core.c 218.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void event_function_call(struct perf_event *event,
				int (*active)(void *),
				void (*inactive)(void *),
				void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		cpu_function_call(event->cpu, active, data);
		return;
	}

again:
	if (!task_function_call(task, active, data))
		return;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	inactive(data);
	raw_spin_unlock_irq(&ctx->lock);
}

160 161 162 163 164 165 166
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
167 168
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
169 170
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
171

172 173 174 175 176 177 178
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

179 180 181 182 183 184
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
185 186 187 188
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
189
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
190
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
192

193 194 195
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
196
static atomic_t nr_freq_events __read_mostly;
197
static atomic_t nr_switch_events __read_mostly;
198

P
Peter Zijlstra 已提交
199 200 201 202
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

203
/*
204
 * perf event paranoia level:
205 206
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
207
 *   1 - disallow cpu events for unpriv
208
 *   2 - disallow kernel profiling for unpriv
209
 */
210
int sysctl_perf_event_paranoid __read_mostly = 1;
211

212 213
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214 215

/*
216
 * max perf event sample rate
217
 */
218 219 220 221 222 223 224 225 226
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
227 228
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229

230
static void update_perf_cpu_limits(void)
231 232 233 234
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
235
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
236
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237
}
P
Peter Zijlstra 已提交
238

239 240
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
241 242 243 244
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
245
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
246 247 248 249 250

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
269 270 271

	return 0;
}
272

273 274 275 276 277 278 279
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
280
static DEFINE_PER_CPU(u64, running_sample_length);
281

282
static void perf_duration_warn(struct irq_work *w)
283
{
284
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285
	u64 avg_local_sample_len;
286
	u64 local_samples_len;
287

288
	local_samples_len = __this_cpu_read(running_sample_length);
289 290 291 292 293
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
294
			avg_local_sample_len, allowed_ns >> 1,
295 296 297 298 299 300 301
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
302
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 304
	u64 avg_local_sample_len;
	u64 local_samples_len;
305

P
Peter Zijlstra 已提交
306
	if (allowed_ns == 0)
307 308 309
		return;

	/* decay the counter by 1 average sample */
310
	local_samples_len = __this_cpu_read(running_sample_length);
311 312
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
313
	__this_cpu_write(running_sample_length, local_samples_len);
314 315 316 317 318 319 320 321

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
322
	if (avg_local_sample_len <= allowed_ns)
323 324 325 326 327 328 329 330 331 332
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
333

334 335 336 337 338 339
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
340 341
}

342
static atomic64_t perf_event_id;
343

344 345 346 347
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
348 349 350 351 352
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
353

354
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
355

356
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
357
{
358
	return "pmu";
T
Thomas Gleixner 已提交
359 360
}

361 362 363 364 365
static inline u64 perf_clock(void)
{
	return local_clock();
}

366 367 368 369 370
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
371 372 373 374 375 376
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
393 394 395 396 397 398 399 400
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
417 418 419 420
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
421
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
460 461
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
462
	/*
463 464
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
465
	 */
466
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
467 468
		return;

469
	cgrp = perf_cgroup_from_task(current, event->ctx);
470 471 472 473 474
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
475 476 477
}

static inline void
478 479
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
480 481 482 483
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

484 485 486 487 488 489
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
490 491
		return;

492
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
493
	info = this_cpu_ptr(cgrp->info);
494
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
506
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 527
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
528 529 530 531 532 533 534 535 536

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
537 538
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
550
				WARN_ON_ONCE(cpuctx->cgrp);
551 552 553 554
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
555 556
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
557
				 */
558
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
559 560
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
561 562
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
563 564 565 566 567 568
		}
	}

	local_irq_restore(flags);
}

569 570
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
571
{
572 573 574
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

575
	rcu_read_lock();
576 577
	/*
	 * we come here when we know perf_cgroup_events > 0
578 579
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
580
	 */
581
	cgrp1 = perf_cgroup_from_task(task, NULL);
582
	cgrp2 = perf_cgroup_from_task(next, NULL);
583 584 585 586 587 588 589 590

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
591 592

	rcu_read_unlock();
S
Stephane Eranian 已提交
593 594
}

595 596
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
597
{
598 599 600
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

601
	rcu_read_lock();
602 603
	/*
	 * we come here when we know perf_cgroup_events > 0
604 605
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
606
	 */
607 608
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
609 610 611 612 613 614 615 616

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
617 618

	rcu_read_unlock();
S
Stephane Eranian 已提交
619 620 621 622 623 624 625 626
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
627 628
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
629

630
	if (!f.file)
S
Stephane Eranian 已提交
631 632
		return -EBADF;

A
Al Viro 已提交
633
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
634
					 &perf_event_cgrp_subsys);
635 636 637 638
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
652
out:
653
	fdput(f);
S
Stephane Eranian 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

727 728
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
729 730 731
{
}

732 733
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
734 735 736 737 738 739 740 741 742 743 744
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
745 746
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

777 778 779 780 781 782 783 784
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
785
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
786 787 788 789 790 791 792 793 794
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
795 796
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
797
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
798 799 800
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
801

P
Peter Zijlstra 已提交
802
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
803 804
}

805
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
806
{
807
	struct hrtimer *timer = &cpuctx->hrtimer;
808
	struct pmu *pmu = cpuctx->ctx.pmu;
809
	u64 interval;
810 811 812 813 814

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

815 816 817 818
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
819 820 821
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
822

823
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
824

P
Peter Zijlstra 已提交
825 826
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
827
	timer->function = perf_mux_hrtimer_handler;
828 829
}

830
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
831
{
832
	struct hrtimer *timer = &cpuctx->hrtimer;
833
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
834
	unsigned long flags;
835 836 837

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
838
		return 0;
839

P
Peter Zijlstra 已提交
840 841 842 843 844 845 846
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
847

848
	return 0;
849 850
}

P
Peter Zijlstra 已提交
851
void perf_pmu_disable(struct pmu *pmu)
852
{
P
Peter Zijlstra 已提交
853 854 855
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
856 857
}

P
Peter Zijlstra 已提交
858
void perf_pmu_enable(struct pmu *pmu)
859
{
P
Peter Zijlstra 已提交
860 861 862
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
863 864
}

865
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
866 867

/*
868 869 870 871
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
872
 */
873
static void perf_event_ctx_activate(struct perf_event_context *ctx)
874
{
875
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
876

877
	WARN_ON(!irqs_disabled());
878

879 880 881 882 883 884 885 886 887 888 889 890
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
891 892
}

893
static void get_ctx(struct perf_event_context *ctx)
894
{
895
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 897
}

898 899 900 901 902 903 904 905 906
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

907
static void put_ctx(struct perf_event_context *ctx)
908
{
909 910 911
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
912 913
		if (ctx->task)
			put_task_struct(ctx->task);
914
		call_rcu(&ctx->rcu_head, free_ctx);
915
	}
916 917
}

P
Peter Zijlstra 已提交
918 919 920 921 922 923 924
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
979 980
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
981 982 983 984 985 986 987 988 989 990 991 992
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
993
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1009 1010 1011 1012 1013 1014 1015
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1016 1017 1018 1019 1020 1021 1022
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1023
{
1024 1025 1026 1027 1028
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1029
		ctx->parent_ctx = NULL;
1030
	ctx->generation++;
1031 1032

	return parent_ctx;
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1057
/*
1058
 * If we inherit events we want to return the parent event id
1059 1060
 * to userspace.
 */
1061
static u64 primary_event_id(struct perf_event *event)
1062
{
1063
	u64 id = event->id;
1064

1065 1066
	if (event->parent)
		id = event->parent->id;
1067 1068 1069 1070

	return id;
}

1071
/*
1072
 * Get the perf_event_context for a task and lock it.
1073 1074 1075
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1076
static struct perf_event_context *
P
Peter Zijlstra 已提交
1077
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1078
{
1079
	struct perf_event_context *ctx;
1080

P
Peter Zijlstra 已提交
1081
retry:
1082 1083 1084
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1085
	 * part of the read side critical section was irqs-enabled -- see
1086 1087 1088
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1089
	 * side critical section has interrupts disabled.
1090
	 */
1091
	local_irq_save(*flags);
1092
	rcu_read_lock();
P
Peter Zijlstra 已提交
1093
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1094 1095 1096 1097
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1098
		 * perf_event_task_sched_out, though the
1099 1100 1101 1102 1103 1104
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1105
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1106
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1107
			raw_spin_unlock(&ctx->lock);
1108
			rcu_read_unlock();
1109
			local_irq_restore(*flags);
1110 1111
			goto retry;
		}
1112 1113

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1114
			raw_spin_unlock(&ctx->lock);
1115 1116
			ctx = NULL;
		}
1117 1118
	}
	rcu_read_unlock();
1119 1120
	if (!ctx)
		local_irq_restore(*flags);
1121 1122 1123 1124 1125 1126 1127 1128
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1129 1130
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1131
{
1132
	struct perf_event_context *ctx;
1133 1134
	unsigned long flags;

P
Peter Zijlstra 已提交
1135
	ctx = perf_lock_task_context(task, ctxn, &flags);
1136 1137
	if (ctx) {
		++ctx->pin_count;
1138
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1139 1140 1141 1142
	}
	return ctx;
}

1143
static void perf_unpin_context(struct perf_event_context *ctx)
1144 1145 1146
{
	unsigned long flags;

1147
	raw_spin_lock_irqsave(&ctx->lock, flags);
1148
	--ctx->pin_count;
1149
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1163 1164 1165
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1166 1167 1168 1169

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1170 1171 1172
	return ctx ? ctx->time : 0;
}

1173 1174
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1175
 * The caller of this function needs to hold the ctx->lock.
1176 1177 1178 1179 1180 1181 1182 1183 1184
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1196
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1197 1198
	else if (ctx->is_active)
		run_end = ctx->time;
1199 1200 1201 1202
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1203 1204 1205 1206

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1207
		run_end = perf_event_time(event);
1208 1209

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1210

1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1225 1226 1227 1228 1229 1230 1231 1232 1233
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1234
/*
1235
 * Add a event from the lists for its context.
1236 1237
 * Must be called with ctx->mutex and ctx->lock held.
 */
1238
static void
1239
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1240
{
P
Peter Zijlstra 已提交
1241 1242
	lockdep_assert_held(&ctx->lock);

1243 1244
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1245 1246

	/*
1247 1248 1249
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1250
	 */
1251
	if (event->group_leader == event) {
1252 1253
		struct list_head *list;

1254 1255 1256
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1257 1258
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1259
	}
P
Peter Zijlstra 已提交
1260

1261
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1262 1263
		ctx->nr_cgroups++;

1264 1265 1266
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1267
		ctx->nr_stat++;
1268 1269

	ctx->generation++;
1270 1271
}

J
Jiri Olsa 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1281
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1297
		nr += nr_siblings;
1298 1299 1300 1301 1302 1303 1304
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1305
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1306 1307 1308 1309 1310 1311 1312
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1313 1314 1315 1316 1317 1318
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1319 1320 1321
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1322 1323 1324
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1325 1326 1327
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1328 1329 1330
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1331 1332 1333
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1345 1346 1347 1348 1349 1350
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1351 1352 1353 1354 1355 1356
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1357 1358 1359
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1369
	event->id_header_size = size;
1370 1371
}

P
Peter Zijlstra 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1393 1394
static void perf_group_attach(struct perf_event *event)
{
1395
	struct perf_event *group_leader = event->group_leader, *pos;
1396

P
Peter Zijlstra 已提交
1397 1398 1399 1400 1401 1402
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1403 1404 1405 1406 1407
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1408 1409
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1410 1411 1412 1413 1414 1415
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1416 1417 1418 1419 1420

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1421 1422
}

1423
/*
1424
 * Remove a event from the lists for its context.
1425
 * Must be called with ctx->mutex and ctx->lock held.
1426
 */
1427
static void
1428
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1429
{
1430
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1431 1432 1433 1434

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1435 1436 1437 1438
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1439
		return;
1440 1441 1442

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1443
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1444
		ctx->nr_cgroups--;
1445 1446 1447 1448
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1449 1450
		cpuctx = __get_cpu_context(ctx);
		/*
1451 1452
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1453 1454 1455 1456
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1457

1458 1459
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1460
		ctx->nr_stat--;
1461

1462
	list_del_rcu(&event->event_entry);
1463

1464 1465
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1466

1467
	update_group_times(event);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1478 1479

	ctx->generation++;
1480 1481
}

1482
static void perf_group_detach(struct perf_event *event)
1483 1484
{
	struct perf_event *sibling, *tmp;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1501
		goto out;
1502 1503 1504 1505
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1506

1507
	/*
1508 1509
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1510
	 * to whatever list we are on.
1511
	 */
1512
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1513 1514
		if (list)
			list_move_tail(&sibling->group_entry, list);
1515
		sibling->group_leader = sibling;
1516 1517 1518

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1519 1520

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1521
	}
1522 1523 1524 1525 1526 1527

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1569 1570 1571 1572 1573 1574
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1575 1576 1577
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1578
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1579
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1580 1581
}

1582 1583
static void
event_sched_out(struct perf_event *event,
1584
		  struct perf_cpu_context *cpuctx,
1585
		  struct perf_event_context *ctx)
1586
{
1587
	u64 tstamp = perf_event_time(event);
1588
	u64 delta;
P
Peter Zijlstra 已提交
1589 1590 1591 1592

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1593 1594 1595 1596 1597 1598 1599 1600
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1601
		delta = tstamp - event->tstamp_stopped;
1602
		event->tstamp_running += delta;
1603
		event->tstamp_stopped = tstamp;
1604 1605
	}

1606
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1607
		return;
1608

1609 1610
	perf_pmu_disable(event->pmu);

1611 1612 1613 1614
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1615
	}
1616
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1617
	event->pmu->del(event, 0);
1618
	event->oncpu = -1;
1619

1620
	if (!is_software_event(event))
1621
		cpuctx->active_oncpu--;
1622 1623
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1624 1625
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1626
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1627
		cpuctx->exclusive = 0;
1628

1629 1630 1631
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1632
	perf_pmu_enable(event->pmu);
1633 1634
}

1635
static void
1636
group_sched_out(struct perf_event *group_event,
1637
		struct perf_cpu_context *cpuctx,
1638
		struct perf_event_context *ctx)
1639
{
1640
	struct perf_event *event;
1641
	int state = group_event->state;
1642

1643
	event_sched_out(group_event, cpuctx, ctx);
1644 1645 1646 1647

	/*
	 * Schedule out siblings (if any):
	 */
1648 1649
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1650

1651
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1652 1653 1654
		cpuctx->exclusive = 0;
}

1655 1656 1657 1658 1659
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
static void ___perf_remove_from_context(void *info)
{
	struct remove_event *re = info;
	struct perf_event *event = re->event;
	struct perf_event_context *ctx = event->ctx;

	if (re->detach_group)
		perf_group_detach(event);
	list_del_event(event, ctx);
}

T
Thomas Gleixner 已提交
1671
/*
1672
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1673
 *
1674
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1675 1676
 * remove it from the context list.
 */
1677
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1678
{
1679 1680
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1681
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1682
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1683

