core.c 219.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198

199
static void update_perf_cpu_limits(void)
200 201 202 203
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438 439 440 441 442 443
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460 461 462
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
475
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 497
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
507 508
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517 518 519

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
520
				WARN_ON_ONCE(cpuctx->cgrp);
521 522 523 524
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
525 526 527 528
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
529 530
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

539 540
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
541
{
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
564 565
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568
{
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
595 596
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
597

598
	if (!f.file)
S
Stephane Eranian 已提交
599 600
		return -EBADF;

A
Al Viro 已提交
601
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602
					 &perf_event_cgrp_subsys);
603 604 605 606
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
753
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 755 756 757 758 759 760 761 762
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
763 764
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
765
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
766 767 768
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
769

P
Peter Zijlstra 已提交
770
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 772
}

773
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774
{
775
	struct hrtimer *timer = &cpuctx->hrtimer;
776
	struct pmu *pmu = cpuctx->ctx.pmu;
777
	u64 interval;
778 779 780 781 782

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

783 784 785 786
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
787 788 789
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790

791
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792

P
Peter Zijlstra 已提交
793 794
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795
	timer->function = perf_mux_hrtimer_handler;
796 797
}

798
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799
{
800
	struct hrtimer *timer = &cpuctx->hrtimer;
801
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
802
	unsigned long flags;
803 804 805

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815

816
	return 0;
817 818
}

P
Peter Zijlstra 已提交
819
void perf_pmu_disable(struct pmu *pmu)
820
{
P
Peter Zijlstra 已提交
821 822 823
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
824 825
}

P
Peter Zijlstra 已提交
826
void perf_pmu_enable(struct pmu *pmu)
827
{
P
Peter Zijlstra 已提交
828 829 830
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
831 832
}

833
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 835

/*
836 837 838 839
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
840
 */
841
static void perf_event_ctx_activate(struct perf_event_context *ctx)
842
{
843
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844

845
	WARN_ON(!irqs_disabled());
846

847 848 849 850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
859 860
}

861
static void get_ctx(struct perf_event_context *ctx)
862
{
863
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 865
}

866 867 868 869 870 871 872 873 874
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

875
static void put_ctx(struct perf_event_context *ctx)
876
{
877 878 879
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
880 881
		if (ctx->task)
			put_task_struct(ctx->task);
882
		call_rcu(&ctx->rcu_head, free_ctx);
883
	}
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
947 948
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
961
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
971 972 973 974 975 976
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

984 985 986 987 988 989 990
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
991
{
992 993 994 995 996
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
997
		ctx->parent_ctx = NULL;
998
	ctx->generation++;
999 1000

	return parent_ctx;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1025
/*
1026
 * If we inherit events we want to return the parent event id
1027 1028
 * to userspace.
 */
1029
static u64 primary_event_id(struct perf_event *event)
1030
{
1031
	u64 id = event->id;
1032

1033 1034
	if (event->parent)
		id = event->parent->id;
1035 1036 1037 1038

	return id;
}

1039
/*
1040
 * Get the perf_event_context for a task and lock it.
1041 1042 1043
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1044
static struct perf_event_context *
P
Peter Zijlstra 已提交
1045
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046
{
1047
	struct perf_event_context *ctx;
1048

P
Peter Zijlstra 已提交
1049
retry:
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1061
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 1063 1064 1065
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1066
		 * perf_event_task_sched_out, though the
1067 1068 1069 1070 1071 1072
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1073
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1074
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 1077
			rcu_read_unlock();
			preempt_enable();
1078 1079
			goto retry;
		}
1080 1081

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 1084
			ctx = NULL;
		}
1085 1086
	}
	rcu_read_unlock();
1087
	preempt_enable();
1088 1089 1090 1091 1092 1093 1094 1095
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1096 1097
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1098
{
1099
	struct perf_event_context *ctx;
1100 1101
	unsigned long flags;

P
Peter Zijlstra 已提交
1102
	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 1104
	if (ctx) {
		++ctx->pin_count;
1105
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 1107 1108 1109
	}
	return ctx;
}

1110
static void perf_unpin_context(struct perf_event_context *ctx)
1111 1112 1113
{
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&ctx->lock, flags);
1115
	--ctx->pin_count;
1116
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1130 1131 1132
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1133 1134 1135 1136

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1137 1138 1139
	return ctx ? ctx->time : 0;
}

1140 1141
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1142
 * The caller of this function needs to hold the ctx->lock.
1143 1144 1145 1146 1147 1148 1149 1150 1151
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1163
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1164 1165
	else if (ctx->is_active)
		run_end = ctx->time;
1166 1167 1168 1169
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 1171 1172 1173

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1174
		run_end = perf_event_time(event);
1175 1176

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1177

1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1201
/*
1202
 * Add a event from the lists for its context.
1203 1204
 * Must be called with ctx->mutex and ctx->lock held.
 */
1205
static void
1206
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207
{
1208 1209
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 1211

	/*
1212 1213 1214
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1215
	 */
1216
	if (event->group_leader == event) {
1217 1218
		struct list_head *list;

1219 1220 1221
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1222 1223
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1224
	}
P
Peter Zijlstra 已提交
1225

1226
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1227 1228
		ctx->nr_cgroups++;

1229 1230 1231
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1232
		ctx->nr_stat++;
1233 1234

	ctx->generation++;
1235 1236
}

J
Jiri Olsa 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1246
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1262
		nr += nr_siblings;
1263 1264 1265 1266 1267 1268 1269
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1270
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1271 1272 1273 1274 1275 1276 1277
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1278 1279 1280 1281 1282 1283
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1284 1285 1286
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1287 1288 1289
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1290 1291 1292
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1293 1294 1295
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1296 1297 1298
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1310 1311 1312 1313 1314 1315
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1316 1317 1318 1319 1320 1321
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1322 1323 1324
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1325 1326 1327 1328 1329 1330 1331 1332 1333
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1334
	event->id_header_size = size;
1335 1336
}

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1358 1359
static void perf_group_attach(struct perf_event *event)
{
1360
	struct perf_event *group_leader = event->group_leader, *pos;
1361

P
Peter Zijlstra 已提交
1362 1363 1364 1365 1366 1367
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1368 1369 1370 1371 1372
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1373 1374
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1375 1376 1377 1378 1379 1380
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1381 1382 1383 1384 1385

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1386 1387
}

1388
/*
1389
 * Remove a event from the lists for its context.
1390
 * Must be called with ctx->mutex and ctx->lock held.
1391
 */
1392
static void
1393
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1394
{
1395
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1396 1397 1398 1399

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1400 1401 1402 1403
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1404
		return;
1405 1406 1407

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1408
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1409
		ctx->nr_cgroups--;
1410 1411 1412 1413 1414 1415 1416 1417 1418
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1419

1420 1421
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1422
		ctx->nr_stat--;
1423

1424
	list_del_rcu(&event->event_entry);
1425

1426 1427
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1428

1429
	update_group_times(event);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1440 1441

	ctx->generation++;
1442 1443
}

1444
static void perf_group_detach(struct perf_event *event)
1445 1446
{
	struct perf_event *sibling, *tmp;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1463
		goto out;
1464 1465 1466 1467
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1468

1469
	/*
1470 1471
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1472
	 * to whatever list we are on.
1473
	 */
1474
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1475 1476
		if (list)
			list_move_tail(&sibling->group_entry, list);
1477
		sibling->group_leader = sibling;
1478 1479 1480

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1481 1482

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1483
	}
1484 1485 1486 1487 1488 1489

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1490 1491
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1531 1532 1533 1534 1535 1536
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1537 1538 1539
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1540
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1541
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1542 1543
}

1544 1545
static void
event_sched_out(struct perf_event *event,
1546
		  struct perf_cpu_context *cpuctx,
1547
		  struct perf_event_context *ctx)
1548
{
1549
	u64 tstamp = perf_event_time(event);
1550
	u64 delta;
P
Peter Zijlstra 已提交
1551 1552 1553 1554

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1555 1556 1557 1558 1559 1560 1561 1562
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1563
		delta = tstamp - event->tstamp_stopped;
1564
		event->tstamp_running += delta;
1565
		event->tstamp_stopped = tstamp;
1566 1567
	}

1568
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1569
		return;
1570

1571 1572
	perf_pmu_disable(event->pmu);

1573 1574 1575 1576
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1577
	}
1578
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1579
	event->pmu->del(event, 0);
1580
	event->oncpu = -1;
1581

1582
	if (!is_software_event(event))
1583
		cpuctx->active_oncpu--;
1584 1585
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1586 1587
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1588
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1589
		cpuctx->exclusive = 0;
1590

1591 1592 1593
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1594
	perf_pmu_enable(event->pmu);
1595 1596
}

1597
static void
1598
group_sched_out(struct perf_event *group_event,
1599
		struct perf_cpu_context *cpuctx,
1600
		struct perf_event_context *ctx)
1601
{
1602
	struct perf_event *event;
1603
	int state = group_event->state;
1604

1605
	event_sched_out(group_event, cpuctx, ctx);
1606 1607 1608 1609

	/*
	 * Schedule out siblings (if any):
	 */
1610 1611
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1612

1613
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1614 1615 1616
		cpuctx->exclusive = 0;
}

1617 1618 1619 1620 1621
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1622
/*
1623
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1624
 *
1625
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1626 1627
 * remove it from the context list.
 */
1628
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1629
{
1630 1631
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1632
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1633
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1634

1635
	raw_spin_lock(&ctx->lock);
1636
	event_sched_out(event, cpuctx, ctx);
1637 1638
	if (re->detach_group)
		perf_group_detach(event);
1639
	list_del_event(event, ctx);
1640 1641 1642 1643
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1644
	raw_spin_unlock(&ctx->lock);
1645 1646

	return 0;
T
Thomas Gleixner 已提交
1647 1648 1649 1650
}


/*
1651
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1652
 *
1653
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1654
 * call when the task is on a CPU.
1655
 *
1656 1657
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1658 1659
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1660
 * When called from perf_event_exit_task, it's OK because the
1661
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1662
 */
1663
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1664
{
1665
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1666
	struct task_struct *task = ctx->task;
1667 1668 1669 1670
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1671

1672 1673
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1674 1675
	if (!task) {
		/*
1676 1677 1678 1679
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1680
		 */
1681
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1682 1683 1684 1685
		return;
	}

retry:
1686
	if (!task_function_call(task, __perf_remove_from_context, &re))
1687
		return;
T
Thomas Gleixner 已提交
1688

1689
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1690
	/*
1691 1692
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1693
	 */
1694
	if (ctx->is_active) {
1695
		raw_spin_unlock_irq(&ctx->lock);
1696 1697 1698 1699 1700
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1701 1702 1703 1704
		goto retry;
	}

	/*
1705 1706
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1707
	 */
1708 1709
	if (detach_group)
		perf_group_detach(event);
1710
	list_del_event(event, ctx);
1711
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1712 1713
}

1714
/*
1715
 * Cross CPU call to disable a performance event
1716
 */
1717
int __perf_event_disable(void *info)
1718
{
1719 1720
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1721
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1722 1723

	/*
1724 1725
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1726 1727 1728
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1729
	 */
1730
	if (ctx->task && cpuctx->task_ctx != ctx)
1731
		return -EINVAL;
1732

1733
	raw_spin_lock(&ctx->lock);
1734 1735

	/*
1736
	 * If the event is on, turn it off.
1737 1738
	 * If it is in error state, leave it in error state.
	 */
1739
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1740
		update_context_time(ctx);
S
Stephane Eranian 已提交
1741
		update_cgrp_time_from_event(event);
1742 1743 1744
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1745
		else
1746 1747
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1748 1749
	}

1750
	raw_spin_unlock(&ctx->lock);
1751 1752

	return 0;
1753 1754 1755
}

/*
1756
 * Disable a event.
1757
 *
1758 1759
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1760
 * remains valid.  This condition is satisifed when called through
1761 1762 1763 1764
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1765
 * is the current context on this CPU and preemption is disabled,
1766
 * hence we can't get into perf_event_task_sched_out for this context.
1767
 */
P
Peter Zijlstra 已提交
1768
static void _perf_event_disable(struct perf_event *event)
1769
{
1770
	struct perf_event_context *ctx = event->ctx;
1771 1772 1773 1774
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1775
		 * Disable the event on the cpu that it's on
1776
		 */
1777
		cpu_function_call(event->cpu, __perf_event_disable, event);
1778 1779 1780
		return;
	}

P
Peter Zijlstra 已提交
1781
retry:
1782 1783
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1784

1785
	raw_spin_lock_irq(&ctx->lock);
1786
	/*
1787
	 * If the event is still active, we need to retry the cross-call.
1788
	 */
1789
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1790
		raw_spin_unlock_irq(&ctx->lock);
1791 1792 1793 1794 1795
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1796 1797 1798 1799 1800 1801 1802
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1803 1804 1805
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1806
	}
1807
	raw_spin_unlock_irq(&ctx->lock);
1808
}
P
Peter Zijlstra 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1822
EXPORT_SYMBOL_GPL(perf_event_disable);
1823

S
Stephane Eranian 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1859 1860 1861
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1862
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1863

1864
static int
1865
event_sched_in(struct perf_event *event,
1866
		 struct perf_cpu_context *cpuctx,
1867
		 struct perf_event_context *ctx)
1868
{
1869
	u64 tstamp = perf_event_time(event);
1870
	int ret = 0;
1871

1872 1873
	lockdep_assert_held(&ctx->lock);

1874
	if (event->state <= PERF_EVENT_STATE_OFF)
1875 1876
		return 0;

1877
	event->state = PERF_EVENT_STATE_ACTIVE;
1878
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1890 1891 1892 1893 1894
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1895 1896
	perf_pmu_disable(event->pmu);

1897 1898
	perf_set_shadow_time(event, ctx, tstamp);

1899 1900
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1901
	if (event->pmu->add(event, PERF_EF_START)) {
1902 1903
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1904 1905
		ret = -EAGAIN;
		goto out;
1906 1907
	}

1908 1909
	event->tstamp_running += tstamp - event->tstamp_stopped;

1910
	if (!is_software_event(event))
1911
		cpuctx->active_oncpu++;
1912 1913
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1914 1915
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1916

1917
	if (event->attr.exclusive)
1918 1919
		cpuctx->exclusive = 1;

1920 1921 1922
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1923 1924 1925 1926
out:
	perf_pmu_enable(event->pmu);

	return ret;
1927 1928
}

1929
static int
1930
group_sched_in(struct perf_event *group_event,
1931
	       struct perf_cpu_context *cpuctx,
1932
	       struct perf_event_context *ctx)
1933
{
1934
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1935
	struct pmu *pmu = ctx->pmu;
1936 1937
	u64 now = ctx->time;
	bool simulate = false;
1938

