core.c 220.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

151 152 153 154 155 156 157
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == TASK_TOMBSTONE;
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216 217 218 219
		if (ctx->task != current) {
			ret = -EAGAIN;
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
258 259
{
	struct perf_event_context *ctx = event->ctx;
260
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 262 263 264 265
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
266

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}

276
	if (!task) {
277
		cpu_function_call(event->cpu, event_function, &efs);
278 279 280 281
		return;
	}

again:
282 283 284
	if (task == TASK_TOMBSTONE)
		return;

285
	if (!task_function_call(task, event_function, &efs))
286 287 288
		return;

	raw_spin_lock_irq(&ctx->lock);
289 290 291 292 293 294 295 296 297 298 299
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
	if (task != TASK_TOMBSTONE) {
		if (ctx->is_active) {
			raw_spin_unlock_irq(&ctx->lock);
			goto again;
		}
		func(event, NULL, ctx, data);
300 301 302 303
	}
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318 319 320 321
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
322 323 324 325
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
326
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
327
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
328
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
329

330 331 332
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
333
static atomic_t nr_freq_events __read_mostly;
334
static atomic_t nr_switch_events __read_mostly;
335

P
Peter Zijlstra 已提交
336 337 338 339
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

340
/*
341
 * perf event paranoia level:
342 343
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
344
 *   1 - disallow cpu events for unpriv
345
 *   2 - disallow kernel profiling for unpriv
346
 */
347
int sysctl_perf_event_paranoid __read_mostly = 1;
348

349 350
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
351 352

/*
353
 * max perf event sample rate
354
 */
355 356 357 358 359 360 361 362 363
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
364 365
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
366

367
static void update_perf_cpu_limits(void)
368 369 370 371
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
372
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
373
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
374
}
P
Peter Zijlstra 已提交
375

376 377
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
378 379 380 381
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
382
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
383 384 385 386 387

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
406 407 408

	return 0;
}
409

410 411 412 413 414 415 416
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
417
static DEFINE_PER_CPU(u64, running_sample_length);
418

419
static void perf_duration_warn(struct irq_work *w)
420
{
421
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
422
	u64 avg_local_sample_len;
423
	u64 local_samples_len;
424

425
	local_samples_len = __this_cpu_read(running_sample_length);
426 427 428 429 430
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
431
			avg_local_sample_len, allowed_ns >> 1,
432 433 434 435 436 437 438
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
439
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
440 441
	u64 avg_local_sample_len;
	u64 local_samples_len;
442

P
Peter Zijlstra 已提交
443
	if (allowed_ns == 0)
444 445 446
		return;

	/* decay the counter by 1 average sample */
447
	local_samples_len = __this_cpu_read(running_sample_length);
448 449
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
450
	__this_cpu_write(running_sample_length, local_samples_len);
451 452 453 454 455 456 457 458

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
459
	if (avg_local_sample_len <= allowed_ns)
460 461 462 463 464 465 466 467 468 469
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
470

471 472 473 474 475 476
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
477 478
}

479
static atomic64_t perf_event_id;
480

481 482 483 484
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
485 486 487 488 489
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
490

491
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
492

493
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
494
{
495
	return "pmu";
T
Thomas Gleixner 已提交
496 497
}

498 499 500 501 502
static inline u64 perf_clock(void)
{
	return local_clock();
}

503 504 505 506 507
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
532 533 534 535
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
536
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
575 576
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
577
	/*
578 579
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
580
	 */
581
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
582 583
		return;

584
	cgrp = perf_cgroup_from_task(current, event->ctx);
585 586 587 588 589
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
590 591 592
}

static inline void
593 594
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
595 596 597 598
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

599 600 601 602 603 604
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
605 606
		return;

607
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
608
	info = this_cpu_ptr(cgrp->info);
609
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
610 611 612 613 614 615 616 617 618 619 620
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
621
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
641 642
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
643 644 645 646 647 648 649 650 651

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
652 653
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
654 655 656 657 658 659 660 661 662 663 664

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
665
				WARN_ON_ONCE(cpuctx->cgrp);
666 667 668 669
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
670 671
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
672
				 */
673
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
674 675
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
676 677
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
678 679 680 681 682 683
		}
	}

	local_irq_restore(flags);
}

684 685
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
686
{
687 688 689
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

690
	rcu_read_lock();
691 692
	/*
	 * we come here when we know perf_cgroup_events > 0
693 694
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
695
	 */
696
	cgrp1 = perf_cgroup_from_task(task, NULL);
697
	cgrp2 = perf_cgroup_from_task(next, NULL);
698 699 700 701 702 703 704 705

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
706 707

	rcu_read_unlock();
S
Stephane Eranian 已提交
708 709
}

710 711
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
712
{
713 714 715
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

716
	rcu_read_lock();
717 718
	/*
	 * we come here when we know perf_cgroup_events > 0
719 720
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
721
	 */
722 723
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
724 725 726 727 728 729 730 731

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
732 733

	rcu_read_unlock();
S
Stephane Eranian 已提交
734 735 736 737 738 739 740 741
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
742 743
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
744

745
	if (!f.file)
S
Stephane Eranian 已提交
746 747
		return -EBADF;

A
Al Viro 已提交
748
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
749
					 &perf_event_cgrp_subsys);
750 751 752 753
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
767
out:
768
	fdput(f);
S
Stephane Eranian 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

842 843
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
844 845 846
{
}

847 848
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
849 850 851 852 853 854 855 856 857 858 859
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
860 861
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

892 893 894 895 896 897 898 899
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
900
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
901 902 903 904 905 906 907 908 909
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
910 911
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
912
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
913 914 915
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
916

P
Peter Zijlstra 已提交
917
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
918 919
}

920
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
921
{
922
	struct hrtimer *timer = &cpuctx->hrtimer;
923
	struct pmu *pmu = cpuctx->ctx.pmu;
924
	u64 interval;
925 926 927 928 929

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

930 931 932 933
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
934 935 936
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
937

938
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
939

P
Peter Zijlstra 已提交
940 941
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
942
	timer->function = perf_mux_hrtimer_handler;
943 944
}

945
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
946
{
947
	struct hrtimer *timer = &cpuctx->hrtimer;
948
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
949
	unsigned long flags;
950 951 952

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
953
		return 0;
954

P
Peter Zijlstra 已提交
955 956 957 958 959 960 961
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
962

963
	return 0;
964 965
}

P
Peter Zijlstra 已提交
966
void perf_pmu_disable(struct pmu *pmu)
967
{
P
Peter Zijlstra 已提交
968 969 970
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
971 972
}

P
Peter Zijlstra 已提交
973
void perf_pmu_enable(struct pmu *pmu)
974
{
P
Peter Zijlstra 已提交
975 976 977
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
978 979
}

980
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
981 982

/*
983 984 985 986
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
987
 */
988
static void perf_event_ctx_activate(struct perf_event_context *ctx)
989
{
990
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
991

992
	WARN_ON(!irqs_disabled());
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1006 1007
}

1008
static void get_ctx(struct perf_event_context *ctx)
1009
{
1010
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1022
static void put_ctx(struct perf_event_context *ctx)
1023
{
1024 1025 1026
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1027
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1028
			put_task_struct(ctx->task);
1029
		call_rcu(&ctx->rcu_head, free_ctx);
1030
	}
1031 1032
}

P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1094 1095
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1108
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1118 1119 1120 1121 1122 1123
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1124 1125 1126 1127 1128 1129 1130
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1131 1132 1133 1134 1135 1136 1137
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1138
{
1139 1140 1141 1142 1143
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1144
		ctx->parent_ctx = NULL;
1145
	ctx->generation++;
1146 1147

	return parent_ctx;
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1172
/*
1173
 * If we inherit events we want to return the parent event id
1174 1175
 * to userspace.
 */
1176
static u64 primary_event_id(struct perf_event *event)
1177
{
1178
	u64 id = event->id;
1179

1180 1181
	if (event->parent)
		id = event->parent->id;
1182 1183 1184 1185

	return id;
}

1186
/*
1187
 * Get the perf_event_context for a task and lock it.
1188
 *
1189 1190 1191
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1192
static struct perf_event_context *
P
Peter Zijlstra 已提交
1193
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1194
{
1195
	struct perf_event_context *ctx;
1196

P
Peter Zijlstra 已提交
1197
retry:
1198 1199 1200
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1201
	 * part of the read side critical section was irqs-enabled -- see
1202 1203 1204
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1205
	 * side critical section has interrupts disabled.
1206
	 */
1207
	local_irq_save(*flags);
1208
	rcu_read_lock();
P
Peter Zijlstra 已提交
1209
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1210 1211 1212 1213
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1214
		 * perf_event_task_sched_out, though the
1215 1216 1217 1218 1219 1220
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1221
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1222
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1223
			raw_spin_unlock(&ctx->lock);
1224
			rcu_read_unlock();
1225
			local_irq_restore(*flags);
1226 1227
			goto retry;
		}
1228

1229 1230
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1231
			raw_spin_unlock(&ctx->lock);
1232
			ctx = NULL;
P
Peter Zijlstra 已提交
1233 1234
		} else {
			WARN_ON_ONCE(ctx->task != task);
1235
		}
1236 1237
	}
	rcu_read_unlock();
1238 1239
	if (!ctx)
		local_irq_restore(*flags);
1240 1241 1242 1243 1244 1245 1246 1247
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1248 1249
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1250
{
1251
	struct perf_event_context *ctx;
1252 1253
	unsigned long flags;

P
Peter Zijlstra 已提交
1254
	ctx = perf_lock_task_context(task, ctxn, &flags);
1255 1256
	if (ctx) {
		++ctx->pin_count;
1257
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1258 1259 1260 1261
	}
	return ctx;
}

1262
static void perf_unpin_context(struct perf_event_context *ctx)
1263 1264 1265
{
	unsigned long flags;

1266
	raw_spin_lock_irqsave(&ctx->lock, flags);
1267
	--ctx->pin_count;
1268
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1282 1283 1284
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1285 1286 1287 1288

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1289 1290 1291
	return ctx ? ctx->time : 0;
}

1292 1293
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1294
 * The caller of this function needs to hold the ctx->lock.
1295 1296 1297 1298 1299 1300 1301 1302 1303
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1315
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1316 1317
	else if (ctx->is_active)
		run_end = ctx->time;
1318 1319 1320 1321
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1322 1323 1324 1325

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1326
		run_end = perf_event_time(event);
1327 1328

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1329

1330 1331
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1344 1345 1346 1347 1348 1349 1350 1351 1352
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1353
/*
1354
 * Add a event from the lists for its context.
1355 1356
 * Must be called with ctx->mutex and ctx->lock held.
 */
1357
static void
1358
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1359
{
P
Peter Zijlstra 已提交
1360 1361
	lockdep_assert_held(&ctx->lock);

1362 1363
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1364 1365

	/*
1366 1367 1368
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1369
	 */
1370
	if (event->group_leader == event) {
1371 1372
		struct list_head *list;

1373 1374 1375
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1376 1377
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1378
	}
P
Peter Zijlstra 已提交
1379

1380
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1381 1382
		ctx->nr_cgroups++;

1383 1384 1385
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1386
		ctx->nr_stat++;
1387 1388

	ctx->generation++;
1389 1390
}

J
Jiri Olsa 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1400
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1416
		nr += nr_siblings;
1417 1418 1419 1420 1421 1422 1423
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1424
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1425 1426 1427 1428 1429 1430 1431
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1432 1433 1434 1435 1436 1437
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1438 1439 1440
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1441 1442 1443
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1444 1445 1446
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1447 1448 1449
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1450 1451 1452
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1464 1465 1466 1467 1468 1469
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1470 1471 1472 1473 1474 1475
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1476 1477 1478
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1479 1480 1481 1482 1483 1484 1485 1486 1487
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1488
	event->id_header_size = size;
1489 1490
}

P
Peter Zijlstra 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1512 1513
static void perf_group_attach(struct perf_event *event)
{
1514
	struct perf_event *group_leader = event->group_leader, *pos;
1515

P
Peter Zijlstra 已提交
1516 1517 1518 1519 1520 1521
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1522 1523 1524 1525 1526
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1527 1528
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1529 1530 1531 1532 1533 1534
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1535 1536 1537 1538 1539

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1540 1541
}

1542
/*
1543
 * Remove a event from the lists for its context.
1544
 * Must be called with ctx->mutex and ctx->lock held.
1545
 */
1546
static void
1547
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1548
{
1549
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1550 1551 1552 1553

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1554 1555 1556 1557
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1558
		return;
1559 1560 1561

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1562
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1563
		ctx->nr_cgroups--;
1564 1565 1566 1567
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1568 1569
		cpuctx = __get_cpu_context(ctx);
		/*
1570 1571
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1572 1573 1574 1575
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1576

1577 1578
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1579
		ctx->nr_stat--;
1580

1581
	list_del_rcu(&event->event_entry);
1582

1583 1584
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1585

1586
	update_group_times(event);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1597 1598

	ctx->generation++;
1599 1600
}

1601
static void perf_group_detach(struct perf_event *event)
1602 1603
{
	struct perf_event *sibling, *tmp;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1620
		goto out;
1621 1622 1623 1624
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1625

1626
	/*
1627 1628
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1629
	 * to whatever list we are on.
1630
	 */
1631
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1632 1633
		if (list)
			list_move_tail(&sibling->group_entry, list);
1634
		sibling->group_leader = sibling;
1635 1636 1637

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1638 1639

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1640
	}
1641 1642 1643 1644 1645 1646

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1647 1648
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1688 1689 1690 1691 1692 1693
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1694 1695 1696
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1697
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1698
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1699 1700
}

1701 1702
static void
event_sched_out(struct perf_event *event,
1703
		  struct perf_cpu_context *cpuctx,
1704
		  struct perf_event_context *ctx)
1705
{
1706
	u64 tstamp = perf_event_time(event);
1707
	u64 delta;
P
Peter Zijlstra 已提交
1708 1709 1710 1711

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1720
		delta = tstamp - event->tstamp_stopped;
1721
		event->tstamp_running += delta;
1722
		event->tstamp_stopped = tstamp;
1723 1724
	}

1725
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1726
		return;
1727

1728 1729
	perf_pmu_disable(event->pmu);

1730 1731 1732 1733
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1734
	}
1735
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1736
	event->pmu->del(event, 0);
1737
	event->oncpu = -1;
1738

1739
	if (!is_software_event(event))
1740
		cpuctx->active_oncpu--;
1741 1742
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1743 1744
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1745
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1746
		cpuctx->exclusive = 0;
1747

1748 1749 1750
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1751
	perf_pmu_enable(event->pmu);
1752 1753
}

1754
static void
1755
group_sched_out(struct perf_event *group_event,
1756
		struct perf_cpu_context *cpuctx,
1757
		struct perf_event_context *ctx)
1758
{
1759
	struct perf_event *event;
1760
	int state = group_event->state;
1761