1684
	raw_spin_lock(&ctx->lock);
1685
	event_sched_out(event, cpuctx, ctx);
1686 1687
	if (re->detach_group)
		perf_group_detach(event);
1688
	list_del_event(event, ctx);
1689 1690 1691 1692
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1693
	raw_spin_unlock(&ctx->lock);
1694 1695

	return 0;
T
Thomas Gleixner 已提交
1696 1697 1698
}

/*
1699
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1700
 *
1701
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1702
 * call when the task is on a CPU.
1703
 *
1704 1705
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1706 1707
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1708
 * When called from perf_event_exit_task, it's OK because the
1709
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1710
 */
1711
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1712
{
1713
	struct perf_event_context *ctx = event->ctx;
1714 1715 1716 1717
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1718

1719 1720
	lockdep_assert_held(&ctx->mutex);

1721 1722
	event_function_call(event, __perf_remove_from_context,
			    ___perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1723 1724
}

1725
/*
1726
 * Cross CPU call to disable a performance event
1727
 */
1728
int __perf_event_disable(void *info)
1729
{
1730 1731
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1732
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1733 1734

	/*
1735 1736
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1737 1738 1739
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1740
	 */
1741
	if (ctx->task && cpuctx->task_ctx != ctx)
1742
		return -EINVAL;
1743

1744
	raw_spin_lock(&ctx->lock);
1745 1746

	/*
1747
	 * If the event is on, turn it off.
1748 1749
	 * If it is in error state, leave it in error state.
	 */
1750
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1751
		update_context_time(ctx);
S
Stephane Eranian 已提交
1752
		update_cgrp_time_from_event(event);
1753 1754 1755
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1756
		else
1757 1758
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1759 1760
	}

1761
	raw_spin_unlock(&ctx->lock);
1762 1763

	return 0;
1764 1765
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
void ___perf_event_disable(void *info)
{
	struct perf_event *event = info;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
	}
}

1780
/*
1781
 * Disable a event.
1782
 *
1783 1784
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1785
 * remains valid.  This condition is satisifed when called through
1786 1787 1788 1789
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1790
 * is the current context on this CPU and preemption is disabled,
1791
 * hence we can't get into perf_event_task_sched_out for this context.
1792
 */
P
Peter Zijlstra 已提交
1793
static void _perf_event_disable(struct perf_event *event)
1794
{
1795
	struct perf_event_context *ctx = event->ctx;
1796

1797
	raw_spin_lock_irq(&ctx->lock);
1798
	if (event->state <= PERF_EVENT_STATE_OFF) {
1799
		raw_spin_unlock_irq(&ctx->lock);
1800
		return;
1801
	}
1802
	raw_spin_unlock_irq(&ctx->lock);
1803 1804 1805

	event_function_call(event, __perf_event_disable,
			    ___perf_event_disable, event);
1806
}
P
Peter Zijlstra 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1820
EXPORT_SYMBOL_GPL(perf_event_disable);
1821

S
Stephane Eranian 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1857 1858 1859
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1860
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1861

1862
static int
1863
event_sched_in(struct perf_event *event,
1864
		 struct perf_cpu_context *cpuctx,
1865
		 struct perf_event_context *ctx)
1866
{
1867
	u64 tstamp = perf_event_time(event);
1868
	int ret = 0;
1869

1870 1871
	lockdep_assert_held(&ctx->lock);

1872
	if (event->state <= PERF_EVENT_STATE_OFF)
1873 1874
		return 0;

1875
	event->state = PERF_EVENT_STATE_ACTIVE;
1876
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1888 1889 1890 1891 1892
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1893 1894
	perf_pmu_disable(event->pmu);

1895 1896
	perf_set_shadow_time(event, ctx, tstamp);

1897 1898
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1899
	if (event->pmu->add(event, PERF_EF_START)) {
1900 1901
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1902 1903
		ret = -EAGAIN;
		goto out;
1904 1905
	}

1906 1907
	event->tstamp_running += tstamp - event->tstamp_stopped;

1908
	if (!is_software_event(event))
1909
		cpuctx->active_oncpu++;
1910 1911
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1912 1913
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1914

1915
	if (event->attr.exclusive)
1916 1917
		cpuctx->exclusive = 1;

1918 1919 1920
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1921 1922 1923 1924
out:
	perf_pmu_enable(event->pmu);

	return ret;
1925 1926
}

1927
static int
1928
group_sched_in(struct perf_event *group_event,
1929
	       struct perf_cpu_context *cpuctx,
1930
	       struct perf_event_context *ctx)
1931
{
1932
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1933
	struct pmu *pmu = ctx->pmu;
1934 1935
	u64 now = ctx->time;
	bool simulate = false;
1936

1937
	if (group_event->state == PERF_EVENT_STATE_OFF)
1938 1939
		return 0;

1940
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1941

1942
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1943
		pmu->cancel_txn(pmu);
1944
		perf_mux_hrtimer_restart(cpuctx);
1945
		return -EAGAIN;
1946
	}
1947 1948 1949 1950

	/*
	 * Schedule in siblings as one group (if any):
	 */
1951
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1952
		if (event_sched_in(event, cpuctx, ctx)) {
1953
			partial_group = event;
1954 1955 1956 1957
			goto group_error;
		}
	}

1958
	if (!pmu->commit_txn(pmu))
1959
		return 0;
1960

1961 1962 1963 1964
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1975
	 */
1976 1977
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1978 1979 1980 1981 1982 1983 1984 1985
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1986
	}
1987
	event_sched_out(group_event, cpuctx, ctx);
1988

P
Peter Zijlstra 已提交
1989
	pmu->cancel_txn(pmu);
1990

1991
	perf_mux_hrtimer_restart(cpuctx);
1992

1993 1994 1995
	return -EAGAIN;
}

1996
/*
1997
 * Work out whether we can put this event group on the CPU now.
1998
 */
1999
static int group_can_go_on(struct perf_event *event,
2000 2001 2002 2003
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2004
	 * Groups consisting entirely of software events can always go on.
2005
	 */
2006
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2007 2008 2009
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2010
	 * events can go on.
2011 2012 2013 2014 2015
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2016
	 * events on the CPU, it can't go on.
2017
	 */
2018
	if (event->attr.exclusive && cpuctx->active_oncpu)
2019 2020 2021 2022 2023 2024 2025 2026
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2027 2028
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2029
{
2030 2031
	u64 tstamp = perf_event_time(event);

2032
	list_add_event(event, ctx);
2033
	perf_group_attach(event);
2034 2035 2036
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2037 2038
}

2039 2040
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2041 2042 2043 2044 2045
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static void ___perf_install_in_context(void *info)
{
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;

	/*
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
	 */
	add_event_to_ctx(event, ctx);
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2082
/*
2083
 * Cross CPU call to install and enable a performance event
2084 2085
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2086
 */
2087
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2088
{
2089 2090
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2091
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2092 2093 2094
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2095
	perf_ctx_lock(cpuctx, task_ctx);
2096
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2097 2098

	/*
2099
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2100
	 */
2101
	if (task_ctx)
2102
		task_ctx_sched_out(cpuctx, task_ctx);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2117 2118
		task = task_ctx->task;
	}
2119

2120
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2121

2122
	update_context_time(ctx);
S
Stephane Eranian 已提交
2123 2124 2125 2126 2127 2128
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2129

2130
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2131

2132
	/*
2133
	 * Schedule everything back in
2134
	 */
2135
	perf_event_sched_in(cpuctx, task_ctx, task);
2136 2137 2138

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2139 2140

	return 0;
T
Thomas Gleixner 已提交
2141 2142 2143
}

/*
2144
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2145 2146
 */
static void
2147 2148
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2149 2150
			int cpu)
{
2151 2152
	lockdep_assert_held(&ctx->mutex);

2153
	event->ctx = ctx;
2154 2155
	if (event->cpu != -1)
		event->cpu = cpu;
2156

2157 2158
	event_function_call(event, __perf_install_in_context,
			    ___perf_install_in_context, event);
T
Thomas Gleixner 已提交
2159 2160
}

2161
/*
2162
 * Put a event into inactive state and update time fields.
2163 2164 2165 2166 2167 2168
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2169
static void __perf_event_mark_enabled(struct perf_event *event)
2170
{
2171
	struct perf_event *sub;
2172
	u64 tstamp = perf_event_time(event);
2173

2174
	event->state = PERF_EVENT_STATE_INACTIVE;
2175
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2176
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2177 2178
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2179
	}
2180 2181
}

2182
/*
2183
 * Cross CPU call to enable a performance event
2184
 */
2185
static int __perf_event_enable(void *info)
2186
{
2187 2188 2189
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2190
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2191
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2203
		return -EINVAL;
2204

2205 2206
	perf_ctx_lock(cpuctx, task_ctx);
	WARN_ON_ONCE(&cpuctx->ctx != ctx && task_ctx != ctx);
2207
	update_context_time(ctx);
2208

2209
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2210
		goto unlock;
S
Stephane Eranian 已提交
2211 2212 2213 2214

	/*
	 * set current task's cgroup time reference point
	 */
2215
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2216

2217
	__perf_event_mark_enabled(event);
2218

S
Stephane Eranian 已提交
2219 2220 2221
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2222
		goto unlock;
S
Stephane Eranian 已提交
2223
	}
2224

2225
	/*
2226
	 * If the event is in a group and isn't the group leader,
2227
	 * then don't put it on unless the group is on.
2228
	 */
2229
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2230
		goto unlock;
2231

2232
	ctx_resched(cpuctx, task_ctx);
2233

P
Peter Zijlstra 已提交
2234
unlock:
2235
	perf_ctx_unlock(cpuctx, task_ctx);
2236 2237

	return 0;
2238 2239
}

2240 2241 2242 2243 2244
void ___perf_event_enable(void *info)
{
	__perf_event_mark_enabled((struct perf_event *)info);
}

2245
/*
2246
 * Enable a event.
2247
 *
2248 2249
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2250
 * remains valid.  This condition is satisfied when called through
2251 2252
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2253
 */
P
Peter Zijlstra 已提交
2254
static void _perf_event_enable(struct perf_event *event)
2255
{
2256
	struct perf_event_context *ctx = event->ctx;
2257

2258 2259 2260
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2261 2262 2263 2264
		return;
	}

	/*
2265
	 * If the event is in error state, clear that first.
2266 2267 2268 2269
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2270
	 */
2271 2272
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2273
	raw_spin_unlock_irq(&ctx->lock);
2274

2275 2276
	event_function_call(event, __perf_event_enable,
			    ___perf_event_enable, event);
2277
}
P
Peter Zijlstra 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2290
EXPORT_SYMBOL_GPL(perf_event_enable);
2291

P
Peter Zijlstra 已提交
2292
static int _perf_event_refresh(struct perf_event *event, int refresh)
2293
{
2294
	/*
2295
	 * not supported on inherited events
2296
	 */
2297
	if (event->attr.inherit || !is_sampling_event(event))
2298 2299
		return -EINVAL;

2300
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2301
	_perf_event_enable(event);
2302 2303

	return 0;
2304
}
P
Peter Zijlstra 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2320
EXPORT_SYMBOL_GPL(perf_event_refresh);
2321

2322 2323 2324
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2325
{
2326
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2327 2328 2329
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2330

2331
	ctx->is_active &= ~event_type;
2332 2333 2334 2335 2336 2337
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}

2338
	if (likely(!ctx->nr_events))
2339 2340
		return;

2341
	update_context_time(ctx);
S
Stephane Eranian 已提交
2342
	update_cgrp_time_from_cpuctx(cpuctx);
2343
	if (!ctx->nr_active)
2344
		return;
2345

P
Peter Zijlstra 已提交
2346
	perf_pmu_disable(ctx->pmu);
2347
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2348 2349
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2350
	}
2351

2352
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2353
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2354
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2355
	}
P
Peter Zijlstra 已提交
2356
	perf_pmu_enable(ctx->pmu);
2357 2358
}

2359
/*
2360 2361 2362 2363 2364 2365
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2366
 */
2367 2368
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2369
{
2370 2371 2372
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2395 2396
}

2397 2398
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2399 2400 2401
{
	u64 value;

2402
	if (!event->attr.inherit_stat)
2403 2404 2405
		return;

	/*
2406
	 * Update the event value, we cannot use perf_event_read()
2407 2408
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2409
	 * we know the event must be on the current CPU, therefore we
2410 2411
	 * don't need to use it.
	 */
2412 2413
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2414 2415
		event->pmu->read(event);
		/* fall-through */
2416

2417 2418
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2419 2420 2421 2422 2423 2424 2425
		break;

	default:
		break;
	}

	/*
2426
	 * In order to keep per-task stats reliable we need to flip the event
2427 2428
	 * values when we flip the contexts.
	 */
2429 2430 2431
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2432

2433 2434
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2435

2436
	/*
2437
	 * Since we swizzled the values, update the user visible data too.
2438
	 */
2439 2440
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2441 2442
}

2443 2444
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2445
{
2446
	struct perf_event *event, *next_event;
2447 2448 2449 2450

	if (!ctx->nr_stat)
		return;

2451 2452
	update_context_time(ctx);

2453 2454
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2455

2456 2457
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2458

2459 2460
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2461

2462
		__perf_event_sync_stat(event, next_event);
2463

2464 2465
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2466 2467 2468
	}
}

2469 2470
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2471
{
P
Peter Zijlstra 已提交
2472
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2473
	struct perf_event_context *next_ctx;
2474
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2475
	struct perf_cpu_context *cpuctx;
2476
	int do_switch = 1;
T
Thomas Gleixner 已提交
2477

P
Peter Zijlstra 已提交
2478 2479
	if (likely(!ctx))
		return;
2480

P
Peter Zijlstra 已提交
2481 2482
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2483 2484
		return;

2485
	rcu_read_lock();
P
Peter Zijlstra 已提交
2486
	next_ctx = next->perf_event_ctxp[ctxn];
2487 2488 2489 2490 2491 2492 2493
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2494
	if (!parent && !next_parent)
2495 2496 2497
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2498 2499 2500 2501 2502 2503 2504 2505 2506
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2507 2508
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2509
		if (context_equiv(ctx, next_ctx)) {
2510 2511
			/*
			 * XXX do we need a memory barrier of sorts
2512
			 * wrt to rcu_dereference() of perf_event_ctxp
2513
			 */
P
Peter Zijlstra 已提交
2514 2515
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2516 2517
			ctx->task = next;
			next_ctx->task = task;
2518 2519 2520

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2521
			do_switch = 0;
2522

2523
			perf_event_sync_stat(ctx, next_ctx);
2524
		}
2525 2526
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2527
	}
2528
unlock:
2529
	rcu_read_unlock();
2530

2531
	if (do_switch) {
2532
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2533
		task_ctx_sched_out(cpuctx, ctx);
2534
		raw_spin_unlock(&ctx->lock);
2535
	}
T
Thomas Gleixner 已提交
2536 2537
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2588 2589 2590
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2605 2606
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2607 2608 2609
{
	int ctxn;