1939
	if (group_event->state == PERF_EVENT_STATE_OFF)
1940 1941
		return 0;

1942
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1943

1944
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1945
		pmu->cancel_txn(pmu);
1946
		perf_mux_hrtimer_restart(cpuctx);
1947
		return -EAGAIN;
1948
	}
1949 1950 1951 1952

	/*
	 * Schedule in siblings as one group (if any):
	 */
1953
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954
		if (event_sched_in(event, cpuctx, ctx)) {
1955
			partial_group = event;
1956 1957 1958 1959
			goto group_error;
		}
	}

1960
	if (!pmu->commit_txn(pmu))
1961
		return 0;
1962

1963 1964 1965 1966
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1977
	 */
1978 1979
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1980 1981 1982 1983 1984 1985 1986 1987
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1988
	}
1989
	event_sched_out(group_event, cpuctx, ctx);
1990

P
Peter Zijlstra 已提交
1991
	pmu->cancel_txn(pmu);
1992

1993
	perf_mux_hrtimer_restart(cpuctx);
1994

1995 1996 1997
	return -EAGAIN;
}

1998
/*
1999
 * Work out whether we can put this event group on the CPU now.
2000
 */
2001
static int group_can_go_on(struct perf_event *event,
2002 2003 2004 2005
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2006
	 * Groups consisting entirely of software events can always go on.
2007
	 */
2008
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2009 2010 2011
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2012
	 * events can go on.
2013 2014 2015 2016 2017
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2018
	 * events on the CPU, it can't go on.
2019
	 */
2020
	if (event->attr.exclusive && cpuctx->active_oncpu)
2021 2022 2023 2024 2025 2026 2027 2028
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2029 2030
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2031
{
2032 2033
	u64 tstamp = perf_event_time(event);

2034
	list_add_event(event, ctx);
2035
	perf_group_attach(event);
2036 2037 2038
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2039 2040
}

2041 2042 2043 2044 2045 2046
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2060
/*
2061
 * Cross CPU call to install and enable a performance event
2062 2063
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2064
 */
2065
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2066
{
2067 2068
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2069
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2070 2071 2072
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2073
	perf_ctx_lock(cpuctx, task_ctx);
2074
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2075 2076

	/*
2077
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2078
	 */
2079
	if (task_ctx)
2080
		task_ctx_sched_out(task_ctx);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2095 2096
		task = task_ctx->task;
	}
2097

2098
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2099

2100
	update_context_time(ctx);
S
Stephane Eranian 已提交
2101 2102 2103 2104 2105 2106
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2107

2108
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2109

2110
	/*
2111
	 * Schedule everything back in
2112
	 */
2113
	perf_event_sched_in(cpuctx, task_ctx, task);
2114 2115 2116

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2117 2118

	return 0;
T
Thomas Gleixner 已提交
2119 2120 2121
}

/*
2122
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2123
 *
2124 2125
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2126
 *
2127
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2128 2129 2130 2131
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2132 2133
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2134 2135 2136 2137
			int cpu)
{
	struct task_struct *task = ctx->task;

2138 2139
	lockdep_assert_held(&ctx->mutex);

2140
	event->ctx = ctx;
2141 2142
	if (event->cpu != -1)
		event->cpu = cpu;
2143

T
Thomas Gleixner 已提交
2144 2145
	if (!task) {
		/*
2146
		 * Per cpu events are installed via an smp call and
2147
		 * the install is always successful.
T
Thomas Gleixner 已提交
2148
		 */
2149
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2150 2151 2152 2153
		return;
	}

retry:
2154 2155
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2156

2157
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2158
	/*
2159 2160
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2161
	 */
2162
	if (ctx->is_active) {
2163
		raw_spin_unlock_irq(&ctx->lock);
2164 2165 2166 2167 2168
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2169 2170 2171 2172
		goto retry;
	}

	/*
2173 2174
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2175
	 */
2176
	add_event_to_ctx(event, ctx);
2177
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2178 2179
}

2180
/*
2181
 * Put a event into inactive state and update time fields.
2182 2183 2184 2185 2186 2187
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2188
static void __perf_event_mark_enabled(struct perf_event *event)
2189
{
2190
	struct perf_event *sub;
2191
	u64 tstamp = perf_event_time(event);
2192

2193
	event->state = PERF_EVENT_STATE_INACTIVE;
2194
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2195
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2196 2197
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2198
	}
2199 2200
}

2201
/*
2202
 * Cross CPU call to enable a performance event
2203
 */
2204
static int __perf_event_enable(void *info)
2205
{
2206 2207 2208
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210
	int err;
2211

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2222
		return -EINVAL;
2223

2224
	raw_spin_lock(&ctx->lock);
2225
	update_context_time(ctx);
2226

2227
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2228
		goto unlock;
S
Stephane Eranian 已提交
2229 2230 2231 2232

	/*
	 * set current task's cgroup time reference point
	 */
2233
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2234

2235
	__perf_event_mark_enabled(event);
2236

S
Stephane Eranian 已提交
2237 2238 2239
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2240
		goto unlock;
S
Stephane Eranian 已提交
2241
	}
2242

2243
	/*
2244
	 * If the event is in a group and isn't the group leader,
2245
	 * then don't put it on unless the group is on.
2246
	 */
2247
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2248
		goto unlock;
2249

2250
	if (!group_can_go_on(event, cpuctx, 1)) {
2251
		err = -EEXIST;
2252
	} else {
2253
		if (event == leader)
2254
			err = group_sched_in(event, cpuctx, ctx);
2255
		else
2256
			err = event_sched_in(event, cpuctx, ctx);
2257
	}
2258 2259 2260

	if (err) {
		/*
2261
		 * If this event can't go on and it's part of a
2262 2263
		 * group, then the whole group has to come off.
		 */
2264
		if (leader != event) {
2265
			group_sched_out(leader, cpuctx, ctx);
2266
			perf_mux_hrtimer_restart(cpuctx);
2267
		}
2268
		if (leader->attr.pinned) {
2269
			update_group_times(leader);
2270
			leader->state = PERF_EVENT_STATE_ERROR;
2271
		}
2272 2273
	}

P
Peter Zijlstra 已提交
2274
unlock:
2275
	raw_spin_unlock(&ctx->lock);
2276 2277

	return 0;
2278 2279 2280
}

/*
2281
 * Enable a event.
2282
 *
2283 2284
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2285
 * remains valid.  This condition is satisfied when called through
2286 2287
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2288
 */
P
Peter Zijlstra 已提交
2289
static void _perf_event_enable(struct perf_event *event)
2290
{
2291
	struct perf_event_context *ctx = event->ctx;
2292 2293 2294 2295
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2296
		 * Enable the event on the cpu that it's on
2297
		 */
2298
		cpu_function_call(event->cpu, __perf_event_enable, event);
2299 2300 2301
		return;
	}

2302
	raw_spin_lock_irq(&ctx->lock);
2303
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2304 2305 2306
		goto out;

	/*
2307 2308
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2309 2310 2311 2312
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2313 2314
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2315

P
Peter Zijlstra 已提交
2316
retry:
2317
	if (!ctx->is_active) {
2318
		__perf_event_mark_enabled(event);
2319 2320 2321
		goto out;
	}

2322
	raw_spin_unlock_irq(&ctx->lock);
2323 2324 2325

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2326

2327
	raw_spin_lock_irq(&ctx->lock);
2328 2329

	/*
2330
	 * If the context is active and the event is still off,
2331 2332
	 * we need to retry the cross-call.
	 */
2333 2334 2335 2336 2337 2338
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2339
		goto retry;
2340
	}
2341

P
Peter Zijlstra 已提交
2342
out:
2343
	raw_spin_unlock_irq(&ctx->lock);
2344
}
P
Peter Zijlstra 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2357
EXPORT_SYMBOL_GPL(perf_event_enable);
2358

P
Peter Zijlstra 已提交
2359
static int _perf_event_refresh(struct perf_event *event, int refresh)
2360
{
2361
	/*
2362
	 * not supported on inherited events
2363
	 */
2364
	if (event->attr.inherit || !is_sampling_event(event))
2365 2366
		return -EINVAL;

2367
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2368
	_perf_event_enable(event);
2369 2370

	return 0;
2371
}
P
Peter Zijlstra 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2387
EXPORT_SYMBOL_GPL(perf_event_refresh);
2388

2389 2390 2391
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2392
{
2393
	struct perf_event *event;
2394
	int is_active = ctx->is_active;
2395

2396
	ctx->is_active &= ~event_type;
2397
	if (likely(!ctx->nr_events))
2398 2399
		return;

2400
	update_context_time(ctx);
S
Stephane Eranian 已提交
2401
	update_cgrp_time_from_cpuctx(cpuctx);
2402
	if (!ctx->nr_active)
2403
		return;
2404

P
Peter Zijlstra 已提交
2405
	perf_pmu_disable(ctx->pmu);
2406
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2407 2408
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2409
	}
2410

2411
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2412
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2413
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2414
	}
P
Peter Zijlstra 已提交
2415
	perf_pmu_enable(ctx->pmu);
2416 2417
}

2418
/*
2419 2420 2421 2422 2423 2424
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2425
 */
2426 2427
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2428
{
2429 2430 2431
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2454 2455
}

2456 2457
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2458 2459 2460
{
	u64 value;

2461
	if (!event->attr.inherit_stat)
2462 2463 2464
		return;

	/*
2465
	 * Update the event value, we cannot use perf_event_read()
2466 2467
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2468
	 * we know the event must be on the current CPU, therefore we
2469 2470
	 * don't need to use it.
	 */
2471 2472
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2473 2474
		event->pmu->read(event);
		/* fall-through */
2475

2476 2477
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2478 2479 2480 2481 2482 2483 2484
		break;

	default:
		break;
	}

	/*
2485
	 * In order to keep per-task stats reliable we need to flip the event
2486 2487
	 * values when we flip the contexts.
	 */
2488 2489 2490
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2491

2492 2493
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2494

2495
	/*
2496
	 * Since we swizzled the values, update the user visible data too.
2497
	 */
2498 2499
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2500 2501
}

2502 2503
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2504
{
2505
	struct perf_event *event, *next_event;
2506 2507 2508 2509

	if (!ctx->nr_stat)
		return;

2510 2511
	update_context_time(ctx);

2512 2513
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2514

2515 2516
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2517

2518 2519
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2520

2521
		__perf_event_sync_stat(event, next_event);
2522

2523 2524
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2525 2526 2527
	}
}

2528 2529
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2530
{
P
Peter Zijlstra 已提交
2531
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2532
	struct perf_event_context *next_ctx;
2533
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2534
	struct perf_cpu_context *cpuctx;
2535
	int do_switch = 1;
T
Thomas Gleixner 已提交
2536

P
Peter Zijlstra 已提交
2537 2538
	if (likely(!ctx))
		return;
2539

P
Peter Zijlstra 已提交
2540 2541
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2542 2543
		return;

2544
	rcu_read_lock();
P
Peter Zijlstra 已提交
2545
	next_ctx = next->perf_event_ctxp[ctxn];
2546 2547 2548 2549 2550 2551 2552
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2553
	if (!parent && !next_parent)
2554 2555 2556
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2557 2558 2559 2560 2561 2562 2563 2564 2565
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2566 2567
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2568
		if (context_equiv(ctx, next_ctx)) {
2569 2570
			/*
			 * XXX do we need a memory barrier of sorts
2571
			 * wrt to rcu_dereference() of perf_event_ctxp
2572
			 */
P
Peter Zijlstra 已提交
2573 2574
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2575 2576
			ctx->task = next;
			next_ctx->task = task;
2577 2578 2579

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2580
			do_switch = 0;
2581

2582
			perf_event_sync_stat(ctx, next_ctx);
2583
		}
2584 2585
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2586
	}
2587
unlock:
2588
	rcu_read_unlock();
2589

2590
	if (do_switch) {
2591
		raw_spin_lock(&ctx->lock);
2592
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2593
		cpuctx->task_ctx = NULL;
2594
		raw_spin_unlock(&ctx->lock);
2595
	}
T
Thomas Gleixner 已提交
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2648 2649 2650
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2665 2666
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2667 2668 2669
{
	int ctxn;

2670 2671 2672
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2673 2674 2675
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2676 2677
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2678 2679 2680 2681 2682 2683

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2684
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2685
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2686 2687
}

2688
static void task_ctx_sched_out(struct perf_event_context *ctx)
2689
{
P
Peter Zijlstra 已提交
2690
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2691

2692 2693
	if (!cpuctx->task_ctx)
		return;
2694 2695 2696 2697

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2698
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2699 2700 2701
	cpuctx->task_ctx = NULL;
}

2702 2703 2704 2705 2706 2707 2708
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 2710
}

2711
static void
2712
ctx_pinned_sched_in(struct perf_event_context *ctx,
2713
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2714
{
2715
	struct perf_event *event;
T
Thomas Gleixner 已提交
2716

2717 2718
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2719
			continue;
2720
		if (!event_filter_match(event))
2721 2722
			continue;

S
Stephane Eranian 已提交
2723 2724 2725 2726
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2727
		if (group_can_go_on(event, cpuctx, 1))
2728
			group_sched_in(event, cpuctx, ctx);
2729 2730 2731 2732 2733

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2734 2735 2736
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2737
		}
2738
	}
2739 2740 2741 2742
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2743
		      struct perf_cpu_context *cpuctx)
2744 2745 2746
{
	struct perf_event *event;
	int can_add_hw = 1;
2747

2748 2749 2750
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2751
			continue;
2752 2753
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2754
		 * of events:
2755
		 */
2756
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2757 2758
			continue;

S
Stephane Eranian 已提交
2759 2760 2761 2762
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2763
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764
			if (group_sched_in(event, cpuctx, ctx))
2765
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2766
		}
T
Thomas Gleixner 已提交
2767
	}
2768 2769 2770 2771 2772
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2773 2774
	     enum event_type_t event_type,
	     struct task_struct *task)
2775
{
S
Stephane Eranian 已提交
2776
	u64 now;
2777
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2778

2779
	ctx->is_active |= event_type;
2780
	if (likely(!ctx->nr_events))
2781
		return;
2782

S
Stephane Eranian 已提交
2783 2784
	now = perf_clock();
	ctx->timestamp = now;
2785
	perf_cgroup_set_timestamp(task, ctx);
2786 2787 2788 2789
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2790
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2791
		ctx_pinned_sched_in(ctx, cpuctx);
2792 2793