1762
	event_sched_out(group_event, cpuctx, ctx);
1763 1764 1765 1766

	/*
	 * Schedule out siblings (if any):
	 */
1767 1768
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1769

1770
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1771 1772 1773
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1774
/*
1775
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1776
 *
1777
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1778 1779
 * remove it from the context list.
 */
1780 1781 1782 1783 1784
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1785
{
1786
	bool detach_group = (unsigned long)info;
T
Thomas Gleixner 已提交
1787

1788
	event_sched_out(event, cpuctx, ctx);
1789
	if (detach_group)
1790
		perf_group_detach(event);
1791
	list_del_event(event, ctx);
1792 1793

	if (!ctx->nr_events && ctx->is_active) {
1794
		ctx->is_active = 0;
1795 1796 1797 1798
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1799
	}
T
Thomas Gleixner 已提交
1800 1801 1802
}

/*
1803
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1804
 *
1805 1806
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1807 1808
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1809
 * When called from perf_event_exit_task, it's OK because the
1810
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1811
 */
1812
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1813
{
1814
	lockdep_assert_held(&event->ctx->mutex);
1815

1816
	event_function_call(event, __perf_remove_from_context,
1817
			    (void *)(unsigned long)detach_group);
T
Thomas Gleixner 已提交
1818 1819
}

1820
/*
1821
 * Cross CPU call to disable a performance event
1822
 */
1823 1824 1825 1826
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1827
{
1828 1829
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1830

1831 1832 1833 1834 1835 1836 1837 1838
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1839 1840
}

1841
/*
1842
 * Disable a event.
1843
 *
1844 1845
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1846
 * remains valid.  This condition is satisifed when called through
1847 1848 1849 1850
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1851
 * is the current context on this CPU and preemption is disabled,
1852
 * hence we can't get into perf_event_task_sched_out for this context.
1853
 */
P
Peter Zijlstra 已提交
1854
static void _perf_event_disable(struct perf_event *event)
1855
{
1856
	struct perf_event_context *ctx = event->ctx;
1857

1858
	raw_spin_lock_irq(&ctx->lock);
1859
	if (event->state <= PERF_EVENT_STATE_OFF) {
1860
		raw_spin_unlock_irq(&ctx->lock);
1861
		return;
1862
	}
1863
	raw_spin_unlock_irq(&ctx->lock);
1864

1865 1866 1867 1868 1869 1870
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1871
}
P
Peter Zijlstra 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1885
EXPORT_SYMBOL_GPL(perf_event_disable);
1886

S
Stephane Eranian 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1922 1923 1924
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1925
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1926

1927
static int
1928
event_sched_in(struct perf_event *event,
1929
		 struct perf_cpu_context *cpuctx,
1930
		 struct perf_event_context *ctx)
1931
{
1932
	u64 tstamp = perf_event_time(event);
1933
	int ret = 0;
1934

1935 1936
	lockdep_assert_held(&ctx->lock);

1937
	if (event->state <= PERF_EVENT_STATE_OFF)
1938 1939
		return 0;

1940
	event->state = PERF_EVENT_STATE_ACTIVE;
1941
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1953 1954 1955 1956 1957
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1958 1959
	perf_pmu_disable(event->pmu);

1960 1961
	perf_set_shadow_time(event, ctx, tstamp);

1962 1963
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1964
	if (event->pmu->add(event, PERF_EF_START)) {
1965 1966
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1967 1968
		ret = -EAGAIN;
		goto out;
1969 1970
	}

1971 1972
	event->tstamp_running += tstamp - event->tstamp_stopped;

1973
	if (!is_software_event(event))
1974
		cpuctx->active_oncpu++;
1975 1976
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1977 1978
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1979

1980
	if (event->attr.exclusive)
1981 1982
		cpuctx->exclusive = 1;

1983 1984 1985
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1986 1987 1988 1989
out:
	perf_pmu_enable(event->pmu);

	return ret;
1990 1991
}

1992
static int
1993
group_sched_in(struct perf_event *group_event,
1994
	       struct perf_cpu_context *cpuctx,
1995
	       struct perf_event_context *ctx)
1996
{
1997
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1998
	struct pmu *pmu = ctx->pmu;
1999 2000
	u64 now = ctx->time;
	bool simulate = false;
2001

2002
	if (group_event->state == PERF_EVENT_STATE_OFF)
2003 2004
		return 0;

2005
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2006

2007
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2008
		pmu->cancel_txn(pmu);
2009
		perf_mux_hrtimer_restart(cpuctx);
2010
		return -EAGAIN;
2011
	}
2012 2013 2014 2015

	/*
	 * Schedule in siblings as one group (if any):
	 */
2016
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2017
		if (event_sched_in(event, cpuctx, ctx)) {
2018
			partial_group = event;
2019 2020 2021 2022
			goto group_error;
		}
	}

2023
	if (!pmu->commit_txn(pmu))
2024
		return 0;
2025

2026 2027 2028 2029
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2040
	 */
2041 2042
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2043 2044 2045 2046 2047 2048 2049 2050
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2051
	}
2052
	event_sched_out(group_event, cpuctx, ctx);
2053

P
Peter Zijlstra 已提交
2054
	pmu->cancel_txn(pmu);
2055

2056
	perf_mux_hrtimer_restart(cpuctx);
2057

2058 2059 2060
	return -EAGAIN;
}

2061
/*
2062
 * Work out whether we can put this event group on the CPU now.
2063
 */
2064
static int group_can_go_on(struct perf_event *event,
2065 2066 2067 2068
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2069
	 * Groups consisting entirely of software events can always go on.
2070
	 */
2071
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2072 2073 2074
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2075
	 * events can go on.
2076 2077 2078 2079 2080
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2081
	 * events on the CPU, it can't go on.
2082
	 */
2083
	if (event->attr.exclusive && cpuctx->active_oncpu)
2084 2085 2086 2087 2088 2089 2090 2091
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2092 2093
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2094
{
2095 2096
	u64 tstamp = perf_event_time(event);

2097
	list_add_event(event, ctx);
2098
	perf_group_attach(event);
2099 2100 2101
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2102 2103
}

2104 2105
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2106 2107 2108 2109 2110
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2135
/*
2136
 * Cross CPU call to install and enable a performance event
2137 2138
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2139
 */
2140
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2141
{
2142
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2143
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 2145
	struct perf_event_context *task_ctx = cpuctx->task_ctx;

2146
	raw_spin_lock(&cpuctx->ctx.lock);
2147
	if (ctx->task) {
2148
		raw_spin_lock(&ctx->lock);
2149 2150 2151 2152
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
2153
		task_ctx = ctx;
2154
		if (ctx->task != current)
2155
			goto unlock;
2156

2157 2158 2159 2160
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2161 2162
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2163 2164
	}

2165
	ctx_resched(cpuctx, task_ctx);
2166
unlock:
2167
	perf_ctx_unlock(cpuctx, task_ctx);
2168 2169

	return 0;
T
Thomas Gleixner 已提交
2170 2171 2172
}

/*
2173
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2174 2175
 */
static void
2176 2177
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2178 2179
			int cpu)
{
2180 2181
	struct task_struct *task = NULL;

2182 2183
	lockdep_assert_held(&ctx->mutex);

2184
	event->ctx = ctx;
2185 2186
	if (event->cpu != -1)
		event->cpu = cpu;
2187

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	task = ctx->task;
	/*
	 * Worse, we cannot even rely on the ctx actually existing anymore. If
	 * between find_get_context() and perf_install_in_context() the task
	 * went through perf_event_exit_task() its dead and we should not be
	 * adding new events.
	 */
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	update_context_time(ctx);
	/*
	 * Update cgrp time only if current cgrp matches event->cgrp.
	 * Must be done before calling add_event_to_ctx().
	 */
	update_cgrp_time_from_event(event);
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2222 2223
}

2224
/*
2225
 * Put a event into inactive state and update time fields.
2226 2227 2228 2229 2230 2231
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2232
static void __perf_event_mark_enabled(struct perf_event *event)
2233
{
2234
	struct perf_event *sub;
2235
	u64 tstamp = perf_event_time(event);
2236

2237
	event->state = PERF_EVENT_STATE_INACTIVE;
2238
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2239
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2240 2241
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2242
	}
2243 2244
}

2245
/*
2246
 * Cross CPU call to enable a performance event
2247
 */
2248 2249 2250 2251
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2252
{
2253
	struct perf_event *leader = event->group_leader;
2254
	struct perf_event_context *task_ctx;
2255

2256
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2257
		return;
S
Stephane Eranian 已提交
2258

2259
	update_context_time(ctx);
2260
	__perf_event_mark_enabled(event);
2261

2262 2263 2264
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2265
	if (!event_filter_match(event)) {
2266 2267
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2268
			perf_cgroup_defer_enabled(event);
2269 2270
		}
		return;
S
Stephane Eranian 已提交
2271
	}
2272

2273
	/*
2274
	 * If the event is in a group and isn't the group leader,
2275
	 * then don't put it on unless the group is on.
2276
	 */
2277
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2278
		return;
2279

2280 2281 2282
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2283

2284
	ctx_resched(cpuctx, task_ctx);
2285 2286
}

2287
/*
2288
 * Enable a event.
2289
 *
2290 2291
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2292
 * remains valid.  This condition is satisfied when called through
2293 2294
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2295
 */
P
Peter Zijlstra 已提交
2296
static void _perf_event_enable(struct perf_event *event)
2297
{
2298
	struct perf_event_context *ctx = event->ctx;
2299

2300 2301 2302
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2303 2304 2305 2306
		return;
	}

	/*
2307
	 * If the event is in error state, clear that first.
2308 2309 2310 2311
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2312
	 */
2313 2314
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2315
	raw_spin_unlock_irq(&ctx->lock);
2316

2317
	event_function_call(event, __perf_event_enable, NULL);
2318
}
P
Peter Zijlstra 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2331
EXPORT_SYMBOL_GPL(perf_event_enable);
2332

P
Peter Zijlstra 已提交
2333
static int _perf_event_refresh(struct perf_event *event, int refresh)
2334
{
2335
	/*
2336
	 * not supported on inherited events
2337
	 */
2338
	if (event->attr.inherit || !is_sampling_event(event))
2339 2340
		return -EINVAL;

2341
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2342
	_perf_event_enable(event);
2343 2344

	return 0;
2345
}
P
Peter Zijlstra 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2361
EXPORT_SYMBOL_GPL(perf_event_refresh);
2362

2363 2364 2365
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2366
{
2367
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2368 2369 2370
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2371

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
		return;
	}

2382
	ctx->is_active &= ~event_type;
2383 2384 2385 2386 2387 2388
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}

2389
	update_context_time(ctx);
S
Stephane Eranian 已提交
2390
	update_cgrp_time_from_cpuctx(cpuctx);
2391
	if (!ctx->nr_active)
2392
		return;
2393

P
Peter Zijlstra 已提交
2394
	perf_pmu_disable(ctx->pmu);
2395
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2396 2397
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2398
	}
2399

2400
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2401
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2402
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2403
	}
P
Peter Zijlstra 已提交
2404
	perf_pmu_enable(ctx->pmu);
2405 2406
}

2407
/*
2408 2409 2410 2411 2412 2413
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2414
 */
2415 2416
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2417
{
2418 2419 2420
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2443 2444
}

2445 2446
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2447 2448 2449
{
	u64 value;

2450
	if (!event->attr.inherit_stat)
2451 2452 2453
		return;

	/*
2454
	 * Update the event value, we cannot use perf_event_read()
2455 2456
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2457
	 * we know the event must be on the current CPU, therefore we
2458 2459
	 * don't need to use it.
	 */
2460 2461
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2462 2463
		event->pmu->read(event);
		/* fall-through */
2464

2465 2466
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2467 2468 2469 2470 2471 2472 2473
		break;

	default:
		break;
	}

	/*
2474
	 * In order to keep per-task stats reliable we need to flip the event
2475 2476
	 * values when we flip the contexts.
	 */
2477 2478 2479
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2480

2481 2482
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2483

2484
	/*
2485
	 * Since we swizzled the values, update the user visible data too.
2486
	 */
2487 2488
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2489 2490
}

2491 2492
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2493
{
2494
	struct perf_event *event, *next_event;
2495 2496 2497 2498

	if (!ctx->nr_stat)
		return;

2499 2500
	update_context_time(ctx);

2501 2502
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2503

2504 2505
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2506

2507 2508
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2509

2510
		__perf_event_sync_stat(event, next_event);
2511

2512 2513
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2514 2515 2516
	}
}

2517 2518
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2519
{
P
Peter Zijlstra 已提交
2520
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2521
	struct perf_event_context *next_ctx;
2522
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2523
	struct perf_cpu_context *cpuctx;
2524
	int do_switch = 1;
T
Thomas Gleixner 已提交
2525

P
Peter Zijlstra 已提交
2526 2527
	if (likely(!ctx))
		return;
2528

P
Peter Zijlstra 已提交
2529 2530
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2531 2532
		return;

2533
	rcu_read_lock();
P
Peter Zijlstra 已提交
2534
	next_ctx = next->perf_event_ctxp[ctxn];
2535 2536 2537 2538 2539 2540 2541
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2542
	if (!parent && !next_parent)
2543 2544 2545
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2546 2547 2548 2549 2550 2551 2552 2553 2554
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2555 2556
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2557
		if (context_equiv(ctx, next_ctx)) {
2558 2559
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2560 2561 2562

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2573
			do_switch = 0;
2574

2575
			perf_event_sync_stat(ctx, next_ctx);
2576
		}
2577 2578
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2579
	}
2580
unlock:
2581
	rcu_read_unlock();
2582

2583
	if (do_switch) {
2584
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2585
		task_ctx_sched_out(cpuctx, ctx);
2586
		raw_spin_unlock(&ctx->lock);
2587
	}
T
Thomas Gleixner 已提交
2588 2589
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2640 2641 2642
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2657 2658
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2659 2660 2661
{
	int ctxn;

2662 2663 2664
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2665 2666 2667
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2668 2669
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2670 2671 2672 2673 2674 2675

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2676
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2677
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2678 2679
}

2680 2681
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2682
{
2683 2684
	if (!cpuctx->task_ctx)
		return;
2685 2686 2687 2688

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2689
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2690 2691
}

2692 2693 2694 2695 2696 2697 2698
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2699 2700
}

2701
static void
2702
ctx_pinned_sched_in(struct perf_event_context *ctx,
2703
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2704
{
2705
	struct perf_event *event;
T
Thomas Gleixner 已提交
2706

2707 2708
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2709
			continue;
2710
		if (!event_filter_match(event))
2711 2712
			continue;

S
Stephane Eranian 已提交
2713 2714 2715 2716
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2717
		if (group_can_go_on(event, cpuctx, 1))
2718
			group_sched_in(event, cpuctx, ctx);
2719 2720 2721 2722 2723