2610 2611 2612
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2613 2614 2615
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2616 2617
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2618 2619 2620 2621 2622 2623

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2624
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2625
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2626 2627
}

2628 2629
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2630
{
2631 2632
	if (!cpuctx->task_ctx)
		return;
2633 2634 2635 2636

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2637
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2638 2639
}

2640 2641 2642 2643 2644 2645 2646
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2647 2648
}

2649
static void
2650
ctx_pinned_sched_in(struct perf_event_context *ctx,
2651
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2652
{
2653
	struct perf_event *event;
T
Thomas Gleixner 已提交
2654

2655 2656
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2657
			continue;
2658
		if (!event_filter_match(event))
2659 2660
			continue;

S
Stephane Eranian 已提交
2661 2662 2663 2664
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2665
		if (group_can_go_on(event, cpuctx, 1))
2666
			group_sched_in(event, cpuctx, ctx);
2667 2668 2669 2670 2671

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2672 2673 2674
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2675
		}
2676
	}
2677 2678 2679 2680
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2681
		      struct perf_cpu_context *cpuctx)
2682 2683 2684
{
	struct perf_event *event;
	int can_add_hw = 1;
2685

2686 2687 2688
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2689
			continue;
2690 2691
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2692
		 * of events:
2693
		 */
2694
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2695 2696
			continue;

S
Stephane Eranian 已提交
2697 2698 2699 2700
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2701
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2702
			if (group_sched_in(event, cpuctx, ctx))
2703
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2704
		}
T
Thomas Gleixner 已提交
2705
	}
2706 2707 2708 2709 2710
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2711 2712
	     enum event_type_t event_type,
	     struct task_struct *task)
2713
{
2714
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2715 2716 2717
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2718

2719
	ctx->is_active |= event_type;
2720 2721 2722 2723 2724 2725 2726
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

2727
	if (likely(!ctx->nr_events))
2728
		return;
2729

S
Stephane Eranian 已提交
2730 2731
	now = perf_clock();
	ctx->timestamp = now;
2732
	perf_cgroup_set_timestamp(task, ctx);
2733 2734 2735 2736
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2737
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2738
		ctx_pinned_sched_in(ctx, cpuctx);
2739 2740

	/* Then walk through the lower prio flexible groups */
2741
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2742
		ctx_flexible_sched_in(ctx, cpuctx);
2743 2744
}

2745
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2746 2747
			     enum event_type_t event_type,
			     struct task_struct *task)
2748 2749 2750
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2751
	ctx_sched_in(ctx, cpuctx, event_type, task);
2752 2753
}

S
Stephane Eranian 已提交
2754 2755
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2756
{
P
Peter Zijlstra 已提交
2757
	struct perf_cpu_context *cpuctx;
2758

P
Peter Zijlstra 已提交
2759
	cpuctx = __get_cpu_context(ctx);
2760 2761 2762
	if (cpuctx->task_ctx == ctx)
		return;

2763
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2764
	perf_pmu_disable(ctx->pmu);
2765 2766 2767 2768 2769 2770
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2771
	perf_event_sched_in(cpuctx, ctx, task);
2772 2773
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2774 2775
}

P
Peter Zijlstra 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2787 2788
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2789 2790 2791 2792
{
	struct perf_event_context *ctx;
	int ctxn;

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2803 2804 2805 2806 2807
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2808
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2809
	}
2810

2811 2812 2813
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2814 2815
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2816 2817
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2845
#define REDUCE_FLS(a, b)		\
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2885 2886 2887
	if (!divisor)
		return dividend;

2888 2889 2890
	return div64_u64(dividend, divisor);
}

2891 2892 2893
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2894
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2895
{
2896
	struct hw_perf_event *hwc = &event->hw;
2897
	s64 period, sample_period;
2898 2899
	s64 delta;

2900
	period = perf_calculate_period(event, nsec, count);
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2911

2912
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2913 2914 2915
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2916
		local64_set(&hwc->period_left, 0);
2917 2918 2919

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2920
	}
2921 2922
}

2923 2924 2925 2926 2927 2928 2929
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2930
{
2931 2932
	struct perf_event *event;
	struct hw_perf_event *hwc;
2933
	u64 now, period = TICK_NSEC;
2934
	s64 delta;
2935

2936 2937 2938 2939 2940 2941
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2942 2943
		return;

2944
	raw_spin_lock(&ctx->lock);
2945
	perf_pmu_disable(ctx->pmu);
2946

2947
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2948
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2949 2950
			continue;

2951
		if (!event_filter_match(event))
2952 2953
			continue;

2954 2955
		perf_pmu_disable(event->pmu);

2956
		hwc = &event->hw;
2957

2958
		if (hwc->interrupts == MAX_INTERRUPTS) {
2959
			hwc->interrupts = 0;
2960
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2961
			event->pmu->start(event, 0);
2962 2963
		}

2964
		if (!event->attr.freq || !event->attr.sample_freq)
2965
			goto next;
2966

2967 2968 2969 2970 2971
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2972
		now = local64_read(&event->count);
2973 2974
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2975

2976 2977 2978
		/*
		 * restart the event
		 * reload only if value has changed
2979 2980 2981
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2982
		 */
2983
		if (delta > 0)
2984
			perf_adjust_period(event, period, delta, false);
2985 2986

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2987 2988
	next:
		perf_pmu_enable(event->pmu);
2989
	}
2990

2991
	perf_pmu_enable(ctx->pmu);
2992
	raw_spin_unlock(&ctx->lock);
2993 2994
}

2995
/*
2996
 * Round-robin a context's events:
2997
 */
2998
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2999
{
3000 3001 3002 3003 3004 3005
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3006 3007
}

3008
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3009
{
P
Peter Zijlstra 已提交
3010
	struct perf_event_context *ctx = NULL;
3011
	int rotate = 0;
3012

3013 3014 3015 3016
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3017

P
Peter Zijlstra 已提交
3018
	ctx = cpuctx->task_ctx;
3019 3020 3021 3022
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3023

3024
	if (!rotate)
3025 3026
		goto done;

3027
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3028
	perf_pmu_disable(cpuctx->ctx.pmu);
3029

3030 3031 3032
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3033

3034 3035 3036
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3037

3038
	perf_event_sched_in(cpuctx, ctx, current);
3039

3040 3041
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3042
done:
3043 3044

	return rotate;
3045 3046
}

3047 3048 3049
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3050
	if (atomic_read(&nr_freq_events) ||
3051
	    __this_cpu_read(perf_throttled_count))
3052
		return false;
3053 3054
	else
		return true;
3055 3056 3057
}
#endif

3058 3059
void perf_event_task_tick(void)
{
3060 3061
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3062
	int throttled;
3063

3064 3065
	WARN_ON(!irqs_disabled());

3066 3067 3068
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3069
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3070
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3071 3072
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3083
	__perf_event_mark_enabled(event);
3084 3085 3086 3087

	return 1;
}

3088
/*
3089
 * Enable all of a task's events that have been marked enable-on-exec.
3090 3091
 * This expects task == current.
 */
3092
static void perf_event_enable_on_exec(int ctxn)
3093
{
3094
	struct perf_event_context *ctx, *clone_ctx = NULL;
3095
	struct perf_cpu_context *cpuctx;
3096
	struct perf_event *event;
3097 3098 3099 3100
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3101
	ctx = current->perf_event_ctxp[ctxn];
3102
	if (!ctx || !ctx->nr_events)
3103 3104
		goto out;

3105 3106 3107 3108
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3109 3110

	/*
3111
	 * Unclone and reschedule this context if we enabled any event.
3112
	 */
3113
	if (enabled) {
3114
		clone_ctx = unclone_ctx(ctx);
3115 3116 3117
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3118

P
Peter Zijlstra 已提交
3119
out:
3120
	local_irq_restore(flags);
3121 3122 3123

	if (clone_ctx)
		put_ctx(clone_ctx);
3124 3125
}

3126 3127 3128 3129 3130
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3131 3132
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3133 3134 3135
	rcu_read_unlock();
}

3136 3137 3138
struct perf_read_data {
	struct perf_event *event;
	bool group;
3139
	int ret;
3140 3141
};

T
Thomas Gleixner 已提交
3142
/*
3143
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3144
 */
3145
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3146
{
3147 3148
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3149
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3150
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3151
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3152

3153 3154 3155 3156
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3157 3158
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3159 3160 3161 3162
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3163
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3164
	if (ctx->is_active) {
3165
		update_context_time(ctx);
S
Stephane Eranian 已提交
3166 3167
		update_cgrp_time_from_event(event);
	}
3168

3169
	update_event_times(event);
3170 3171
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3172

3173 3174 3175
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3176
		goto unlock;
3177 3178 3179 3180 3181
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3182 3183 3184

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3185 3186 3187 3188 3189
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3190
			sub->pmu->read(sub);
3191
		}
3192
	}
3193 3194

	data->ret = pmu->commit_txn(pmu);
3195 3196

unlock:
3197
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3198 3199
}

P
Peter Zijlstra 已提交
3200 3201
static inline u64 perf_event_count(struct perf_event *event)
{
3202 3203 3204 3205
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3206 3207
}

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3261
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3262
{
3263 3264
	int ret = 0;

T
Thomas Gleixner 已提交
3265
	/*
3266 3267
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3268
	 */
3269
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3270 3271 3272
		struct perf_read_data data = {
			.event = event,
			.group = group,
3273
			.ret = 0,
3274
		};
3275
		smp_call_function_single(event->oncpu,
3276
					 __perf_event_read, &data, 1);
3277
		ret = data.ret;
3278
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3279 3280 3281
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3282
		raw_spin_lock_irqsave(&ctx->lock, flags);
3283 3284 3285 3286 3287
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3288
		if (ctx->is_active) {
3289
			update_context_time(ctx);
S
Stephane Eranian 已提交
3290 3291
			update_cgrp_time_from_event(event);
		}
3292 3293 3294 3295
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3296
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3297
	}
3298 3299

	return ret;
T
Thomas Gleixner 已提交
3300 3301
}

3302
/*
3303
 * Initialize the perf_event context in a task_struct:
3304
 */
3305
static void __perf_event_init_context(struct perf_event_context *ctx)
3306
{
3307
	raw_spin_lock_init(&ctx->lock);
3308
	mutex_init(&ctx->mutex);
3309
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3310 3311
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3312 3313
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3314
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3330
	}
3331 3332 3333
	ctx->pmu = pmu;

	return ctx;
3334 3335
}

3336 3337 3338 3339 3340
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3341 3342

	rcu_read_lock();
3343
	if (!vpid)
T
Thomas Gleixner 已提交
3344 3345
		task = current;
	else
3346
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3347 3348 3349 3350 3351 3352 3353 3354
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3355 3356 3357 3358
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3359 3360 3361 3362 3363 3364 3365
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3366 3367 3368
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3369
static struct perf_event_context *
3370 3371
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3372
{
3373
	struct perf_event_context *ctx, *clone_ctx = NULL;
3374
	struct perf_cpu_context *cpuctx;
3375
	void *task_ctx_data = NULL;
3376
	unsigned long flags;
P
Peter Zijlstra 已提交
3377
	int ctxn, err;
3378
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3379

3380
	if (!task) {
3381
		/* Must be root to operate on a CPU event: */
3382
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3383 3384 3385
			return ERR_PTR(-EACCES);

		/*
3386
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3387 3388 3389
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3390
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3391 3392
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3393
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3394
		ctx = &cpuctx->ctx;
3395
		get_ctx(ctx);
3396
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3397 3398 3399 3400

		return ctx;
	}

P
Peter Zijlstra 已提交
3401 3402 3403 3404 3405
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3406 3407 3408 3409 3410 3411 3412 3413
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3414
retry:
P
Peter Zijlstra 已提交
3415
	ctx = perf_lock_task_context(task, ctxn, &flags);
3416
	if (ctx) {
3417
		clone_ctx = unclone_ctx(ctx);
3418
		++ctx->pin_count;
3419 3420 3421 3422 3423

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3424
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3425 3426 3427

		if (clone_ctx)
			put_ctx(clone_ctx);
3428
	} else {
3429
		ctx = alloc_perf_context(pmu, task);
3430 3431 3432
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3433

3434 3435 3436 3437 3438
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3449
		else {
3450
			get_ctx(ctx);
3451
			++ctx->pin_count;
3452
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3453
		}
3454 3455 3456
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3457
			put_ctx(ctx);
3458 3459 3460 3461

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3462 3463 3464
		}
	}

3465
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3466
	return ctx;
3467

P
Peter Zijlstra 已提交
3468
errout:
3469
	kfree(task_ctx_data);
3470
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3471 3472
}

L
Li Zefan 已提交
3473
static void perf_event_free_filter(struct perf_event *event);
3474
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3475

3476
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3477
{
3478
	struct perf_event *event;
P
Peter Zijlstra 已提交
3479

3480 3481 3482
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3483
	perf_event_free_filter(event);
3484
	kfree(event);
P
Peter Zijlstra 已提交
3485 3486
}

3487 3488
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3489

3490
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3491
{
3492 3493 3494 3495 3496 3497
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3498

3499 3500
static void unaccount_event(struct perf_event *event)
{
3501 3502
	bool dec = false;

3503 3504 3505 3506
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3507
		dec = true;
3508 3509 3510 3511 3512 3513
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3514 3515
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3516
	if (event->attr.context_switch) {
3517
		dec = true;
3518 3519
		atomic_dec(&nr_switch_events);
	}
3520
	if (is_cgroup_event(event))
3521
		dec = true;
3522
	if (has_branch_stack(event))
3523 3524 3525
		dec = true;

	if (dec)
3526 3527 3528 3529
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3616 3617
static void __free_event(struct perf_event *event)
{
3618
	if (!event->parent) {
3619 3620
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3621
	}
3622

3623 3624
	perf_event_free_bpf_prog(event);

3625 3626 3627 3628 3629 3630
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3631 3632
	if (event->pmu) {
		exclusive_event_destroy(event);
3633
		module_put(event->pmu->module);
3634
	}
3635

3636 3637
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3638 3639

static void _free_event(struct perf_event *event)
3640
{
3641
	irq_work_sync(&event->pending);
3642

3643
	unaccount_event(event);
3644

3645
	if (event->rb) {
3646 3647 3648 3649 3650 3651 3652
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3653
		ring_buffer_attach(event, NULL);
3654
		mutex_unlock(&event->mmap_mutex);
3655 3656
	}

S
Stephane Eranian 已提交
3657 3658 3659
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3660
	__free_event(event);
3661 3662
}

P
Peter Zijlstra 已提交
3663 3664 3665 3666 3667
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3668
{
P
Peter Zijlstra 已提交
3669 3670 3671 3672 3673 3674
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3675

P
Peter Zijlstra 已提交
3676
	_free_event(event);
T
Thomas Gleixner 已提交
3677 3678
}

3679
/*
3680
 * Remove user event from the owner task.
3681
 */
3682
static void perf_remove_from_owner(struct perf_event *event)
3683
{
P
Peter Zijlstra 已提交
3684
	struct task_struct *owner;
3685