	/* Then walk through the lower prio flexible groups */
2794
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2795
		ctx_flexible_sched_in(ctx, cpuctx);
2796 2797
}

2798
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2799 2800
			     enum event_type_t event_type,
			     struct task_struct *task)
2801 2802 2803
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2804
	ctx_sched_in(ctx, cpuctx, event_type, task);
2805 2806
}

S
Stephane Eranian 已提交
2807 2808
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2809
{
P
Peter Zijlstra 已提交
2810
	struct perf_cpu_context *cpuctx;
2811

P
Peter Zijlstra 已提交
2812
	cpuctx = __get_cpu_context(ctx);
2813 2814 2815
	if (cpuctx->task_ctx == ctx)
		return;

2816
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2817
	perf_pmu_disable(ctx->pmu);
2818 2819 2820 2821 2822 2823 2824
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2825 2826
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2827

2828 2829
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2830 2831
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2832 2833
}

P
Peter Zijlstra 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2845 2846
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2856
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2857
	}
S
Stephane Eranian 已提交
2858 2859 2860 2861 2862
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2863
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2864
		perf_cgroup_sched_in(prev, task);
2865

2866 2867 2868
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2869 2870
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2871 2872
}

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2900
#define REDUCE_FLS(a, b)		\
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2940 2941 2942
	if (!divisor)
		return dividend;

2943 2944 2945
	return div64_u64(dividend, divisor);
}

2946 2947 2948
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2949
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2950
{
2951
	struct hw_perf_event *hwc = &event->hw;
2952
	s64 period, sample_period;
2953 2954
	s64 delta;

2955
	period = perf_calculate_period(event, nsec, count);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2966

2967
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2968 2969 2970
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2971
		local64_set(&hwc->period_left, 0);
2972 2973 2974

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2975
	}
2976 2977
}

2978 2979 2980 2981 2982 2983 2984
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2985
{
2986 2987
	struct perf_event *event;
	struct hw_perf_event *hwc;
2988
	u64 now, period = TICK_NSEC;
2989
	s64 delta;
2990

2991 2992 2993 2994 2995 2996
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2997 2998
		return;

2999
	raw_spin_lock(&ctx->lock);
3000
	perf_pmu_disable(ctx->pmu);
3001

3002
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3003
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3004 3005
			continue;

3006
		if (!event_filter_match(event))
3007 3008
			continue;

3009 3010
		perf_pmu_disable(event->pmu);

3011
		hwc = &event->hw;
3012

3013
		if (hwc->interrupts == MAX_INTERRUPTS) {
3014
			hwc->interrupts = 0;
3015
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3016
			event->pmu->start(event, 0);
3017 3018
		}

3019
		if (!event->attr.freq || !event->attr.sample_freq)
3020
			goto next;
3021

3022 3023 3024 3025 3026
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3027
		now = local64_read(&event->count);
3028 3029
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3030

3031 3032 3033
		/*
		 * restart the event
		 * reload only if value has changed
3034 3035 3036
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3037
		 */
3038
		if (delta > 0)
3039
			perf_adjust_period(event, period, delta, false);
3040 3041

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3042 3043
	next:
		perf_pmu_enable(event->pmu);
3044
	}
3045

3046
	perf_pmu_enable(ctx->pmu);
3047
	raw_spin_unlock(&ctx->lock);
3048 3049
}

3050
/*
3051
 * Round-robin a context's events:
3052
 */
3053
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3054
{
3055 3056 3057 3058 3059 3060
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3061 3062
}

3063
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3064
{
P
Peter Zijlstra 已提交
3065
	struct perf_event_context *ctx = NULL;
3066
	int rotate = 0;
3067

3068 3069 3070 3071
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3072

P
Peter Zijlstra 已提交
3073
	ctx = cpuctx->task_ctx;
3074 3075 3076 3077
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3078

3079
	if (!rotate)
3080 3081
		goto done;

3082
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3083
	perf_pmu_disable(cpuctx->ctx.pmu);
3084

3085 3086 3087
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3088

3089 3090 3091
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3092

3093
	perf_event_sched_in(cpuctx, ctx, current);
3094

3095 3096
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3097
done:
3098 3099

	return rotate;
3100 3101
}

3102 3103 3104
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3105
	if (atomic_read(&nr_freq_events) ||
3106
	    __this_cpu_read(perf_throttled_count))
3107
		return false;
3108 3109
	else
		return true;
3110 3111 3112
}
#endif

3113 3114
void perf_event_task_tick(void)
{
3115 3116
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3117
	int throttled;
3118

3119 3120
	WARN_ON(!irqs_disabled());

3121 3122 3123
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3124
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3125
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3126 3127
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3138
	__perf_event_mark_enabled(event);
3139 3140 3141 3142

	return 1;
}

3143
/*
3144
 * Enable all of a task's events that have been marked enable-on-exec.
3145 3146
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3147
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3148
{
3149
	struct perf_event_context *clone_ctx = NULL;
3150
	struct perf_event *event;
3151 3152
	unsigned long flags;
	int enabled = 0;
3153
	int ret;
3154 3155

	local_irq_save(flags);
3156
	if (!ctx || !ctx->nr_events)
3157 3158
		goto out;

3159 3160 3161 3162 3163 3164 3165
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3166
	perf_cgroup_sched_out(current, NULL);
3167

3168
	raw_spin_lock(&ctx->lock);
3169
	task_ctx_sched_out(ctx);
3170

3171
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3172 3173 3174
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3175 3176 3177
	}

	/*
3178
	 * Unclone this context if we enabled any event.
3179
	 */
3180
	if (enabled)
3181
		clone_ctx = unclone_ctx(ctx);
3182

3183
	raw_spin_unlock(&ctx->lock);
3184

3185 3186 3187
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3188
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3189
out:
3190
	local_irq_restore(flags);
3191 3192 3193

	if (clone_ctx)
		put_ctx(clone_ctx);
3194 3195
}

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

3212 3213 3214
struct perf_read_data {
	struct perf_event *event;
	bool group;
3215
	int ret;
3216 3217
};

T
Thomas Gleixner 已提交
3218
/*
3219
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3220
 */
3221
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3222
{
3223 3224
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3225
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3226
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3227
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3228

3229 3230 3231 3232
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3233 3234
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3235 3236 3237 3238
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3239
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3240
	if (ctx->is_active) {
3241
		update_context_time(ctx);
S
Stephane Eranian 已提交
3242 3243
		update_cgrp_time_from_event(event);
	}
3244

3245
	update_event_times(event);
3246 3247
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3248

3249 3250 3251
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3252
		goto unlock;
3253 3254 3255 3256 3257
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3258 3259 3260

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3261 3262 3263 3264 3265
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3266
			sub->pmu->read(sub);
3267
		}
3268
	}
3269 3270

	data->ret = pmu->commit_txn(pmu);
3271 3272

unlock:
3273
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3274 3275
}

P
Peter Zijlstra 已提交
3276 3277
static inline u64 perf_event_count(struct perf_event *event)
{
3278 3279 3280 3281
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3282 3283
}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3337
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3338
{
3339 3340
	int ret = 0;

T
Thomas Gleixner 已提交
3341
	/*
3342 3343
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3344
	 */
3345
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3346 3347 3348
		struct perf_read_data data = {
			.event = event,
			.group = group,
3349
			.ret = 0,
3350
		};
3351
		smp_call_function_single(event->oncpu,
3352
					 __perf_event_read, &data, 1);
3353
		ret = data.ret;
3354
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3355 3356 3357
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3358
		raw_spin_lock_irqsave(&ctx->lock, flags);
3359 3360 3361 3362 3363
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3364
		if (ctx->is_active) {
3365
			update_context_time(ctx);
S
Stephane Eranian 已提交
3366 3367
			update_cgrp_time_from_event(event);
		}
3368 3369 3370 3371
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3372
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3373
	}
3374 3375

	return ret;
T
Thomas Gleixner 已提交
3376 3377
}

3378
/*
3379
 * Initialize the perf_event context in a task_struct:
3380
 */
3381
static void __perf_event_init_context(struct perf_event_context *ctx)
3382
{
3383
	raw_spin_lock_init(&ctx->lock);
3384
	mutex_init(&ctx->mutex);
3385
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3386 3387
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3388 3389
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3390
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3406
	}
3407 3408 3409
	ctx->pmu = pmu;

	return ctx;
3410 3411
}

3412 3413 3414 3415 3416
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3417 3418

	rcu_read_lock();
3419
	if (!vpid)
T
Thomas Gleixner 已提交
3420 3421
		task = current;
	else
3422
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3423 3424 3425 3426 3427 3428 3429 3430
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3431 3432 3433 3434
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3435 3436 3437 3438 3439 3440 3441
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3442 3443 3444
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3445
static struct perf_event_context *
3446 3447
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3448
{
3449
	struct perf_event_context *ctx, *clone_ctx = NULL;
3450
	struct perf_cpu_context *cpuctx;
3451
	void *task_ctx_data = NULL;
3452
	unsigned long flags;
P
Peter Zijlstra 已提交
3453
	int ctxn, err;
3454
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3455

3456
	if (!task) {
3457
		/* Must be root to operate on a CPU event: */
3458
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3459 3460 3461
			return ERR_PTR(-EACCES);

		/*
3462
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3463 3464 3465
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3466
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3467 3468
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3469
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3470
		ctx = &cpuctx->ctx;
3471
		get_ctx(ctx);
3472
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3473 3474 3475 3476

		return ctx;
	}

P
Peter Zijlstra 已提交
3477 3478 3479 3480 3481
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3482 3483 3484 3485 3486 3487 3488 3489
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3490
retry:
P
Peter Zijlstra 已提交
3491
	ctx = perf_lock_task_context(task, ctxn, &flags);
3492
	if (ctx) {
3493
		clone_ctx = unclone_ctx(ctx);
3494
		++ctx->pin_count;
3495 3496 3497 3498 3499

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3500
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3501 3502 3503

		if (clone_ctx)
			put_ctx(clone_ctx);
3504
	} else {
3505
		ctx = alloc_perf_context(pmu, task);
3506 3507 3508
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3509

3510 3511 3512 3513 3514
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3525
		else {
3526
			get_ctx(ctx);
3527
			++ctx->pin_count;
3528
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3529
		}
3530 3531 3532
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3533
			put_ctx(ctx);
3534 3535 3536 3537

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3538 3539 3540
		}
	}

3541
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3542
	return ctx;
3543

P
Peter Zijlstra 已提交
3544
errout:
3545
	kfree(task_ctx_data);
3546
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3547 3548
}

L
Li Zefan 已提交
3549
static void perf_event_free_filter(struct perf_event *event);
3550
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3551

3552
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3553
{
3554
	struct perf_event *event;
P
Peter Zijlstra 已提交
3555

3556 3557 3558
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3559
	perf_event_free_filter(event);
3560
	kfree(event);
P
Peter Zijlstra 已提交
3561 3562
}

3563 3564
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3565

3566
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3567
{
3568 3569 3570 3571 3572 3573
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3574

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3588 3589
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3590 3591 3592 3593
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3594 3595 3596 3597 3598 3599 3600
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3601

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3687 3688
static void __free_event(struct perf_event *event)
{
3689
	if (!event->parent) {
3690 3691
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3692
	}
3693

3694 3695
	perf_event_free_bpf_prog(event);

3696 3697 3698 3699 3700 3701
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3702 3703
	if (event->pmu) {
		exclusive_event_destroy(event);
3704
		module_put(event->pmu->module);
3705
	}
3706

3707 3708
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3709 3710

static void _free_event(struct perf_event *event)
3711
{
3712
	irq_work_sync(&event->pending);
3713

3714
	unaccount_event(event);
3715

3716
	if (event->rb) {
3717 3718 3719 3720 3721 3722 3723
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3724
		ring_buffer_attach(event, NULL);
3725
		mutex_unlock(&event->mmap_mutex);
3726 3727
	}

S
Stephane Eranian 已提交
3728 3729 3730
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3731
	__free_event(event);
3732 3733
}

P
Peter Zijlstra 已提交
3734 3735 3736 3737 3738
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3739
{
P
Peter Zijlstra 已提交
3740 3741 3742 3743 3744 3745
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3746

P
Peter Zijlstra 已提交
3747
	_free_event(event);
T
Thomas Gleixner 已提交
3748 3749
}

3750
/*
3751
 * Remove user event from the owner task.
3752
 */
3753
static void perf_remove_from_owner(struct perf_event *event)
3754
{
P
Peter Zijlstra 已提交
3755
	struct task_struct *owner;
3756

P
Peter Zijlstra 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3798 3799 3800 3801
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3802
	struct perf_event_context *ctx;
3803 3804 3805 3806 3807 3808

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3809

P
Peter Zijlstra 已提交
3810 3811 3812 3813 3814 3815 3816
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3817
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3818 3819 3820 3821
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3822 3823
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3824
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3825
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3826 3827

	_free_event(event);
3828 3829
}

P
Peter Zijlstra 已提交
3830 3831 3832 3833 3834 3835 3836
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3837 3838 3839
/*
 * Called when the last reference to the file is gone.
 */
3840 3841 3842 3843
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3844 3845
}

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3882
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3883
{
3884
	struct perf_event *child;
3885 3886
	u64 total = 0;

3887 3888 3889
	*enabled = 0;
	*running = 0;

3890
	mutex_lock(&event->child_mutex);
3891

3892
	(void)perf_event_read(event, false);
3893 3894
	total += perf_event_count(event);

3895 3896 3897 3898 3899 3900
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3901
		(void)perf_event_read(child, false);
3902
		total += perf_event_count(child);
3903 3904 3905
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3906
	mutex_unlock(&event->child_mutex);
3907 3908 3909

	return total;
}
3910
EXPORT_SYMBOL_GPL(perf_event_read_value);
3911

3912
static int __perf_read_group_add(struct perf_event *leader,
3913
					u64 read_format, u64 *values)
3914
{
3915 3916
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3917
	int ret;
P
Peter Zijlstra 已提交
3918

3919 3920 3921
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3922

3923 3924 3925 3926 3927 3928 3929 3930 3931
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3942 3943
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3944

3945 3946 3947 3948 3949
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3950 3951

	return 0;
3952
}
3953

3954 3955 3956 3957 3958
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3959
	int ret;
3960
	u64 *values;
3961

3962
	lockdep_assert_held(&ctx->mutex);
3963

3964 3965 3966
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3967

3968 3969 3970 3971 3972 3973 3974
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3975

3976 3977 3978 3979 3980 3981 3982 3983 3984
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3985

3986
	mutex_unlock(&leader->child_mutex);
3987

3988
	ret = event->read_size;
3989 3990
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3991
	goto out;
3992