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2724 2725 2726
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2727
		}
2728
	}
2729 2730 2731 2732
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2733
		      struct perf_cpu_context *cpuctx)
2734 2735 2736
{
	struct perf_event *event;
	int can_add_hw = 1;
2737

2738 2739 2740
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2741
			continue;
2742 2743
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2744
		 * of events:
2745
		 */
2746
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2747 2748
			continue;

S
Stephane Eranian 已提交
2749 2750 2751 2752
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2753
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2754
			if (group_sched_in(event, cpuctx, ctx))
2755
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2756
		}
T
Thomas Gleixner 已提交
2757
	}
2758 2759 2760 2761 2762
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2763 2764
	     enum event_type_t event_type,
	     struct task_struct *task)
2765
{
2766
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2767 2768 2769
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2770

2771 2772 2773
	if (likely(!ctx->nr_events))
		return;

2774
	ctx->is_active |= event_type;
2775 2776 2777 2778 2779 2780 2781
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2782 2783
	now = perf_clock();
	ctx->timestamp = now;
2784
	perf_cgroup_set_timestamp(task, ctx);
2785 2786 2787 2788
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2789
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2790
		ctx_pinned_sched_in(ctx, cpuctx);
2791 2792

	/* Then walk through the lower prio flexible groups */
2793
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2794
		ctx_flexible_sched_in(ctx, cpuctx);
2795 2796
}

2797
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2798 2799
			     enum event_type_t event_type,
			     struct task_struct *task)
2800 2801 2802
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2803
	ctx_sched_in(ctx, cpuctx, event_type, task);
2804 2805
}

S
Stephane Eranian 已提交
2806 2807
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2808
{
P
Peter Zijlstra 已提交
2809
	struct perf_cpu_context *cpuctx;
2810

P
Peter Zijlstra 已提交
2811
	cpuctx = __get_cpu_context(ctx);
2812 2813 2814
	if (cpuctx->task_ctx == ctx)
		return;

2815
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2816
	perf_pmu_disable(ctx->pmu);
2817 2818 2819 2820 2821 2822
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2823
	perf_event_sched_in(cpuctx, ctx, task);
2824 2825
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2826 2827
}

P
Peter Zijlstra 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2839 2840
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2841 2842 2843 2844
{
	struct perf_event_context *ctx;
	int ctxn;

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2855 2856 2857 2858 2859
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2860
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2861
	}
2862

2863 2864 2865
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2866 2867
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2868 2869
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2897
#define REDUCE_FLS(a, b)		\
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2937 2938 2939
	if (!divisor)
		return dividend;

2940 2941 2942
	return div64_u64(dividend, divisor);
}

2943 2944 2945
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2946
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2947
{
2948
	struct hw_perf_event *hwc = &event->hw;
2949
	s64 period, sample_period;
2950 2951
	s64 delta;

2952
	period = perf_calculate_period(event, nsec, count);
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2963

2964
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2965 2966 2967
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2968
		local64_set(&hwc->period_left, 0);
2969 2970 2971

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2972
	}
2973 2974
}

2975 2976 2977 2978 2979 2980 2981
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2982
{
2983 2984
	struct perf_event *event;
	struct hw_perf_event *hwc;
2985
	u64 now, period = TICK_NSEC;
2986
	s64 delta;
2987

2988 2989 2990 2991 2992 2993
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2994 2995
		return;

2996
	raw_spin_lock(&ctx->lock);
2997
	perf_pmu_disable(ctx->pmu);
2998

2999
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3000
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3001 3002
			continue;

3003
		if (!event_filter_match(event))
3004 3005
			continue;

3006 3007
		perf_pmu_disable(event->pmu);

3008
		hwc = &event->hw;
3009

3010
		if (hwc->interrupts == MAX_INTERRUPTS) {
3011
			hwc->interrupts = 0;
3012
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3013
			event->pmu->start(event, 0);
3014 3015
		}

3016
		if (!event->attr.freq || !event->attr.sample_freq)
3017
			goto next;
3018

3019 3020 3021 3022 3023
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3024
		now = local64_read(&event->count);
3025 3026
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3027

3028 3029 3030
		/*
		 * restart the event
		 * reload only if value has changed
3031 3032 3033
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3034
		 */
3035
		if (delta > 0)
3036
			perf_adjust_period(event, period, delta, false);
3037 3038

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3039 3040
	next:
		perf_pmu_enable(event->pmu);
3041
	}
3042

3043
	perf_pmu_enable(ctx->pmu);
3044
	raw_spin_unlock(&ctx->lock);
3045 3046
}

3047
/*
3048
 * Round-robin a context's events:
3049
 */
3050
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3051
{
3052 3053 3054 3055 3056 3057
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3058 3059
}

3060
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3061
{
P
Peter Zijlstra 已提交
3062
	struct perf_event_context *ctx = NULL;
3063
	int rotate = 0;
3064

3065 3066 3067 3068
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3069

P
Peter Zijlstra 已提交
3070
	ctx = cpuctx->task_ctx;
3071 3072 3073 3074
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3075

3076
	if (!rotate)
3077 3078
		goto done;

3079
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3080
	perf_pmu_disable(cpuctx->ctx.pmu);
3081

3082 3083 3084
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3085

3086 3087 3088
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3089

3090
	perf_event_sched_in(cpuctx, ctx, current);
3091

3092 3093
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3094
done:
3095 3096

	return rotate;
3097 3098
}

3099 3100 3101
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3102
	if (atomic_read(&nr_freq_events) ||
3103
	    __this_cpu_read(perf_throttled_count))
3104
		return false;
3105 3106
	else
		return true;
3107 3108 3109
}
#endif

3110 3111
void perf_event_task_tick(void)
{
3112 3113
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3114
	int throttled;
3115

3116 3117
	WARN_ON(!irqs_disabled());

3118 3119 3120
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3121
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3122
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3123 3124
}

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3135
	__perf_event_mark_enabled(event);
3136 3137 3138 3139

	return 1;
}

3140
/*
3141
 * Enable all of a task's events that have been marked enable-on-exec.
3142 3143
 * This expects task == current.
 */
3144
static void perf_event_enable_on_exec(int ctxn)
3145
{
3146
	struct perf_event_context *ctx, *clone_ctx = NULL;
3147
	struct perf_cpu_context *cpuctx;
3148
	struct perf_event *event;
3149 3150 3151 3152
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3153
	ctx = current->perf_event_ctxp[ctxn];
3154
	if (!ctx || !ctx->nr_events)
3155 3156
		goto out;

3157 3158 3159 3160
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3161 3162

	/*
3163
	 * Unclone and reschedule this context if we enabled any event.
3164
	 */
3165
	if (enabled) {
3166
		clone_ctx = unclone_ctx(ctx);
3167 3168 3169
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3170

P
Peter Zijlstra 已提交
3171
out:
3172
	local_irq_restore(flags);
3173 3174 3175

	if (clone_ctx)
		put_ctx(clone_ctx);
3176 3177
}

3178 3179 3180 3181 3182
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3183 3184
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3185 3186 3187
	rcu_read_unlock();
}

3188 3189 3190
struct perf_read_data {
	struct perf_event *event;
	bool group;
3191
	int ret;
3192 3193
};

T
Thomas Gleixner 已提交
3194
/*
3195
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3196
 */
3197
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3198
{
3199 3200
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3201
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3202
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3203
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3204

3205 3206 3207 3208
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3209 3210
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3211 3212 3213 3214
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3215
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3216
	if (ctx->is_active) {
3217
		update_context_time(ctx);
S
Stephane Eranian 已提交
3218 3219
		update_cgrp_time_from_event(event);
	}
3220

3221
	update_event_times(event);
3222 3223
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3224

3225 3226 3227
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3228
		goto unlock;
3229 3230 3231 3232 3233
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3234 3235 3236

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3237 3238 3239 3240 3241
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3242
			sub->pmu->read(sub);
3243
		}
3244
	}
3245 3246

	data->ret = pmu->commit_txn(pmu);
3247 3248

unlock:
3249
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3250 3251
}

P
Peter Zijlstra 已提交
3252 3253
static inline u64 perf_event_count(struct perf_event *event)
{
3254 3255 3256 3257
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3258 3259
}

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3313
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3314
{
3315 3316
	int ret = 0;

T
Thomas Gleixner 已提交
3317
	/*
3318 3319
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3320
	 */
3321
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3322 3323 3324
		struct perf_read_data data = {
			.event = event,
			.group = group,
3325
			.ret = 0,
3326
		};
3327
		smp_call_function_single(event->oncpu,
3328
					 __perf_event_read, &data, 1);
3329
		ret = data.ret;
3330
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3331 3332 3333
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3334
		raw_spin_lock_irqsave(&ctx->lock, flags);
3335 3336 3337 3338 3339
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3340
		if (ctx->is_active) {
3341
			update_context_time(ctx);
S
Stephane Eranian 已提交
3342 3343
			update_cgrp_time_from_event(event);
		}
3344 3345 3346 3347
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3348
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3349
	}
3350 3351

	return ret;
T
Thomas Gleixner 已提交
3352 3353
}

3354
/*
3355
 * Initialize the perf_event context in a task_struct:
3356
 */
3357
static void __perf_event_init_context(struct perf_event_context *ctx)
3358
{
3359
	raw_spin_lock_init(&ctx->lock);
3360
	mutex_init(&ctx->mutex);
3361
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3362 3363
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3364 3365
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3366
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3382
	}
3383 3384 3385
	ctx->pmu = pmu;

	return ctx;
3386 3387
}

3388 3389 3390 3391 3392
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3393 3394

	rcu_read_lock();
3395
	if (!vpid)
T
Thomas Gleixner 已提交
3396 3397
		task = current;
	else
3398
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3399 3400 3401 3402 3403 3404 3405 3406
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3407 3408 3409 3410
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3411 3412 3413 3414 3415 3416 3417
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3418 3419 3420
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3421
static struct perf_event_context *
3422 3423
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3424
{
3425
	struct perf_event_context *ctx, *clone_ctx = NULL;
3426
	struct perf_cpu_context *cpuctx;
3427
	void *task_ctx_data = NULL;
3428
	unsigned long flags;
P
Peter Zijlstra 已提交
3429
	int ctxn, err;
3430
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3431

3432
	if (!task) {
3433
		/* Must be root to operate on a CPU event: */
3434
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3435 3436 3437
			return ERR_PTR(-EACCES);

		/*
3438
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3439 3440 3441
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3442
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3443 3444
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3445
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3446
		ctx = &cpuctx->ctx;
3447
		get_ctx(ctx);
3448
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3449 3450 3451 3452

		return ctx;
	}

P
Peter Zijlstra 已提交
3453 3454 3455 3456 3457
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3458 3459 3460 3461 3462 3463 3464 3465
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3466
retry:
P
Peter Zijlstra 已提交
3467
	ctx = perf_lock_task_context(task, ctxn, &flags);
3468
	if (ctx) {
3469
		clone_ctx = unclone_ctx(ctx);
3470
		++ctx->pin_count;
3471 3472 3473 3474 3475

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3476
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3477 3478 3479

		if (clone_ctx)
			put_ctx(clone_ctx);
3480
	} else {
3481
		ctx = alloc_perf_context(pmu, task);
3482 3483 3484
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3485

3486 3487 3488 3489 3490
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3501
		else {
3502
			get_ctx(ctx);
3503
			++ctx->pin_count;
3504
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3505
		}
3506 3507 3508
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3509
			put_ctx(ctx);
3510 3511 3512 3513

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3514 3515 3516
		}
	}

3517
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3518
	return ctx;
3519

P
Peter Zijlstra 已提交
3520
errout:
3521
	kfree(task_ctx_data);
3522
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3523 3524
}

L
Li Zefan 已提交
3525
static void perf_event_free_filter(struct perf_event *event);
3526
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3527

3528
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3529
{
3530
	struct perf_event *event;
P
Peter Zijlstra 已提交
3531

3532 3533 3534
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3535
	perf_event_free_filter(event);
3536
	kfree(event);
P
Peter Zijlstra 已提交
3537 3538
}

3539 3540
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3541

3542
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3543
{
3544 3545 3546 3547 3548 3549
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3550

3551 3552
static void unaccount_event(struct perf_event *event)
{
3553 3554
	bool dec = false;

3555 3556 3557 3558
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3559
		dec = true;
3560 3561 3562 3563 3564 3565
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3566 3567
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3568
	if (event->attr.context_switch) {
3569
		dec = true;
3570 3571
		atomic_dec(&nr_switch_events);
	}
3572
	if (is_cgroup_event(event))
3573
		dec = true;
3574
	if (has_branch_stack(event))
3575 3576 3577
		dec = true;

	if (dec)
3578 3579 3580 3581
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3668 3669
static void __free_event(struct perf_event *event)
{
3670
	if (!event->parent) {
3671 3672
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3673
	}
3674

3675 3676
	perf_event_free_bpf_prog(event);

3677 3678 3679 3680 3681 3682
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3683 3684
	if (event->pmu) {
		exclusive_event_destroy(event);
3685
		module_put(event->pmu->module);
3686
	}
3687

3688 3689
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3690 3691

static void _free_event(struct perf_event *event)
3692
{
3693
	irq_work_sync(&event->pending);
3694

3695
	unaccount_event(event);
3696

3697
	if (event->rb) {
3698 3699 3700 3701 3702 3703 3704
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3705
		ring_buffer_attach(event, NULL);
3706
		mutex_unlock(&event->mmap_mutex);
3707 3708
	}

S
Stephane Eranian 已提交
3709 3710 3711
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3712
	__free_event(event);
3713 3714
}

P
Peter Zijlstra 已提交
3715 3716 3717 3718 3719
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3720
{
P
Peter Zijlstra 已提交
3721 3722 3723 3724 3725 3726
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3727

P
Peter Zijlstra 已提交
3728
	_free_event(event);
T
Thomas Gleixner 已提交
3729 3730
}

3731
/*
3732
 * Remove user event from the owner task.
3733
 */
3734
static void perf_remove_from_owner(struct perf_event *event)
3735
{
P
Peter Zijlstra 已提交
3736
	struct task_struct *owner;
3737

P
Peter Zijlstra 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3779 3780 3781 3782
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3783
	struct perf_event_context *ctx;
3784 3785 3786 3787 3788 3789

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3790

P
Peter Zijlstra 已提交
3791 3792 3793 3794 3795 3796 3797
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3798
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3799 3800 3801 3802
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3803 3804
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3805
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3806
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3807 3808

	_free_event(event);
3809 3810
}

P
Peter Zijlstra 已提交
3811 3812 3813 3814 3815 3816 3817
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3818 3819 3820
/*
 * Called when the last reference to the file is gone.
 */
3821 3822 3823 3824
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3825 3826
}

