delta;
6175

6176 6177 6178 6179
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6180

P
Peter Zijlstra 已提交
6181
static void task_clock_event_start(struct perf_event *event, int flags)
6182
{
P
Peter Zijlstra 已提交
6183
	local64_set(&event->hw.prev_count, event->ctx->time);
6184 6185 6186
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6187
static void task_clock_event_stop(struct perf_event *event, int flags)
6188 6189 6190
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6191 6192 6193 6194 6195 6196
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6197

P
Peter Zijlstra 已提交
6198 6199 6200 6201 6202 6203
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6204 6205 6206 6207
}

static void task_clock_event_read(struct perf_event *event)
{
6208 6209 6210
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6211 6212 6213 6214 6215

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6216
{
6217 6218 6219 6220 6221 6222
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6223 6224 6225 6226 6227 6228
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6229 6230
	perf_swevent_init_hrtimer(event);

6231
	return 0;
L
Li Zefan 已提交
6232 6233
}

6234
static struct pmu perf_task_clock = {
6235 6236
	.task_ctx_nr	= perf_sw_context,

6237
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6238 6239 6240 6241
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6242
	.read		= task_clock_event_read,
6243 6244

	.event_idx	= perf_swevent_event_idx,
6245
};
L
Li Zefan 已提交
6246

P
Peter Zijlstra 已提交
6247
static void perf_pmu_nop_void(struct pmu *pmu)
6248 6249
{
}
L
Li Zefan 已提交
6250

P
Peter Zijlstra 已提交
6251
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6252
{
P
Peter Zijlstra 已提交
6253
	return 0;
L
Li Zefan 已提交
6254 6255
}

P
Peter Zijlstra 已提交
6256
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6257
{
P
Peter Zijlstra 已提交
6258
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6259 6260
}

P
Peter Zijlstra 已提交
6261 6262 6263 6264 6265
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6266

P
Peter Zijlstra 已提交
6267
static void perf_pmu_cancel_txn(struct pmu *pmu)
6268
{
P
Peter Zijlstra 已提交
6269
	perf_pmu_enable(pmu);
6270 6271
}

6272 6273 6274 6275 6276
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6277 6278 6279 6280 6281
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6282
{
P
Peter Zijlstra 已提交
6283
	struct pmu *pmu;
6284

P
Peter Zijlstra 已提交
6285 6286
	if (ctxn < 0)
		return NULL;
6287

P
Peter Zijlstra 已提交
6288 6289 6290 6291
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6292

P
Peter Zijlstra 已提交
6293
	return NULL;
6294 6295
}

6296
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6297
{
6298 6299 6300 6301 6302 6303 6304
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6305 6306
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6307 6308 6309 6310 6311 6312
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6313

P
Peter Zijlstra 已提交
6314
	mutex_lock(&pmus_lock);
6315
	/*
P
Peter Zijlstra 已提交
6316
	 * Like a real lame refcount.
6317
	 */
6318 6319 6320
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6321
			goto out;
6322
		}
P
Peter Zijlstra 已提交
6323
	}
6324

6325
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6326 6327
out:
	mutex_unlock(&pmus_lock);
6328
}
P
Peter Zijlstra 已提交
6329
static struct idr pmu_idr;
6330

P
Peter Zijlstra 已提交
6331 6332 6333 6334 6335 6336 6337
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6338
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6339

6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6383
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6384

6385 6386 6387 6388
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6389
};
6390
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6391 6392 6393 6394

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6395
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6411
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6432
static struct lock_class_key cpuctx_mutex;
6433
static struct lock_class_key cpuctx_lock;
6434

6435
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6436
{
P
Peter Zijlstra 已提交
6437
	int cpu, ret;
6438

6439
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6440 6441 6442 6443
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6444

P
Peter Zijlstra 已提交
6445 6446 6447 6448 6449 6450
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6451 6452 6453
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6454 6455 6456 6457 6458
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6459 6460 6461 6462 6463 6464
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6465
skip_type:
P
Peter Zijlstra 已提交
6466 6467 6468
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6469