3993 3994 3995
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3996
	kfree(values);
3997
	return ret;
3998 3999
}

4000
static int perf_read_one(struct perf_event *event,
4001 4002
				 u64 read_format, char __user *buf)
{
4003
	u64 enabled, running;
4004 4005 4006
	u64 values[4];
	int n = 0;

4007 4008 4009 4010 4011
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4012
	if (read_format & PERF_FORMAT_ID)
4013
		values[n++] = primary_event_id(event);
4014 4015 4016 4017 4018 4019 4020

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4034
/*
4035
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4036 4037
 */
static ssize_t
4038
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4039
{
4040
	u64 read_format = event->attr.read_format;
4041
	int ret;
T
Thomas Gleixner 已提交
4042

4043
	/*
4044
	 * Return end-of-file for a read on a event that is in
4045 4046 4047
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4048
	if (event->state == PERF_EVENT_STATE_ERROR)
4049 4050
		return 0;

4051
	if (count < event->read_size)
4052 4053
		return -ENOSPC;

4054
	WARN_ON_ONCE(event->ctx->parent_ctx);
4055
	if (read_format & PERF_FORMAT_GROUP)
4056
		ret = perf_read_group(event, read_format, buf);
4057
	else
4058
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4059

4060
	return ret;
T
Thomas Gleixner 已提交
4061 4062 4063 4064 4065
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4066
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4067 4068
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4069

P
Peter Zijlstra 已提交
4070
	ctx = perf_event_ctx_lock(event);
4071
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4072 4073 4074
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4075 4076 4077 4078
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4079
	struct perf_event *event = file->private_data;
4080
	struct ring_buffer *rb;
4081
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4082

4083
	poll_wait(file, &event->waitq, wait);
4084

4085
	if (is_event_hup(event))
4086
		return events;
P
Peter Zijlstra 已提交
4087

4088
	/*
4089 4090
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4091 4092
	 */
	mutex_lock(&event->mmap_mutex);
4093 4094
	rb = event->rb;
	if (rb)
4095
		events = atomic_xchg(&rb->poll, 0);
4096
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4097 4098 4099
	return events;
}

P
Peter Zijlstra 已提交
4100
static void _perf_event_reset(struct perf_event *event)
4101
{
4102
	(void)perf_event_read(event, false);
4103
	local64_set(&event->count, 0);
4104
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4105 4106
}

4107
/*
4108 4109 4110 4111
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4112
 */
4113 4114
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4115
{
4116
	struct perf_event *child;
P
Peter Zijlstra 已提交
4117

4118
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4119

4120 4121 4122
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4123
		func(child);
4124
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4125 4126
}

4127 4128
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4129
{
4130 4131
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4132

P
Peter Zijlstra 已提交
4133 4134
	lockdep_assert_held(&ctx->mutex);

4135
	event = event->group_leader;
4136

4137 4138
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4139
		perf_event_for_each_child(sibling, func);
4140 4141
}

4142 4143
struct period_event {
	struct perf_event *event;
4144
	u64 value;
4145
};
4146

4147 4148 4149 4150 4151 4152 4153
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4154

4155
	raw_spin_lock(&ctx->lock);
4156 4157
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4158
	} else {
4159 4160
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4161
	}
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4175
	raw_spin_unlock(&ctx->lock);
4176

4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

	__perf_event_period(&pe);
4219
	raw_spin_unlock_irq(&ctx->lock);
4220

4221
	return 0;
4222 4223
}

4224 4225
static const struct file_operations perf_fops;

4226
static inline int perf_fget_light(int fd, struct fd *p)
4227
{
4228 4229 4230
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4231

4232 4233 4234
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4235
	}
4236 4237
	*p = f;
	return 0;
4238 4239 4240 4241
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4242
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4243
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4244

P
Peter Zijlstra 已提交
4245
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4246
{
4247
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4248
	u32 flags = arg;
4249 4250

	switch (cmd) {
4251
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4252
		func = _perf_event_enable;
4253
		break;
4254
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4255
		func = _perf_event_disable;
4256
		break;
4257
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4258
		func = _perf_event_reset;
4259
		break;
P
Peter Zijlstra 已提交
4260

4261
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4262
		return _perf_event_refresh(event, arg);
4263

4264 4265
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4266

4267 4268 4269 4270 4271 4272 4273 4274 4275
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4276
	case PERF_EVENT_IOC_SET_OUTPUT:
4277 4278 4279
	{
		int ret;
		if (arg != -1) {
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4290 4291 4292
		}
		return ret;
	}
4293

L
Li Zefan 已提交
4294 4295 4296
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4297 4298 4299
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4300
	default:
P
Peter Zijlstra 已提交
4301
		return -ENOTTY;
4302
	}
P
Peter Zijlstra 已提交
4303 4304

	if (flags & PERF_IOC_FLAG_GROUP)
4305
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4306
	else
4307
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4308 4309

	return 0;
4310 4311
}

P
Peter Zijlstra 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4345
int perf_event_task_enable(void)
4346
{
P
Peter Zijlstra 已提交
4347
	struct perf_event_context *ctx;
4348
	struct perf_event *event;
4349

4350
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4351 4352 4353 4354 4355
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4356
	mutex_unlock(&current->perf_event_mutex);
4357 4358 4359 4360

	return 0;
}

4361
int perf_event_task_disable(void)
4362
{
P
Peter Zijlstra 已提交
4363
	struct perf_event_context *ctx;
4364
	struct perf_event *event;
4365

4366
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4367 4368 4369 4370 4371
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4372
	mutex_unlock(&current->perf_event_mutex);
4373 4374 4375 4376

	return 0;
}

4377
static int perf_event_index(struct perf_event *event)
4378
{
P
Peter Zijlstra 已提交
4379 4380 4381
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4382
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4383 4384
		return 0;

4385
	return event->pmu->event_idx(event);
4386 4387
}

4388
static void calc_timer_values(struct perf_event *event,
4389
				u64 *now,
4390 4391
				u64 *enabled,
				u64 *running)
4392
{
4393
	u64 ctx_time;
4394

4395 4396
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4397 4398 4399 4400
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4416 4417
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4418 4419 4420 4421 4422

unlock:
	rcu_read_unlock();
}

4423 4424
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4425 4426 4427
{
}

4428 4429 4430 4431 4432
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4433
void perf_event_update_userpage(struct perf_event *event)
4434
{
4435
	struct perf_event_mmap_page *userpg;
4436
	struct ring_buffer *rb;
4437
	u64 enabled, running, now;
4438 4439

	rcu_read_lock();
4440 4441 4442 4443
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4444 4445 4446 4447 4448 4449 4450 4451 4452
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4453
	calc_timer_values(event, &now, &enabled, &running);
4454

4455
	userpg = rb->user_page;
4456 4457 4458 4459 4460
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4461
	++userpg->lock;
4462
	barrier();
4463
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4464
	userpg->offset = perf_event_count(event);
4465
	if (userpg->index)
4466
		userpg->offset -= local64_read(&event->hw.prev_count);
4467

4468
	userpg->time_enabled = enabled +
4469
			atomic64_read(&event->child_total_time_enabled);
4470

4471
	userpg->time_running = running +
4472
			atomic64_read(&event->child_total_time_running);
4473

4474
	arch_perf_update_userpage(event, userpg, now);
4475

4476
	barrier();
4477
	++userpg->lock;
4478
	preempt_enable();
4479
unlock:
4480
	rcu_read_unlock();
4481 4482
}

4483 4484 4485
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4486
	struct ring_buffer *rb;
4487 4488 4489 4490 4491 4492 4493 4494 4495
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4496 4497
	rb = rcu_dereference(event->rb);
	if (!rb)
4498 4499 4500 4501 4502
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4503
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4518 4519 4520
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4521
	struct ring_buffer *old_rb = NULL;
4522 4523
	unsigned long flags;

4524 4525 4526 4527 4528 4529
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4530

4531 4532 4533 4534
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4535

4536 4537
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4538
	}
4539

4540
	if (rb) {
4541 4542 4543 4544 4545
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4562 4563 4564 4565 4566 4567 4568 4569
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4570 4571 4572 4573
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4574 4575 4576
	rcu_read_unlock();
}

4577
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4578
{
4579
	struct ring_buffer *rb;
4580

4581
	rcu_read_lock();
4582 4583 4584 4585
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4586 4587 4588
	}
	rcu_read_unlock();

4589
	return rb;
4590 4591
}

4592
void ring_buffer_put(struct ring_buffer *rb)
4593
{
4594
	if (!atomic_dec_and_test(&rb->refcount))
4595
		return;
4596

4597
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4598

4599
	call_rcu(&rb->rcu_head, rb_free_rcu);
4600 4601 4602 4603
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4604
	struct perf_event *event = vma->vm_file->private_data;
4605

4606
	atomic_inc(&event->mmap_count);
4607
	atomic_inc(&event->rb->mmap_count);
4608

4609 4610 4611
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4612 4613
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4614 4615
}

4616 4617 4618 4619 4620 4621 4622 4623
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4624 4625
static void perf_mmap_close(struct vm_area_struct *vma)
{
4626
	struct perf_event *event = vma->vm_file->private_data;
4627

4628
	struct ring_buffer *rb = ring_buffer_get(event);
4629 4630 4631
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4632

4633 4634 4635
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4650 4651 4652
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4653
		goto out_put;
4654

4655
	ring_buffer_attach(event, NULL);
4656 4657 4658
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4659 4660
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4661

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4678

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4690 4691 4692
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4693
		mutex_unlock(&event->mmap_mutex);
4694
		put_event(event);
4695

4696 4697 4698 4699 4700
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4701
	}
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4717
out_put:
4718
	ring_buffer_put(rb); /* could be last */
4719 4720
}

4721
static const struct vm_operations_struct perf_mmap_vmops = {
4722
	.open		= perf_mmap_open,
4723
	.close		= perf_mmap_close, /* non mergable */
4724 4725
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4726 4727 4728 4729
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4730
	struct perf_event *event = file->private_data;
4731
	unsigned long user_locked, user_lock_limit;
4732
	struct user_struct *user = current_user();
4733
	unsigned long locked, lock_limit;
4734
	struct ring_buffer *rb = NULL;
4735 4736
	unsigned long vma_size;
	unsigned long nr_pages;
4737
	long user_extra = 0, extra = 0;
4738
	int ret = 0, flags = 0;
4739

4740 4741 4742
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4743
	 * same rb.
4744 4745 4746 4747
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4748
	if (!(vma->vm_flags & VM_SHARED))
4749
		return -EINVAL;
4750 4751

	vma_size = vma->vm_end - vma->vm_start;
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4812

4813
	/*
4814
	 * If we have rb pages ensure they're a power-of-two number, so we
4815 4816
	 * can do bitmasks instead of modulo.
	 */
4817
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4818 4819
		return -EINVAL;

4820
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4821 4822
		return -EINVAL;

4823
	WARN_ON_ONCE(event->ctx->parent_ctx);
4824
again:
4825
	mutex_lock(&event->mmap_mutex);
4826
	if (event->rb) {
4827
		if (event->rb->nr_pages != nr_pages) {
4828
			ret = -EINVAL;
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4842 4843 4844
		goto unlock;
	}

4845
	user_extra = nr_pages + 1;
4846 4847

accounting:
4848
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4849 4850 4851 4852 4853 4854

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4855
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4856

4857 4858
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4859

4860
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4861
	lock_limit >>= PAGE_SHIFT;
4862
	locked = vma->vm_mm->pinned_vm + extra;
4863

4864 4865
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4866 4867 4868
		ret = -EPERM;
		goto unlock;
	}
4869

4870
	WARN_ON(!rb && event->rb);
4871

4872
	if (vma->vm_flags & VM_WRITE)
4873
		flags |= RING_BUFFER_WRITABLE;
4874

4875
	if (!rb) {
4876 4877 4878
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4879

4880 4881 4882 4883
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4884

4885 4886 4887
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4888

4889
		ring_buffer_attach(event, rb);
4890

4891 4892 4893
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4894 4895
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4896 4897 4898
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4899

4900
unlock:
4901 4902 4903 4904
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4905
		atomic_inc(&event->mmap_count);
4906 4907 4908 4909
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4910
	mutex_unlock(&event->mmap_mutex);
4911

4912 4913 4914 4915
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4916
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4917
	vma->vm_ops = &perf_mmap_vmops;
4918

4919 4920 4921
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4922
	return ret;
4923 4924
}

P
Peter Zijlstra 已提交
4925 4926
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4927
	struct inode *inode = file_inode(filp);
4928
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4929 4930 4931
	int retval;

	mutex_lock(&inode->i_mutex);
4932
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4933 4934 4935 4936 4937 4938 4939 4940
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4941
static const struct file_operations perf_fops = {
4942
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4943 4944 4945
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4946
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4947
	.compat_ioctl		= perf_compat_ioctl,
4948
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4949
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4950 4951
};

4952
/*
4953
 * Perf event wakeup
4954 4955 4956 4957 4958
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4959 4960 4961 4962 4963 4964 4965 4966
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4967
void perf_event_wakeup(struct perf_event *event)
4968
{
4969
	ring_buffer_wakeup(event);
4970

4971
	if (event->pending_kill) {
4972
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4973
		event->pending_kill = 0;
4974
	}
4975 4976
}

4977
static void perf_pending_event(struct irq_work *entry)
4978
{
4979 4980
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4981 4982 4983 4984 4985 4986 4987
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4988

4989 4990 4991
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4992 4993
	}

4994 4995 4996
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4997
	}
4998 4999 5000

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5001 5002
}

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5039
static void perf_sample_regs_user(struct perf_regs *regs_user,
5040 5041
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5042
{
5043 5044
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5045
		regs_user->regs = regs;
5046 5047
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5048 5049 5050
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5051 5052 5053
	}
}

5054 5055 5056 5057 5058 5059 5060 5061
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5157 5158 5159
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5173
		data->time = perf_event_clock(event);
5174

5175
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5187 5188 5189
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5214 5215 5216

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5217 5218
}

5219 5220 5221
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5222 5223 5224 5225 5226
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5227
static void perf_output_read_one(struct perf_output_handle *handle,
5228 5229
				 struct perf_event *event,
				 u64 enabled, u64 running)
5230
{
5231
	u64 read_format = event->attr.read_format;
5232 5233 5234
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5235
	values[n++] = perf_event_count(event);
5236
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5237
		values[n++] = enabled +
5238
			atomic64_read(&event->child_total_time_enabled);
5239 5240
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5241
		values[n++] = running +
5242
			atomic64_read(&event->child_total_time_running);
5243 5244
	}
	if (read_format & PERF_FORMAT_ID)
5245
		values[n++] = primary_event_id(event);
5246