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3863
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3864
{
3865
	struct perf_event *child;
3866 3867
	u64 total = 0;

3868 3869 3870
	*enabled = 0;
	*running = 0;

3871
	mutex_lock(&event->child_mutex);
3872

3873
	(void)perf_event_read(event, false);
3874 3875
	total += perf_event_count(event);

3876 3877 3878 3879 3880 3881
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3882
		(void)perf_event_read(child, false);
3883
		total += perf_event_count(child);
3884 3885 3886
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3887
	mutex_unlock(&event->child_mutex);
3888 3889 3890

	return total;
}
3891
EXPORT_SYMBOL_GPL(perf_event_read_value);
3892

3893
static int __perf_read_group_add(struct perf_event *leader,
3894
					u64 read_format, u64 *values)
3895
{
3896 3897
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3898
	int ret;
P
Peter Zijlstra 已提交
3899

3900 3901 3902
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3903

3904 3905 3906 3907 3908 3909 3910 3911 3912
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3913

3914 3915 3916 3917 3918 3919 3920 3921 3922
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3923 3924
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3925

3926 3927 3928 3929 3930
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3931 3932

	return 0;
3933
}
3934

3935 3936 3937 3938 3939
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3940
	int ret;
3941
	u64 *values;
3942

3943
	lockdep_assert_held(&ctx->mutex);
3944

3945 3946 3947
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3948

3949 3950 3951 3952 3953 3954 3955
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3956

3957 3958 3959 3960 3961 3962 3963 3964 3965
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3966

3967
	mutex_unlock(&leader->child_mutex);
3968

3969
	ret = event->read_size;
3970 3971
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3972
	goto out;
3973

3974 3975 3976
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3977
	kfree(values);
3978
	return ret;
3979 3980
}

3981
static int perf_read_one(struct perf_event *event,
3982 3983
				 u64 read_format, char __user *buf)
{
3984
	u64 enabled, running;
3985 3986 3987
	u64 values[4];
	int n = 0;

3988 3989 3990 3991 3992
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3993
	if (read_format & PERF_FORMAT_ID)
3994
		values[n++] = primary_event_id(event);
3995 3996 3997 3998 3999 4000 4001

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4015
/*
4016
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4017 4018
 */
static ssize_t
4019
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4020
{
4021
	u64 read_format = event->attr.read_format;
4022
	int ret;
T
Thomas Gleixner 已提交
4023

4024
	/*
4025
	 * Return end-of-file for a read on a event that is in
4026 4027 4028
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4029
	if (event->state == PERF_EVENT_STATE_ERROR)
4030 4031
		return 0;

4032
	if (count < event->read_size)
4033 4034
		return -ENOSPC;

4035
	WARN_ON_ONCE(event->ctx->parent_ctx);
4036
	if (read_format & PERF_FORMAT_GROUP)
4037
		ret = perf_read_group(event, read_format, buf);
4038
	else
4039
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4040

4041
	return ret;
T
Thomas Gleixner 已提交
4042 4043 4044 4045 4046
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4047
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4048 4049
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4050

P
Peter Zijlstra 已提交
4051
	ctx = perf_event_ctx_lock(event);
4052
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4053 4054 4055
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4056 4057 4058 4059
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4060
	struct perf_event *event = file->private_data;
4061
	struct ring_buffer *rb;
4062
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4063

4064
	poll_wait(file, &event->waitq, wait);
4065

4066
	if (is_event_hup(event))
4067
		return events;
P
Peter Zijlstra 已提交
4068

4069
	/*
4070 4071
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4072 4073
	 */
	mutex_lock(&event->mmap_mutex);
4074 4075
	rb = event->rb;
	if (rb)
4076
		events = atomic_xchg(&rb->poll, 0);
4077
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4078 4079 4080
	return events;
}

P
Peter Zijlstra 已提交
4081
static void _perf_event_reset(struct perf_event *event)
4082
{
4083
	(void)perf_event_read(event, false);
4084
	local64_set(&event->count, 0);
4085
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4086 4087
}

4088
/*
4089 4090 4091 4092
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4093
 */
4094 4095
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4096
{
4097
	struct perf_event *child;
P
Peter Zijlstra 已提交
4098

4099
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4100

4101 4102 4103
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4104
		func(child);
4105
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4106 4107
}

4108 4109
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4110
{
4111 4112
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4113

P
Peter Zijlstra 已提交
4114 4115
	lockdep_assert_held(&ctx->mutex);

4116
	event = event->group_leader;
4117

4118 4119
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4120
		perf_event_for_each_child(sibling, func);
4121 4122
}

4123 4124 4125 4126
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4127
{
4128
	u64 value = *((u64 *)info);
4129
	bool active;
4130

4131 4132
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4133
	} else {
4134 4135
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4136
	}
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4168
	event_function_call(event, __perf_event_period, &value);
4169

4170
	return 0;
4171 4172
}

4173 4174
static const struct file_operations perf_fops;

4175
static inline int perf_fget_light(int fd, struct fd *p)
4176
{
4177 4178 4179
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4180

4181 4182 4183
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4184
	}
4185 4186
	*p = f;
	return 0;
4187 4188 4189 4190
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4191
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4192
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4193

P
Peter Zijlstra 已提交
4194
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4195
{
4196
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4197
	u32 flags = arg;
4198 4199

	switch (cmd) {
4200
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4201
		func = _perf_event_enable;
4202
		break;
4203
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4204
		func = _perf_event_disable;
4205
		break;
4206
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4207
		func = _perf_event_reset;
4208
		break;
P
Peter Zijlstra 已提交
4209

4210
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4211
		return _perf_event_refresh(event, arg);
4212

4213 4214
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4225
	case PERF_EVENT_IOC_SET_OUTPUT:
4226 4227 4228
	{
		int ret;
		if (arg != -1) {
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4239 4240 4241
		}
		return ret;
	}
4242

L
Li Zefan 已提交
4243 4244 4245
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4246 4247 4248
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4249
	default:
P
Peter Zijlstra 已提交
4250
		return -ENOTTY;
4251
	}
P
Peter Zijlstra 已提交
4252 4253

	if (flags & PERF_IOC_FLAG_GROUP)
4254
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4255
	else
4256
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4257 4258

	return 0;
4259 4260
}

P
Peter Zijlstra 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4294
int perf_event_task_enable(void)
4295
{
P
Peter Zijlstra 已提交
4296
	struct perf_event_context *ctx;
4297
	struct perf_event *event;
4298

4299
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4300 4301 4302 4303 4304
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4305
	mutex_unlock(&current->perf_event_mutex);
4306 4307 4308 4309

	return 0;
}

4310
int perf_event_task_disable(void)
4311
{
P
Peter Zijlstra 已提交
4312
	struct perf_event_context *ctx;
4313
	struct perf_event *event;
4314

4315
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4316 4317 4318 4319 4320
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4321
	mutex_unlock(&current->perf_event_mutex);
4322 4323 4324 4325

	return 0;
}

4326
static int perf_event_index(struct perf_event *event)
4327
{
P
Peter Zijlstra 已提交
4328 4329 4330
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4331
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4332 4333
		return 0;

4334
	return event->pmu->event_idx(event);
4335 4336
}

4337
static void calc_timer_values(struct perf_event *event,
4338
				u64 *now,
4339 4340
				u64 *enabled,
				u64 *running)
4341
{
4342
	u64 ctx_time;
4343

4344 4345
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4346 4347 4348 4349
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4365 4366
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4367 4368 4369 4370 4371

unlock:
	rcu_read_unlock();
}

4372 4373
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4374 4375 4376
{
}

4377 4378 4379 4380 4381
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4382
void perf_event_update_userpage(struct perf_event *event)
4383
{
4384
	struct perf_event_mmap_page *userpg;
4385
	struct ring_buffer *rb;
4386
	u64 enabled, running, now;
4387 4388

	rcu_read_lock();
4389 4390 4391 4392
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4393 4394 4395 4396 4397 4398 4399 4400 4401
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4402
	calc_timer_values(event, &now, &enabled, &running);
4403

4404
	userpg = rb->user_page;
4405 4406 4407 4408 4409
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4410
	++userpg->lock;
4411
	barrier();
4412
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4413
	userpg->offset = perf_event_count(event);
4414
	if (userpg->index)
4415
		userpg->offset -= local64_read(&event->hw.prev_count);
4416

4417
	userpg->time_enabled = enabled +
4418
			atomic64_read(&event->child_total_time_enabled);
4419

4420
	userpg->time_running = running +
4421
			atomic64_read(&event->child_total_time_running);
4422

4423
	arch_perf_update_userpage(event, userpg, now);
4424

4425
	barrier();
4426
	++userpg->lock;
4427
	preempt_enable();
4428
unlock:
4429
	rcu_read_unlock();
4430 4431
}

4432 4433 4434
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4435
	struct ring_buffer *rb;
4436 4437 4438 4439 4440 4441 4442 4443 4444
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4445 4446
	rb = rcu_dereference(event->rb);
	if (!rb)
4447 4448 4449 4450 4451
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4452
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4467 4468 4469
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4470
	struct ring_buffer *old_rb = NULL;
4471 4472
	unsigned long flags;

4473 4474 4475 4476 4477 4478
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4479

4480 4481 4482 4483
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4484

4485 4486
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4487
	}
4488

4489
	if (rb) {
4490 4491 4492 4493 4494
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4511 4512 4513 4514 4515 4516 4517 4518
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4519 4520 4521 4522
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4523 4524 4525
	rcu_read_unlock();
}

4526
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4527
{
4528
	struct ring_buffer *rb;
4529

4530
	rcu_read_lock();
4531 4532 4533 4534
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4535 4536 4537
	}
	rcu_read_unlock();

4538
	return rb;
4539 4540
}

4541
void ring_buffer_put(struct ring_buffer *rb)
4542
{
4543
	if (!atomic_dec_and_test(&rb->refcount))
4544
		return;
4545

4546
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4547

4548
	call_rcu(&rb->rcu_head, rb_free_rcu);
4549 4550 4551 4552
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4553
	struct perf_event *event = vma->vm_file->private_data;
4554

4555
	atomic_inc(&event->mmap_count);
4556
	atomic_inc(&event->rb->mmap_count);
4557

4558 4559 4560
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4561 4562
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4563 4564
}

4565 4566 4567 4568 4569 4570 4571 4572
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4573 4574
static void perf_mmap_close(struct vm_area_struct *vma)
{
4575
	struct perf_event *event = vma->vm_file->private_data;
4576

4577
	struct ring_buffer *rb = ring_buffer_get(event);
4578 4579 4580
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4581

4582 4583 4584
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4599 4600 4601
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4602
		goto out_put;
4603

4604
	ring_buffer_attach(event, NULL);
4605 4606 4607
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4608 4609
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4610

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4627

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4639 4640 4641
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4642
		mutex_unlock(&event->mmap_mutex);
4643
		put_event(event);
4644

4645 4646 4647 4648 4649
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4650
	}
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4666
out_put:
4667
	ring_buffer_put(rb); /* could be last */
4668 4669
}

4670
static const struct vm_operations_struct perf_mmap_vmops = {
4671
	.open		= perf_mmap_open,
4672
	.close		= perf_mmap_close, /* non mergable */
4673 4674
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4675 4676 4677 4678
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4679
	struct perf_event *event = file->private_data;
4680
	unsigned long user_locked, user_lock_limit;
4681
	struct user_struct *user = current_user();
4682
	unsigned long locked, lock_limit;
4683
	struct ring_buffer *rb = NULL;
4684 4685
	unsigned long vma_size;
	unsigned long nr_pages;
4686
	long user_extra = 0, extra = 0;
4687
	int ret = 0, flags = 0;
4688

4689 4690 4691
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4692
	 * same rb.
4693 4694 4695 4696
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4697
	if (!(vma->vm_flags & VM_SHARED))
4698
		return -EINVAL;
4699 4700

	vma_size = vma->vm_end - vma->vm_start;
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4761

4762
	/*
4763
	 * If we have rb pages ensure they're a power-of-two number, so we
4764 4765
	 * can do bitmasks instead of modulo.
	 */
4766
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4767 4768
		return -EINVAL;

4769
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4770 4771
		return -EINVAL;

4772
	WARN_ON_ONCE(event->ctx->parent_ctx);
4773
again:
4774
	mutex_lock(&event->mmap_mutex);
4775
	if (event->rb) {
4776
		if (event->rb->nr_pages != nr_pages) {
4777
			ret = -EINVAL;
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4791 4792 4793
		goto unlock;
	}

4794
	user_extra = nr_pages + 1;
4795 4796

accounting:
4797
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4798 4799 4800 4801 4802 4803

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4804
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4805

4806 4807
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4808

4809
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4810
	lock_limit >>= PAGE_SHIFT;
4811
	locked = vma->vm_mm->pinned_vm + extra;
4812

4813 4814
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4815 4816 4817
		ret = -EPERM;
		goto unlock;
	}
4818

4819
	WARN_ON(!rb && event->rb);
4820

4821
	if (vma->vm_flags & VM_WRITE)
4822
		flags |= RING_BUFFER_WRITABLE;
4823

4824
	if (!rb) {
4825 4826 4827
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4828

4829 4830 4831 4832
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4833

4834 4835 4836
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4837

4838
		ring_buffer_attach(event, rb);
4839

4840 4841 4842
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4843 4844
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4845 4846 4847
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4848

4849
unlock:
4850 4851 4852 4853
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4854
		atomic_inc(&event->mmap_count);
4855 4856 4857 4858
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4859
	mutex_unlock(&event->mmap_mutex);
4860

4861 4862 4863 4864
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4865
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4866
	vma->vm_ops = &perf_mmap_vmops;
4867

4868 4869 4870
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4871
	return ret;
4872 4873
}

P
Peter Zijlstra 已提交
4874 4875
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4876
	struct inode *inode = file_inode(filp);
4877
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4878 4879 4880
	int retval;

	mutex_lock(&inode->i_mutex);
4881
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4882 4883 4884 4885 4886 4887 4888 4889
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4890
static const struct file_operations perf_fops = {
4891
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4892 4893 4894
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4895
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4896
	.compat_ioctl		= perf_compat_ioctl,
4897
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4898
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4899 4900
};

4901
/*
4902
 * Perf event wakeup
4903 4904 4905 4906 4907
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4908 4909 4910 4911 4912 4913 4914 4915
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4916
void perf_event_wakeup(struct perf_event *event)
4917
{
4918
	ring_buffer_wakeup(event);
4919

4920
	if (event->pending_kill) {
4921
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4922
		event->pending_kill = 0;
4923
	}
4924 4925
}

4926
static void perf_pending_event(struct irq_work *entry)
4927
{
4928 4929
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4930 4931 4932 4933 4934 4935 4936
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4937

4938 4939
	if (event->pending_disable) {
		event->pending_disable = 0;
4940
		perf_event_disable_local(event);
4941 4942
	}