W
Wei Yongjun 已提交
6470
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6471 6472
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6473
		goto free_dev;
6474

P
Peter Zijlstra 已提交
6475 6476 6477 6478
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6479
		__perf_event_init_context(&cpuctx->ctx);
6480
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6481
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6482
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6483
		cpuctx->ctx.pmu = pmu;
6484 6485 6486

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6487
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6488
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6489
	}
6490

P
Peter Zijlstra 已提交
6491
got_cpu_context:
P
Peter Zijlstra 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6506
		}
6507
	}
6508

P
Peter Zijlstra 已提交
6509 6510 6511 6512 6513
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6514 6515 6516
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6517
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6518 6519
	ret = 0;
unlock:
6520 6521
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6522
	return ret;
P
Peter Zijlstra 已提交
6523

P
Peter Zijlstra 已提交
6524 6525 6526 6527
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6528 6529 6530 6531
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6532 6533 6534
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6535 6536
}

6537
void perf_pmu_unregister(struct pmu *pmu)
6538
{
6539 6540 6541
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6542

6543
	/*
P
Peter Zijlstra 已提交
6544 6545
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6546
	 */
6547
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6548
	synchronize_rcu();
6549

P
Peter Zijlstra 已提交
6550
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6551 6552
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6553 6554
	device_del(pmu->dev);
	put_device(pmu->dev);
6555
	free_pmu_context(pmu);
6556
}
6557

6558 6559 6560 6561
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6562
	int ret;
6563 6564

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6565 6566 6567 6568

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6569
	if (pmu) {
6570
		event->pmu = pmu;
6571 6572 6573
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6574
		goto unlock;
6575
	}
P
Peter Zijlstra 已提交
6576

6577
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6578
		event->pmu = pmu;
6579
		ret = pmu->event_init(event);
6580
		if (!ret)
P
Peter Zijlstra 已提交
6581
			goto unlock;
6582

6583 6584
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6585
			goto unlock;
6586
		}
6587
	}
P
Peter Zijlstra 已提交
6588 6589
	pmu = ERR_PTR(-ENOENT);
unlock:
6590
	srcu_read_unlock(&pmus_srcu, idx);
6591

6592
	return pmu;
6593 6594
}

6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6608 6609
static void account_event(struct perf_event *event)
{
6610 6611 6612
	if (event->parent)
		return;

6613 6614 6615 6616 6617 6618 6619 6620
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6621 6622 6623 6624
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6625
	if (has_branch_stack(event))
6626
		static_key_slow_inc(&perf_sched_events.key);
6627
	if (is_cgroup_event(event))
6628
		static_key_slow_inc(&perf_sched_events.key);
6629 6630

	account_event_cpu(event, event->cpu);
6631 6632
}

T
Thomas Gleixner 已提交
6633
/*
6634
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6635
 */
6636
static struct perf_event *
6637
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6638 6639 6640
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6641 6642
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6643
{
P
Peter Zijlstra 已提交
6644
	struct pmu *pmu;
6645 6646
	struct perf_event *event;
	struct hw_perf_event *hwc;
6647
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6648

6649 6650 6651 6652 6653
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6654
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6655
	if (!event)
6656
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6657

6658
	/*
6659
	 * Single events are their own group leaders, with an
6660 6661 6662
	 * empty sibling list:
	 */
	if (!group_leader)
6663
		group_leader = event;
6664

6665 6666
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6667

6668 6669 6670
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6671
	INIT_LIST_HEAD(&event->rb_entry);
6672
	INIT_LIST_HEAD(&event->active_entry);
6673

6674
	init_waitqueue_head(&event->waitq);
6675
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6676

6677
	mutex_init(&event->mmap_mutex);
6678

6679
	atomic_long_set(&event->refcount, 1);
6680 6681 6682 6683 6684
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6685

6686
	event->parent		= parent_event;
6687

6688
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6689
	event->id		= atomic64_inc_return(&perf_event_id);
6690