5247
	__output_copy(handle, values, n * sizeof(u64));
5248 5249 5250
}

/*
5251
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5252 5253
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5254 5255
			    struct perf_event *event,
			    u64 enabled, u64 running)
5256
{
5257 5258
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5259 5260 5261 5262 5263 5264
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5265
		values[n++] = enabled;
5266 5267

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5268
		values[n++] = running;
5269

5270
	if (leader != event)
5271 5272
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5273
	values[n++] = perf_event_count(leader);
5274
	if (read_format & PERF_FORMAT_ID)
5275
		values[n++] = primary_event_id(leader);
5276

5277
	__output_copy(handle, values, n * sizeof(u64));
5278

5279
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5280 5281
		n = 0;

5282 5283
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5284 5285
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5286
		values[n++] = perf_event_count(sub);
5287
		if (read_format & PERF_FORMAT_ID)
5288
			values[n++] = primary_event_id(sub);
5289

5290
		__output_copy(handle, values, n * sizeof(u64));
5291 5292 5293
	}
}

5294 5295 5296
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5297
static void perf_output_read(struct perf_output_handle *handle,
5298
			     struct perf_event *event)
5299
{
5300
	u64 enabled = 0, running = 0, now;
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5312
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5313
		calc_timer_values(event, &now, &enabled, &running);
5314

5315
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5316
		perf_output_read_group(handle, event, enabled, running);
5317
	else
5318
		perf_output_read_one(handle, event, enabled, running);
5319 5320
}

5321 5322 5323
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5324
			struct perf_event *event)
5325 5326 5327 5328 5329
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5330 5331 5332
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5358
		perf_output_read(handle, event);
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5369
			__output_copy(handle, data->callchain, size);
5370 5371 5372 5373 5374 5375 5376 5377 5378
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5379 5380
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5392

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5427

5428
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5429 5430 5431
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5432
	}
A
Andi Kleen 已提交
5433 5434 5435

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5436 5437 5438

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5439

A
Andi Kleen 已提交
5440 5441 5442
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5473 5474 5475 5476
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5477
			 struct perf_event *event,
5478
			 struct pt_regs *regs)
5479
{
5480
	u64 sample_type = event->attr.sample_type;
5481

5482
	header->type = PERF_RECORD_SAMPLE;
5483
	header->size = sizeof(*header) + event->header_size;
5484 5485 5486

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5487

5488
	__perf_event_header__init_id(header, data, event);
5489

5490
	if (sample_type & PERF_SAMPLE_IP)
5491 5492
		data->ip = perf_instruction_pointer(regs);

5493
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5494
		int size = 1;
5495

5496
		data->callchain = perf_callchain(event, regs);
5497 5498 5499 5500 5501

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5502 5503
	}

5504
	if (sample_type & PERF_SAMPLE_RAW) {
5505 5506 5507 5508 5509 5510 5511 5512
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5513
		header->size += size;
5514
	}
5515 5516 5517 5518 5519 5520 5521 5522 5523

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5524

5525
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5526 5527
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5528

5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5552
						     data->regs_user.regs);
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5580
}
5581

5582 5583 5584
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5585 5586 5587
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5588

5589 5590 5591
	/* protect the callchain buffers */
	rcu_read_lock();

5592
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5593

5594
	if (perf_output_begin(&handle, event, header.size))
5595
		goto exit;
5596

5597
	perf_output_sample(&handle, &header, data, event);
5598

5599
	perf_output_end(&handle);
5600 5601 5602

exit:
	rcu_read_unlock();
5603 5604
}

5605
/*
5606
 * read event_id
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5617
perf_event_read_event(struct perf_event *event,
5618 5619 5620
			struct task_struct *task)
{
	struct perf_output_handle handle;
5621
	struct perf_sample_data sample;
5622
	struct perf_read_event read_event = {
5623
		.header = {
5624
			.type = PERF_RECORD_READ,
5625
			.misc = 0,
5626
			.size = sizeof(read_event) + event->read_size,
5627
		},
5628 5629
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5630
	};
5631
	int ret;
5632

5633
	perf_event_header__init_id(&read_event.header, &sample, event);
5634
	ret = perf_output_begin(&handle, event, read_event.header.size);
5635 5636 5637
	if (ret)
		return;

5638
	perf_output_put(&handle, read_event);
5639
	perf_output_read(&handle, event);
5640
	perf_event__output_id_sample(event, &handle, &sample);
5641

5642 5643 5644
	perf_output_end(&handle);
}

5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5659
		output(event, data);
5660 5661 5662 5663
	}
}

static void
5664
perf_event_aux(perf_event_aux_output_cb output, void *data,
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5677
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5678 5679 5680 5681 5682 5683 5684
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5685
			perf_event_aux_ctx(ctx, output, data);
5686 5687 5688 5689 5690 5691
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5692
		perf_event_aux_ctx(task_ctx, output, data);
5693 5694 5695 5696 5697
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5698
/*
P
Peter Zijlstra 已提交
5699 5700
 * task tracking -- fork/exit
 *
5701
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5702 5703
 */

P
Peter Zijlstra 已提交
5704
struct perf_task_event {
5705
	struct task_struct		*task;
5706
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5707 5708 5709 5710 5711 5712

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5713 5714
		u32				tid;
		u32				ptid;
5715
		u64				time;
5716
	} event_id;
P
Peter Zijlstra 已提交
5717 5718
};

5719 5720
static int perf_event_task_match(struct perf_event *event)
{
5721 5722 5723
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5724 5725
}

5726
static void perf_event_task_output(struct perf_event *event,
5727
				   void *data)
P
Peter Zijlstra 已提交
5728
{
5729
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5730
	struct perf_output_handle handle;
5731
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5732
	struct task_struct *task = task_event->task;
5733
	int ret, size = task_event->event_id.header.size;
5734

5735 5736 5737
	if (!perf_event_task_match(event))
		return;

5738
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5739

5740
	ret = perf_output_begin(&handle, event,
5741
				task_event->event_id.header.size);
5742
	if (ret)
5743
		goto out;
P
Peter Zijlstra 已提交
5744

5745 5746
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5747

5748 5749
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5750

5751 5752
	task_event->event_id.time = perf_event_clock(event);

5753
	perf_output_put(&handle, task_event->event_id);
5754

5755 5756
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5757
	perf_output_end(&handle);
5758 5759
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5760 5761
}

5762 5763
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5764
			      int new)
P
Peter Zijlstra 已提交
5765
{
P
Peter Zijlstra 已提交
5766
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5767

5768 5769 5770
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5771 5772
		return;

P
Peter Zijlstra 已提交
5773
	task_event = (struct perf_task_event){
5774 5775
		.task	  = task,
		.task_ctx = task_ctx,
5776
		.event_id    = {
P
Peter Zijlstra 已提交
5777
			.header = {
5778
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5779
				.misc = 0,
5780
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5781
			},
5782 5783
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5784 5785
			/* .tid  */
			/* .ptid */
5786
			/* .time */
P
Peter Zijlstra 已提交
5787 5788 5789
		},
	};

5790
	perf_event_aux(perf_event_task_output,
5791 5792
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5793 5794
}

5795
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5796
{
5797
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5798 5799
}

5800 5801 5802 5803 5804
/*
 * comm tracking
 */

struct perf_comm_event {
5805 5806
	struct task_struct	*task;
	char			*comm;
5807 5808 5809 5810 5811 5812 5813
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5814
	} event_id;
5815 5816
};

5817 5818 5819 5820 5821
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5822
static void perf_event_comm_output(struct perf_event *event,
5823
				   void *data)
5824
{
5825
	struct perf_comm_event *comm_event = data;
5826
	struct perf_output_handle handle;
5827
	struct perf_sample_data sample;
5828
	int size = comm_event->event_id.header.size;
5829 5830
	int ret;

5831 5832 5833
	if (!perf_event_comm_match(event))
		return;

5834 5835
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5836
				comm_event->event_id.header.size);
5837 5838

	if (ret)
5839
		goto out;
5840

5841 5842
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5843

5844
	perf_output_put(&handle, comm_event->event_id);
5845
	__output_copy(&handle, comm_event->comm,
5846
				   comm_event->comm_size);
5847 5848 5849

	perf_event__output_id_sample(event, &handle, &sample);

5850
	perf_output_end(&handle);
5851 5852
out:
	comm_event->event_id.header.size = size;
5853 5854
}

5855
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5856
{
5857
	char comm[TASK_COMM_LEN];
5858 5859
	unsigned int size;

5860
	memset(comm, 0, sizeof(comm));
5861
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5862
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5863 5864 5865 5866

	comm_event->comm = comm;
	comm_event->comm_size = size;

5867
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5868

5869
	perf_event_aux(perf_event_comm_output,
5870 5871
		       comm_event,
		       NULL);
5872 5873
}

5874
void perf_event_comm(struct task_struct *task, bool exec)
5875
{
5876 5877
	struct perf_comm_event comm_event;

5878
	if (!atomic_read(&nr_comm_events))
5879
		return;
5880

5881
	comm_event = (struct perf_comm_event){
5882
		.task	= task,
5883 5884
		/* .comm      */
		/* .comm_size */
5885
		.event_id  = {
5886
			.header = {
5887
				.type = PERF_RECORD_COMM,
5888
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5889 5890 5891 5892
				/* .size */
			},
			/* .pid */
			/* .tid */
5893 5894 5895
		},
	};

5896
	perf_event_comm_event(&comm_event);
5897 5898
}

5899 5900 5901 5902 5903
/*
 * mmap tracking
 */

struct perf_mmap_event {
5904 5905 5906 5907
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5908 5909 5910
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5911
	u32			prot, flags;
5912 5913 5914 5915 5916 5917 5918 5919 5920

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5921
	} event_id;
5922 5923
};

5924 5925 5926 5927 5928 5929 5930 5931
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5932
	       (executable && (event->attr.mmap || event->attr.mmap2));
5933 5934
}

5935
static void perf_event_mmap_output(struct perf_event *event,
5936
				   void *data)
5937
{
5938
	struct perf_mmap_event *mmap_event = data;
5939
	struct perf_output_handle handle;
5940
	struct perf_sample_data sample;
5941
	int size = mmap_event->event_id.header.size;
5942
	int ret;
5943

5944 5945 5946
	if (!perf_event_mmap_match(event, data))
		return;

5947 5948 5949 5950 5951
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5952
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5953 5954
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5955 5956
	}

5957 5958
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5959
				mmap_event->event_id.header.size);
5960
	if (ret)
5961
		goto out;
5962

5963 5964
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5965

5966
	perf_output_put(&handle, mmap_event->event_id);
5967 5968 5969 5970 5971 5972

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5973 5974
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5975 5976
	}

5977
	__output_copy(&handle, mmap_event->file_name,
5978
				   mmap_event->file_size);
5979 5980 5981

	perf_event__output_id_sample(event, &handle, &sample);

5982
	perf_output_end(&handle);
5983 5984
out:
	mmap_event->event_id.header.size = size;
5985 5986
}

5987
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5988
{
5989 5990
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5991 5992
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5993
	u32 prot = 0, flags = 0;
5994 5995 5996
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5997
	char *name;
5998

5999
	if (file) {
6000 6001
		struct inode *inode;
		dev_t dev;
6002

6003
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6004
		if (!buf) {
6005 6006
			name = "//enomem";
			goto cpy_name;
6007
		}
6008
		/*
6009
		 * d_path() works from the end of the rb backwards, so we
6010 6011 6012
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6013
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6014
		if (IS_ERR(name)) {
6015 6016
			name = "//toolong";
			goto cpy_name;
6017
		}
6018 6019 6020 6021 6022 6023
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6046
		goto got_name;
6047
	} else {
6048 6049 6050 6051 6052 6053
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6054
		name = (char *)arch_vma_name(vma);
6055 6056
		if (name)
			goto cpy_name;
6057

6058
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6059
				vma->vm_end >= vma->vm_mm->brk) {
6060 6061
			name = "[heap]";
			goto cpy_name;
6062 6063
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6064
				vma->vm_end >= vma->vm_mm->start_stack) {
6065 6066
			name = "[stack]";
			goto cpy_name;
6067 6068
		}

6069 6070
		name = "//anon";
		goto cpy_name;
6071 6072
	}

6073 6074 6075
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6076
got_name:
6077 6078 6079 6080 6081 6082 6083 6084
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6085 6086 6087

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6088 6089 6090 6091
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6092 6093
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6094

6095 6096 6097
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6098
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6099

6100
	perf_event_aux(perf_event_mmap_output,
6101 6102
		       mmap_event,
		       NULL);
6103

6104 6105 6106
	kfree(buf);
}

6107
void perf_event_mmap(struct vm_area_struct *vma)
6108
{
6109 6110
	struct perf_mmap_event mmap_event;

6111
	if (!atomic_read(&nr_mmap_events))
6112 6113 6114
		return;

	mmap_event = (struct perf_mmap_event){
6115
		.vma	= vma,
6116 6117
		/* .file_name */
		/* .file_size */
6118
		.event_id  = {
6119
			.header = {
6120
				.type = PERF_RECORD_MMAP,
6121
				.misc = PERF_RECORD_MISC_USER,
6122 6123 6124 6125
				/* .size */
			},
			/* .pid */
			/* .tid */
6126 6127
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6128
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6129
		},
6130 6131 6132 6133
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6134 6135
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6136 6137
	};

6138
	perf_event_mmap_event(&mmap_event);
6139 6140
}

A
Alexander Shishkin 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6293 6294 6295 6296
/*
 * IRQ throttle logging
 */

6297
static void perf_log_throttle(struct perf_event *event, int enable)
6298 6299
{
	struct perf_output_handle handle;
6300
	struct perf_sample_data sample;
6301 6302 6303 6304 6305
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6306
		u64				id;
6307
		u64				stream_id;
6308 6309
	} throttle_event = {
		.header = {
6310
			.type = PERF_RECORD_THROTTLE,
6311 6312 6313
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6314
		.time		= perf_event_clock(event),
6315 6316
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6317 6318
	};

6319
	if (enable)
6320
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6321

6322 6323 6324
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6325
				throttle_event.header.size);
6326 6327 6328 6329
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6330
	perf_event__output_id_sample(event, &handle, &sample);
6331 6332 6333
	perf_output_end(&handle);
}

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6370
/*
6371
 * Generic event overflow handling, sampling.
6372 6373
 */

6374
static int __perf_event_overflow(struct perf_event *event,
6375 6376
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6377
{
6378 6379
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6380
	u64 seq;
6381 6382
	int ret = 0;