4943 4944 4945
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4946
	}
4947 4948 4949

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4950 4951
}

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4988
static void perf_sample_regs_user(struct perf_regs *regs_user,
4989 4990
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4991
{
4992 4993
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4994
		regs_user->regs = regs;
4995 4996
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4997 4998 4999
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5000 5001 5002
	}
}

5003 5004 5005 5006 5007 5008 5009 5010
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5106 5107 5108
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5122
		data->time = perf_event_clock(event);
5123

5124
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5136 5137 5138
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5163 5164 5165

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5166 5167
}

5168 5169 5170
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5171 5172 5173 5174 5175
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5176
static void perf_output_read_one(struct perf_output_handle *handle,
5177 5178
				 struct perf_event *event,
				 u64 enabled, u64 running)
5179
{
5180
	u64 read_format = event->attr.read_format;
5181 5182 5183
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5184
	values[n++] = perf_event_count(event);
5185
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5186
		values[n++] = enabled +
5187
			atomic64_read(&event->child_total_time_enabled);
5188 5189
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5190
		values[n++] = running +
5191
			atomic64_read(&event->child_total_time_running);
5192 5193
	}
	if (read_format & PERF_FORMAT_ID)
5194
		values[n++] = primary_event_id(event);
5195

5196
	__output_copy(handle, values, n * sizeof(u64));
5197 5198 5199
}

/*
5200
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5201 5202
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5203 5204
			    struct perf_event *event,
			    u64 enabled, u64 running)
5205
{
5206 5207
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5208 5209 5210 5211 5212 5213
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5214
		values[n++] = enabled;
5215 5216

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5217
		values[n++] = running;
5218

5219
	if (leader != event)
5220 5221
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5222
	values[n++] = perf_event_count(leader);
5223
	if (read_format & PERF_FORMAT_ID)
5224
		values[n++] = primary_event_id(leader);
5225

5226
	__output_copy(handle, values, n * sizeof(u64));
5227

5228
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5229 5230
		n = 0;

5231 5232
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5233 5234
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5235
		values[n++] = perf_event_count(sub);
5236
		if (read_format & PERF_FORMAT_ID)
5237
			values[n++] = primary_event_id(sub);
5238

5239
		__output_copy(handle, values, n * sizeof(u64));
5240 5241 5242
	}
}

5243 5244 5245
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5246
static void perf_output_read(struct perf_output_handle *handle,
5247
			     struct perf_event *event)
5248
{
5249
	u64 enabled = 0, running = 0, now;
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5261
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5262
		calc_timer_values(event, &now, &enabled, &running);
5263

5264
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5265
		perf_output_read_group(handle, event, enabled, running);
5266
	else
5267
		perf_output_read_one(handle, event, enabled, running);
5268 5269
}

5270 5271 5272
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5273
			struct perf_event *event)
5274 5275 5276 5277 5278
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5279 5280 5281
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5307
		perf_output_read(handle, event);
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5318
			__output_copy(handle, data->callchain, size);
5319 5320 5321 5322 5323 5324 5325 5326
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5327 5328 5329 5330 5331 5332 5333 5334 5335
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5347

5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5382

5383
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5384 5385 5386
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5387
	}
A
Andi Kleen 已提交
5388 5389 5390

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5391 5392 5393

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5394

A
Andi Kleen 已提交
5395 5396 5397
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5428 5429 5430 5431
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5432
			 struct perf_event *event,
5433
			 struct pt_regs *regs)
5434
{
5435
	u64 sample_type = event->attr.sample_type;
5436

5437
	header->type = PERF_RECORD_SAMPLE;
5438
	header->size = sizeof(*header) + event->header_size;
5439 5440 5441

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5442

5443
	__perf_event_header__init_id(header, data, event);
5444

5445
	if (sample_type & PERF_SAMPLE_IP)
5446 5447
		data->ip = perf_instruction_pointer(regs);

5448
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5449
		int size = 1;
5450

5451
		data->callchain = perf_callchain(event, regs);
5452 5453 5454 5455 5456

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5457 5458
	}

5459
	if (sample_type & PERF_SAMPLE_RAW) {
5460 5461 5462 5463 5464 5465 5466
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5467
		header->size += round_up(size, sizeof(u64));
5468
	}
5469 5470 5471 5472 5473 5474 5475 5476 5477

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5478

5479
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5480 5481
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5482

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5506
						     data->regs_user.regs);
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5534
}
5535

5536 5537 5538
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5539 5540 5541
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5542

5543 5544 5545
	/* protect the callchain buffers */
	rcu_read_lock();

5546
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5547

5548
	if (perf_output_begin(&handle, event, header.size))
5549
		goto exit;
5550

5551
	perf_output_sample(&handle, &header, data, event);
5552

5553
	perf_output_end(&handle);
5554 5555 5556

exit:
	rcu_read_unlock();
5557 5558
}

5559
/*
5560
 * read event_id
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5571
perf_event_read_event(struct perf_event *event,
5572 5573 5574
			struct task_struct *task)
{
	struct perf_output_handle handle;
5575
	struct perf_sample_data sample;
5576
	struct perf_read_event read_event = {
5577
		.header = {
5578
			.type = PERF_RECORD_READ,
5579
			.misc = 0,
5580
			.size = sizeof(read_event) + event->read_size,
5581
		},
5582 5583
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5584
	};
5585
	int ret;
5586

5587
	perf_event_header__init_id(&read_event.header, &sample, event);
5588
	ret = perf_output_begin(&handle, event, read_event.header.size);
5589 5590 5591
	if (ret)
		return;

5592
	perf_output_put(&handle, read_event);
5593
	perf_output_read(&handle, event);
5594
	perf_event__output_id_sample(event, &handle, &sample);
5595

5596 5597 5598
	perf_output_end(&handle);
}

5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5613
		output(event, data);
5614 5615 5616
	}
}

J
Jiri Olsa 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5628
static void
5629
perf_event_aux(perf_event_aux_output_cb output, void *data,
5630 5631 5632 5633 5634 5635 5636
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5648 5649 5650 5651 5652
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5653
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5654 5655 5656 5657 5658
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5659
			perf_event_aux_ctx(ctx, output, data);
5660 5661 5662 5663 5664 5665
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5666
/*
P
Peter Zijlstra 已提交
5667 5668
 * task tracking -- fork/exit
 *
5669
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5670 5671
 */

P
Peter Zijlstra 已提交
5672
struct perf_task_event {
5673
	struct task_struct		*task;
5674
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5675 5676 5677 5678 5679 5680

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5681 5682
		u32				tid;
		u32				ptid;
5683
		u64				time;
5684
	} event_id;
P
Peter Zijlstra 已提交
5685 5686
};

5687 5688
static int perf_event_task_match(struct perf_event *event)
{
5689 5690 5691
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5692 5693
}

5694
static void perf_event_task_output(struct perf_event *event,
5695
				   void *data)
P
Peter Zijlstra 已提交
5696
{
5697
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5698
	struct perf_output_handle handle;
5699
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5700
	struct task_struct *task = task_event->task;
5701
	int ret, size = task_event->event_id.header.size;
5702

5703 5704 5705
	if (!perf_event_task_match(event))
		return;

5706
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5707

5708
	ret = perf_output_begin(&handle, event,
5709
				task_event->event_id.header.size);
5710
	if (ret)
5711
		goto out;
P
Peter Zijlstra 已提交
5712

5713 5714
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5715

5716 5717
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5718

5719 5720
	task_event->event_id.time = perf_event_clock(event);

5721
	perf_output_put(&handle, task_event->event_id);
5722

5723 5724
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5725
	perf_output_end(&handle);
5726 5727
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5728 5729
}

5730 5731
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5732
			      int new)
P
Peter Zijlstra 已提交
5733
{
P
Peter Zijlstra 已提交
5734
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5735

5736 5737 5738
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5739 5740
		return;

P
Peter Zijlstra 已提交
5741
	task_event = (struct perf_task_event){
5742 5743
		.task	  = task,
		.task_ctx = task_ctx,
5744
		.event_id    = {
P
Peter Zijlstra 已提交
5745
			.header = {
5746
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5747
				.misc = 0,
5748
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5749
			},
5750 5751
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5752 5753
			/* .tid  */
			/* .ptid */
5754
			/* .time */
P
Peter Zijlstra 已提交
5755 5756 5757
		},
	};

5758
	perf_event_aux(perf_event_task_output,
5759 5760
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5761 5762
}

5763
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5764
{
5765
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5766 5767
}

5768 5769 5770 5771 5772
/*
 * comm tracking
 */

struct perf_comm_event {
5773 5774
	struct task_struct	*task;
	char			*comm;
5775 5776 5777 5778 5779 5780 5781
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5782
	} event_id;
5783 5784
};

5785 5786 5787 5788 5789
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5790
static void perf_event_comm_output(struct perf_event *event,
5791
				   void *data)
5792
{
5793
	struct perf_comm_event *comm_event = data;
5794
	struct perf_output_handle handle;
5795
	struct perf_sample_data sample;
5796
	int size = comm_event->event_id.header.size;
5797 5798
	int ret;

5799 5800 5801
	if (!perf_event_comm_match(event))
		return;

5802 5803
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5804
				comm_event->event_id.header.size);
5805 5806

	if (ret)
5807
		goto out;
5808

5809 5810
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5811

5812
	perf_output_put(&handle, comm_event->event_id);
5813
	__output_copy(&handle, comm_event->comm,
5814
				   comm_event->comm_size);
5815 5816 5817

	perf_event__output_id_sample(event, &handle, &sample);

5818
	perf_output_end(&handle);
5819 5820
out:
	comm_event->event_id.header.size = size;
5821 5822
}

5823
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5824
{
5825
	char comm[TASK_COMM_LEN];
5826 5827
	unsigned int size;

5828
	memset(comm, 0, sizeof(comm));
5829
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5830
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5831 5832 5833 5834

	comm_event->comm = comm;
	comm_event->comm_size = size;

5835
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5836

5837
	perf_event_aux(perf_event_comm_output,
5838 5839
		       comm_event,
		       NULL);
5840 5841
}

5842
void perf_event_comm(struct task_struct *task, bool exec)
5843
{
5844 5845
	struct perf_comm_event comm_event;

5846
	if (!atomic_read(&nr_comm_events))
5847
		return;
5848

5849
	comm_event = (struct perf_comm_event){
5850
		.task	= task,
5851 5852
		/* .comm      */
		/* .comm_size */
5853
		.event_id  = {
5854
			.header = {
5855
				.type = PERF_RECORD_COMM,
5856
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5857 5858 5859 5860
				/* .size */
			},
			/* .pid */
			/* .tid */
5861 5862 5863
		},
	};

5864
	perf_event_comm_event(&comm_event);
5865 5866
}

5867 5868 5869 5870 5871
/*
 * mmap tracking
 */

struct perf_mmap_event {
5872 5873 5874 5875
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5876 5877 5878
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5879
	u32			prot, flags;
5880 5881 5882 5883 5884 5885 5886 5887 5888

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5889
	} event_id;
5890 5891
};

5892 5893 5894 5895 5896 5897 5898 5899
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5900
	       (executable && (event->attr.mmap || event->attr.mmap2));
5901 5902
}

5903
static void perf_event_mmap_output(struct perf_event *event,
5904
				   void *data)
5905
{
5906
	struct perf_mmap_event *mmap_event = data;
5907
	struct perf_output_handle handle;
5908
	struct perf_sample_data sample;
5909
	int size = mmap_event->event_id.header.size;
5910
	int ret;
5911

5912 5913 5914
	if (!perf_event_mmap_match(event, data))
		return;

5915 5916 5917 5918 5919
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5920
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5921 5922
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5923 5924
	}

5925 5926
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5927
				mmap_event->event_id.header.size);
5928
	if (ret)
5929
		goto out;
5930

5931 5932
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5933

5934
	perf_output_put(&handle, mmap_event->event_id);
5935 5936 5937 5938 5939 5940

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5941 5942
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5943 5944
	}

5945
	__output_copy(&handle, mmap_event->file_name,
5946
				   mmap_event->file_size);
5947 5948 5949

	perf_event__output_id_sample(event, &handle, &sample);

5950
	perf_output_end(&handle);
5951 5952
out:
	mmap_event->event_id.header.size = size;
5953 5954
}

5955
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5956
{
5957 5958
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5959 5960
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5961
	u32 prot = 0, flags = 0;
5962 5963 5964
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5965
	char *name;
5966

5967
	if (file) {
5968 5969
		struct inode *inode;
		dev_t dev;
5970

5971
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5972
		if (!buf) {
5973 5974
			name = "//enomem";
			goto cpy_name;
5975
		}
5976
		/*
5977
		 * d_path() works from the end of the rb backwards, so we
5978 5979 5980
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5981
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5982
		if (IS_ERR(name)) {
5983 5984
			name = "//toolong";
			goto cpy_name;
5985
		}
5986 5987 5988 5989 5990 5991
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6014
		goto got_name;
6015
	} else {
6016 6017 6018 6019 6020 6021
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6022
		name = (char *)arch_vma_name(vma);
6023 6024
		if (name)
			goto cpy_name;
6025

6026
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6027
				vma->vm_end >= vma->vm_mm->brk) {
6028 6029
			name = "[heap]";
			goto cpy_name;
6030 6031
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6032
				vma->vm_end >= vma->vm_mm->start_stack) {
6033 6034
			name = "[stack]";
			goto cpy_name;
6035 6036
		}

6037 6038
		name = "//anon";
		goto cpy_name;
6039 6040
	}

6041 6042 6043
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6044
got_name:
6045 6046 6047 6048 6049 6050 6051 6052
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6053 6054 6055

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6056 6057 6058 6059
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6060 6061
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6062

6063 6064 6065
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6066
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6067

6068
	perf_event_aux(perf_event_mmap_output,
6069 6070
		       mmap_event,
		       NULL);
6071

6072 6073 6074
	kfree(buf);
}

6075
void perf_event_mmap(struct vm_area_struct *vma)
6076
{
6077 6078
	struct perf_mmap_event mmap_event;

6079
	if (!atomic_read(&nr_mmap_events))
6080 6081 6082
		return;

	mmap_event = (struct perf_mmap_event){
6083
		.vma	= vma,
6084 6085
		/* .file_name */
		/* .file_size */
6086
		.event_id  = {
6087
			.header = {
6088
				.type = PERF_RECORD_MMAP,
6089
				.misc = PERF_RECORD_MISC_USER,
6090 6091 6092 6093
				/* .size */
			},
			/* .pid */
			/* .tid */
6094 6095
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6096
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6097
		},
6098 6099 6100 6101
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6102 6103
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6104 6105
	};

6106
	perf_event_mmap_event(&mmap_event);
6107 6108
}

A
Alexander Shishkin 已提交
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6261 6262 6263 6264
/*
 * IRQ throttle logging
 */