P
Peter Zijlstra 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3727 3728 3729 3730
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3731
	struct perf_event_context *ctx;
3732 3733 3734 3735 3736 3737

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3738

P
Peter Zijlstra 已提交
3739 3740 3741 3742 3743 3744 3745
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3746
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3747 3748 3749 3750
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3751 3752
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3753
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3754
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3755 3756

	_free_event(event);
3757 3758
}

P
Peter Zijlstra 已提交
3759 3760 3761 3762 3763 3764 3765
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3766 3767 3768
/*
 * Called when the last reference to the file is gone.
 */
3769 3770 3771 3772
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3773 3774
}

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3811
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3812
{
3813
	struct perf_event *child;
3814 3815
	u64 total = 0;

3816 3817 3818
	*enabled = 0;
	*running = 0;

3819
	mutex_lock(&event->child_mutex);
3820

3821
	(void)perf_event_read(event, false);
3822 3823
	total += perf_event_count(event);

3824 3825 3826 3827 3828 3829
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3830
		(void)perf_event_read(child, false);
3831
		total += perf_event_count(child);
3832 3833 3834
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3835
	mutex_unlock(&event->child_mutex);
3836 3837 3838

	return total;
}
3839
EXPORT_SYMBOL_GPL(perf_event_read_value);
3840

3841
static int __perf_read_group_add(struct perf_event *leader,
3842
					u64 read_format, u64 *values)
3843
{
3844 3845
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3846
	int ret;
P
Peter Zijlstra 已提交
3847

3848 3849 3850
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3851

3852 3853 3854 3855 3856 3857 3858 3859 3860
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3861

3862 3863 3864 3865 3866 3867 3868 3869 3870
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3871 3872
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3873

3874 3875 3876 3877 3878
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3879 3880

	return 0;
3881
}
3882

3883 3884 3885 3886 3887
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3888
	int ret;
3889
	u64 *values;
3890

3891
	lockdep_assert_held(&ctx->mutex);
3892

3893 3894 3895
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3896

3897 3898 3899 3900 3901 3902 3903
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3904

3905 3906 3907 3908 3909 3910 3911 3912 3913
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3914

3915
	mutex_unlock(&leader->child_mutex);
3916

3917
	ret = event->read_size;
3918 3919
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3920
	goto out;
3921

3922 3923 3924
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3925
	kfree(values);
3926
	return ret;
3927 3928
}

3929
static int perf_read_one(struct perf_event *event,
3930 3931
				 u64 read_format, char __user *buf)
{
3932
	u64 enabled, running;
3933 3934 3935
	u64 values[4];
	int n = 0;

3936 3937 3938 3939 3940
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3941
	if (read_format & PERF_FORMAT_ID)
3942
		values[n++] = primary_event_id(event);
3943 3944 3945 3946 3947 3948 3949

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3963
/*
3964
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3965 3966
 */
static ssize_t
3967
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3968
{
3969
	u64 read_format = event->attr.read_format;
3970
	int ret;
T
Thomas Gleixner 已提交
3971

3972
	/*
3973
	 * Return end-of-file for a read on a event that is in
3974 3975 3976
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3977
	if (event->state == PERF_EVENT_STATE_ERROR)
3978 3979
		return 0;

3980
	if (count < event->read_size)
3981 3982
		return -ENOSPC;

3983
	WARN_ON_ONCE(event->ctx->parent_ctx);
3984
	if (read_format & PERF_FORMAT_GROUP)
3985
		ret = perf_read_group(event, read_format, buf);
3986
	else
3987
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3988

3989
	return ret;
T
Thomas Gleixner 已提交
3990 3991 3992 3993 3994
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3995
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3996 3997
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3998

P
Peter Zijlstra 已提交
3999
	ctx = perf_event_ctx_lock(event);
4000
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4001 4002 4003
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4004 4005 4006 4007
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4008
	struct perf_event *event = file->private_data;
4009
	struct ring_buffer *rb;
4010
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4011

4012
	poll_wait(file, &event->waitq, wait);
4013

4014
	if (is_event_hup(event))
4015
		return events;
P
Peter Zijlstra 已提交
4016

4017
	/*
4018 4019
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4020 4021
	 */
	mutex_lock(&event->mmap_mutex);
4022 4023
	rb = event->rb;
	if (rb)
4024
		events = atomic_xchg(&rb->poll, 0);
4025
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4026 4027 4028
	return events;
}

P
Peter Zijlstra 已提交
4029
static void _perf_event_reset(struct perf_event *event)
4030
{
4031
	(void)perf_event_read(event, false);
4032
	local64_set(&event->count, 0);
4033
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4034 4035
}

4036
/*
4037 4038 4039 4040
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4041
 */
4042 4043
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4044
{
4045
	struct perf_event *child;
P
Peter Zijlstra 已提交
4046

4047
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4048

4049 4050 4051
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4052
		func(child);
4053
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4054 4055
}

4056 4057
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4058
{
4059 4060
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4061

P
Peter Zijlstra 已提交
4062 4063
	lockdep_assert_held(&ctx->mutex);

4064
	event = event->group_leader;
4065

4066 4067
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4068
		perf_event_for_each_child(sibling, func);
4069 4070
}

4071 4072
struct period_event {
	struct perf_event *event;
4073
	u64 value;
4074
};
4075

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
static void ___perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	u64 value = pe->value;

	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
}

4092 4093 4094 4095 4096 4097 4098
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4099

4100
	raw_spin_lock(&ctx->lock);
4101 4102
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4103
	} else {
4104 4105
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4106
	}
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4120
	raw_spin_unlock(&ctx->lock);
4121

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	pe.value = value;

4144 4145
	event_function_call(event, __perf_event_period,
			    ___perf_event_period, &pe);
4146

4147
	return 0;
4148 4149
}

4150 4151
static const struct file_operations perf_fops;

4152
static inline int perf_fget_light(int fd, struct fd *p)
4153
{
4154 4155 4156
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4157

4158 4159 4160
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4161
	}
4162 4163
	*p = f;
	return 0;
4164 4165 4166 4167
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4168
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4169
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4170

P
Peter Zijlstra 已提交
4171
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4172
{
4173
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4174
	u32 flags = arg;
4175 4176

	switch (cmd) {
4177
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4178
		func = _perf_event_enable;
4179
		break;
4180
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4181
		func = _perf_event_disable;
4182
		break;
4183
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4184
		func = _perf_event_reset;
4185
		break;
P
Peter Zijlstra 已提交
4186

4187
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4188
		return _perf_event_refresh(event, arg);
4189

4190 4191
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4192

4193 4194 4195 4196 4197 4198 4199 4200 4201
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4202
	case PERF_EVENT_IOC_SET_OUTPUT:
4203 4204 4205
	{
		int ret;
		if (arg != -1) {
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4216 4217 4218
		}
		return ret;
	}
4219

L
Li Zefan 已提交
4220 4221 4222
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4223 4224 4225
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4226
	default:
P
Peter Zijlstra 已提交
4227
		return -ENOTTY;
4228
	}
P
Peter Zijlstra 已提交
4229 4230

	if (flags & PERF_IOC_FLAG_GROUP)
4231
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4232
	else
4233
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4234 4235

	return 0;
4236 4237
}

P
Peter Zijlstra 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4271
int perf_event_task_enable(void)
4272
{
P
Peter Zijlstra 已提交
4273
	struct perf_event_context *ctx;
4274
	struct perf_event *event;
4275

4276
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4277 4278 4279 4280 4281
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4282
	mutex_unlock(&current->perf_event_mutex);
4283 4284 4285 4286

	return 0;
}

4287
int perf_event_task_disable(void)
4288
{
P
Peter Zijlstra 已提交
4289
	struct perf_event_context *ctx;
4290
	struct perf_event *event;
4291

4292
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4293 4294 4295 4296 4297
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4298
	mutex_unlock(&current->perf_event_mutex);
4299 4300 4301 4302

	return 0;
}

4303
static int perf_event_index(struct perf_event *event)
4304
{
P
Peter Zijlstra 已提交
4305 4306 4307
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4308
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4309 4310
		return 0;

4311
	return event->pmu->event_idx(event);
4312 4313
}

4314
static void calc_timer_values(struct perf_event *event,
4315
				u64 *now,
4316 4317
				u64 *enabled,
				u64 *running)
4318
{
4319
	u64 ctx_time;
4320

4321 4322
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4323 4324 4325 4326
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4342 4343
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4344 4345 4346 4347 4348

unlock:
	rcu_read_unlock();
}

4349 4350
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4351 4352 4353
{
}

4354 4355 4356 4357 4358
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4359
void perf_event_update_userpage(struct perf_event *event)
4360
{
4361
	struct perf_event_mmap_page *userpg;
4362
	struct ring_buffer *rb;
4363
	u64 enabled, running, now;
4364 4365

	rcu_read_lock();
4366 4367 4368 4369
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4370 4371 4372 4373 4374 4375 4376 4377 4378
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4379
	calc_timer_values(event, &now, &enabled, &running);
4380

4381
	userpg = rb->user_page;
4382 4383 4384 4385 4386
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4387
	++userpg->lock;
4388
	barrier();
4389
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4390
	userpg->offset = perf_event_count(event);
4391
	if (userpg->index)
4392
		userpg->offset -= local64_read(&event->hw.prev_count);
4393

4394
	userpg->time_enabled = enabled +
4395
			atomic64_read(&event->child_total_time_enabled);
4396

4397
	userpg->time_running = running +
4398
			atomic64_read(&event->child_total_time_running);
4399

4400
	arch_perf_update_userpage(event, userpg, now);
4401

4402
	barrier();
4403
	++userpg->lock;
4404
	preempt_enable();
4405
unlock:
4406
	rcu_read_unlock();
4407 4408
}

4409 4410 4411
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4412
	struct ring_buffer *rb;
4413 4414 4415 4416 4417 4418 4419 4420 4421
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4422 4423
	rb = rcu_dereference(event->rb);
	if (!rb)
4424 4425 4426 4427 4428
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4429
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4444 4445 4446
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4447
	struct ring_buffer *old_rb = NULL;
4448 4449
	unsigned long flags;

4450 4451 4452 4453 4454 4455
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4456

4457 4458 4459 4460
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4461

4462 4463
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4464
	}
4465

4466
	if (rb) {
4467 4468 4469 4470 4471
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4488 4489 4490 4491 4492 4493 4494 4495
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4496 4497 4498 4499
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4500 4501 4502
	rcu_read_unlock();
}

4503
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4504
{
4505
	struct ring_buffer *rb;
4506

4507
	rcu_read_lock();
4508 4509 4510 4511
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4512 4513 4514
	}
	rcu_read_unlock();

4515
	return rb;
4516 4517
}

4518
void ring_buffer_put(struct ring_buffer *rb)
4519
{
4520
	if (!atomic_dec_and_test(&rb->refcount))
4521
		return;
4522

4523
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4524

4525
	call_rcu(&rb->rcu_head, rb_free_rcu);
4526 4527 4528 4529
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4530
	struct perf_event *event = vma->vm_file->private_data;
4531

4532
	atomic_inc(&event->mmap_count);
4533
	atomic_inc(&event->rb->mmap_count);
4534

4535 4536 4537
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4538 4539
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4540 4541
}

4542 4543 4544 4545 4546 4547 4548 4549
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4550 4551
static void perf_mmap_close(struct vm_area_struct *vma)
{
4552
	struct perf_event *event = vma->vm_file->private_data;
4553

4554
	struct ring_buffer *rb = ring_buffer_get(event);
4555 4556 4557
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4558

4559 4560 4561
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4576 4577 4578
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4579
		goto out_put;
4580

4581
	ring_buffer_attach(event, NULL);
4582 4583 4584
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4585 4586
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4587

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4604

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4616 4617 4618
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4619
		mutex_unlock(&event->mmap_mutex);
4620
		put_event(event);
4621

4622 4623 4624 4625 4626
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4627
	}
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4643
out_put:
4644
	ring_buffer_put(rb); /* could be last */
4645 4646
}

4647
static const struct vm_operations_struct perf_mmap_vmops = {
4648
	.open		= perf_mmap_open,
4649
	.close		= perf_mmap_close, /* non mergable */
4650 4651
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4652 4653 4654 4655
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4656
	struct perf_event *event = file->private_data;
4657
	unsigned long user_locked, user_lock_limit;
4658
	struct user_struct *user = current_user();
4659
	unsigned long locked, lock_limit;
4660
	struct ring_buffer *rb = NULL;
4661 4662
	unsigned long vma_size;
	unsigned long nr_pages;
4663
	long user_extra = 0, extra = 0;
4664
	int ret = 0, flags = 0;
4665

4666 4667 4668
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4669
	 * same rb.
4670 4671 4672 4673
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4674
	if (!(vma->vm_flags & VM_SHARED))
4675
		return -EINVAL;
4676 4677

	vma_size = vma->vm_end - vma->vm_start;
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4738

4739
	/*
4740
	 * If we have rb pages ensure they're a power-of-two number, so we
4741 4742
	 * can do bitmasks instead of modulo.
	 */
4743
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4744 4745
		return -EINVAL;

4746
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4747 4748
		return -EINVAL;

4749
	WARN_ON_ONCE(event->ctx->parent_ctx);
4750
again:
4751
	mutex_lock(&event->mmap_mutex);
4752
	if (event->rb) {
4753
		if (event->rb->nr_pages != nr_pages) {
4754
			ret = -EINVAL;
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4768 4769 4770
		goto unlock;
	}

4771
	user_extra = nr_pages + 1;
4772 4773

accounting:
4774
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4775 4776 4777 4778 4779 4780

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4781
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4782

4783 4784
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4785

4786
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4787
	lock_limit >>= PAGE_SHIFT;
4788
	locked = vma->vm_mm->pinned_vm + extra;
4789

4790 4791
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4792 4793 4794
		ret = -EPERM;
		goto unlock;
	}
4795

4796
	WARN_ON(!rb && event->rb);
4797

4798
	if (vma->vm_flags & VM_WRITE)
4799
		flags |= RING_BUFFER_WRITABLE;
4800

4801
	if (!rb) {
4802 4803 4804
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4805

4806 4807 4808 4809
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4810

4811 4812 4813
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4814

4815
		ring_buffer_attach(event, rb);
4816

4817 4818 4819
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4820 4821
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4822 4823 4824
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4825

4826
unlock:
4827 4828 4829 4830
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4831
		atomic_inc(&event->mmap_count);
4832 4833 4834 4835
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4836
	mutex_unlock(&event->mmap_mutex);
4837

4838 4839 4840 4841
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4842
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4843
	vma->vm_ops = &perf_mmap_vmops;
4844

4845 4846 4847
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4848
	return ret;
4849 4850
}

P
Peter Zijlstra 已提交
4851 4852
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4853
	struct inode *inode = file_inode(filp);
4854
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4855 4856 4857
	int retval;

	mutex_lock(&inode->i_mutex);
4858
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4859 4860 4861 4862 4863 4864 4865 4866
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4867
static const struct file_operations perf_fops = {
4868
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4869 4870 4871
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4872
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4873
	.compat_ioctl		= perf_compat_ioctl,
4874
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4875
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4876 4877
};