6383 6384 6385 6386 6387 6388 6389
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6390 6391 6392 6393 6394 6395 6396 6397 6398
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6399 6400
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6401
			tick_nohz_full_kick();
6402 6403
			ret = 1;
		}
6404
	}
6405

6406
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6407
		u64 now = perf_clock();
6408
		s64 delta = now - hwc->freq_time_stamp;
6409

6410
		hwc->freq_time_stamp = now;
6411

6412
		if (delta > 0 && delta < 2*TICK_NSEC)
6413
			perf_adjust_period(event, delta, hwc->last_period, true);
6414 6415
	}

6416 6417
	/*
	 * XXX event_limit might not quite work as expected on inherited
6418
	 * events
6419 6420
	 */

6421 6422
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6423
		ret = 1;
6424
		event->pending_kill = POLL_HUP;
6425 6426
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6427 6428
	}

6429
	if (event->overflow_handler)
6430
		event->overflow_handler(event, data, regs);
6431
	else
6432
		perf_event_output(event, data, regs);
6433

6434
	if (*perf_event_fasync(event) && event->pending_kill) {
6435 6436
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6437 6438
	}

6439
	return ret;
6440 6441
}

6442
int perf_event_overflow(struct perf_event *event,
6443 6444
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6445
{
6446
	return __perf_event_overflow(event, 1, data, regs);
6447 6448
}

6449
/*
6450
 * Generic software event infrastructure
6451 6452
 */

6453 6454 6455 6456 6457 6458 6459
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6460 6461 6462

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6463 6464 6465 6466
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6467
/*
6468 6469
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6470 6471 6472 6473
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6474
u64 perf_swevent_set_period(struct perf_event *event)
6475
{
6476
	struct hw_perf_event *hwc = &event->hw;
6477 6478 6479 6480 6481
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6482 6483

again:
6484
	old = val = local64_read(&hwc->period_left);
6485 6486
	if (val < 0)
		return 0;
6487

6488 6489 6490
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6491
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6492
		goto again;
6493

6494
	return nr;
6495 6496
}

6497
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6498
				    struct perf_sample_data *data,
6499
				    struct pt_regs *regs)
6500
{
6501
	struct hw_perf_event *hwc = &event->hw;
6502
	int throttle = 0;
6503

6504 6505
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6506

6507 6508
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6509

6510
	for (; overflow; overflow--) {
6511
		if (__perf_event_overflow(event, throttle,
6512
					    data, regs)) {
6513 6514 6515 6516 6517 6518
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6519
		throttle = 1;
6520
	}
6521 6522
}

P
Peter Zijlstra 已提交
6523
static void perf_swevent_event(struct perf_event *event, u64 nr,
6524
			       struct perf_sample_data *data,
6525
			       struct pt_regs *regs)
6526
{
6527
	struct hw_perf_event *hwc = &event->hw;
6528

6529
	local64_add(nr, &event->count);
6530

6531 6532 6533
	if (!regs)
		return;

6534
	if (!is_sampling_event(event))
6535
		return;
6536

6537 6538 6539 6540 6541 6542
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6543
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6544
		return perf_swevent_overflow(event, 1, data, regs);
6545

6546
	if (local64_add_negative(nr, &hwc->period_left))
6547
		return;
6548

6549
	perf_swevent_overflow(event, 0, data, regs);
6550 6551
}

6552 6553 6554
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6555
	if (event->hw.state & PERF_HES_STOPPED)
6556
		return 1;
P
Peter Zijlstra 已提交
6557

6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6569
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6570
				enum perf_type_id type,
L
Li Zefan 已提交
6571 6572 6573
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6574
{
6575
	if (event->attr.type != type)
6576
		return 0;
6577

6578
	if (event->attr.config != event_id)
6579 6580
		return 0;

6581 6582
	if (perf_exclude_event(event, regs))
		return 0;
6583 6584 6585 6586

	return 1;
}

6587 6588 6589 6590 6591 6592 6593
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6594 6595
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6596
{
6597 6598 6599 6600
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6601

6602 6603
/* For the read side: events when they trigger */
static inline struct hlist_head *
6604
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6605 6606
{
	struct swevent_hlist *hlist;
6607

6608
	hlist = rcu_dereference(swhash->swevent_hlist);
6609 6610 6611
	if (!hlist)
		return NULL;

6612 6613 6614 6615 6616
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6617
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6628
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6629 6630 6631 6632 6633
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6634 6635 6636
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6637
				    u64 nr,
6638 6639
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6640
{
6641
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6642
	struct perf_event *event;
6643
	struct hlist_head *head;
6644

6645
	rcu_read_lock();
6646
	head = find_swevent_head_rcu(swhash, type, event_id);
6647 6648 6649
	if (!head)
		goto end;

6650
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6651
		if (perf_swevent_match(event, type, event_id, data, regs))
6652
			perf_swevent_event(event, nr, data, regs);
6653
	}
6654 6655
end:
	rcu_read_unlock();
6656 6657
}

6658 6659
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6660
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6661
{
6662
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6663

6664
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6665
}
I
Ingo Molnar 已提交
6666
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6667

6668
inline void perf_swevent_put_recursion_context(int rctx)
6669
{
6670
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6671

6672
	put_recursion_context(swhash->recursion, rctx);
6673
}
6674

6675
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6676
{
6677
	struct perf_sample_data data;
6678

6679
	if (WARN_ON_ONCE(!regs))
6680
		return;
6681

6682
	perf_sample_data_init(&data, addr, 0);
6683
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6696 6697

	perf_swevent_put_recursion_context(rctx);
6698
fail:
6699
	preempt_enable_notrace();
6700 6701
}

6702
static void perf_swevent_read(struct perf_event *event)
6703 6704 6705
{
}

P
Peter Zijlstra 已提交
6706
static int perf_swevent_add(struct perf_event *event, int flags)
6707
{
6708
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6709
	struct hw_perf_event *hwc = &event->hw;
6710 6711
	struct hlist_head *head;

6712
	if (is_sampling_event(event)) {
6713
		hwc->last_period = hwc->sample_period;
6714
		perf_swevent_set_period(event);
6715
	}
6716

P
Peter Zijlstra 已提交
6717 6718
	hwc->state = !(flags & PERF_EF_START);

6719
	head = find_swevent_head(swhash, event);
6720 6721 6722 6723 6724 6725
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6726
		return -EINVAL;
6727
	}
6728 6729

	hlist_add_head_rcu(&event->hlist_entry, head);
6730
	perf_event_update_userpage(event);
6731

6732 6733 6734
	return 0;
}

P
Peter Zijlstra 已提交
6735
static void perf_swevent_del(struct perf_event *event, int flags)
6736
{
6737
	hlist_del_rcu(&event->hlist_entry);
6738 6739
}

P
Peter Zijlstra 已提交
6740
static void perf_swevent_start(struct perf_event *event, int flags)
6741
{
P
Peter Zijlstra 已提交
6742
	event->hw.state = 0;
6743
}
I
Ingo Molnar 已提交
6744

P
Peter Zijlstra 已提交
6745
static void perf_swevent_stop(struct perf_event *event, int flags)
6746
{
P
Peter Zijlstra 已提交
6747
	event->hw.state = PERF_HES_STOPPED;
6748 6749
}

6750 6751
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6752
swevent_hlist_deref(struct swevent_htable *swhash)
6753
{
6754 6755
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6756 6757
}

6758
static void swevent_hlist_release(struct swevent_htable *swhash)
6759
{
6760
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6761

6762
	if (!hlist)
6763 6764
		return;

6765
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6766
	kfree_rcu(hlist, rcu_head);
6767 6768 6769 6770
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6771
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6772

6773
	mutex_lock(&swhash->hlist_mutex);
6774

6775 6776
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6777

6778
	mutex_unlock(&swhash->hlist_mutex);
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6791
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6792 6793
	int err = 0;

6794
	mutex_lock(&swhash->hlist_mutex);
6795

6796
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6797 6798 6799 6800 6801 6802 6803
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6804
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6805
	}
6806
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6807
exit:
6808
	mutex_unlock(&swhash->hlist_mutex);
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6829
fail:
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6840
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6841

6842 6843 6844
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6845

6846 6847
	WARN_ON(event->parent);

6848
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6849 6850 6851 6852 6853
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6854
	u64 event_id = event->attr.config;
6855 6856 6857 6858

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6859 6860 6861 6862 6863 6864
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6865 6866 6867 6868 6869 6870 6871 6872 6873
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6874
	if (event_id >= PERF_COUNT_SW_MAX)
6875 6876 6877 6878 6879 6880 6881 6882 6883
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6884
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6885 6886 6887 6888 6889 6890 6891
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6892
	.task_ctx_nr	= perf_sw_context,
6893

6894 6895
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6896
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6897 6898 6899 6900
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6901 6902 6903
	.read		= perf_swevent_read,
};

6904 6905
#ifdef CONFIG_EVENT_TRACING

6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6920 6921
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6922 6923 6924 6925
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6926 6927 6928 6929 6930 6931 6932 6933 6934
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6935 6936
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6937 6938
{
	struct perf_sample_data data;
6939 6940
	struct perf_event *event;

6941 6942 6943 6944 6945
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6946
	perf_sample_data_init(&data, addr, 0);
6947 6948
	data.raw = &raw;

6949
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6950
		if (perf_tp_event_match(event, &data, regs))
6951
			perf_swevent_event(event, count, &data, regs);
6952
	}
6953

6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6979
	perf_swevent_put_recursion_context(rctx);
6980 6981 6982
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6983
static void tp_perf_event_destroy(struct perf_event *event)
6984
{
6985
	perf_trace_destroy(event);
6986 6987
}

6988
static int perf_tp_event_init(struct perf_event *event)
6989
{
6990 6991
	int err;

6992 6993 6994
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6995 6996 6997 6998 6999 7000
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7001 7002
	err = perf_trace_init(event);
	if (err)
7003
		return err;
7004

7005
	event->destroy = tp_perf_event_destroy;
7006

7007 7008 7009 7010
	return 0;
}

static struct pmu perf_tracepoint = {
7011 7012
	.task_ctx_nr	= perf_sw_context,

7013
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7014 7015 7016 7017
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7018 7019 7020 7021 7022
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7023
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7024
}
L
Li Zefan 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7059 7060
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7061 7062 7063 7064 7065 7066
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7067
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7092
#else
L
Li Zefan 已提交
7093

7094
static inline void perf_tp_register(void)
7095 7096
{
}
L
Li Zefan 已提交
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7107 7108 7109 7110 7111 7112 7113 7114
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7115
#endif /* CONFIG_EVENT_TRACING */
7116

7117
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7118
void perf_bp_event(struct perf_event *bp, void *data)
7119
{
7120 7121 7122
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7123
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7124

P
Peter Zijlstra 已提交
7125
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7126
		perf_swevent_event(bp, 1, &sample, regs);
7127 7128 7129
}
#endif

7130 7131 7132
/*
 * hrtimer based swevent callback
 */
7133

7134
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7135
{
7136 7137 7138 7139 7140
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7141

7142
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7143 7144 7145 7146

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7147
	event->pmu->read(event);
7148

7149
	perf_sample_data_init(&data, 0, event->hw.last_period);
7150 7151 7152
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7153
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7154
			if (__perf_event_overflow(event, 1, &data, regs))
7155 7156
				ret = HRTIMER_NORESTART;
	}
7157

7158 7159
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7160

7161
	return ret;
7162 7163
}

7164
static void perf_swevent_start_hrtimer(struct perf_event *event)
7165
{
7166
	struct hw_perf_event *hwc = &event->hw;
7167 7168 7169 7170
	s64 period;

	if (!is_sampling_event(event))
		return;
7171

7172 7173 7174 7175
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7176

7177 7178 7179 7180
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7181 7182
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7183
}
7184 7185

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7186
{
7187 7188
	struct hw_perf_event *hwc = &event->hw;

7189
	if (is_sampling_event(event)) {
7190
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7191
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7192 7193 7194

		hrtimer_cancel(&hwc->hrtimer);
	}
7195 7196
}

P
Peter Zijlstra 已提交
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7217
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7218 7219 7220 7221
		event->attr.freq = 0;
	}
}

7222 7223 7224 7225 7226
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7227
{
7228 7229 7230
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7231
	now = local_clock();
7232 7233
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7234 7235
}

P
Peter Zijlstra 已提交
7236
static void cpu_clock_event_start(struct perf_event *event, int flags)
7237
{
P
Peter Zijlstra 已提交
7238
	local64_set(&event->hw.prev_count, local_clock());
7239 7240 7241
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7242
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7243
{
7244 7245 7246
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7247

P
Peter Zijlstra 已提交
7248 7249 7250 7251
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7252
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7253 7254 7255 7256 7257 7258 7259 7260 7261

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7262 7263 7264 7265
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7266

7267 7268 7269 7270 7271 7272 7273 7274
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7275 7276 7277 7278 7279 7280
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7281 7282
	perf_swevent_init_hrtimer(event);

7283
	return 0;
7284 7285
}

7286
static struct pmu perf_cpu_clock = {
7287 7288
	.task_ctx_nr	= perf_sw_context,

7289 7290
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7291
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7292 7293 7294 7295
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7296 7297 7298 7299 7300 7301 7302 7303
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7304
{
7305 7306
	u64 prev;
	s64 delta;
7307

7308 7309 7310 7311
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7312

P
Peter Zijlstra 已提交
7313
static void task_clock_event_start(struct perf_event *event, int flags)
7314
{
P
Peter Zijlstra 已提交
7315
	local64_set(&event->hw.prev_count, event->ctx->time);
7316 7317 7318
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7319
static void task_clock_event_stop(struct perf_event *event, int flags)
7320 7321 7322
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7323 7324 7325 7326 7327 7328
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7329
	perf_event_update_userpage(event);
7330

P
Peter Zijlstra 已提交
7331 7332 7333 7334 7335 7336
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7337 7338 7339 7340
}

static void task_clock_event_read(struct perf_event *event)
{
7341 7342 7343
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7344 7345 7346 7347 7348

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7349
{
7350 7351 7352 7353 7354 7355
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7356 7357 7358 7359 7360 7361
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7362 7363
	perf_swevent_init_hrtimer(event);

7364
	return 0;
L
Li Zefan 已提交
7365 7366
}

7367
static struct pmu perf_task_clock = {
7368 7369
	.task_ctx_nr	= perf_sw_context,

7370 7371
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7372
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7373 7374 7375 7376
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7377 7378
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7379

P
Peter Zijlstra 已提交
7380
static void perf_pmu_nop_void(struct pmu *pmu)
7381 7382
{
}
L
Li Zefan 已提交
7383