6691
	event->state		= PERF_EVENT_STATE_INACTIVE;
6692

6693 6694
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6695 6696 6697

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6698 6699 6700 6701
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6702
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6703 6704 6705 6706
			event->hw.bp_target = task;
#endif
	}

6707
	if (!overflow_handler && parent_event) {
6708
		overflow_handler = parent_event->overflow_handler;
6709 6710
		context = parent_event->overflow_handler_context;
	}
6711

6712
	event->overflow_handler	= overflow_handler;
6713
	event->overflow_handler_context = context;
6714

J
Jiri Olsa 已提交
6715
	perf_event__state_init(event);
6716

6717
	pmu = NULL;
6718

6719
	hwc = &event->hw;
6720
	hwc->sample_period = attr->sample_period;
6721
	if (attr->freq && attr->sample_freq)
6722
		hwc->sample_period = 1;
6723
	hwc->last_period = hwc->sample_period;
6724

6725
	local64_set(&hwc->period_left, hwc->sample_period);
6726

6727
	/*
6728
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6729
	 */
6730
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6731
		goto err_ns;
6732

6733
	pmu = perf_init_event(event);
6734
	if (!pmu)
6735 6736
		goto err_ns;
	else if (IS_ERR(pmu)) {
6737
		err = PTR_ERR(pmu);
6738
		goto err_ns;
I
Ingo Molnar 已提交
6739
	}
6740

6741
	if (!event->parent) {
6742 6743
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6744 6745
			if (err)
				goto err_pmu;
6746
		}
6747
	}
6748

6749
	return event;
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6760 6761
}

6762 6763
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6764 6765
{
	u32 size;
6766
	int ret;
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6791 6792 6793
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6794 6795
	 */
	if (size > sizeof(*attr)) {
6796 6797 6798
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6799

6800 6801
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6802

6803
		for (; addr < end; addr++) {
6804 6805 6806 6807 6808 6809
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6810
		size = sizeof(*attr);
6811 6812 6813 6814 6815 6816
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6817 6818 6819 6820
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6821
	if (attr->__reserved_1)
6822 6823 6824 6825 6826 6827 6828 6829
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6858 6859
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6860 6861
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6862
	}
6863

6864
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6865
		ret = perf_reg_validate(attr->sample_regs_user);
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6884

6885 6886 6887 6888 6889 6890 6891 6892 6893
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6894 6895
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6896
{
6897
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6898 6899
	int ret = -EINVAL;

6900
	if (!output_event)
6901 6902
		goto set;

6903 6904
	/* don't allow circular references */
	if (event == output_event)
6905 6906
		goto out;

6907 6908 6909 6910 6911 6912 6913
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6914
	 * If its not a per-cpu rb, it must be the same task.
6915 6916 6917 6918
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6919
set:
6920
	mutex_lock(&event->mmap_mutex);
6921 6922 6923
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6924

6925 6926
	old_rb = event->rb;

6927
	if (output_event) {
6928 6929 6930
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6931
			goto unlock;
6932 6933
	}

6934 6935
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6952
	ret = 0;
6953 6954 6955
unlock:
	mutex_unlock(&event->mmap_mutex);

6956 6957 6958 6959
out:
	return ret;
}

T
Thomas Gleixner 已提交
6960
/**
6961
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6962
 *
6963
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6964
 * @pid:		target pid
I
Ingo Molnar 已提交
6965
 * @cpu:		target cpu
6966
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6967
 */
6968 6969
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6970
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6971
{
6972 6973
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6974 6975 6976
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6977
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6978
	struct task_struct *task = NULL;
6979
	struct pmu *pmu;
6980
	int event_fd;
6981
	int move_group = 0;
6982
	int err;
T
Thomas Gleixner 已提交
6983

6984
	/* for future expandability... */
S
Stephane Eranian 已提交
6985
	if (flags & ~PERF_FLAG_ALL)
6986 6987
		return -EINVAL;