4878
/*
4879
 * Perf event wakeup
4880 4881 4882 4883 4884
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4885 4886 4887 4888 4889 4890 4891 4892
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4893
void perf_event_wakeup(struct perf_event *event)
4894
{
4895
	ring_buffer_wakeup(event);
4896

4897
	if (event->pending_kill) {
4898
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4899
		event->pending_kill = 0;
4900
	}
4901 4902
}

4903
static void perf_pending_event(struct irq_work *entry)
4904
{
4905 4906
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4907 4908 4909 4910 4911 4912 4913
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4914

4915 4916 4917
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4918 4919
	}

4920 4921 4922
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4923
	}
4924 4925 4926

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4927 4928
}

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4965
static void perf_sample_regs_user(struct perf_regs *regs_user,
4966 4967
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4968
{
4969 4970
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4971
		regs_user->regs = regs;
4972 4973
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4974 4975 4976
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4977 4978 4979
	}
}

4980 4981 4982 4983 4984 4985 4986 4987
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5083 5084 5085
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5099
		data->time = perf_event_clock(event);
5100

5101
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5113 5114 5115
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5140 5141 5142

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5143 5144
}

5145 5146 5147
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5148 5149 5150 5151 5152
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5153
static void perf_output_read_one(struct perf_output_handle *handle,
5154 5155
				 struct perf_event *event,
				 u64 enabled, u64 running)
5156
{
5157
	u64 read_format = event->attr.read_format;
5158 5159 5160
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5161
	values[n++] = perf_event_count(event);
5162
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5163
		values[n++] = enabled +
5164
			atomic64_read(&event->child_total_time_enabled);
5165 5166
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5167
		values[n++] = running +
5168
			atomic64_read(&event->child_total_time_running);
5169 5170
	}
	if (read_format & PERF_FORMAT_ID)
5171
		values[n++] = primary_event_id(event);
5172

5173
	__output_copy(handle, values, n * sizeof(u64));
5174 5175 5176
}

/*
5177
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5178 5179
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5180 5181
			    struct perf_event *event,
			    u64 enabled, u64 running)
5182
{
5183 5184
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5185 5186 5187 5188 5189 5190
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5191
		values[n++] = enabled;
5192 5193

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5194
		values[n++] = running;
5195

5196
	if (leader != event)
5197 5198
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5199
	values[n++] = perf_event_count(leader);
5200
	if (read_format & PERF_FORMAT_ID)
5201
		values[n++] = primary_event_id(leader);
5202

5203
	__output_copy(handle, values, n * sizeof(u64));
5204

5205
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5206 5207
		n = 0;

5208 5209
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5210 5211
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5212
		values[n++] = perf_event_count(sub);
5213
		if (read_format & PERF_FORMAT_ID)
5214
			values[n++] = primary_event_id(sub);
5215

5216
		__output_copy(handle, values, n * sizeof(u64));
5217 5218 5219
	}
}

5220 5221 5222
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5223
static void perf_output_read(struct perf_output_handle *handle,
5224
			     struct perf_event *event)
5225
{
5226
	u64 enabled = 0, running = 0, now;
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5238
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5239
		calc_timer_values(event, &now, &enabled, &running);
5240

5241
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5242
		perf_output_read_group(handle, event, enabled, running);
5243
	else
5244
		perf_output_read_one(handle, event, enabled, running);
5245 5246
}

5247 5248 5249
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5250
			struct perf_event *event)
5251 5252 5253 5254 5255
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5256 5257 5258
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5284
		perf_output_read(handle, event);
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5295
			__output_copy(handle, data->callchain, size);
5296 5297 5298 5299 5300 5301 5302 5303
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5304 5305 5306 5307 5308 5309 5310 5311 5312
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5324

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5359

5360
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5361 5362 5363
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5364
	}
A
Andi Kleen 已提交
5365 5366 5367

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5368 5369 5370

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5371

A
Andi Kleen 已提交
5372 5373 5374
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5405 5406 5407 5408
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5409
			 struct perf_event *event,
5410
			 struct pt_regs *regs)
5411
{
5412
	u64 sample_type = event->attr.sample_type;
5413

5414
	header->type = PERF_RECORD_SAMPLE;
5415
	header->size = sizeof(*header) + event->header_size;
5416 5417 5418

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5419

5420
	__perf_event_header__init_id(header, data, event);
5421

5422
	if (sample_type & PERF_SAMPLE_IP)
5423 5424
		data->ip = perf_instruction_pointer(regs);

5425
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5426
		int size = 1;
5427

5428
		data->callchain = perf_callchain(event, regs);
5429 5430 5431 5432 5433

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5434 5435
	}

5436
	if (sample_type & PERF_SAMPLE_RAW) {
5437 5438 5439 5440 5441 5442 5443
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5444
		header->size += round_up(size, sizeof(u64));
5445
	}
5446 5447 5448 5449 5450 5451 5452 5453 5454

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5455

5456
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5457 5458
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5459

5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5483
						     data->regs_user.regs);
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5511
}
5512

5513 5514 5515
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5516 5517 5518
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5519

5520 5521 5522
	/* protect the callchain buffers */
	rcu_read_lock();

5523
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5524

5525
	if (perf_output_begin(&handle, event, header.size))
5526
		goto exit;
5527

5528
	perf_output_sample(&handle, &header, data, event);
5529

5530
	perf_output_end(&handle);
5531 5532 5533

exit:
	rcu_read_unlock();
5534 5535
}

5536
/*
5537
 * read event_id
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5548
perf_event_read_event(struct perf_event *event,
5549 5550 5551
			struct task_struct *task)
{
	struct perf_output_handle handle;
5552
	struct perf_sample_data sample;
5553
	struct perf_read_event read_event = {
5554
		.header = {
5555
			.type = PERF_RECORD_READ,
5556
			.misc = 0,
5557
			.size = sizeof(read_event) + event->read_size,
5558
		},
5559 5560
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5561
	};
5562
	int ret;
5563

5564
	perf_event_header__init_id(&read_event.header, &sample, event);
5565
	ret = perf_output_begin(&handle, event, read_event.header.size);
5566 5567 5568
	if (ret)
		return;

5569
	perf_output_put(&handle, read_event);
5570
	perf_output_read(&handle, event);
5571
	perf_event__output_id_sample(event, &handle, &sample);
5572

5573 5574 5575
	perf_output_end(&handle);
}

5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5590
		output(event, data);
5591 5592 5593
	}
}

J
Jiri Olsa 已提交
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5605
static void
5606
perf_event_aux(perf_event_aux_output_cb output, void *data,
5607 5608 5609 5610 5611 5612 5613
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5625 5626 5627 5628 5629
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5630
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5631 5632 5633 5634 5635
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5636
			perf_event_aux_ctx(ctx, output, data);
5637 5638 5639 5640 5641 5642
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5643
/*
P
Peter Zijlstra 已提交
5644 5645
 * task tracking -- fork/exit
 *
5646
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5647 5648
 */

P
Peter Zijlstra 已提交
5649
struct perf_task_event {
5650
	struct task_struct		*task;
5651
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5652 5653 5654 5655 5656 5657

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5658 5659
		u32				tid;
		u32				ptid;
5660
		u64				time;
5661
	} event_id;
P
Peter Zijlstra 已提交
5662 5663
};

5664 5665
static int perf_event_task_match(struct perf_event *event)
{
5666 5667 5668
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5669 5670
}

5671
static void perf_event_task_output(struct perf_event *event,
5672
				   void *data)
P
Peter Zijlstra 已提交
5673
{
5674
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5675
	struct perf_output_handle handle;
5676
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5677
	struct task_struct *task = task_event->task;
5678
	int ret, size = task_event->event_id.header.size;
5679

5680 5681 5682
	if (!perf_event_task_match(event))
		return;

5683
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5684

5685
	ret = perf_output_begin(&handle, event,
5686
				task_event->event_id.header.size);
5687
	if (ret)
5688
		goto out;
P
Peter Zijlstra 已提交
5689

5690 5691
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5692

5693 5694
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5695

5696 5697
	task_event->event_id.time = perf_event_clock(event);

5698
	perf_output_put(&handle, task_event->event_id);
5699

5700 5701
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5702
	perf_output_end(&handle);
5703 5704
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5705 5706
}

5707 5708
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5709
			      int new)
P
Peter Zijlstra 已提交
5710
{
P
Peter Zijlstra 已提交
5711
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5712

5713 5714 5715
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5716 5717
		return;

P
Peter Zijlstra 已提交
5718
	task_event = (struct perf_task_event){
5719 5720
		.task	  = task,
		.task_ctx = task_ctx,
5721
		.event_id    = {
P
Peter Zijlstra 已提交
5722
			.header = {
5723
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5724
				.misc = 0,
5725
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5726
			},
5727 5728
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5729 5730
			/* .tid  */
			/* .ptid */
5731
			/* .time */
P
Peter Zijlstra 已提交
5732 5733 5734
		},
	};

5735
	perf_event_aux(perf_event_task_output,
5736 5737
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5738 5739
}

5740
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5741
{
5742
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5743 5744
}

5745 5746 5747 5748 5749
/*
 * comm tracking
 */

struct perf_comm_event {
5750 5751
	struct task_struct	*task;
	char			*comm;
5752 5753 5754 5755 5756 5757 5758
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5759
	} event_id;
5760 5761
};

5762 5763 5764 5765 5766
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5767
static void perf_event_comm_output(struct perf_event *event,
5768
				   void *data)
5769
{
5770
	struct perf_comm_event *comm_event = data;
5771
	struct perf_output_handle handle;
5772
	struct perf_sample_data sample;
5773
	int size = comm_event->event_id.header.size;
5774 5775
	int ret;

5776 5777 5778
	if (!perf_event_comm_match(event))
		return;

5779 5780
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5781
				comm_event->event_id.header.size);
5782 5783

	if (ret)
5784
		goto out;
5785

5786 5787
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5788

5789
	perf_output_put(&handle, comm_event->event_id);
5790
	__output_copy(&handle, comm_event->comm,
5791
				   comm_event->comm_size);
5792 5793 5794

	perf_event__output_id_sample(event, &handle, &sample);

5795
	perf_output_end(&handle);
5796 5797
out:
	comm_event->event_id.header.size = size;
5798 5799
}

5800
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5801
{
5802
	char comm[TASK_COMM_LEN];
5803 5804
	unsigned int size;

5805
	memset(comm, 0, sizeof(comm));
5806
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5807
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5808 5809 5810 5811

	comm_event->comm = comm;
	comm_event->comm_size = size;

5812
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5813

5814
	perf_event_aux(perf_event_comm_output,
5815 5816
		       comm_event,
		       NULL);
5817 5818
}

5819
void perf_event_comm(struct task_struct *task, bool exec)
5820
{
5821 5822
	struct perf_comm_event comm_event;

5823
	if (!atomic_read(&nr_comm_events))
5824
		return;
5825

5826
	comm_event = (struct perf_comm_event){
5827
		.task	= task,
5828 5829
		/* .comm      */
		/* .comm_size */
5830
		.event_id  = {
5831
			.header = {
5832
				.type = PERF_RECORD_COMM,
5833
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5834 5835 5836 5837
				/* .size */
			},
			/* .pid */
			/* .tid */
5838 5839 5840
		},
	};

5841
	perf_event_comm_event(&comm_event);
5842 5843
}

5844 5845 5846 5847 5848
/*
 * mmap tracking
 */

struct perf_mmap_event {
5849 5850 5851 5852
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5853 5854 5855
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5856
	u32			prot, flags;
5857 5858 5859 5860 5861 5862 5863 5864 5865

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5866
	} event_id;
5867 5868
};

5869 5870 5871 5872 5873 5874 5875 5876
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5877
	       (executable && (event->attr.mmap || event->attr.mmap2));
5878 5879
}

5880
static void perf_event_mmap_output(struct perf_event *event,
5881
				   void *data)
5882
{
5883
	struct perf_mmap_event *mmap_event = data;
5884
	struct perf_output_handle handle;
5885
	struct perf_sample_data sample;
5886
	int size = mmap_event->event_id.header.size;
5887
	int ret;
5888

5889 5890 5891
	if (!perf_event_mmap_match(event, data))
		return;

5892 5893 5894 5895 5896
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5897
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5898 5899
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5900 5901
	}

5902 5903
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5904
				mmap_event->event_id.header.size);
5905
	if (ret)
5906
		goto out;
5907

5908 5909
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5910

5911
	perf_output_put(&handle, mmap_event->event_id);
5912 5913 5914 5915 5916 5917

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5918 5919
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5920 5921
	}

5922
	__output_copy(&handle, mmap_event->file_name,
5923
				   mmap_event->file_size);
5924 5925 5926

	perf_event__output_id_sample(event, &handle, &sample);

5927
	perf_output_end(&handle);
5928 5929
out:
	mmap_event->event_id.header.size = size;
5930 5931
}

5932
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5933
{
5934 5935
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5936 5937
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5938
	u32 prot = 0, flags = 0;
5939 5940 5941
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5942
	char *name;
5943

5944
	if (file) {
5945 5946
		struct inode *inode;
		dev_t dev;
5947

5948
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5949
		if (!buf) {
5950 5951
			name = "//enomem";
			goto cpy_name;
5952
		}
5953
		/*
5954
		 * d_path() works from the end of the rb backwards, so we
5955 5956 5957
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5958
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5959
		if (IS_ERR(name)) {
5960 5961
			name = "//toolong";
			goto cpy_name;
5962
		}
5963 5964 5965 5966 5967 5968
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5991
		goto got_name;
5992
	} else {
5993 5994 5995 5996 5997 5998
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5999
		name = (char *)arch_vma_name(vma);
6000 6001
		if (name)
			goto cpy_name;
6002

6003
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6004
				vma->vm_end >= vma->vm_mm->brk) {
6005 6006
			name = "[heap]";
			goto cpy_name;
6007 6008
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6009
				vma->vm_end >= vma->vm_mm->start_stack) {
6010 6011
			name = "[stack]";
			goto cpy_name;
6012 6013
		}

6014 6015
		name = "//anon";
		goto cpy_name;
6016 6017
	}

6018 6019 6020
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6021
got_name:
6022 6023 6024 6025 6026 6027 6028 6029
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6030 6031 6032

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6033 6034 6035 6036
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6037 6038
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6039

6040 6041 6042
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6043
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6044

6045
	perf_event_aux(perf_event_mmap_output,
6046 6047
		       mmap_event,
		       NULL);
6048

6049 6050 6051
	kfree(buf);
}

6052
void perf_event_mmap(struct vm_area_struct *vma)
6053
{
6054 6055
	struct perf_mmap_event mmap_event;

6056
	if (!atomic_read(&nr_mmap_events))
6057 6058 6059
		return;

	mmap_event = (struct perf_mmap_event){
6060
		.vma	= vma,
6061 6062
		/* .file_name */
		/* .file_size */
6063
		.event_id  = {
6064
			.header = {
6065
				.type = PERF_RECORD_MMAP,
6066
				.misc = PERF_RECORD_MISC_USER,
6067 6068 6069 6070
				/* .size */
			},
			/* .pid */
			/* .tid */
6071 6072
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6073
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6074
		},
6075 6076 6077 6078
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6079 6080
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6081 6082
	};