7384 7385 7386 7387
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7388
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7389
{
P
Peter Zijlstra 已提交
7390
	return 0;
L
Li Zefan 已提交
7391 7392
}

7393
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7394 7395

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7396
{
7397 7398 7399 7400 7401
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7402
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7403 7404
}

P
Peter Zijlstra 已提交
7405 7406
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7407 7408 7409 7410 7411 7412 7413
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7414 7415 7416
	perf_pmu_enable(pmu);
	return 0;
}
7417

P
Peter Zijlstra 已提交
7418
static void perf_pmu_cancel_txn(struct pmu *pmu)
7419
{
7420 7421 7422 7423 7424 7425 7426
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7427
	perf_pmu_enable(pmu);
7428 7429
}

7430 7431
static int perf_event_idx_default(struct perf_event *event)
{
7432
	return 0;
7433 7434
}

P
Peter Zijlstra 已提交
7435 7436 7437 7438
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7439
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7440
{
P
Peter Zijlstra 已提交
7441
	struct pmu *pmu;
7442

P
Peter Zijlstra 已提交
7443 7444
	if (ctxn < 0)
		return NULL;
7445

P
Peter Zijlstra 已提交
7446 7447 7448 7449
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7450

P
Peter Zijlstra 已提交
7451
	return NULL;
7452 7453
}

7454
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7455
{
7456 7457 7458 7459 7460 7461 7462
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7463 7464
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7465 7466 7467 7468 7469 7470
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7471

P
Peter Zijlstra 已提交
7472
	mutex_lock(&pmus_lock);
7473
	/*
P
Peter Zijlstra 已提交
7474
	 * Like a real lame refcount.
7475
	 */
7476 7477 7478
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7479
			goto out;
7480
		}
P
Peter Zijlstra 已提交
7481
	}
7482

7483
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7484 7485
out:
	mutex_unlock(&pmus_lock);
7486
}
P
Peter Zijlstra 已提交
7487
static struct idr pmu_idr;
7488

P
Peter Zijlstra 已提交
7489 7490 7491 7492 7493 7494 7495
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7496
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7497

7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7508 7509
static DEFINE_MUTEX(mux_interval_mutex);

7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7529
	mutex_lock(&mux_interval_mutex);
7530 7531 7532
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7533 7534
	get_online_cpus();
	for_each_online_cpu(cpu) {
7535 7536 7537 7538
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7539 7540
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7541
	}
7542 7543
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7544 7545 7546

	return count;
}
7547
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7548

7549 7550 7551 7552
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7553
};
7554
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7555 7556 7557 7558

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7559
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7575
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7596
static struct lock_class_key cpuctx_mutex;
7597
static struct lock_class_key cpuctx_lock;
7598

7599
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7600
{
P
Peter Zijlstra 已提交
7601
	int cpu, ret;
7602

7603
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7604 7605 7606 7607
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7608

P
Peter Zijlstra 已提交
7609 7610 7611 7612 7613 7614
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7615 7616 7617
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7618 7619 7620 7621 7622
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7623 7624 7625 7626 7627 7628
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7629
skip_type:
P
Peter Zijlstra 已提交
7630 7631 7632
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7633

W
Wei Yongjun 已提交
7634
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7635 7636
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7637
		goto free_dev;
7638

P
Peter Zijlstra 已提交
7639 7640 7641 7642
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7643
		__perf_event_init_context(&cpuctx->ctx);
7644
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7645
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7646
		cpuctx->ctx.pmu = pmu;
7647

7648
		__perf_mux_hrtimer_init(cpuctx, cpu);
7649

7650
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7651
	}
7652

P
Peter Zijlstra 已提交
7653
got_cpu_context:
P
Peter Zijlstra 已提交
7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7665
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7666 7667
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7668
		}
7669
	}
7670

P
Peter Zijlstra 已提交
7671 7672 7673 7674 7675
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7676 7677 7678
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7679
	list_add_rcu(&pmu->entry, &pmus);
7680
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7681 7682
	ret = 0;
unlock:
7683 7684
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7685
	return ret;
P
Peter Zijlstra 已提交
7686

P
Peter Zijlstra 已提交
7687 7688 7689 7690
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7691 7692 7693 7694
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7695 7696 7697
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7698
}
7699
EXPORT_SYMBOL_GPL(perf_pmu_register);
7700

7701
void perf_pmu_unregister(struct pmu *pmu)
7702
{
7703 7704 7705
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7706

7707
	/*
P
Peter Zijlstra 已提交
7708 7709
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7710
	 */
7711
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7712
	synchronize_rcu();
7713

P
Peter Zijlstra 已提交
7714
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7715 7716
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7717 7718
	device_del(pmu->dev);
	put_device(pmu->dev);
7719
	free_pmu_context(pmu);
7720
}
7721
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7722

7723 7724
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7725
	struct perf_event_context *ctx = NULL;
7726 7727 7728 7729
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7730 7731

	if (event->group_leader != event) {
7732 7733 7734 7735 7736 7737
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7738 7739 7740
		BUG_ON(!ctx);
	}

7741 7742
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7743 7744 7745 7746

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7747 7748 7749 7750 7751 7752
	if (ret)
		module_put(pmu->module);

	return ret;
}

7753
static struct pmu *perf_init_event(struct perf_event *event)
7754 7755 7756
{
	struct pmu *pmu = NULL;
	int idx;
7757
	int ret;
7758 7759

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7760 7761 7762 7763

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7764
	if (pmu) {
7765
		ret = perf_try_init_event(pmu, event);
7766 7767
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7768
		goto unlock;
7769
	}
P
Peter Zijlstra 已提交
7770

7771
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7772
		ret = perf_try_init_event(pmu, event);
7773
		if (!ret)
P
Peter Zijlstra 已提交
7774
			goto unlock;
7775

7776 7777
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7778
			goto unlock;
7779
		}
7780
	}
P
Peter Zijlstra 已提交
7781 7782
	pmu = ERR_PTR(-ENOENT);
unlock:
7783
	srcu_read_unlock(&pmus_srcu, idx);
7784

7785
	return pmu;
7786 7787
}

7788 7789 7790 7791 7792 7793 7794 7795 7796
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7797 7798
static void account_event(struct perf_event *event)
{
7799 7800 7801
	if (event->parent)
		return;

7802 7803 7804 7805 7806 7807 7808 7809
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7810 7811 7812 7813
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7814 7815 7816 7817
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7818
	if (has_branch_stack(event))
7819
		static_key_slow_inc(&perf_sched_events.key);
7820
	if (is_cgroup_event(event))
7821
		static_key_slow_inc(&perf_sched_events.key);
7822 7823

	account_event_cpu(event, event->cpu);
7824 7825
}

T
Thomas Gleixner 已提交
7826
/*
7827
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7828
 */
7829
static struct perf_event *
7830
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7831 7832 7833
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7834
		 perf_overflow_handler_t overflow_handler,
7835
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7836
{
P
Peter Zijlstra 已提交
7837
	struct pmu *pmu;
7838 7839
	struct perf_event *event;
	struct hw_perf_event *hwc;
7840
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7841

7842 7843 7844 7845 7846
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7847
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7848
	if (!event)
7849
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7850

7851
	/*
7852
	 * Single events are their own group leaders, with an
7853 7854 7855
	 * empty sibling list:
	 */
	if (!group_leader)
7856
		group_leader = event;
7857

7858 7859
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7860

7861 7862 7863
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7864
	INIT_LIST_HEAD(&event->rb_entry);
7865
	INIT_LIST_HEAD(&event->active_entry);
7866 7867
	INIT_HLIST_NODE(&event->hlist_entry);

7868

7869
	init_waitqueue_head(&event->waitq);
7870
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7871

7872
	mutex_init(&event->mmap_mutex);
7873

7874
	atomic_long_set(&event->refcount, 1);
7875 7876 7877 7878 7879
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7880

7881
	event->parent		= parent_event;
7882

7883
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7884
	event->id		= atomic64_inc_return(&perf_event_id);
7885

7886
	event->state		= PERF_EVENT_STATE_INACTIVE;
7887

7888 7889 7890
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7891 7892 7893
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7894
		 */
7895
		event->hw.target = task;
7896 7897
	}

7898 7899 7900 7901
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7902
	if (!overflow_handler && parent_event) {
7903
		overflow_handler = parent_event->overflow_handler;
7904 7905
		context = parent_event->overflow_handler_context;
	}
7906

7907
	event->overflow_handler	= overflow_handler;
7908
	event->overflow_handler_context = context;
7909

J
Jiri Olsa 已提交
7910
	perf_event__state_init(event);
7911

7912
	pmu = NULL;
7913

7914
	hwc = &event->hw;
7915
	hwc->sample_period = attr->sample_period;
7916
	if (attr->freq && attr->sample_freq)
7917
		hwc->sample_period = 1;
7918
	hwc->last_period = hwc->sample_period;
7919

7920
	local64_set(&hwc->period_left, hwc->sample_period);
7921

7922
	/*
7923
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7924
	 */
7925
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7926
		goto err_ns;
7927 7928 7929

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7930

7931 7932 7933 7934 7935 7936
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7937
	pmu = perf_init_event(event);
7938
	if (!pmu)
7939 7940
		goto err_ns;
	else if (IS_ERR(pmu)) {
7941
		err = PTR_ERR(pmu);
7942
		goto err_ns;
I
Ingo Molnar 已提交
7943
	}
7944

7945 7946 7947 7948
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7949
	if (!event->parent) {
7950 7951
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7952
			if (err)
7953
				goto err_per_task;
7954
		}
7955
	}
7956

7957
	return event;
7958

7959 7960 7961
err_per_task:
	exclusive_event_destroy(event);

7962 7963 7964
err_pmu:
	if (event->destroy)
		event->destroy(event);
7965
	module_put(pmu->module);
7966
err_ns:
7967 7968
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7969 7970 7971 7972 7973
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7974 7975
}

7976 7977
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7978 7979
{
	u32 size;
7980
	int ret;
7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8005 8006 8007
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8008 8009
	 */
	if (size > sizeof(*attr)) {
8010 8011 8012
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8013

8014 8015
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8016

8017
		for (; addr < end; addr++) {
8018 8019 8020 8021 8022 8023
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8024
		size = sizeof(*attr);
8025 8026 8027 8028 8029 8030
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8031
	if (attr->__reserved_1)
8032 8033 8034 8035 8036 8037 8038 8039
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8068 8069
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8070 8071
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8072
	}
8073

8074
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8075
		ret = perf_reg_validate(attr->sample_regs_user);
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8094

8095 8096
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8097 8098 8099 8100 8101 8102 8103 8104 8105
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8106 8107
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8108
{
8109
	struct ring_buffer *rb = NULL;
8110 8111
	int ret = -EINVAL;

8112
	if (!output_event)
8113 8114
		goto set;

8115 8116
	/* don't allow circular references */
	if (event == output_event)
8117 8118
		goto out;

8119 8120 8121 8122 8123 8124 8125
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8126
	 * If its not a per-cpu rb, it must be the same task.
8127 8128 8129 8130
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8131 8132 8133 8134 8135 8136
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8137 8138 8139 8140 8141 8142 8143
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8144
set:
8145
	mutex_lock(&event->mmap_mutex);
8146 8147 8148
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8149

8150
	if (output_event) {
8151 8152 8153
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8154
			goto unlock;
8155 8156
	}

8157
	ring_buffer_attach(event, rb);
8158

8159
	ret = 0;
8160 8161 8162
unlock:
	mutex_unlock(&event->mmap_mutex);

8163 8164 8165 8166
out:
	return ret;
}

P
Peter Zijlstra 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8213
/**
8214
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8215
 *
8216
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8217
 * @pid:		target pid
I
Ingo Molnar 已提交
8218
 * @cpu:		target cpu
8219
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8220
 */
8221 8222
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8223
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8224
{
8225 8226
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8227
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8228
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8229
	struct file *event_file = NULL;
8230
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8231
	struct task_struct *task = NULL;
8232
	struct pmu *pmu;
8233
	int event_fd;
8234
	int move_group = 0;
8235
	int err;
8236
	int f_flags = O_RDWR;
8237
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8238

8239
	/* for future expandability... */
S
Stephane Eranian 已提交
8240
	if (flags & ~PERF_FLAG_ALL)
8241 8242
		return -EINVAL;

8243 8244 8245
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8246

8247 8248 8249 8250 8251
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8252
	if (attr.freq) {
8253
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8254
			return -EINVAL;
8255 8256 8257
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8258 8259
	}

S
Stephane Eranian 已提交
8260 8261 8262 8263 8264 8265 8266 8267 8268
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8269 8270 8271 8272
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8273 8274 8275
	if (event_fd < 0)
		return event_fd;

8276
	if (group_fd != -1) {
8277 8278
		err = perf_fget_light(group_fd, &group);
		if (err)
8279
			goto err_fd;
8280
		group_leader = group.file->private_data;
8281 8282 8283 8284 8285 8286
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8287
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8288 8289 8290 8291 8292 8293 8294
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8295 8296 8297 8298 8299 8300
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8301 8302
	get_online_cpus();

8303 8304 8305
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8306
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8307
				 NULL, NULL, cgroup_fd);
8308 8309
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8310
		goto err_cpus;
8311 8312
	}

8313 8314 8315 8316 8317 8318 8319
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8320 8321
	account_event(event);

8322 8323 8324 8325 8326
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8327

8328 8329 8330 8331 8332 8333
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8356 8357 8358 8359

	/*
	 * Get the target context (task or percpu):
	 */
8360
	ctx = find_get_context(pmu, task, event);
8361 8362
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8363
		goto err_alloc;
8364 8365
	}

8366 8367 8368 8369 8370
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8371 8372 8373 8374 8375
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8376
	/*
8377
	 * Look up the group leader (we will attach this event to it):
8378
	 */
8379
	if (group_leader) {
8380
		err = -EINVAL;
8381 8382

		/*
I
Ingo Molnar 已提交
8383 8384 8385 8386
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8387
			goto err_context;
8388 8389 8390 8391 8392

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8393 8394 8395
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8396
		 */
8397
		if (move_group) {
8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8411 8412 8413 8414 8415 8416
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8417 8418 8419
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8420
		if (attr.exclusive || attr.pinned)
8421
			goto err_context;
8422 8423 8424 8425 8426
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8427
			goto err_context;
8428
	}
T
Thomas Gleixner 已提交
8429

8430 8431
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8432 8433
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8434
		goto err_context;
8435
	}
8436