6988 6989 6990
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6991

6992 6993 6994 6995 6996
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6997
	if (attr.freq) {
6998
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6999 7000 7001
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7002 7003 7004 7005 7006 7007 7008 7009 7010
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7011
	event_fd = get_unused_fd();
7012 7013 7014
	if (event_fd < 0)
		return event_fd;

7015
	if (group_fd != -1) {
7016 7017
		err = perf_fget_light(group_fd, &group);
		if (err)
7018
			goto err_fd;
7019
		group_leader = group.file->private_data;
7020 7021 7022 7023 7024 7025
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7026
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7027 7028 7029 7030 7031 7032 7033
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7034 7035
	get_online_cpus();

7036 7037
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7038 7039
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7040
		goto err_task;
7041 7042
	}

S
Stephane Eranian 已提交
7043 7044
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7045 7046 7047 7048
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7049 7050
	}

7051 7052
	account_event(event);

7053 7054 7055 7056 7057
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7081 7082 7083 7084

	/*
	 * Get the target context (task or percpu):
	 */
7085
	ctx = find_get_context(pmu, task, event->cpu);
7086 7087
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7088
		goto err_alloc;
7089 7090
	}

7091 7092 7093 7094 7095
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7096
	/*
7097
	 * Look up the group leader (we will attach this event to it):
7098
	 */
7099
	if (group_leader) {
7100
		err = -EINVAL;
7101 7102

		/*
I
Ingo Molnar 已提交
7103 7104 7105 7106
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7107
			goto err_context;
I
Ingo Molnar 已提交
7108 7109 7110
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7111
		 */
7112 7113 7114 7115 7116 7117 7118 7119
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7120 7121 7122
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7123
		if (attr.exclusive || attr.pinned)
7124
			goto err_context;
7125 7126 7127 7128 7129
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7130
			goto err_context;
7131
	}
T
Thomas Gleixner 已提交
7132

7133 7134 7135
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7136
		goto err_context;
7137
	}
7138

7139 7140 7141 7142
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7143
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7144 7145 7146 7147 7148 7149 7150

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7151 7152
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7153
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7154
			perf_event__state_init(sibling);
7155 7156 7157 7158
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7159
	}
7160

7161
	WARN_ON_ONCE(ctx->parent_ctx);
7162
	mutex_lock(&ctx->mutex);
7163 7164

	if (move_group) {
7165
		synchronize_rcu();
7166
		perf_install_in_context(ctx, group_leader, event->cpu);
7167 7168 7169
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7170
			perf_install_in_context(ctx, sibling, event->cpu);
7171 7172 7173 7174
			get_ctx(ctx);
		}
	}

7175
	perf_install_in_context(ctx, event, event->cpu);
7176
	perf_unpin_context(ctx);
7177
	mutex_unlock(&ctx->mutex);
7178

7179 7180
	put_online_cpus();

7181
	event->owner = current;
P
Peter Zijlstra 已提交
7182

7183 7184 7185
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7186

7187 7188 7189 7190
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7191
	perf_event__id_header_size(event);
7192

7193 7194 7195 7196 7197 7198
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7199
	fdput(group);
7200 7201
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7202

7203
err_context:
7204
	perf_unpin_context(ctx);
7205
	put_ctx(ctx);
7206
err_alloc:
7207
	free_event(event);
P
Peter Zijlstra 已提交
7208
err_task:
7209
	put_online_cpus();
P
Peter Zijlstra 已提交
7210 7211
	if (task)
		put_task_struct(task);
7212
err_group_fd:
7213
	fdput(group);
7214 7215
err_fd:
	put_unused_fd(event_fd);
7216
	return err;
T
Thomas Gleixner 已提交
7217 7218
}

7219 7220 7221 7222 7223
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7224
 * @task: task to profile (NULL for percpu)
7225 7226 7227
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7228
				 struct task_struct *task,
7229 7230
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7231 7232
{
	struct perf_event_context *ctx;
7233
	struct perf_event *event;
7234
	int err;
7235