6083
	perf_event_mmap_event(&mmap_event);
6084 6085
}

A
Alexander Shishkin 已提交
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6238 6239 6240 6241
/*
 * IRQ throttle logging
 */

6242
static void perf_log_throttle(struct perf_event *event, int enable)
6243 6244
{
	struct perf_output_handle handle;
6245
	struct perf_sample_data sample;
6246 6247 6248 6249 6250
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6251
		u64				id;
6252
		u64				stream_id;
6253 6254
	} throttle_event = {
		.header = {
6255
			.type = PERF_RECORD_THROTTLE,
6256 6257 6258
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6259
		.time		= perf_event_clock(event),
6260 6261
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6262 6263
	};

6264
	if (enable)
6265
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6266

6267 6268 6269
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6270
				throttle_event.header.size);
6271 6272 6273 6274
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6275
	perf_event__output_id_sample(event, &handle, &sample);
6276 6277 6278
	perf_output_end(&handle);
}

6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6315
/*
6316
 * Generic event overflow handling, sampling.
6317 6318
 */

6319
static int __perf_event_overflow(struct perf_event *event,
6320 6321
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6322
{
6323 6324
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6325
	u64 seq;
6326 6327
	int ret = 0;

6328 6329 6330 6331 6332 6333 6334
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6335 6336 6337 6338 6339 6340 6341 6342 6343
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6344 6345
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6346
			tick_nohz_full_kick();
6347 6348
			ret = 1;
		}
6349
	}
6350

6351
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6352
		u64 now = perf_clock();
6353
		s64 delta = now - hwc->freq_time_stamp;
6354

6355
		hwc->freq_time_stamp = now;
6356

6357
		if (delta > 0 && delta < 2*TICK_NSEC)
6358
			perf_adjust_period(event, delta, hwc->last_period, true);
6359 6360
	}

6361 6362
	/*
	 * XXX event_limit might not quite work as expected on inherited
6363
	 * events
6364 6365
	 */

6366 6367
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6368
		ret = 1;
6369
		event->pending_kill = POLL_HUP;
6370 6371
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6372 6373
	}

6374
	if (event->overflow_handler)
6375
		event->overflow_handler(event, data, regs);
6376
	else
6377
		perf_event_output(event, data, regs);
6378

6379
	if (*perf_event_fasync(event) && event->pending_kill) {
6380 6381
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6382 6383
	}

6384
	return ret;
6385 6386
}

6387
int perf_event_overflow(struct perf_event *event,
6388 6389
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6390
{
6391
	return __perf_event_overflow(event, 1, data, regs);
6392 6393
}

6394
/*
6395
 * Generic software event infrastructure
6396 6397
 */

6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6409
/*
6410 6411
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6412 6413 6414 6415
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6416
u64 perf_swevent_set_period(struct perf_event *event)
6417
{
6418
	struct hw_perf_event *hwc = &event->hw;
6419 6420 6421 6422 6423
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6424 6425

again:
6426
	old = val = local64_read(&hwc->period_left);
6427 6428
	if (val < 0)
		return 0;
6429

6430 6431 6432
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6433
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6434
		goto again;
6435

6436
	return nr;
6437 6438
}

6439
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6440
				    struct perf_sample_data *data,
6441
				    struct pt_regs *regs)
6442
{
6443
	struct hw_perf_event *hwc = &event->hw;
6444
	int throttle = 0;
6445

6446 6447
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6448

6449 6450
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6451

6452
	for (; overflow; overflow--) {
6453
		if (__perf_event_overflow(event, throttle,
6454
					    data, regs)) {
6455 6456 6457 6458 6459 6460
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6461
		throttle = 1;
6462
	}
6463 6464
}

P
Peter Zijlstra 已提交
6465
static void perf_swevent_event(struct perf_event *event, u64 nr,
6466
			       struct perf_sample_data *data,
6467
			       struct pt_regs *regs)
6468
{
6469
	struct hw_perf_event *hwc = &event->hw;
6470

6471
	local64_add(nr, &event->count);
6472

6473 6474 6475
	if (!regs)
		return;

6476
	if (!is_sampling_event(event))
6477
		return;
6478

6479 6480 6481 6482 6483 6484
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6485
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6486
		return perf_swevent_overflow(event, 1, data, regs);
6487

6488
	if (local64_add_negative(nr, &hwc->period_left))
6489
		return;
6490

6491
	perf_swevent_overflow(event, 0, data, regs);
6492 6493
}

6494 6495 6496
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6497
	if (event->hw.state & PERF_HES_STOPPED)
6498
		return 1;
P
Peter Zijlstra 已提交
6499

6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6511
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6512
				enum perf_type_id type,
L
Li Zefan 已提交
6513 6514 6515
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6516
{
6517
	if (event->attr.type != type)
6518
		return 0;
6519

6520
	if (event->attr.config != event_id)
6521 6522
		return 0;

6523 6524
	if (perf_exclude_event(event, regs))
		return 0;
6525 6526 6527 6528

	return 1;
}

6529 6530 6531 6532 6533 6534 6535
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6536 6537
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6538
{
6539 6540 6541 6542
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6543

6544 6545
/* For the read side: events when they trigger */
static inline struct hlist_head *
6546
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6547 6548
{
	struct swevent_hlist *hlist;
6549

6550
	hlist = rcu_dereference(swhash->swevent_hlist);
6551 6552 6553
	if (!hlist)
		return NULL;

6554 6555 6556 6557 6558
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6559
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6570
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6571 6572 6573 6574 6575
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6576 6577 6578
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6579
				    u64 nr,
6580 6581
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6582
{
6583
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6584
	struct perf_event *event;
6585
	struct hlist_head *head;
6586

6587
	rcu_read_lock();
6588
	head = find_swevent_head_rcu(swhash, type, event_id);
6589 6590 6591
	if (!head)
		goto end;

6592
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6593
		if (perf_swevent_match(event, type, event_id, data, regs))
6594
			perf_swevent_event(event, nr, data, regs);
6595
	}
6596 6597
end:
	rcu_read_unlock();
6598 6599
}

6600 6601
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6602
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6603
{
6604
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6605

6606
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6607
}
I
Ingo Molnar 已提交
6608
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6609

6610
inline void perf_swevent_put_recursion_context(int rctx)
6611
{
6612
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6613

6614
	put_recursion_context(swhash->recursion, rctx);
6615
}
6616

6617
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6618
{
6619
	struct perf_sample_data data;
6620

6621
	if (WARN_ON_ONCE(!regs))
6622
		return;
6623

6624
	perf_sample_data_init(&data, addr, 0);
6625
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6638 6639

	perf_swevent_put_recursion_context(rctx);
6640
fail:
6641
	preempt_enable_notrace();
6642 6643
}

6644
static void perf_swevent_read(struct perf_event *event)
6645 6646 6647
{
}

P
Peter Zijlstra 已提交
6648
static int perf_swevent_add(struct perf_event *event, int flags)
6649
{
6650
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6651
	struct hw_perf_event *hwc = &event->hw;
6652 6653
	struct hlist_head *head;

6654
	if (is_sampling_event(event)) {
6655
		hwc->last_period = hwc->sample_period;
6656
		perf_swevent_set_period(event);
6657
	}
6658

P
Peter Zijlstra 已提交
6659 6660
	hwc->state = !(flags & PERF_EF_START);

6661
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6662
	if (WARN_ON_ONCE(!head))
6663 6664 6665
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6666
	perf_event_update_userpage(event);
6667

6668 6669 6670
	return 0;
}

P
Peter Zijlstra 已提交
6671
static void perf_swevent_del(struct perf_event *event, int flags)
6672
{
6673
	hlist_del_rcu(&event->hlist_entry);
6674 6675
}

P
Peter Zijlstra 已提交
6676
static void perf_swevent_start(struct perf_event *event, int flags)
6677
{
P
Peter Zijlstra 已提交
6678
	event->hw.state = 0;
6679
}
I
Ingo Molnar 已提交
6680

P
Peter Zijlstra 已提交
6681
static void perf_swevent_stop(struct perf_event *event, int flags)
6682
{
P
Peter Zijlstra 已提交
6683
	event->hw.state = PERF_HES_STOPPED;
6684 6685
}

6686 6687
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6688
swevent_hlist_deref(struct swevent_htable *swhash)
6689
{
6690 6691
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6692 6693
}

6694
static void swevent_hlist_release(struct swevent_htable *swhash)
6695
{
6696
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6697

6698
	if (!hlist)
6699 6700
		return;

6701
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6702
	kfree_rcu(hlist, rcu_head);
6703 6704 6705 6706
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6707
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6708

6709
	mutex_lock(&swhash->hlist_mutex);
6710

6711 6712
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6713

6714
	mutex_unlock(&swhash->hlist_mutex);
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6727
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6728 6729
	int err = 0;

6730 6731
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6732 6733 6734 6735 6736 6737 6738
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6739
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6740
	}
6741
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6742
exit:
6743
	mutex_unlock(&swhash->hlist_mutex);
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6764
fail:
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6775
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6776

6777 6778 6779
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6780

6781 6782
	WARN_ON(event->parent);

6783
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6784 6785 6786 6787 6788
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6789
	u64 event_id = event->attr.config;
6790 6791 6792 6793

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6794 6795 6796 6797 6798 6799
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6800 6801 6802 6803 6804 6805 6806 6807 6808
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6809
	if (event_id >= PERF_COUNT_SW_MAX)
6810 6811 6812 6813 6814 6815 6816 6817 6818
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6819
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6820 6821 6822 6823 6824 6825 6826
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6827
	.task_ctx_nr	= perf_sw_context,
6828

6829 6830
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6831
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6832 6833 6834 6835
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6836 6837 6838
	.read		= perf_swevent_read,
};

6839 6840
#ifdef CONFIG_EVENT_TRACING

6841 6842 6843 6844 6845
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6846 6847 6848 6849
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6850 6851 6852 6853 6854 6855 6856 6857 6858
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6859 6860
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6861 6862 6863 6864
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6865 6866 6867 6868 6869 6870 6871 6872 6873
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6874 6875
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6876 6877
{
	struct perf_sample_data data;
6878 6879
	struct perf_event *event;

6880 6881 6882 6883 6884
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6885
	perf_sample_data_init(&data, addr, 0);
6886 6887
	data.raw = &raw;

6888
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6889
		if (perf_tp_event_match(event, &data, regs))
6890
			perf_swevent_event(event, count, &data, regs);
6891
	}
6892

6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6918
	perf_swevent_put_recursion_context(rctx);
6919 6920 6921
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6922
static void tp_perf_event_destroy(struct perf_event *event)
6923
{
6924
	perf_trace_destroy(event);
6925 6926
}

6927
static int perf_tp_event_init(struct perf_event *event)
6928
{
6929 6930
	int err;

6931 6932 6933
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6934 6935 6936 6937 6938 6939
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6940 6941
	err = perf_trace_init(event);
	if (err)
6942
		return err;
6943

6944
	event->destroy = tp_perf_event_destroy;
6945

6946 6947 6948 6949
	return 0;
}

static struct pmu perf_tracepoint = {
6950 6951
	.task_ctx_nr	= perf_sw_context,

6952
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6953 6954 6955 6956
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6957 6958 6959 6960 6961
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6962
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6963
}
L
Li Zefan 已提交
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

6998 6999
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7000 7001 7002 7003 7004 7005
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7006
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7031
#else
L
Li Zefan 已提交
7032

7033
static inline void perf_tp_register(void)
7034 7035
{
}
L
Li Zefan 已提交
7036 7037 7038 7039 7040 7041 7042 7043 7044 7045

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7046 7047 7048 7049 7050 7051 7052 7053
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7054
#endif /* CONFIG_EVENT_TRACING */
7055

7056
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7057
void perf_bp_event(struct perf_event *bp, void *data)
7058
{
7059 7060 7061
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7062
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7063

P
Peter Zijlstra 已提交
7064
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7065
		perf_swevent_event(bp, 1, &sample, regs);
7066 7067 7068
}
#endif

7069 7070 7071
/*
 * hrtimer based swevent callback
 */
7072

7073
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7074
{
7075 7076 7077 7078 7079
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7080

7081
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7082 7083 7084 7085

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7086
	event->pmu->read(event);
7087

7088
	perf_sample_data_init(&data, 0, event->hw.last_period);
7089 7090 7091
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7092
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7093
			if (__perf_event_overflow(event, 1, &data, regs))
7094 7095
				ret = HRTIMER_NORESTART;
	}
7096

7097 7098
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7099

7100
	return ret;
7101 7102
}

7103
static void perf_swevent_start_hrtimer(struct perf_event *event)
7104
{
7105
	struct hw_perf_event *hwc = &event->hw;
7106 7107 7108 7109
	s64 period;

	if (!is_sampling_event(event))
		return;
7110

7111 7112 7113 7114
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7115

7116 7117 7118 7119
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7120 7121
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7122
}
7123 7124

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7125
{
7126 7127
	struct hw_perf_event *hwc = &event->hw;

7128
	if (is_sampling_event(event)) {
7129
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7130
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7131 7132 7133

		hrtimer_cancel(&hwc->hrtimer);
	}
7134 7135
}

P
Peter Zijlstra 已提交
7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7156
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7157 7158 7159 7160
		event->attr.freq = 0;
	}
}

7161 7162 7163 7164 7165
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7166
{
7167 7168 7169
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7170
	now = local_clock();
7171 7172
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7173 7174
}

P
Peter Zijlstra 已提交
7175
static void cpu_clock_event_start(struct perf_event *event, int flags)
7176
{
P
Peter Zijlstra 已提交
7177
	local64_set(&event->hw.prev_count, local_clock());
7178 7179 7180
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7181
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7182
{
7183 7184 7185
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7186

P
Peter Zijlstra 已提交
7187 7188 7189 7190
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7191
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7192 7193 7194 7195 7196 7197 7198 7199 7200

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7201 7202 7203 7204
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7205

7206 7207 7208 7209 7210 7211 7212 7213
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7214 7215 7216 7217 7218 7219
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7220 7221
	perf_swevent_init_hrtimer(event);

7222
	return 0;
7223 7224
}

7225
static struct pmu perf_cpu_clock = {
7226 7227
	.task_ctx_nr	= perf_sw_context,

7228 7229
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7230
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7231 7232 7233 7234
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7235 7236 7237 7238 7239 7240 7241 7242
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7243
{
7244 7245
	u64 prev;
	s64 delta;
7246

7247 7248 7249 7250
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7251

P
Peter Zijlstra 已提交
7252
static void task_clock_event_start(struct perf_event *event, int flags)
7253
{
P
Peter Zijlstra 已提交
7254
	local64_set(&event->hw.prev_count, event->ctx->time);
7255 7256 7257
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7258
static void task_clock_event_stop(struct perf_event *event, int flags)
7259 7260 7261
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7262 7263 7264 7265 7266 7267
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7268
	perf_event_update_userpage(event);
7269