8437
	if (move_group) {
P
Peter Zijlstra 已提交
8438
		gctx = group_leader->ctx;
8439 8440 8441 8442 8443
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8444 8445 8446 8447 8448
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8449 8450 8451 8452 8453 8454 8455
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8456

8457 8458 8459
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8460

8461 8462 8463
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8464 8465 8466 8467
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8468
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8469

8470 8471
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8472
			perf_remove_from_context(sibling, false);
8473 8474 8475
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8476 8477 8478 8479
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8480
		synchronize_rcu();
P
Peter Zijlstra 已提交
8481

8482 8483 8484 8485 8486 8487 8488 8489 8490 8491
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8492 8493
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8494
			perf_event__state_init(sibling);
8495
			perf_install_in_context(ctx, sibling, sibling->cpu);
8496 8497
			get_ctx(ctx);
		}
8498 8499 8500 8501 8502 8503 8504 8505 8506

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8507

8508 8509 8510 8511 8512 8513
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8514 8515
	}

8516 8517 8518 8519 8520 8521 8522 8523 8524
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8525
	perf_install_in_context(ctx, event, event->cpu);
8526
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8527

8528
	if (move_group)
P
Peter Zijlstra 已提交
8529
		mutex_unlock(&gctx->mutex);
8530
	mutex_unlock(&ctx->mutex);
8531

8532 8533
	put_online_cpus();

8534
	event->owner = current;
P
Peter Zijlstra 已提交
8535

8536 8537 8538
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8539

8540 8541 8542 8543 8544 8545
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8546
	fdput(group);
8547 8548
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8549

8550 8551 8552 8553 8554 8555
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8556
err_context:
8557
	perf_unpin_context(ctx);
8558
	put_ctx(ctx);
8559
err_alloc:
8560
	free_event(event);
8561
err_cpus:
8562
	put_online_cpus();
8563
err_task:
P
Peter Zijlstra 已提交
8564 8565
	if (task)
		put_task_struct(task);
8566
err_group_fd:
8567
	fdput(group);
8568 8569
err_fd:
	put_unused_fd(event_fd);
8570
	return err;
T
Thomas Gleixner 已提交
8571 8572
}

8573 8574 8575 8576 8577
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8578
 * @task: task to profile (NULL for percpu)
8579 8580 8581
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8582
				 struct task_struct *task,
8583 8584
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8585 8586
{
	struct perf_event_context *ctx;
8587
	struct perf_event *event;
8588
	int err;
8589

8590 8591 8592
	/*
	 * Get the target context (task or percpu):
	 */
8593

8594
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8595
				 overflow_handler, context, -1);
8596 8597 8598 8599
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8600

8601 8602 8603
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8604 8605
	account_event(event);

8606
	ctx = find_get_context(event->pmu, task, event);
8607 8608
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8609
		goto err_free;
8610
	}
8611 8612 8613

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8614 8615 8616 8617 8618 8619 8620 8621
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8622
	perf_install_in_context(ctx, event, cpu);
8623
	perf_unpin_context(ctx);
8624 8625 8626 8627
	mutex_unlock(&ctx->mutex);

	return event;

8628 8629 8630
err_free:
	free_event(event);
err:
8631
	return ERR_PTR(err);
8632
}
8633
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8634

8635 8636 8637 8638 8639 8640 8641 8642 8643 8644
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8645 8646 8647 8648 8649
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8650 8651
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8652
		perf_remove_from_context(event, false);
8653
		unaccount_event_cpu(event, src_cpu);
8654
		put_ctx(src_ctx);
8655
		list_add(&event->migrate_entry, &events);
8656 8657
	}

8658 8659 8660
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8661 8662
	synchronize_rcu();

8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8687 8688
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8689 8690
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8691
		account_event_cpu(event, dst_cpu);
8692 8693 8694 8695
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8696
	mutex_unlock(&src_ctx->mutex);
8697 8698 8699
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8700
static void sync_child_event(struct perf_event *child_event,
8701
			       struct task_struct *child)
8702
{
8703
	struct perf_event *parent_event = child_event->parent;
8704
	u64 child_val;
8705

8706 8707
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8708

P
Peter Zijlstra 已提交
8709
	child_val = perf_event_count(child_event);
8710 8711 8712 8713

	/*
	 * Add back the child's count to the parent's count:
	 */
8714
	atomic64_add(child_val, &parent_event->child_count);
8715 8716 8717 8718
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8719 8720

	/*
8721
	 * Remove this event from the parent's list
8722
	 */
8723 8724 8725 8726
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8727

8728 8729 8730 8731 8732 8733
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8734
	/*
8735
	 * Release the parent event, if this was the last
8736 8737
	 * reference to it.
	 */
8738
	put_event(parent_event);
8739 8740
}

8741
static void
8742 8743
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8744
			 struct task_struct *child)
8745
{
8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8759

8760
	/*
8761
	 * It can happen that the parent exits first, and has events
8762
	 * that are still around due to the child reference. These
8763
	 * events need to be zapped.
8764
	 */
8765
	if (child_event->parent) {
8766 8767
		sync_child_event(child_event, child);
		free_event(child_event);
8768 8769 8770
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8771
	}
8772 8773
}

P
Peter Zijlstra 已提交
8774
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8775
{
8776
	struct perf_event *child_event, *next;
8777
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8778
	unsigned long flags;
8779

P
Peter Zijlstra 已提交
8780
	if (likely(!child->perf_event_ctxp[ctxn])) {
8781
		perf_event_task(child, NULL, 0);
8782
		return;
P
Peter Zijlstra 已提交
8783
	}
8784

8785
	local_irq_save(flags);
8786 8787 8788 8789 8790 8791
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8792
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8793 8794 8795

	/*
	 * Take the context lock here so that if find_get_context is
8796
	 * reading child->perf_event_ctxp, we wait until it has
8797 8798
	 * incremented the context's refcount before we do put_ctx below.
	 */
8799
	raw_spin_lock(&child_ctx->lock);
8800
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8801
	child->perf_event_ctxp[ctxn] = NULL;
8802

8803 8804 8805
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8806
	 * the events from it.
8807
	 */
8808
	clone_ctx = unclone_ctx(child_ctx);
8809
	update_context_time(child_ctx);
8810
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8811

8812 8813
	if (clone_ctx)
		put_ctx(clone_ctx);
8814

P
Peter Zijlstra 已提交
8815
	/*
8816 8817 8818
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8819
	 */
8820
	perf_event_task(child, child_ctx, 0);
8821

8822 8823 8824
	/*
	 * We can recurse on the same lock type through:
	 *
8825 8826
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8827 8828
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8829 8830 8831
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8832
	mutex_lock(&child_ctx->mutex);
8833

8834
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8835
		__perf_event_exit_task(child_event, child_ctx, child);
8836

8837 8838 8839
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8840 8841
}

P
Peter Zijlstra 已提交
8842 8843 8844 8845 8846
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8847
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8848 8849
	int ctxn;

P
Peter Zijlstra 已提交
8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8865 8866 8867 8868
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8881
	put_event(parent);
8882

P
Peter Zijlstra 已提交
8883
	raw_spin_lock_irq(&ctx->lock);
8884
	perf_group_detach(event);
8885
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8886
	raw_spin_unlock_irq(&ctx->lock);
8887 8888 8889
	free_event(event);
}

8890
/*
P
Peter Zijlstra 已提交
8891
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8892
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8893 8894 8895
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8896
 */
8897
void perf_event_free_task(struct task_struct *task)
8898
{
P
Peter Zijlstra 已提交
8899
	struct perf_event_context *ctx;
8900
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8901
	int ctxn;
8902

P
Peter Zijlstra 已提交
8903 8904 8905 8906
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8907

P
Peter Zijlstra 已提交
8908
		mutex_lock(&ctx->mutex);
8909
again:
P
Peter Zijlstra 已提交
8910 8911 8912
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8913

P
Peter Zijlstra 已提交
8914 8915 8916
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8917

P
Peter Zijlstra 已提交
8918 8919 8920
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8921

P
Peter Zijlstra 已提交
8922
		mutex_unlock(&ctx->mutex);
8923

P
Peter Zijlstra 已提交
8924 8925
		put_ctx(ctx);
	}
8926 8927
}

8928 8929 8930 8931 8932 8933 8934 8935
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8972
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8973
	struct perf_event *child_event;
8974
	unsigned long flags;
P
Peter Zijlstra 已提交
8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8987
					   child,
P
Peter Zijlstra 已提交
8988
					   group_leader, parent_event,
8989
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8990 8991
	if (IS_ERR(child_event))
		return child_event;
8992

8993 8994
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8995 8996 8997 8998
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8999 9000 9001 9002 9003 9004 9005
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9006
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9023 9024
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9025

9026 9027 9028 9029
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9030
	perf_event__id_header_size(child_event);
9031

P
Peter Zijlstra 已提交
9032 9033 9034
	/*
	 * Link it up in the child's context:
	 */
9035
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9036
	add_event_to_ctx(child_event, child_ctx);
9037
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9071 9072 9073 9074 9075
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9076
		   struct task_struct *child, int ctxn,
9077 9078 9079
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9080
	struct perf_event_context *child_ctx;
9081 9082 9083 9084

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9085 9086
	}

9087
	child_ctx = child->perf_event_ctxp[ctxn];
9088 9089 9090 9091 9092 9093 9094
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9095

9096
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9097 9098
		if (!child_ctx)
			return -ENOMEM;
9099

P
Peter Zijlstra 已提交
9100
		child->perf_event_ctxp[ctxn] = child_ctx;
9101 9102 9103 9104 9105 9106 9107 9108 9109
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9110 9111
}

9112
/*
9113
 * Initialize the perf_event context in task_struct
9114
 */
9115
static int perf_event_init_context(struct task_struct *child, int ctxn)
9116
{
9117
	struct perf_event_context *child_ctx, *parent_ctx;
9118 9119
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9120
	struct task_struct *parent = current;
9121
	int inherited_all = 1;
9122
	unsigned long flags;
9123
	int ret = 0;
9124

P
Peter Zijlstra 已提交
9125
	if (likely(!parent->perf_event_ctxp[ctxn]))
9126 9127
		return 0;

9128
	/*
9129 9130
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9131
	 */
P
Peter Zijlstra 已提交
9132
	parent_ctx = perf_pin_task_context(parent, ctxn);
9133 9134
	if (!parent_ctx)
		return 0;
9135

9136 9137 9138 9139 9140 9141 9142
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9143 9144 9145 9146
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9147
	mutex_lock(&parent_ctx->mutex);
9148 9149 9150 9151 9152

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9153
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9154 9155
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9156 9157 9158
		if (ret)
			break;
	}
9159

9160 9161 9162 9163 9164 9165 9166 9167 9168
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9169
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9170 9171
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9172
		if (ret)
9173
			break;
9174 9175
	}

9176 9177 9178
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9179
	child_ctx = child->perf_event_ctxp[ctxn];
9180

9181
	if (child_ctx && inherited_all) {
9182 9183 9184
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9185 9186 9187
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9188
		 */
P
Peter Zijlstra 已提交
9189
		cloned_ctx = parent_ctx->parent_ctx;
9190 9191
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9192
			child_ctx->parent_gen = parent_ctx->parent_gen;
9193 9194 9195 9196 9197
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9198 9199
	}

P
Peter Zijlstra 已提交
9200
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9201
	mutex_unlock(&parent_ctx->mutex);
9202

9203
	perf_unpin_context(parent_ctx);
9204
	put_ctx(parent_ctx);
9205

9206
	return ret;
9207 9208
}

P
Peter Zijlstra 已提交
9209 9210 9211 9212 9213 9214 9215
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9216 9217 9218 9219
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9220 9221
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9222 9223
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9224
			return ret;
P
Peter Zijlstra 已提交
9225
		}
P
Peter Zijlstra 已提交
9226 9227 9228 9229 9230
	}

	return 0;
}

9231 9232
static void __init perf_event_init_all_cpus(void)
{
9233
	struct swevent_htable *swhash;
9234 9235 9236
	int cpu;

	for_each_possible_cpu(cpu) {
9237 9238
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9239
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9240 9241 9242
	}
}

9243
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9244
{
P
Peter Zijlstra 已提交
9245
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9246

9247
	mutex_lock(&swhash->hlist_mutex);
9248
	swhash->online = true;
9249
	if (swhash->hlist_refcount > 0) {
9250 9251
		struct swevent_hlist *hlist;

9252 9253 9254
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9255
	}
9256
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9257 9258
}

9259
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9260
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9261
{
9262
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9263
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9264

P
Peter Zijlstra 已提交
9265
	rcu_read_lock();
9266 9267
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9268
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9269
}
P
Peter Zijlstra 已提交
9270 9271 9272 9273 9274 9275 9276 9277 9278

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9279
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9280 9281 9282 9283 9284 9285 9286 9287

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9288
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9289
{
9290
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9291

P
Peter Zijlstra 已提交
9292 9293
	perf_event_exit_cpu_context(cpu);

9294
	mutex_lock(&swhash->hlist_mutex);
9295
	swhash->online = false;
9296 9297
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9298 9299
}
#else
9300
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9301 9302
#endif

P
Peter Zijlstra 已提交
9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9323
static int
T
Thomas Gleixner 已提交
9324 9325 9326 9327
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9328
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9329 9330

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9331
	case CPU_DOWN_FAILED:
9332
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9333 9334
		break;

P
Peter Zijlstra 已提交
9335
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9336
	case CPU_DOWN_PREPARE:
9337
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9338 9339 9340 9341 9342 9343 9344 9345
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9346
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9347
{
9348 9349
	int ret;

P
Peter Zijlstra 已提交
9350 9351
	idr_init(&pmu_idr);

9352
	perf_event_init_all_cpus();
9353
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9354 9355 9356
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9357 9358
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9359
	register_reboot_notifier(&perf_reboot_notifier);
9360 9361 9362

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9363 9364 9365

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9366 9367 9368 9369 9370 9371 9372

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9373
}
P
Peter Zijlstra 已提交
9374

9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9414 9415

#ifdef CONFIG_CGROUP_PERF
9416 9417
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9418 9419 9420
{
	struct perf_cgroup *jc;

9421
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9434
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9435
{
9436 9437
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9449 9450
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9451
{
9452 9453
	struct task_struct *task;

9454
	cgroup_taskset_for_each(task, tset)
9455
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9456 9457
}

9458 9459
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9460
			     struct task_struct *task)
S
Stephane Eranian 已提交
9461
{
9462
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9463 9464
}

9465
struct cgroup_subsys perf_event_cgrp_subsys = {
9466 9467
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9468
	.exit		= perf_cgroup_exit,
9469
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9470 9471
};
#endif /* CONFIG_CGROUP_PERF */