6265
static void perf_log_throttle(struct perf_event *event, int enable)
6266 6267
{
	struct perf_output_handle handle;
6268
	struct perf_sample_data sample;
6269 6270 6271 6272 6273
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6274
		u64				id;
6275
		u64				stream_id;
6276 6277
	} throttle_event = {
		.header = {
6278
			.type = PERF_RECORD_THROTTLE,
6279 6280 6281
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6282
		.time		= perf_event_clock(event),
6283 6284
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6285 6286
	};

6287
	if (enable)
6288
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6289

6290 6291 6292
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6293
				throttle_event.header.size);
6294 6295 6296 6297
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6298
	perf_event__output_id_sample(event, &handle, &sample);
6299 6300 6301
	perf_output_end(&handle);
}

6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6338
/*
6339
 * Generic event overflow handling, sampling.
6340 6341
 */

6342
static int __perf_event_overflow(struct perf_event *event,
6343 6344
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6345
{
6346 6347
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6348
	u64 seq;
6349 6350
	int ret = 0;

6351 6352 6353 6354 6355 6356 6357
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6358 6359 6360 6361 6362 6363 6364 6365 6366
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6367 6368
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6369
			tick_nohz_full_kick();
6370 6371
			ret = 1;
		}
6372
	}
6373

6374
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6375
		u64 now = perf_clock();
6376
		s64 delta = now - hwc->freq_time_stamp;
6377

6378
		hwc->freq_time_stamp = now;
6379

6380
		if (delta > 0 && delta < 2*TICK_NSEC)
6381
			perf_adjust_period(event, delta, hwc->last_period, true);
6382 6383
	}

6384 6385
	/*
	 * XXX event_limit might not quite work as expected on inherited
6386
	 * events
6387 6388
	 */

6389 6390
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6391
		ret = 1;
6392
		event->pending_kill = POLL_HUP;
6393 6394
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6395 6396
	}

6397
	if (event->overflow_handler)
6398
		event->overflow_handler(event, data, regs);
6399
	else
6400
		perf_event_output(event, data, regs);
6401

6402
	if (*perf_event_fasync(event) && event->pending_kill) {
6403 6404
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6405 6406
	}

6407
	return ret;
6408 6409
}

6410
int perf_event_overflow(struct perf_event *event,
6411 6412
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6413
{
6414
	return __perf_event_overflow(event, 1, data, regs);
6415 6416
}

6417
/*
6418
 * Generic software event infrastructure
6419 6420
 */

6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6432
/*
6433 6434
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6435 6436 6437 6438
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6439
u64 perf_swevent_set_period(struct perf_event *event)
6440
{
6441
	struct hw_perf_event *hwc = &event->hw;
6442 6443 6444 6445 6446
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6447 6448

again:
6449
	old = val = local64_read(&hwc->period_left);
6450 6451
	if (val < 0)
		return 0;
6452

6453 6454 6455
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6456
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6457
		goto again;
6458

6459
	return nr;
6460 6461
}

6462
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6463
				    struct perf_sample_data *data,
6464
				    struct pt_regs *regs)
6465
{
6466
	struct hw_perf_event *hwc = &event->hw;
6467
	int throttle = 0;
6468

6469 6470
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6471

6472 6473
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6474

6475
	for (; overflow; overflow--) {
6476
		if (__perf_event_overflow(event, throttle,
6477
					    data, regs)) {
6478 6479 6480 6481 6482 6483
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6484
		throttle = 1;
6485
	}
6486 6487
}

P
Peter Zijlstra 已提交
6488
static void perf_swevent_event(struct perf_event *event, u64 nr,
6489
			       struct perf_sample_data *data,
6490
			       struct pt_regs *regs)
6491
{
6492
	struct hw_perf_event *hwc = &event->hw;
6493

6494
	local64_add(nr, &event->count);
6495

6496 6497 6498
	if (!regs)
		return;

6499
	if (!is_sampling_event(event))
6500
		return;
6501

6502 6503 6504 6505 6506 6507
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6508
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6509
		return perf_swevent_overflow(event, 1, data, regs);
6510

6511
	if (local64_add_negative(nr, &hwc->period_left))
6512
		return;
6513

6514
	perf_swevent_overflow(event, 0, data, regs);
6515 6516
}

6517 6518 6519
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6520
	if (event->hw.state & PERF_HES_STOPPED)
6521
		return 1;
P
Peter Zijlstra 已提交
6522

6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6534
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6535
				enum perf_type_id type,
L
Li Zefan 已提交
6536 6537 6538
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6539
{
6540
	if (event->attr.type != type)
6541
		return 0;
6542

6543
	if (event->attr.config != event_id)
6544 6545
		return 0;

6546 6547
	if (perf_exclude_event(event, regs))
		return 0;
6548 6549 6550 6551

	return 1;
}

6552 6553 6554 6555 6556 6557 6558
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6559 6560
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6561
{
6562 6563 6564 6565
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6566

6567 6568
/* For the read side: events when they trigger */
static inline struct hlist_head *
6569
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6570 6571
{
	struct swevent_hlist *hlist;
6572

6573
	hlist = rcu_dereference(swhash->swevent_hlist);
6574 6575 6576
	if (!hlist)
		return NULL;

6577 6578 6579 6580 6581
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6582
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6593
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6594 6595 6596 6597 6598
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6599 6600 6601
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6602
				    u64 nr,
6603 6604
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6605
{
6606
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6607
	struct perf_event *event;
6608
	struct hlist_head *head;
6609

6610
	rcu_read_lock();
6611
	head = find_swevent_head_rcu(swhash, type, event_id);
6612 6613 6614
	if (!head)
		goto end;

6615
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6616
		if (perf_swevent_match(event, type, event_id, data, regs))
6617
			perf_swevent_event(event, nr, data, regs);
6618
	}
6619 6620
end:
	rcu_read_unlock();
6621 6622
}

6623 6624
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6625
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6626
{
6627
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6628

6629
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6630
}
I
Ingo Molnar 已提交
6631
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6632

6633
inline void perf_swevent_put_recursion_context(int rctx)
6634
{
6635
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6636

6637
	put_recursion_context(swhash->recursion, rctx);
6638
}
6639

6640
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6641
{
6642
	struct perf_sample_data data;
6643

6644
	if (WARN_ON_ONCE(!regs))
6645
		return;
6646

6647
	perf_sample_data_init(&data, addr, 0);
6648
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6661 6662

	perf_swevent_put_recursion_context(rctx);
6663
fail:
6664
	preempt_enable_notrace();
6665 6666
}

6667
static void perf_swevent_read(struct perf_event *event)
6668 6669 6670
{
}

P
Peter Zijlstra 已提交
6671
static int perf_swevent_add(struct perf_event *event, int flags)
6672
{
6673
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6674
	struct hw_perf_event *hwc = &event->hw;
6675 6676
	struct hlist_head *head;

6677
	if (is_sampling_event(event)) {
6678
		hwc->last_period = hwc->sample_period;
6679
		perf_swevent_set_period(event);
6680
	}
6681

P
Peter Zijlstra 已提交
6682 6683
	hwc->state = !(flags & PERF_EF_START);

6684
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6685
	if (WARN_ON_ONCE(!head))
6686 6687 6688
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6689
	perf_event_update_userpage(event);
6690

6691 6692 6693
	return 0;
}

P
Peter Zijlstra 已提交
6694
static void perf_swevent_del(struct perf_event *event, int flags)
6695
{
6696
	hlist_del_rcu(&event->hlist_entry);
6697 6698
}

P
Peter Zijlstra 已提交
6699
static void perf_swevent_start(struct perf_event *event, int flags)
6700
{
P
Peter Zijlstra 已提交
6701
	event->hw.state = 0;
6702
}
I
Ingo Molnar 已提交
6703

P
Peter Zijlstra 已提交
6704
static void perf_swevent_stop(struct perf_event *event, int flags)
6705
{
P
Peter Zijlstra 已提交
6706
	event->hw.state = PERF_HES_STOPPED;
6707 6708
}

6709 6710
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6711
swevent_hlist_deref(struct swevent_htable *swhash)
6712
{
6713 6714
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6715 6716
}

6717
static void swevent_hlist_release(struct swevent_htable *swhash)
6718
{
6719
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6720

6721
	if (!hlist)
6722 6723
		return;

6724
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6725
	kfree_rcu(hlist, rcu_head);
6726 6727 6728 6729
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6730
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6731

6732
	mutex_lock(&swhash->hlist_mutex);
6733

6734 6735
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6736

6737
	mutex_unlock(&swhash->hlist_mutex);
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6750
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6751 6752
	int err = 0;

6753 6754
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6755 6756 6757 6758 6759 6760 6761
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6762
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6763
	}
6764
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6765
exit:
6766
	mutex_unlock(&swhash->hlist_mutex);
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6787
fail:
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6798
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6799

6800 6801 6802
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6803

6804 6805
	WARN_ON(event->parent);

6806
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6807 6808 6809 6810 6811
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6812
	u64 event_id = event->attr.config;
6813 6814 6815 6816

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6817 6818 6819 6820 6821 6822
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6823 6824 6825 6826 6827 6828 6829 6830 6831
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6832
	if (event_id >= PERF_COUNT_SW_MAX)
6833 6834 6835 6836 6837 6838 6839 6840 6841
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6842
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6843 6844 6845 6846 6847 6848 6849
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6850
	.task_ctx_nr	= perf_sw_context,
6851

6852 6853
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6854
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6855 6856 6857 6858
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6859 6860 6861
	.read		= perf_swevent_read,
};

6862 6863
#ifdef CONFIG_EVENT_TRACING

6864 6865 6866 6867 6868
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6869 6870 6871 6872
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6873 6874 6875 6876 6877 6878 6879 6880 6881
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6882 6883
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6884 6885 6886 6887
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6888 6889 6890 6891 6892 6893 6894 6895 6896
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6897 6898
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6899 6900
{
	struct perf_sample_data data;
6901 6902
	struct perf_event *event;

6903 6904 6905 6906 6907
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6908
	perf_sample_data_init(&data, addr, 0);
6909 6910
	data.raw = &raw;

6911
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6912
		if (perf_tp_event_match(event, &data, regs))
6913
			perf_swevent_event(event, count, &data, regs);
6914
	}
6915

6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6941
	perf_swevent_put_recursion_context(rctx);
6942 6943 6944
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6945
static void tp_perf_event_destroy(struct perf_event *event)
6946
{
6947
	perf_trace_destroy(event);
6948 6949
}

6950
static int perf_tp_event_init(struct perf_event *event)
6951
{
6952 6953
	int err;

6954 6955 6956
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6957 6958 6959 6960 6961 6962
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6963 6964
	err = perf_trace_init(event);
	if (err)
6965
		return err;
6966

6967
	event->destroy = tp_perf_event_destroy;
6968

6969 6970 6971 6972
	return 0;
}

static struct pmu perf_tracepoint = {
6973 6974
	.task_ctx_nr	= perf_sw_context,

6975
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6976 6977 6978 6979
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6980 6981 6982 6983 6984
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6985
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6986
}
L
Li Zefan 已提交
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7021 7022
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7023 7024 7025 7026 7027 7028
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7029
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7054
#else
L
Li Zefan 已提交
7055

7056
static inline void perf_tp_register(void)
7057 7058
{
}
L
Li Zefan 已提交
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7069 7070 7071 7072 7073 7074 7075 7076
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7077
#endif /* CONFIG_EVENT_TRACING */
7078

7079
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7080
void perf_bp_event(struct perf_event *bp, void *data)
7081
{
7082 7083 7084
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7085
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7086

P
Peter Zijlstra 已提交
7087
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7088
		perf_swevent_event(bp, 1, &sample, regs);
7089 7090 7091
}
#endif

7092 7093 7094
/*
 * hrtimer based swevent callback
 */
7095

7096
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7097
{
7098 7099 7100 7101 7102
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7103

7104
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7105 7106 7107 7108

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7109
	event->pmu->read(event);
7110

7111
	perf_sample_data_init(&data, 0, event->hw.last_period);
7112 7113 7114
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7115
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7116
			if (__perf_event_overflow(event, 1, &data, regs))
7117 7118
				ret = HRTIMER_NORESTART;
	}
7119

7120 7121
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7122

7123
	return ret;
7124 7125
}

7126
static void perf_swevent_start_hrtimer(struct perf_event *event)
7127
{
7128
	struct hw_perf_event *hwc = &event->hw;
7129 7130 7131 7132
	s64 period;

	if (!is_sampling_event(event))
		return;
7133

7134 7135 7136 7137
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7138

7139 7140 7141 7142
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7143 7144
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7145
}
7146 7147

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7148
{
7149 7150
	struct hw_perf_event *hwc = &event->hw;

7151
	if (is_sampling_event(event)) {
7152
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7153
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7154 7155 7156

		hrtimer_cancel(&hwc->hrtimer);
	}
7157 7158
}

P
Peter Zijlstra 已提交
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7179
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7180 7181 7182 7183
		event->attr.freq = 0;
	}
}

7184 7185 7186 7187 7188
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7189
{
7190 7191 7192
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7193
	now = local_clock();
7194 7195
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7196 7197
}

P
Peter Zijlstra 已提交
7198
static void cpu_clock_event_start(struct perf_event *event, int flags)
7199
{
P
Peter Zijlstra 已提交
7200
	local64_set(&event->hw.prev_count, local_clock());
7201 7202 7203
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7204
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7205
{
7206 7207 7208
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7209

P
Peter Zijlstra 已提交
7210 7211 7212 7213
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7214
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7215 7216 7217 7218 7219 7220 7221 7222 7223

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7224 7225 7226 7227
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7228

7229 7230 7231 7232 7233 7234 7235 7236
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7237 7238 7239 7240 7241 7242
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7243 7244
	perf_swevent_init_hrtimer(event);

7245
	return 0;
7246 7247
}

7248
static struct pmu perf_cpu_clock = {
7249 7250
	.task_ctx_nr	= perf_sw_context,

7251 7252
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7253
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7254 7255 7256 7257
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7258 7259 7260 7261 7262 7263 7264 7265
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7266
{
7267 7268
	u64 prev;
	s64 delta;
7269

7270 7271 7272 7273
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7274

P
Peter Zijlstra 已提交
7275
static void task_clock_event_start(struct perf_event *event, int flags)
7276
{
P
Peter Zijlstra 已提交
7277
	local64_set(&event->hw.prev_count, event->ctx->time);
7278 7279 7280
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7281
static void task_clock_event_stop(struct perf_event *event, int flags)
7282 7283 7284
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7285 7286 7287 7288 7289 7290
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7291
	perf_event_update_userpage(event);
7292

P
Peter Zijlstra 已提交
7293 7294 7295 7296 7297 7298
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7299 7300 7301 7302
}

static void task_clock_event_read(struct perf_event *event)
{
7303 7304 7305
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7306 7307 7308 7309 7310