P
Peter Zijlstra 已提交
7270 7271 7272 7273 7274 7275
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7276 7277 7278 7279
}

static void task_clock_event_read(struct perf_event *event)
{
7280 7281 7282
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7283 7284 7285 7286 7287

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7288
{
7289 7290 7291 7292 7293 7294
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7295 7296 7297 7298 7299 7300
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7301 7302
	perf_swevent_init_hrtimer(event);

7303
	return 0;
L
Li Zefan 已提交
7304 7305
}

7306
static struct pmu perf_task_clock = {
7307 7308
	.task_ctx_nr	= perf_sw_context,

7309 7310
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7311
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7312 7313 7314 7315
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7316 7317
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7318

P
Peter Zijlstra 已提交
7319
static void perf_pmu_nop_void(struct pmu *pmu)
7320 7321
{
}
L
Li Zefan 已提交
7322

7323 7324 7325 7326
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7327
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7328
{
P
Peter Zijlstra 已提交
7329
	return 0;
L
Li Zefan 已提交
7330 7331
}

7332
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7333 7334

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7335
{
7336 7337 7338 7339 7340
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7341
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7342 7343
}

P
Peter Zijlstra 已提交
7344 7345
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7346 7347 7348 7349 7350 7351 7352
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7353 7354 7355
	perf_pmu_enable(pmu);
	return 0;
}
7356

P
Peter Zijlstra 已提交
7357
static void perf_pmu_cancel_txn(struct pmu *pmu)
7358
{
7359 7360 7361 7362 7363 7364 7365
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7366
	perf_pmu_enable(pmu);
7367 7368
}

7369 7370
static int perf_event_idx_default(struct perf_event *event)
{
7371
	return 0;
7372 7373
}

P
Peter Zijlstra 已提交
7374 7375 7376 7377
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7378
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7379
{
P
Peter Zijlstra 已提交
7380
	struct pmu *pmu;
7381

P
Peter Zijlstra 已提交
7382 7383
	if (ctxn < 0)
		return NULL;
7384

P
Peter Zijlstra 已提交
7385 7386 7387 7388
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7389

P
Peter Zijlstra 已提交
7390
	return NULL;
7391 7392
}

7393
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7394
{
7395 7396 7397 7398 7399 7400 7401
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7402 7403
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7404 7405 7406 7407 7408 7409
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7410

P
Peter Zijlstra 已提交
7411
	mutex_lock(&pmus_lock);
7412
	/*
P
Peter Zijlstra 已提交
7413
	 * Like a real lame refcount.
7414
	 */
7415 7416 7417
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7418
			goto out;
7419
		}
P
Peter Zijlstra 已提交
7420
	}
7421

7422
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7423 7424
out:
	mutex_unlock(&pmus_lock);
7425
}
P
Peter Zijlstra 已提交
7426
static struct idr pmu_idr;
7427

P
Peter Zijlstra 已提交
7428 7429 7430 7431 7432 7433 7434
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7435
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7436

7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7447 7448
static DEFINE_MUTEX(mux_interval_mutex);

7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7468
	mutex_lock(&mux_interval_mutex);
7469 7470 7471
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7472 7473
	get_online_cpus();
	for_each_online_cpu(cpu) {
7474 7475 7476 7477
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7478 7479
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7480
	}
7481 7482
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7483 7484 7485

	return count;
}
7486
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7487

7488 7489 7490 7491
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7492
};
7493
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7494 7495 7496 7497

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7498
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7514
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7535
static struct lock_class_key cpuctx_mutex;
7536
static struct lock_class_key cpuctx_lock;
7537

7538
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7539
{
P
Peter Zijlstra 已提交
7540
	int cpu, ret;
7541

7542
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7543 7544 7545 7546
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7547

P
Peter Zijlstra 已提交
7548 7549 7550 7551 7552 7553
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7554 7555 7556
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7557 7558 7559 7560 7561
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7562 7563 7564 7565 7566 7567
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7568
skip_type:
P
Peter Zijlstra 已提交
7569 7570 7571
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7572

W
Wei Yongjun 已提交
7573
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7574 7575
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7576
		goto free_dev;
7577

P
Peter Zijlstra 已提交
7578 7579 7580 7581
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7582
		__perf_event_init_context(&cpuctx->ctx);
7583
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7584
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7585
		cpuctx->ctx.pmu = pmu;
7586

7587
		__perf_mux_hrtimer_init(cpuctx, cpu);
7588

7589
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7590
	}
7591

P
Peter Zijlstra 已提交
7592
got_cpu_context:
P
Peter Zijlstra 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7604
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7605 7606
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7607
		}
7608
	}
7609

P
Peter Zijlstra 已提交
7610 7611 7612 7613 7614
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7615 7616 7617
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7618
	list_add_rcu(&pmu->entry, &pmus);
7619
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7620 7621
	ret = 0;
unlock:
7622 7623
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7624
	return ret;
P
Peter Zijlstra 已提交
7625

P
Peter Zijlstra 已提交
7626 7627 7628 7629
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7630 7631 7632 7633
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7634 7635 7636
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7637
}
7638
EXPORT_SYMBOL_GPL(perf_pmu_register);
7639

7640
void perf_pmu_unregister(struct pmu *pmu)
7641
{
7642 7643 7644
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7645

7646
	/*
P
Peter Zijlstra 已提交
7647 7648
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7649
	 */
7650
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7651
	synchronize_rcu();
7652

P
Peter Zijlstra 已提交
7653
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7654 7655
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7656 7657
	device_del(pmu->dev);
	put_device(pmu->dev);
7658
	free_pmu_context(pmu);
7659
}
7660
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7661

7662 7663
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7664
	struct perf_event_context *ctx = NULL;
7665 7666 7667 7668
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7669 7670

	if (event->group_leader != event) {
7671 7672 7673 7674 7675 7676
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7677 7678 7679
		BUG_ON(!ctx);
	}

7680 7681
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7682 7683 7684 7685

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7686 7687 7688 7689 7690 7691
	if (ret)
		module_put(pmu->module);

	return ret;
}

7692
static struct pmu *perf_init_event(struct perf_event *event)
7693 7694 7695
{
	struct pmu *pmu = NULL;
	int idx;
7696
	int ret;
7697 7698

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7699 7700 7701 7702

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7703
	if (pmu) {
7704
		ret = perf_try_init_event(pmu, event);
7705 7706
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7707
		goto unlock;
7708
	}
P
Peter Zijlstra 已提交
7709

7710
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7711
		ret = perf_try_init_event(pmu, event);
7712
		if (!ret)
P
Peter Zijlstra 已提交
7713
			goto unlock;
7714

7715 7716
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7717
			goto unlock;
7718
		}
7719
	}
P
Peter Zijlstra 已提交
7720 7721
	pmu = ERR_PTR(-ENOENT);
unlock:
7722
	srcu_read_unlock(&pmus_srcu, idx);
7723

7724
	return pmu;
7725 7726
}

7727 7728 7729 7730 7731 7732 7733 7734 7735
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7736 7737
static void account_event(struct perf_event *event)
{
7738 7739
	bool inc = false;

7740 7741 7742
	if (event->parent)
		return;

7743
	if (event->attach_state & PERF_ATTACH_TASK)
7744
		inc = true;
7745 7746 7747 7748 7749 7750
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7751 7752 7753 7754
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7755 7756
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7757
		inc = true;
7758
	}
7759
	if (has_branch_stack(event))
7760
		inc = true;
7761
	if (is_cgroup_event(event))
7762 7763 7764
		inc = true;

	if (inc)
7765
		static_key_slow_inc(&perf_sched_events.key);
7766 7767

	account_event_cpu(event, event->cpu);
7768 7769
}

T
Thomas Gleixner 已提交
7770
/*
7771
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7772
 */
7773
static struct perf_event *
7774
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7775 7776 7777
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7778
		 perf_overflow_handler_t overflow_handler,
7779
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7780
{
P
Peter Zijlstra 已提交
7781
	struct pmu *pmu;
7782 7783
	struct perf_event *event;
	struct hw_perf_event *hwc;
7784
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7785

7786 7787 7788 7789 7790
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7791
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7792
	if (!event)
7793
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7794

7795
	/*
7796
	 * Single events are their own group leaders, with an
7797 7798 7799
	 * empty sibling list:
	 */
	if (!group_leader)
7800
		group_leader = event;
7801

7802 7803
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7804

7805 7806 7807
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7808
	INIT_LIST_HEAD(&event->rb_entry);
7809
	INIT_LIST_HEAD(&event->active_entry);
7810 7811
	INIT_HLIST_NODE(&event->hlist_entry);

7812

7813
	init_waitqueue_head(&event->waitq);
7814
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7815

7816
	mutex_init(&event->mmap_mutex);
7817

7818
	atomic_long_set(&event->refcount, 1);
7819 7820 7821 7822 7823
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7824

7825
	event->parent		= parent_event;
7826

7827
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7828
	event->id		= atomic64_inc_return(&perf_event_id);
7829

7830
	event->state		= PERF_EVENT_STATE_INACTIVE;
7831

7832 7833 7834
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7835 7836 7837
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7838
		 */
7839
		event->hw.target = task;
7840 7841
	}

7842 7843 7844 7845
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7846
	if (!overflow_handler && parent_event) {
7847
		overflow_handler = parent_event->overflow_handler;
7848 7849
		context = parent_event->overflow_handler_context;
	}
7850

7851
	event->overflow_handler	= overflow_handler;
7852
	event->overflow_handler_context = context;
7853

J
Jiri Olsa 已提交
7854
	perf_event__state_init(event);
7855

7856
	pmu = NULL;
7857

7858
	hwc = &event->hw;
7859
	hwc->sample_period = attr->sample_period;
7860
	if (attr->freq && attr->sample_freq)
7861
		hwc->sample_period = 1;
7862
	hwc->last_period = hwc->sample_period;
7863

7864
	local64_set(&hwc->period_left, hwc->sample_period);
7865

7866
	/*
7867
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7868
	 */
7869
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7870
		goto err_ns;
7871 7872 7873

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7874

7875 7876 7877 7878 7879 7880
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7881
	pmu = perf_init_event(event);
7882
	if (!pmu)
7883 7884
		goto err_ns;
	else if (IS_ERR(pmu)) {
7885
		err = PTR_ERR(pmu);
7886
		goto err_ns;
I
Ingo Molnar 已提交
7887
	}
7888

7889 7890 7891 7892
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7893
	if (!event->parent) {
7894 7895
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7896
			if (err)
7897
				goto err_per_task;
7898
		}
7899
	}
7900

7901
	return event;
7902

7903 7904 7905
err_per_task:
	exclusive_event_destroy(event);

7906 7907 7908
err_pmu:
	if (event->destroy)
		event->destroy(event);
7909
	module_put(pmu->module);
7910
err_ns:
7911 7912
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7913 7914 7915 7916 7917
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7918 7919
}

7920 7921
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7922 7923
{
	u32 size;
7924
	int ret;
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7949 7950 7951
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7952 7953
	 */
	if (size > sizeof(*attr)) {
7954 7955 7956
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7957

7958 7959
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7960

7961
		for (; addr < end; addr++) {
7962 7963 7964 7965 7966 7967
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7968
		size = sizeof(*attr);
7969 7970 7971 7972 7973 7974
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7975
	if (attr->__reserved_1)
7976 7977 7978 7979 7980 7981 7982 7983
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8012 8013
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8014 8015
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8016
	}
8017

8018
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8019
		ret = perf_reg_validate(attr->sample_regs_user);
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8038

8039 8040
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8041 8042 8043 8044 8045 8046 8047 8048 8049
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8050 8051
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8052
{
8053
	struct ring_buffer *rb = NULL;
8054 8055
	int ret = -EINVAL;

8056
	if (!output_event)
8057 8058
		goto set;

8059 8060
	/* don't allow circular references */
	if (event == output_event)
8061 8062
		goto out;

8063 8064 8065 8066 8067 8068 8069
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8070
	 * If its not a per-cpu rb, it must be the same task.
8071 8072 8073 8074
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8075 8076 8077 8078 8079 8080
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8081 8082 8083 8084 8085 8086 8087
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8088
set:
8089
	mutex_lock(&event->mmap_mutex);
8090 8091 8092
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8093

8094
	if (output_event) {
8095 8096 8097
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8098
			goto unlock;
8099 8100
	}

8101
	ring_buffer_attach(event, rb);
8102

8103
	ret = 0;
8104 8105 8106
unlock:
	mutex_unlock(&event->mmap_mutex);

8107 8108 8109 8110
out:
	return ret;
}

P
Peter Zijlstra 已提交
8111 8112 8113 8114 8115 8116 8117 8118 8119
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8157
/**
8158
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8159
 *
8160
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8161
 * @pid:		target pid
I
Ingo Molnar 已提交
8162
 * @cpu:		target cpu
8163
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8164
 */
8165 8166
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8167
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8168
{
8169 8170
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8171
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8172
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8173
	struct file *event_file = NULL;
8174
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8175
	struct task_struct *task = NULL;
8176
	struct pmu *pmu;
8177
	int event_fd;
8178
	int move_group = 0;
8179
	int err;
8180
	int f_flags = O_RDWR;
8181
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8182

8183
	/* for future expandability... */
S
Stephane Eranian 已提交
8184
	if (flags & ~PERF_FLAG_ALL)
8185 8186
		return -EINVAL;

8187 8188 8189
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8190

8191 8192 8193 8194 8195
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8196
	if (attr.freq) {
8197
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8198
			return -EINVAL;
8199 8200 8201
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8202 8203
	}

S
Stephane Eranian 已提交
8204 8205 8206 8207 8208 8209 8210 8211 8212
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8213 8214 8215 8216
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8217 8218 8219
	if (event_fd < 0)
		return event_fd;

8220
	if (group_fd != -1) {
8221 8222
		err = perf_fget_light(group_fd, &group);
		if (err)
8223
			goto err_fd;
8224
		group_leader = group.file->private_data;
8225 8226 8227 8228 8229 8230
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8231
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8232 8233 8234 8235 8236 8237 8238
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8239 8240 8241 8242 8243 8244
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8245 8246
	get_online_cpus();

8247 8248 8249
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8250
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8251
				 NULL, NULL, cgroup_fd);
8252 8253
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8254
		goto err_cpus;
8255 8256
	}

8257 8258 8259 8260 8261 8262 8263
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8264 8265
	account_event(event);

8266 8267 8268 8269 8270
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8271

8272 8273 8274 8275 8276 8277
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8300 8301 8302 8303

	/*
	 * Get the target context (task or percpu):
	 */
8304
	ctx = find_get_context(pmu, task, event);
8305 8306
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8307
		goto err_alloc;
8308 8309
	}

8310 8311 8312 8313 8314
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8315 8316 8317 8318 8319
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8320
	/*
8321
	 * Look up the group leader (we will attach this event to it):
8322
	 */
8323
	if (group_leader) {
8324
		err = -EINVAL;
8325 8326