7236 7237 7238
	/*
	 * Get the target context (task or percpu):
	 */
7239

7240 7241
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7242 7243 7244 7245
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7246

7247 7248
	account_event(event);

M
Matt Helsley 已提交
7249
	ctx = find_get_context(event->pmu, task, cpu);
7250 7251
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7252
		goto err_free;
7253
	}
7254 7255 7256 7257

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7258
	perf_unpin_context(ctx);
7259 7260 7261 7262
	mutex_unlock(&ctx->mutex);

	return event;

7263 7264 7265
err_free:
	free_event(event);
err:
7266
	return ERR_PTR(err);
7267
}
7268
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7269

7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7284
		unaccount_event_cpu(event, src_cpu);
7285
		put_ctx(src_ctx);
7286
		list_add(&event->migrate_entry, &events);
7287 7288 7289 7290 7291 7292
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7293 7294
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7295 7296
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7297
		account_event_cpu(event, dst_cpu);
7298 7299 7300 7301 7302 7303 7304
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7305
static void sync_child_event(struct perf_event *child_event,
7306
			       struct task_struct *child)
7307
{
7308
	struct perf_event *parent_event = child_event->parent;
7309
	u64 child_val;
7310

7311 7312
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7313

P
Peter Zijlstra 已提交
7314
	child_val = perf_event_count(child_event);
7315 7316 7317 7318

	/*
	 * Add back the child's count to the parent's count:
	 */
7319
	atomic64_add(child_val, &parent_event->child_count);
7320 7321 7322 7323
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7324 7325

	/*
7326
	 * Remove this event from the parent's list
7327
	 */
7328 7329 7330 7331
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7332 7333

	/*
7334
	 * Release the parent event, if this was the last
7335 7336
	 * reference to it.
	 */
7337
	put_event(parent_event);
7338 7339
}

7340
static void
7341 7342
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7343
			 struct task_struct *child)
7344
{
7345 7346 7347 7348 7349
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7350

7351
	perf_remove_from_context(child_event);
7352

7353
	/*
7354
	 * It can happen that the parent exits first, and has events
7355
	 * that are still around due to the child reference. These
7356
	 * events need to be zapped.
7357
	 */
7358
	if (child_event->parent) {
7359 7360
		sync_child_event(child_event, child);
		free_event(child_event);
7361
	}
7362 7363
}

P
Peter Zijlstra 已提交
7364
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7365
{
7366 7367
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7368
	unsigned long flags;
7369

P
Peter Zijlstra 已提交
7370
	if (likely(!child->perf_event_ctxp[ctxn])) {
7371
		perf_event_task(child, NULL, 0);
7372
		return;
P
Peter Zijlstra 已提交
7373
	}
7374

7375
	local_irq_save(flags);
7376 7377 7378 7379 7380 7381
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7382
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7383 7384 7385

	/*
	 * Take the context lock here so that if find_get_context is
7386
	 * reading child->perf_event_ctxp, we wait until it has
7387 7388
	 * incremented the context's refcount before we do put_ctx below.
	 */
7389
	raw_spin_lock(&child_ctx->lock);
7390
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7391
	child->perf_event_ctxp[ctxn] = NULL;
7392 7393 7394
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7395
	 * the events from it.
7396 7397
	 */
	unclone_ctx(child_ctx);
7398
	update_context_time(child_ctx);
7399
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7400 7401

	/*
7402 7403 7404
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7405
	 */
7406
	perf_event_task(child, child_ctx, 0);
7407

7408 7409 7410
	/*
	 * We can recurse on the same lock type through:
	 *
7411 7412
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7413 7414
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7415 7416 7417
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7418
	mutex_lock(&child_ctx->mutex);
7419

7420
again:
7421 7422 7423 7424 7425
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7426
				 group_entry)
7427
		__perf_event_exit_task(child_event, child_ctx, child);
7428 7429

	/*
7430
	 * If the last event was a group event, it will have appended all
7431 7432 7433
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7434 7435
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7436
		goto again;
7437 7438 7439 7440