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7311
{
7312 7313 7314 7315 7316 7317
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7318 7319 7320 7321 7322 7323
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7324 7325
	perf_swevent_init_hrtimer(event);

7326
	return 0;
L
Li Zefan 已提交
7327 7328
}

7329
static struct pmu perf_task_clock = {
7330 7331
	.task_ctx_nr	= perf_sw_context,

7332 7333
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7334
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7335 7336 7337 7338
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7339 7340
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7341

P
Peter Zijlstra 已提交
7342
static void perf_pmu_nop_void(struct pmu *pmu)
7343 7344
{
}
L
Li Zefan 已提交
7345

7346 7347 7348 7349
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7350
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7351
{
P
Peter Zijlstra 已提交
7352
	return 0;
L
Li Zefan 已提交
7353 7354
}

7355
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7356 7357

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7358
{
7359 7360 7361 7362 7363
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7364
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7365 7366
}

P
Peter Zijlstra 已提交
7367 7368
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7369 7370 7371 7372 7373 7374 7375
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7376 7377 7378
	perf_pmu_enable(pmu);
	return 0;
}
7379

P
Peter Zijlstra 已提交
7380
static void perf_pmu_cancel_txn(struct pmu *pmu)
7381
{
7382 7383 7384 7385 7386 7387 7388
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7389
	perf_pmu_enable(pmu);
7390 7391
}

7392 7393
static int perf_event_idx_default(struct perf_event *event)
{
7394
	return 0;
7395 7396
}

P
Peter Zijlstra 已提交
7397 7398 7399 7400
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7401
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7402
{
P
Peter Zijlstra 已提交
7403
	struct pmu *pmu;
7404

P
Peter Zijlstra 已提交
7405 7406
	if (ctxn < 0)
		return NULL;
7407

P
Peter Zijlstra 已提交
7408 7409 7410 7411
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7412

P
Peter Zijlstra 已提交
7413
	return NULL;
7414 7415
}

7416
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7417
{
7418 7419 7420 7421 7422 7423 7424
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7425 7426
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7427 7428 7429 7430 7431 7432
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7433

P
Peter Zijlstra 已提交
7434
	mutex_lock(&pmus_lock);
7435
	/*
P
Peter Zijlstra 已提交
7436
	 * Like a real lame refcount.
7437
	 */
7438 7439 7440
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7441
			goto out;
7442
		}
P
Peter Zijlstra 已提交
7443
	}
7444

7445
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7446 7447
out:
	mutex_unlock(&pmus_lock);
7448
}
P
Peter Zijlstra 已提交
7449
static struct idr pmu_idr;
7450

P
Peter Zijlstra 已提交
7451 7452 7453 7454 7455 7456 7457
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7458
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7459

7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7470 7471
static DEFINE_MUTEX(mux_interval_mutex);

7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7491
	mutex_lock(&mux_interval_mutex);
7492 7493 7494
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7495 7496
	get_online_cpus();
	for_each_online_cpu(cpu) {
7497 7498 7499 7500
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7501 7502
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7503
	}
7504 7505
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7506 7507 7508

	return count;
}
7509
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7510

7511 7512 7513 7514
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7515
};
7516
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7517 7518 7519 7520

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7521
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7537
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7558
static struct lock_class_key cpuctx_mutex;
7559
static struct lock_class_key cpuctx_lock;
7560

7561
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7562
{
P
Peter Zijlstra 已提交
7563
	int cpu, ret;
7564

7565
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7566 7567 7568 7569
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7570

P
Peter Zijlstra 已提交
7571 7572 7573 7574 7575 7576
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7577 7578 7579
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7580 7581 7582 7583 7584
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7585 7586 7587 7588 7589 7590
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7591
skip_type:
P
Peter Zijlstra 已提交
7592 7593 7594
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7595

W
Wei Yongjun 已提交
7596
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7597 7598
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7599
		goto free_dev;
7600

P
Peter Zijlstra 已提交
7601 7602 7603 7604
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7605
		__perf_event_init_context(&cpuctx->ctx);
7606
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7607
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7608
		cpuctx->ctx.pmu = pmu;
7609

7610
		__perf_mux_hrtimer_init(cpuctx, cpu);
7611

7612
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7613
	}
7614

P
Peter Zijlstra 已提交
7615
got_cpu_context:
P
Peter Zijlstra 已提交
7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7627
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7628 7629
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7630
		}
7631
	}
7632

P
Peter Zijlstra 已提交
7633 7634 7635 7636 7637
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7638 7639 7640
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7641
	list_add_rcu(&pmu->entry, &pmus);
7642
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7643 7644
	ret = 0;
unlock:
7645 7646
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7647
	return ret;
P
Peter Zijlstra 已提交
7648

P
Peter Zijlstra 已提交
7649 7650 7651 7652
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7653 7654 7655 7656
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7657 7658 7659
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7660
}
7661
EXPORT_SYMBOL_GPL(perf_pmu_register);
7662

7663
void perf_pmu_unregister(struct pmu *pmu)
7664
{
7665 7666 7667
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7668

7669
	/*
P
Peter Zijlstra 已提交
7670 7671
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7672
	 */
7673
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7674
	synchronize_rcu();
7675

P
Peter Zijlstra 已提交
7676
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7677 7678
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7679 7680
	device_del(pmu->dev);
	put_device(pmu->dev);
7681
	free_pmu_context(pmu);
7682
}
7683
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7684

7685 7686
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7687
	struct perf_event_context *ctx = NULL;
7688 7689 7690 7691
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7692 7693

	if (event->group_leader != event) {
7694 7695 7696 7697 7698 7699
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7700 7701 7702
		BUG_ON(!ctx);
	}

7703 7704
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7705 7706 7707 7708

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7709 7710 7711 7712 7713 7714
	if (ret)
		module_put(pmu->module);

	return ret;
}

7715
static struct pmu *perf_init_event(struct perf_event *event)
7716 7717 7718
{
	struct pmu *pmu = NULL;
	int idx;
7719
	int ret;
7720 7721

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7722 7723 7724 7725

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7726
	if (pmu) {
7727
		ret = perf_try_init_event(pmu, event);
7728 7729
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7730
		goto unlock;
7731
	}
P
Peter Zijlstra 已提交
7732

7733
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7734
		ret = perf_try_init_event(pmu, event);
7735
		if (!ret)
P
Peter Zijlstra 已提交
7736
			goto unlock;
7737

7738 7739
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7740
			goto unlock;
7741
		}
7742
	}
P
Peter Zijlstra 已提交
7743 7744
	pmu = ERR_PTR(-ENOENT);
unlock:
7745
	srcu_read_unlock(&pmus_srcu, idx);
7746

7747
	return pmu;
7748 7749
}

7750 7751 7752 7753 7754 7755 7756 7757 7758
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7759 7760
static void account_event(struct perf_event *event)
{
7761 7762
	bool inc = false;

7763 7764 7765
	if (event->parent)
		return;

7766
	if (event->attach_state & PERF_ATTACH_TASK)
7767
		inc = true;
7768 7769 7770 7771 7772 7773
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7774 7775 7776 7777
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7778 7779
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7780
		inc = true;
7781
	}
7782
	if (has_branch_stack(event))
7783
		inc = true;
7784
	if (is_cgroup_event(event))
7785 7786 7787
		inc = true;

	if (inc)
7788
		static_key_slow_inc(&perf_sched_events.key);
7789 7790

	account_event_cpu(event, event->cpu);
7791 7792
}

T
Thomas Gleixner 已提交
7793
/*
7794
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7795
 */
7796
static struct perf_event *
7797
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7798 7799 7800
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7801
		 perf_overflow_handler_t overflow_handler,
7802
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7803
{
P
Peter Zijlstra 已提交
7804
	struct pmu *pmu;
7805 7806
	struct perf_event *event;
	struct hw_perf_event *hwc;
7807
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7808

7809 7810 7811 7812 7813
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7814
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7815
	if (!event)
7816
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7817

7818
	/*
7819
	 * Single events are their own group leaders, with an
7820 7821 7822
	 * empty sibling list:
	 */
	if (!group_leader)
7823
		group_leader = event;
7824

7825 7826
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7827

7828 7829 7830
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7831
	INIT_LIST_HEAD(&event->rb_entry);
7832
	INIT_LIST_HEAD(&event->active_entry);
7833 7834
	INIT_HLIST_NODE(&event->hlist_entry);

7835

7836
	init_waitqueue_head(&event->waitq);
7837
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7838

7839
	mutex_init(&event->mmap_mutex);
7840

7841
	atomic_long_set(&event->refcount, 1);
7842 7843 7844 7845 7846
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7847

7848
	event->parent		= parent_event;
7849

7850
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7851
	event->id		= atomic64_inc_return(&perf_event_id);
7852

7853
	event->state		= PERF_EVENT_STATE_INACTIVE;
7854

7855 7856 7857
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7858 7859 7860
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7861
		 */
7862
		event->hw.target = task;
7863 7864
	}

7865 7866 7867 7868
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7869
	if (!overflow_handler && parent_event) {
7870
		overflow_handler = parent_event->overflow_handler;
7871 7872
		context = parent_event->overflow_handler_context;
	}
7873

7874
	event->overflow_handler	= overflow_handler;
7875
	event->overflow_handler_context = context;
7876

J
Jiri Olsa 已提交
7877
	perf_event__state_init(event);
7878

7879
	pmu = NULL;
7880

7881
	hwc = &event->hw;
7882
	hwc->sample_period = attr->sample_period;
7883
	if (attr->freq && attr->sample_freq)
7884
		hwc->sample_period = 1;
7885
	hwc->last_period = hwc->sample_period;
7886

7887
	local64_set(&hwc->period_left, hwc->sample_period);
7888

7889
	/*
7890
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7891
	 */
7892
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7893
		goto err_ns;
7894 7895 7896

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7897

7898 7899 7900 7901 7902 7903
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7904
	pmu = perf_init_event(event);
7905
	if (!pmu)
7906 7907
		goto err_ns;
	else if (IS_ERR(pmu)) {
7908
		err = PTR_ERR(pmu);
7909
		goto err_ns;
I
Ingo Molnar 已提交
7910
	}
7911

7912 7913 7914 7915
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7916
	if (!event->parent) {
7917 7918
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7919
			if (err)
7920
				goto err_per_task;
7921
		}
7922
	}
7923

7924
	return event;
7925

7926 7927 7928
err_per_task:
	exclusive_event_destroy(event);

7929 7930 7931
err_pmu:
	if (event->destroy)
		event->destroy(event);
7932
	module_put(pmu->module);
7933
err_ns:
7934 7935
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7936 7937 7938 7939 7940
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7941 7942
}

7943 7944
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7945 7946
{
	u32 size;
7947
	int ret;
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7972 7973 7974
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7975 7976
	 */
	if (size > sizeof(*attr)) {
7977 7978 7979
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7980

7981 7982
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7983

7984
		for (; addr < end; addr++) {
7985 7986 7987 7988 7989 7990
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7991
		size = sizeof(*attr);
7992 7993 7994 7995 7996 7997
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7998
	if (attr->__reserved_1)
7999 8000 8001 8002 8003 8004 8005 8006
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8035 8036
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8037 8038
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8039
	}
8040

8041
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8042
		ret = perf_reg_validate(attr->sample_regs_user);
8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8061

8062 8063
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8064 8065 8066 8067 8068 8069 8070 8071 8072
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8073 8074
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8075
{
8076
	struct ring_buffer *rb = NULL;
8077 8078
	int ret = -EINVAL;

8079
	if (!output_event)
8080 8081
		goto set;

8082 8083
	/* don't allow circular references */
	if (event == output_event)
8084 8085
		goto out;

8086 8087 8088 8089 8090 8091 8092
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8093
	 * If its not a per-cpu rb, it must be the same task.
8094 8095 8096 8097
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8098 8099 8100 8101 8102 8103
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8104 8105 8106 8107 8108 8109 8110
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8111
set:
8112
	mutex_lock(&event->mmap_mutex);
8113 8114 8115
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8116

8117
	if (output_event) {
8118 8119 8120
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8121
			goto unlock;
8122 8123
	}

8124
	ring_buffer_attach(event, rb);
8125

8126
	ret = 0;
8127 8128 8129
unlock:
	mutex_unlock(&event->mmap_mutex);

8130 8131 8132 8133
out:
	return ret;
}

P
Peter Zijlstra 已提交
8134 8135 8136 8137 8138 8139 8140 8141 8142
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8180
/**
8181
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8182
 *
8183
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8184
 * @pid:		target pid
I
Ingo Molnar 已提交
8185
 * @cpu:		target cpu
8186
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8187
 */
8188 8189
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8190
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8191
{
8192 8193
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8194
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8195
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8196
	struct file *event_file = NULL;
8197
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8198
	struct task_struct *task = NULL;
8199
	struct pmu *pmu;
8200
	int event_fd;
8201
	int move_group = 0;
8202
	int err;
8203
	int f_flags = O_RDWR;
8204
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8205

8206
	/* for future expandability... */
S
Stephane Eranian 已提交
8207
	if (flags & ~PERF_FLAG_ALL)
8208 8209
		return -EINVAL;

8210 8211 8212
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8213

8214 8215 8216 8217 8218
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8219
	if (attr.freq) {
8220
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8221
			return -EINVAL;
8222 8223 8224
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8225 8226
	}

S
Stephane Eranian 已提交
8227 8228 8229 8230 8231 8232 8233 8234 8235
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8236 8237 8238 8239
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8240 8241 8242
	if (event_fd < 0)
		return event_fd;

8243
	if (group_fd != -1) {
8244 8245
		err = perf_fget_light(group_fd, &group);
		if (err)
8246
			goto err_fd;
8247
		group_leader = group.file->private_data;
8248 8249 8250 8251 8252 8253
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8254
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8255 8256 8257 8258 8259 8260 8261
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8262 8263 8264 8265 8266 8267
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8268 8269
	get_online_cpus();

8270 8271 8272
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8273
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8274
				 NULL, NULL, cgroup_fd);
8275 8276
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8277
		goto err_cpus;
8278 8279
	}

8280 8281 8282 8283 8284 8285 8286
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8287 8288
	account_event(event);

8289 8290 8291 8292 8293
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8294

8295 8296 8297 8298 8299 8300
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8323 8324 8325 8326

	/*
	 * Get the target context (task or percpu):
	 */
8327
	ctx = find_get_context(pmu, task, event);
8328 8329
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8330
		goto err_alloc;
8331 8332
	}

8333 8334 8335 8336 8337
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8338 8339 8340 8341 8342
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8343
	/*
8344
	 * Look up the group leader (we will attach this event to it):
8345
	 */
8346
	if (group_leader) {
8347
		err = -EINVAL;
8348 8349

		/*
I
Ingo Molnar 已提交
8350 8351 8352 8353
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8354
			goto err_context;
8355 8356 8357 8358 8359