		/*
I
Ingo Molnar 已提交
8327 8328 8329 8330
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8331
			goto err_context;
8332 8333 8334 8335 8336

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8337 8338 8339
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8340
		 */
8341
		if (move_group) {
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8355 8356 8357 8358 8359 8360
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8361 8362 8363
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8364
		if (attr.exclusive || attr.pinned)
8365
			goto err_context;
8366 8367 8368 8369 8370
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8371
			goto err_context;
8372
	}
T
Thomas Gleixner 已提交
8373

8374 8375
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8376 8377
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8378
		goto err_context;
8379
	}
8380

8381
	if (move_group) {
P
Peter Zijlstra 已提交
8382
		gctx = group_leader->ctx;
8383 8384 8385 8386 8387
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8388 8389 8390 8391 8392
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8393 8394 8395 8396 8397 8398 8399
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8400

8401 8402 8403
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8404

8405 8406 8407
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8408 8409 8410 8411
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8412
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8413

8414 8415
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8416
			perf_remove_from_context(sibling, false);
8417 8418 8419
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8420 8421 8422 8423
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8424
		synchronize_rcu();
P
Peter Zijlstra 已提交
8425

8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8436 8437
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8438
			perf_event__state_init(sibling);
8439
			perf_install_in_context(ctx, sibling, sibling->cpu);
8440 8441
			get_ctx(ctx);
		}
8442 8443 8444 8445 8446 8447 8448 8449 8450

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8451

8452 8453 8454 8455 8456 8457
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8458 8459
	}

8460 8461 8462 8463 8464 8465 8466 8467 8468
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8469
	perf_install_in_context(ctx, event, event->cpu);
8470
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8471

8472
	if (move_group)
P
Peter Zijlstra 已提交
8473
		mutex_unlock(&gctx->mutex);
8474
	mutex_unlock(&ctx->mutex);
8475

8476 8477
	put_online_cpus();

8478
	event->owner = current;
P
Peter Zijlstra 已提交
8479

8480 8481 8482
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8483

8484 8485 8486 8487 8488 8489
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8490
	fdput(group);
8491 8492
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8493

8494 8495 8496 8497 8498 8499
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8500
err_context:
8501
	perf_unpin_context(ctx);
8502
	put_ctx(ctx);
8503
err_alloc:
8504
	free_event(event);
8505
err_cpus:
8506
	put_online_cpus();
8507
err_task:
P
Peter Zijlstra 已提交
8508 8509
	if (task)
		put_task_struct(task);
8510
err_group_fd:
8511
	fdput(group);
8512 8513
err_fd:
	put_unused_fd(event_fd);
8514
	return err;
T
Thomas Gleixner 已提交
8515 8516
}

8517 8518 8519 8520 8521
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8522
 * @task: task to profile (NULL for percpu)
8523 8524 8525
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8526
				 struct task_struct *task,
8527 8528
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8529 8530
{
	struct perf_event_context *ctx;
8531
	struct perf_event *event;
8532
	int err;
8533

8534 8535 8536
	/*
	 * Get the target context (task or percpu):
	 */
8537

8538
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8539
				 overflow_handler, context, -1);
8540 8541 8542 8543
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8544

8545 8546 8547
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8548 8549
	account_event(event);

8550
	ctx = find_get_context(event->pmu, task, event);
8551 8552
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8553
		goto err_free;
8554
	}
8555 8556 8557

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8558 8559 8560 8561 8562 8563 8564 8565
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8566
	perf_install_in_context(ctx, event, cpu);
8567
	perf_unpin_context(ctx);
8568 8569 8570 8571
	mutex_unlock(&ctx->mutex);

	return event;

8572 8573 8574
err_free:
	free_event(event);
err:
8575
	return ERR_PTR(err);
8576
}
8577
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8578

8579 8580 8581 8582 8583 8584 8585 8586 8587 8588
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8589 8590 8591 8592 8593
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8594 8595
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8596
		perf_remove_from_context(event, false);
8597
		unaccount_event_cpu(event, src_cpu);
8598
		put_ctx(src_ctx);
8599
		list_add(&event->migrate_entry, &events);
8600 8601
	}

8602 8603 8604
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8605 8606
	synchronize_rcu();

8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8631 8632
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8633 8634
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8635
		account_event_cpu(event, dst_cpu);
8636 8637 8638 8639
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8640
	mutex_unlock(&src_ctx->mutex);
8641 8642 8643
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8644
static void sync_child_event(struct perf_event *child_event,
8645
			       struct task_struct *child)
8646
{
8647
	struct perf_event *parent_event = child_event->parent;
8648
	u64 child_val;
8649

8650 8651
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8652

P
Peter Zijlstra 已提交
8653
	child_val = perf_event_count(child_event);
8654 8655 8656 8657

	/*
	 * Add back the child's count to the parent's count:
	 */
8658
	atomic64_add(child_val, &parent_event->child_count);
8659 8660 8661 8662
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8663 8664

	/*
8665
	 * Remove this event from the parent's list
8666
	 */
8667 8668 8669 8670
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8671

8672 8673 8674 8675 8676 8677
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8678
	/*
8679
	 * Release the parent event, if this was the last
8680 8681
	 * reference to it.
	 */
8682
	put_event(parent_event);
8683 8684
}

8685
static void
8686 8687
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8688
			 struct task_struct *child)
8689
{
8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8703

8704
	/*
8705
	 * It can happen that the parent exits first, and has events
8706
	 * that are still around due to the child reference. These
8707
	 * events need to be zapped.
8708
	 */
8709
	if (child_event->parent) {
8710 8711
		sync_child_event(child_event, child);
		free_event(child_event);
8712 8713 8714
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8715
	}
8716 8717
}

P
Peter Zijlstra 已提交
8718
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8719
{
8720
	struct perf_event *child_event, *next;
8721
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8722
	unsigned long flags;
8723

J
Jiri Olsa 已提交
8724
	if (likely(!child->perf_event_ctxp[ctxn]))
8725 8726
		return;

8727
	local_irq_save(flags);
8728 8729 8730 8731 8732 8733
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8734
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8735 8736 8737

	/*
	 * Take the context lock here so that if find_get_context is
8738
	 * reading child->perf_event_ctxp, we wait until it has
8739 8740
	 * incremented the context's refcount before we do put_ctx below.
	 */
8741
	raw_spin_lock(&child_ctx->lock);
8742
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
P
Peter Zijlstra 已提交
8743
	child->perf_event_ctxp[ctxn] = NULL;
8744

8745 8746 8747
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8748
	 * the events from it.
8749
	 */
8750
	clone_ctx = unclone_ctx(child_ctx);
8751
	update_context_time(child_ctx);
8752
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8753

8754 8755
	if (clone_ctx)
		put_ctx(clone_ctx);
8756

P
Peter Zijlstra 已提交
8757
	/*
8758 8759 8760
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8761
	 */
8762
	perf_event_task(child, child_ctx, 0);
8763

8764 8765 8766
	/*
	 * We can recurse on the same lock type through:
	 *
8767 8768
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8769 8770
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8771 8772 8773
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8774
	mutex_lock(&child_ctx->mutex);
8775

8776
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8777
		__perf_event_exit_task(child_event, child_ctx, child);
8778

8779 8780 8781
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8782 8783
}

P
Peter Zijlstra 已提交
8784 8785 8786 8787 8788
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8789
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8790 8791
	int ctxn;

P
Peter Zijlstra 已提交
8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8807 8808
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8809 8810 8811 8812 8813 8814 8815 8816

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8817 8818
}

8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8831
	put_event(parent);
8832

P
Peter Zijlstra 已提交
8833
	raw_spin_lock_irq(&ctx->lock);
8834
	perf_group_detach(event);
8835
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8836
	raw_spin_unlock_irq(&ctx->lock);
8837 8838 8839
	free_event(event);
}

8840
/*
P
Peter Zijlstra 已提交
8841
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8842
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8843 8844 8845
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8846
 */
8847
void perf_event_free_task(struct task_struct *task)
8848
{
P
Peter Zijlstra 已提交
8849
	struct perf_event_context *ctx;
8850
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8851
	int ctxn;
8852

P
Peter Zijlstra 已提交
8853 8854 8855 8856
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8857

P
Peter Zijlstra 已提交
8858
		mutex_lock(&ctx->mutex);
8859
again:
P
Peter Zijlstra 已提交
8860 8861 8862
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8863

P
Peter Zijlstra 已提交
8864 8865 8866
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8867

P
Peter Zijlstra 已提交
8868 8869 8870
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8871

P
Peter Zijlstra 已提交
8872
		mutex_unlock(&ctx->mutex);
8873

P
Peter Zijlstra 已提交
8874 8875
		put_ctx(ctx);
	}
8876 8877
}

8878 8879 8880 8881 8882 8883 8884 8885
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8922
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8923
	struct perf_event *child_event;
8924
	unsigned long flags;
P
Peter Zijlstra 已提交
8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8937
					   child,
P
Peter Zijlstra 已提交
8938
					   group_leader, parent_event,
8939
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8940 8941
	if (IS_ERR(child_event))
		return child_event;
8942

8943 8944
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8945 8946 8947 8948
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8949 8950 8951 8952 8953 8954 8955
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8956
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8973 8974
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8975

8976 8977 8978 8979
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8980
	perf_event__id_header_size(child_event);
8981

P
Peter Zijlstra 已提交
8982 8983 8984
	/*
	 * Link it up in the child's context:
	 */
8985
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8986
	add_event_to_ctx(child_event, child_ctx);
8987
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9021 9022 9023 9024 9025
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9026
		   struct task_struct *child, int ctxn,
9027 9028 9029
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9030
	struct perf_event_context *child_ctx;
9031 9032 9033 9034

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9035 9036
	}

9037
	child_ctx = child->perf_event_ctxp[ctxn];
9038 9039 9040 9041 9042 9043 9044
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9045

9046
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9047 9048
		if (!child_ctx)
			return -ENOMEM;
9049

P
Peter Zijlstra 已提交
9050
		child->perf_event_ctxp[ctxn] = child_ctx;
9051 9052 9053 9054 9055 9056 9057 9058 9059
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9060 9061
}

9062
/*
9063
 * Initialize the perf_event context in task_struct
9064
 */
9065
static int perf_event_init_context(struct task_struct *child, int ctxn)
9066
{
9067
	struct perf_event_context *child_ctx, *parent_ctx;
9068 9069
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9070
	struct task_struct *parent = current;
9071
	int inherited_all = 1;
9072
	unsigned long flags;
9073
	int ret = 0;
9074

P
Peter Zijlstra 已提交
9075
	if (likely(!parent->perf_event_ctxp[ctxn]))
9076 9077
		return 0;

9078
	/*
9079 9080
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9081
	 */
P
Peter Zijlstra 已提交
9082
	parent_ctx = perf_pin_task_context(parent, ctxn);
9083 9084
	if (!parent_ctx)
		return 0;
9085

9086 9087 9088 9089 9090 9091 9092
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9093 9094 9095 9096
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9097
	mutex_lock(&parent_ctx->mutex);
9098 9099 9100 9101 9102

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9103
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9104 9105
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9106 9107 9108
		if (ret)
			break;
	}
9109

9110 9111 9112 9113 9114 9115 9116 9117 9118
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9119
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9120 9121
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9122
		if (ret)
9123
			break;
9124 9125
	}

9126 9127 9128
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9129
	child_ctx = child->perf_event_ctxp[ctxn];
9130

9131
	if (child_ctx && inherited_all) {
9132 9133 9134
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9135 9136 9137
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9138
		 */
P
Peter Zijlstra 已提交
9139
		cloned_ctx = parent_ctx->parent_ctx;
9140 9141
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9142
			child_ctx->parent_gen = parent_ctx->parent_gen;
9143 9144 9145 9146 9147
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9148 9149
	}

P
Peter Zijlstra 已提交
9150
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9151
	mutex_unlock(&parent_ctx->mutex);
9152

9153
	perf_unpin_context(parent_ctx);
9154
	put_ctx(parent_ctx);
9155

9156
	return ret;
9157 9158
}

P
Peter Zijlstra 已提交
9159 9160 9161 9162 9163 9164 9165
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9166 9167 9168 9169
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9170 9171
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9172 9173
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9174
			return ret;
P
Peter Zijlstra 已提交
9175
		}
P
Peter Zijlstra 已提交
9176 9177 9178 9179 9180
	}

	return 0;
}

9181 9182
static void __init perf_event_init_all_cpus(void)
{
9183
	struct swevent_htable *swhash;
9184 9185 9186
	int cpu;

	for_each_possible_cpu(cpu) {
9187 9188
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9189
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9190 9191 9192
	}
}

9193
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9194
{
P
Peter Zijlstra 已提交
9195
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9196

9197
	mutex_lock(&swhash->hlist_mutex);
9198
	if (swhash->hlist_refcount > 0) {
9199 9200
		struct swevent_hlist *hlist;

9201 9202 9203
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9204
	}
9205
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9206 9207
}

9208
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9209
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9210
{
9211
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9212
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9213

P
Peter Zijlstra 已提交
9214
	rcu_read_lock();
9215 9216
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9217
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9218
}
P
Peter Zijlstra 已提交
9219 9220 9221 9222 9223 9224 9225 9226 9227

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9228
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9229 9230 9231 9232 9233 9234 9235 9236

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9237
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9238
{
P
Peter Zijlstra 已提交
9239
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9240 9241
}
#else
9242
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9243 9244
#endif

P
Peter Zijlstra 已提交
9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9265
static int
T
Thomas Gleixner 已提交
9266 9267 9268 9269
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9270
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9271 9272

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9273
	case CPU_DOWN_FAILED:
9274
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9275 9276
		break;

P
Peter Zijlstra 已提交
9277
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9278
	case CPU_DOWN_PREPARE:
9279
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9280 9281 9282 9283 9284 9285 9286 9287
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9288
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9289
{
9290 9291
	int ret;

P
Peter Zijlstra 已提交
9292 9293
	idr_init(&pmu_idr);

9294
	perf_event_init_all_cpus();
9295
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9296 9297 9298
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9299 9300
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9301
	register_reboot_notifier(&perf_reboot_notifier);
9302 9303 9304

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9305 9306 9307

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9308 9309 9310 9311 9312 9313 9314

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9315
}
P
Peter Zijlstra 已提交
9316

9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9356 9357

#ifdef CONFIG_CGROUP_PERF
9358 9359
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9360 9361 9362
{
	struct perf_cgroup *jc;

9363
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9376
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9377
{
9378 9379
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9380 9381 9382 9383 9384 9385 9386
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9387
	rcu_read_lock();
S
Stephane Eranian 已提交
9388
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9389
	rcu_read_unlock();
S
Stephane Eranian 已提交
9390 9391 9392
	return 0;
}

9393
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9394
{
9395
	struct task_struct *task;
9396
	struct cgroup_subsys_state *css;
9397

9398
	cgroup_taskset_for_each(task, css, tset)
9399
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9400 9401
}

9402
struct cgroup_subsys perf_event_cgrp_subsys = {
9403 9404
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9405
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9406 9407
};
#endif /* CONFIG_CGROUP_PERF */