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7441 7442
}

P
Peter Zijlstra 已提交
7443 7444 7445 7446 7447
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7448
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7449 7450
	int ctxn;

P
Peter Zijlstra 已提交
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7466 7467 7468 7469
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7482
	put_event(parent);
7483

7484
	perf_group_detach(event);
7485 7486 7487 7488
	list_del_event(event, ctx);
	free_event(event);
}

7489 7490
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7491
 * perf_event_init_task below, used by fork() in case of fail.
7492
 */
7493
void perf_event_free_task(struct task_struct *task)
7494
{
P
Peter Zijlstra 已提交
7495
	struct perf_event_context *ctx;
7496
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7497
	int ctxn;
7498

P
Peter Zijlstra 已提交
7499 7500 7501 7502
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7503

P
Peter Zijlstra 已提交
7504
		mutex_lock(&ctx->mutex);
7505
again:
P
Peter Zijlstra 已提交
7506 7507 7508
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7509

P
Peter Zijlstra 已提交
7510 7511 7512
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7513

P
Peter Zijlstra 已提交
7514 7515 7516
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7517

P
Peter Zijlstra 已提交
7518
		mutex_unlock(&ctx->mutex);
7519

P
Peter Zijlstra 已提交
7520 7521
		put_ctx(ctx);
	}
7522 7523
}

7524 7525 7526 7527 7528 7529 7530 7531
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7544
	unsigned long flags;
P
Peter Zijlstra 已提交
7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7557
					   child,
P
Peter Zijlstra 已提交
7558
					   group_leader, parent_event,
7559
				           NULL, NULL);
P
Peter Zijlstra 已提交
7560 7561
	if (IS_ERR(child_event))
		return child_event;
7562 7563 7564 7565 7566 7567

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7592 7593
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7594

7595 7596 7597 7598
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7599
	perf_event__id_header_size(child_event);
7600

P
Peter Zijlstra 已提交
7601 7602 7603
	/*
	 * Link it up in the child's context:
	 */
7604
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7605
	add_event_to_ctx(child_event, child_ctx);
7606
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7640 7641 7642 7643 7644
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7645
		   struct task_struct *child, int ctxn,
7646 7647 7648
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7649
	struct perf_event_context *child_ctx;
7650 7651 7652 7653

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7654 7655
	}

7656
	child_ctx = child->perf_event_ctxp[ctxn];
7657 7658 7659 7660 7661 7662 7663
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7664

7665
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7666 7667
		if (!child_ctx)
			return -ENOMEM;
7668

P
Peter Zijlstra 已提交
7669
		child->perf_event_ctxp[ctxn] = child_ctx;
7670 7671 7672 7673 7674 7675 7676 7677 7678
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7679 7680
}

7681
/*
7682
 * Initialize the perf_event context in task_struct
7683
 */
P
Peter Zijlstra 已提交
7684
int perf_event_init_context(struct task_struct *child, int ctxn)
7685
{
7686
	struct perf_event_context *child_ctx, *parent_ctx;
7687 7688
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7689
	struct task_struct *parent = current;
7690
	int inherited_all = 1;
7691
	unsigned long flags;
7692
	int ret = 0;
7693

P
Peter Zijlstra 已提交
7694
	if (likely(!parent->perf_event_ctxp[ctxn]))
7695 7696
		return 0;

7697
	/*
7698 7699
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7700
	 */
P
Peter Zijlstra 已提交
7701
	parent_ctx = perf_pin_task_context(parent, ctxn);
7702

7703 7704 7705 7706 7707 7708 7709
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7710 7711 7712 7713
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7714
	mutex_lock(&parent_ctx->mutex);
7715 7716 7717 7718 7719

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7720
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7721 7722
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7723 7724 7725
		if (ret)
			break;
	}
7726

7727 7728 7729 7730 7731 7732 7733 7734 7735
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7736
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7737 7738
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7739
		if (ret)
7740
			break;
7741 7742
	}