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8360 8361 8362
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8363
		 */
8364
		if (move_group) {
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8378 8379 8380 8381 8382 8383
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8384 8385 8386
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8387
		if (attr.exclusive || attr.pinned)
8388
			goto err_context;
8389 8390 8391 8392 8393
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8394
			goto err_context;
8395
	}
T
Thomas Gleixner 已提交
8396

8397 8398
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8399 8400
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8401
		goto err_context;
8402
	}
8403

8404
	if (move_group) {
P
Peter Zijlstra 已提交
8405
		gctx = group_leader->ctx;
8406 8407 8408 8409 8410
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8411 8412 8413 8414 8415
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8416 8417 8418 8419 8420 8421 8422
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8423

8424 8425 8426
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8427

8428 8429 8430
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8431 8432 8433 8434
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8435
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8436

8437 8438
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8439
			perf_remove_from_context(sibling, false);
8440 8441 8442
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8443 8444 8445 8446
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8447
		synchronize_rcu();
P
Peter Zijlstra 已提交
8448

8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8459 8460
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8461
			perf_event__state_init(sibling);
8462
			perf_install_in_context(ctx, sibling, sibling->cpu);
8463 8464
			get_ctx(ctx);
		}
8465 8466 8467 8468 8469 8470 8471 8472 8473

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8474

8475 8476 8477 8478 8479 8480
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8481 8482
	}

8483 8484 8485 8486 8487 8488 8489 8490 8491
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8492 8493
	event->owner = current;

8494
	perf_install_in_context(ctx, event, event->cpu);
8495
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8496

8497
	if (move_group)
P
Peter Zijlstra 已提交
8498
		mutex_unlock(&gctx->mutex);
8499
	mutex_unlock(&ctx->mutex);
8500

8501 8502
	put_online_cpus();

8503 8504 8505
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8506

8507 8508 8509 8510 8511 8512
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8513
	fdput(group);
8514 8515
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8516

8517 8518 8519 8520 8521 8522
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8523
err_context:
8524
	perf_unpin_context(ctx);
8525
	put_ctx(ctx);
8526
err_alloc:
8527
	free_event(event);
8528
err_cpus:
8529
	put_online_cpus();
8530
err_task:
P
Peter Zijlstra 已提交
8531 8532
	if (task)
		put_task_struct(task);
8533
err_group_fd:
8534
	fdput(group);
8535 8536
err_fd:
	put_unused_fd(event_fd);
8537
	return err;
T
Thomas Gleixner 已提交
8538 8539
}

8540 8541 8542 8543 8544
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8545
 * @task: task to profile (NULL for percpu)
8546 8547 8548
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8549
				 struct task_struct *task,
8550 8551
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8552 8553
{
	struct perf_event_context *ctx;
8554
	struct perf_event *event;
8555
	int err;
8556

8557 8558 8559
	/*
	 * Get the target context (task or percpu):
	 */
8560

8561
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8562
				 overflow_handler, context, -1);
8563 8564 8565 8566
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8567

8568
	/* Mark owner so we could distinguish it from user events. */
8569
	event->owner = TASK_TOMBSTONE;
8570

8571 8572
	account_event(event);

8573
	ctx = find_get_context(event->pmu, task, event);
8574 8575
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8576
		goto err_free;
8577
	}
8578 8579 8580

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8581 8582 8583 8584 8585 8586 8587 8588
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8589
	perf_install_in_context(ctx, event, cpu);
8590
	perf_unpin_context(ctx);
8591 8592 8593 8594
	mutex_unlock(&ctx->mutex);

	return event;

8595 8596 8597
err_free:
	free_event(event);
err:
8598
	return ERR_PTR(err);
8599
}
8600
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8601

8602 8603 8604 8605 8606 8607 8608 8609 8610 8611
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8612 8613 8614 8615 8616
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8617 8618
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8619
		perf_remove_from_context(event, false);
8620
		unaccount_event_cpu(event, src_cpu);
8621
		put_ctx(src_ctx);
8622
		list_add(&event->migrate_entry, &events);
8623 8624
	}

8625 8626 8627
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8628 8629
	synchronize_rcu();

8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8654 8655
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8656 8657
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8658
		account_event_cpu(event, dst_cpu);
8659 8660 8661 8662
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8663
	mutex_unlock(&src_ctx->mutex);
8664 8665 8666
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8667
static void sync_child_event(struct perf_event *child_event,
8668
			       struct task_struct *child)
8669
{
8670
	struct perf_event *parent_event = child_event->parent;
8671
	u64 child_val;
8672

8673 8674
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8675

P
Peter Zijlstra 已提交
8676
	child_val = perf_event_count(child_event);
8677 8678 8679 8680

	/*
	 * Add back the child's count to the parent's count:
	 */
8681
	atomic64_add(child_val, &parent_event->child_count);
8682 8683 8684 8685
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8686 8687

	/*
8688
	 * Remove this event from the parent's list
8689
	 */
8690 8691 8692 8693
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8694

8695 8696 8697 8698 8699 8700
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8701
	/*
8702
	 * Release the parent event, if this was the last
8703 8704
	 * reference to it.
	 */
8705
	put_event(parent_event);
8706 8707
}

8708
static void
8709 8710
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8711
			 struct task_struct *child)
8712
{
8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8725 8726 8727 8728 8729 8730 8731
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

	if (!!child_event->parent)
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
	raw_spin_unlock_irq(&child_ctx->lock);
8732

8733
	/*
8734
	 * It can happen that the parent exits first, and has events
8735
	 * that are still around due to the child reference. These
8736
	 * events need to be zapped.
8737
	 */
8738
	if (child_event->parent) {
8739 8740
		sync_child_event(child_event, child);
		free_event(child_event);
8741 8742 8743
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8744
	}
8745 8746
}

P
Peter Zijlstra 已提交
8747
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8748
{
8749
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8750 8751 8752
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8753

8754
	child_ctx = perf_pin_task_context(child, ctxn);
8755
	if (!child_ctx)
8756 8757
		return;

8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
	/*
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
	 *
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock(&child_ctx->mutex);

	/*
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
	 */
	raw_spin_lock_irq(&child_ctx->lock);
8785
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8786 8787

	/*
8788 8789
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8790
	 */
8791 8792 8793 8794
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8795

8796
	clone_ctx = unclone_ctx(child_ctx);
8797
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8798

8799 8800
	if (clone_ctx)
		put_ctx(clone_ctx);
8801

P
Peter Zijlstra 已提交
8802
	/*
8803 8804 8805
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8806
	 */
8807
	perf_event_task(child, child_ctx, 0);
8808

8809
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8810
		__perf_event_exit_task(child_event, child_ctx, child);
8811

8812 8813 8814
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8815 8816
}

P
Peter Zijlstra 已提交
8817 8818 8819 8820 8821
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8822
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8823 8824
	int ctxn;

P
Peter Zijlstra 已提交
8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8840 8841
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8842 8843 8844 8845 8846 8847 8848 8849

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8850 8851
}

8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8864
	put_event(parent);
8865

P
Peter Zijlstra 已提交
8866
	raw_spin_lock_irq(&ctx->lock);
8867
	perf_group_detach(event);
8868
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8869
	raw_spin_unlock_irq(&ctx->lock);
8870 8871 8872
	free_event(event);
}

8873
/*
P
Peter Zijlstra 已提交
8874
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8875
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8876 8877 8878
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8879
 */
8880
void perf_event_free_task(struct task_struct *task)
8881
{
P
Peter Zijlstra 已提交
8882
	struct perf_event_context *ctx;
8883
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8884
	int ctxn;
8885

P
Peter Zijlstra 已提交
8886 8887 8888 8889
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8890

P
Peter Zijlstra 已提交
8891
		mutex_lock(&ctx->mutex);
8892
again:
P
Peter Zijlstra 已提交
8893 8894 8895
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8896

P
Peter Zijlstra 已提交
8897 8898 8899
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8900

P
Peter Zijlstra 已提交
8901 8902 8903
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8904

P
Peter Zijlstra 已提交
8905
		mutex_unlock(&ctx->mutex);
8906

P
Peter Zijlstra 已提交
8907 8908
		put_ctx(ctx);
	}
8909 8910
}

8911 8912 8913 8914 8915 8916 8917 8918
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8919
struct file *perf_event_get(unsigned int fd)
8920
{
8921
	struct file *file;
8922

8923 8924 8925
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
8926

8927 8928 8929 8930
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
8931

8932
	return file;
8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8954
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8955
	struct perf_event *child_event;
8956
	unsigned long flags;
P
Peter Zijlstra 已提交
8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8969
					   child,
P
Peter Zijlstra 已提交
8970
					   group_leader, parent_event,
8971
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8972 8973
	if (IS_ERR(child_event))
		return child_event;
8974

8975 8976
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8977 8978 8979 8980
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8981 8982 8983 8984 8985 8986 8987
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8988
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9005 9006
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9007

9008 9009 9010 9011
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9012
	perf_event__id_header_size(child_event);
9013

P
Peter Zijlstra 已提交
9014 9015 9016
	/*
	 * Link it up in the child's context:
	 */
9017
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9018
	add_event_to_ctx(child_event, child_ctx);
9019
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9053 9054 9055 9056 9057
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9058
		   struct task_struct *child, int ctxn,
9059 9060 9061
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9062
	struct perf_event_context *child_ctx;
9063 9064 9065 9066

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9067 9068
	}

9069
	child_ctx = child->perf_event_ctxp[ctxn];
9070 9071 9072 9073 9074 9075 9076
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9077

9078
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9079 9080
		if (!child_ctx)
			return -ENOMEM;
9081

P
Peter Zijlstra 已提交
9082
		child->perf_event_ctxp[ctxn] = child_ctx;
9083 9084 9085 9086 9087 9088 9089 9090 9091
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9092 9093
}

9094
/*
9095
 * Initialize the perf_event context in task_struct
9096
 */
9097
static int perf_event_init_context(struct task_struct *child, int ctxn)
9098
{
9099
	struct perf_event_context *child_ctx, *parent_ctx;
9100 9101
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9102
	struct task_struct *parent = current;
9103
	int inherited_all = 1;
9104
	unsigned long flags;
9105
	int ret = 0;
9106

P
Peter Zijlstra 已提交
9107
	if (likely(!parent->perf_event_ctxp[ctxn]))
9108 9109
		return 0;

9110
	/*
9111 9112
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9113
	 */
P
Peter Zijlstra 已提交
9114
	parent_ctx = perf_pin_task_context(parent, ctxn);
9115 9116
	if (!parent_ctx)
		return 0;
9117

9118 9119 9120 9121 9122 9123 9124
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9125 9126 9127 9128
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9129
	mutex_lock(&parent_ctx->mutex);
9130 9131 9132 9133 9134

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9135
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9136 9137
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9138 9139 9140
		if (ret)
			break;
	}
9141

9142 9143 9144 9145 9146 9147 9148 9149 9150
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9151
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9152 9153
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9154
		if (ret)
9155
			break;
9156 9157
	}

9158 9159 9160
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9161
	child_ctx = child->perf_event_ctxp[ctxn];
9162

9163
	if (child_ctx && inherited_all) {
9164 9165 9166
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9167 9168 9169
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9170
		 */
P
Peter Zijlstra 已提交
9171
		cloned_ctx = parent_ctx->parent_ctx;
9172 9173
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9174
			child_ctx->parent_gen = parent_ctx->parent_gen;
9175 9176 9177 9178 9179
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9180 9181
	}

P
Peter Zijlstra 已提交
9182
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9183
	mutex_unlock(&parent_ctx->mutex);
9184

9185
	perf_unpin_context(parent_ctx);
9186
	put_ctx(parent_ctx);
9187

9188
	return ret;
9189 9190
}

P
Peter Zijlstra 已提交
9191 9192 9193 9194 9195 9196 9197
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9198 9199 9200 9201
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9202 9203
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9204 9205
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9206
			return ret;
P
Peter Zijlstra 已提交
9207
		}
P
Peter Zijlstra 已提交
9208 9209 9210 9211 9212
	}

	return 0;
}

9213 9214
static void __init perf_event_init_all_cpus(void)
{
9215
	struct swevent_htable *swhash;
9216 9217 9218
	int cpu;

	for_each_possible_cpu(cpu) {
9219 9220
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9221
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9222 9223 9224
	}
}

9225
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9226
{
P
Peter Zijlstra 已提交
9227
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9228

9229
	mutex_lock(&swhash->hlist_mutex);
9230
	if (swhash->hlist_refcount > 0) {
9231 9232
		struct swevent_hlist *hlist;

9233 9234 9235
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9236
	}
9237
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9238 9239
}

9240
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9241
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9242
{
P
Peter Zijlstra 已提交
9243
	struct perf_event_context *ctx = __info;
9244 9245
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9246

9247 9248 9249 9250
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		__perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9251
}
P
Peter Zijlstra 已提交
9252 9253 9254 9255 9256 9257 9258 9259 9260

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9261
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9262 9263 9264 9265 9266 9267 9268 9269

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9270
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9271
{
P
Peter Zijlstra 已提交
9272
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9273 9274
}
#else
9275
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9276 9277
#endif

P
Peter Zijlstra 已提交
9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9298
static int
T
Thomas Gleixner 已提交
9299 9300 9301 9302
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9303
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9304 9305

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9306
	case CPU_DOWN_FAILED:
9307
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9308 9309
		break;

P
Peter Zijlstra 已提交
9310
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9311
	case CPU_DOWN_PREPARE:
9312
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9313 9314 9315 9316 9317 9318 9319 9320
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9321
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9322
{
9323 9324
	int ret;

P
Peter Zijlstra 已提交
9325 9326
	idr_init(&pmu_idr);

9327
	perf_event_init_all_cpus();
9328
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9329 9330 9331
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9332 9333
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9334
	register_reboot_notifier(&perf_reboot_notifier);
9335 9336 9337

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9338 9339 9340

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9341 9342 9343 9344 9345 9346 9347

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9348
}
P
Peter Zijlstra 已提交
9349

9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9389 9390

#ifdef CONFIG_CGROUP_PERF
9391 9392
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9393 9394 9395
{
	struct perf_cgroup *jc;

9396
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9409
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9410
{
9411 9412
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9413 9414 9415 9416 9417 9418 9419
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9420
	rcu_read_lock();
S
Stephane Eranian 已提交
9421
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9422
	rcu_read_unlock();
S
Stephane Eranian 已提交
9423 9424 9425
	return 0;
}

9426
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9427
{
9428
	struct task_struct *task;
9429
	struct cgroup_subsys_state *css;
9430

9431
	cgroup_taskset_for_each(task, css, tset)
9432
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9433 9434
}

9435
struct cgroup_subsys perf_event_cgrp_subsys = {
9436 9437
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9438
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9439 9440
};
#endif /* CONFIG_CGROUP_PERF */