7743 7744 7745
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7746
	child_ctx = child->perf_event_ctxp[ctxn];
7747

7748
	if (child_ctx && inherited_all) {
7749 7750 7751
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7752 7753 7754
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7755
		 */
P
Peter Zijlstra 已提交
7756
		cloned_ctx = parent_ctx->parent_ctx;
7757 7758
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7759
			child_ctx->parent_gen = parent_ctx->parent_gen;
7760 7761 7762 7763 7764
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7765 7766
	}

P
Peter Zijlstra 已提交
7767
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7768
	mutex_unlock(&parent_ctx->mutex);
7769

7770
	perf_unpin_context(parent_ctx);
7771
	put_ctx(parent_ctx);
7772

7773
	return ret;
7774 7775
}

P
Peter Zijlstra 已提交
7776 7777 7778 7779 7780 7781 7782
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7783 7784 7785 7786
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7787 7788 7789 7790 7791 7792 7793 7794 7795
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7796 7797
static void __init perf_event_init_all_cpus(void)
{
7798
	struct swevent_htable *swhash;
7799 7800 7801
	int cpu;

	for_each_possible_cpu(cpu) {
7802 7803
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7804
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7805 7806 7807
	}
}

7808
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7809
{
P
Peter Zijlstra 已提交
7810
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7811

7812
	mutex_lock(&swhash->hlist_mutex);
7813
	if (swhash->hlist_refcount > 0) {
7814 7815
		struct swevent_hlist *hlist;

7816 7817 7818
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7819
	}
7820
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7821 7822
}

P
Peter Zijlstra 已提交
7823
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7824
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7825
{
7826 7827 7828 7829 7830 7831 7832
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7833
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7834
{
P
Peter Zijlstra 已提交
7835
	struct perf_event_context *ctx = __info;
7836
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7837

P
Peter Zijlstra 已提交
7838
	perf_pmu_rotate_stop(ctx->pmu);
7839

7840
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7841
		__perf_remove_from_context(event);
7842
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7843
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7844
}
P
Peter Zijlstra 已提交
7845 7846 7847 7848 7849 7850 7851 7852 7853

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7854
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7855 7856 7857 7858 7859 7860 7861 7862

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7863
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7864
{
7865
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7866

7867 7868 7869
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7870

P
Peter Zijlstra 已提交
7871
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7872 7873
}
#else
7874
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7875 7876
#endif

P
Peter Zijlstra 已提交
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7897
static int
T
Thomas Gleixner 已提交
7898 7899 7900 7901
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7902
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7903 7904

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7905
	case CPU_DOWN_FAILED:
7906
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7907 7908
		break;

P
Peter Zijlstra 已提交
7909
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7910
	case CPU_DOWN_PREPARE:
7911
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7912 7913 7914 7915 7916 7917 7918 7919
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7920
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7921
{
7922 7923
	int ret;

P
Peter Zijlstra 已提交
7924 7925
	idr_init(&pmu_idr);

7926
	perf_event_init_all_cpus();
7927
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7928 7929 7930
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7931 7932
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7933
	register_reboot_notifier(&perf_reboot_notifier);
7934 7935 7936

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7937 7938 7939

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7940 7941 7942 7943 7944 7945 7946

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7947
}
P
Peter Zijlstra 已提交
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7976 7977

#ifdef CONFIG_CGROUP_PERF
7978 7979
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
7980 7981 7982
{
	struct perf_cgroup *jc;

7983
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7996
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
7997
{
7998 7999
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8011 8012
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8013
{
8014 8015
	struct task_struct *task;

8016
	cgroup_taskset_for_each(task, css, tset)
8017
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8018 8019
}

8020 8021
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8022
			     struct task_struct *task)
S
Stephane Eranian 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8032
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8033 8034 8035
}

struct cgroup_subsys perf_subsys = {
8036 8037
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
8038 8039
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8040
	.exit		= perf_cgroup_exit,
8041
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8042 8043
};
#endif /* CONFIG_CGROUP_PERF */