core.c 191.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
T
Thomas Gleixner 已提交
44

45 46
#include "internal.h"

47 48
#include <asm/irq_regs.h>

49 50
static struct workqueue_struct *perf_wq;

51
struct remote_function_call {
52 53 54 55
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
89 90 91 92
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
113 114 115 116
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
117 118 119 120 121 122 123
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

124 125 126 127 128 129 130
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
131 132
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
133 134
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
135

136 137 138 139 140 141 142
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

143 144 145 146 147 148
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
149 150 151 152
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
153
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
154
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
155
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
156

157 158 159
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
160
static atomic_t nr_freq_events __read_mostly;
161

P
Peter Zijlstra 已提交
162 163 164 165
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

166
/*
167
 * perf event paranoia level:
168 169
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
170
 *   1 - disallow cpu events for unpriv
171
 *   2 - disallow kernel profiling for unpriv
172
 */
173
int sysctl_perf_event_paranoid __read_mostly = 1;
174

175 176
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
177 178

/*
179
 * max perf event sample rate
180
 */
181 182 183 184 185 186 187 188 189
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
190 191
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
192 193 194 195 196 197

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
198
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
199
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
200
}
P
Peter Zijlstra 已提交
201

202 203
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
204 205 206 207
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
208
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
209 210 211 212 213

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
232 233 234

	return 0;
}
235

236 237 238 239 240 241 242
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
243
static DEFINE_PER_CPU(u64, running_sample_length);
244

245
static void perf_duration_warn(struct irq_work *w)
246
{
247
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
248
	u64 avg_local_sample_len;
249
	u64 local_samples_len;
250 251 252 253 254 255 256

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
257
			avg_local_sample_len, allowed_ns >> 1,
258 259 260 261 262 263 264
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
265
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
266 267
	u64 avg_local_sample_len;
	u64 local_samples_len;
268

P
Peter Zijlstra 已提交
269
	if (allowed_ns == 0)
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
285
	if (avg_local_sample_len <= allowed_ns)
286 287 288 289 290 291 292 293 294 295
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
296

297 298 299 300 301 302
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
303 304
}

305
static atomic64_t perf_event_id;
306

307 308 309 310
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
311 312 313 314 315
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
316

317
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
318

319
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
320
{
321
	return "pmu";
T
Thomas Gleixner 已提交
322 323
}

324 325 326 327 328
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
329 330 331 332 333 334
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
351 352
#ifdef CONFIG_CGROUP_PERF

353 354 355 356 357 358 359 360 361 362 363
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
364
	struct perf_cgroup_info	__percpu *info;
365 366
};

367 368 369 370 371
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
372 373 374
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
375
	return container_of(task_css(task, perf_event_cgrp_id),
376
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
449 450
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
451
	/*
452 453
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
454
	 */
455
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
456 457
		return;

458 459 460 461 462 463
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
464 465 466
}

static inline void
467 468
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
469 470 471 472
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

473 474 475 476 477 478
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
479 480 481 482
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
483
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
516 517
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
518 519 520 521 522 523 524 525 526

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
527 528
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
529 530 531 532 533 534 535 536 537 538 539

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
540
				WARN_ON_ONCE(cpuctx->cgrp);
541 542 543 544
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
545 546 547 548
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
549 550
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
551 552 553 554 555 556 557 558
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

559 560
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
561
{
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
584 585
}

586 587
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
588
{
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
615 616
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
617

618
	if (!f.file)
S
Stephane Eranian 已提交
619 620
		return -EBADF;

621 622
	css = css_tryget_online_from_dir(f.file->f_dentry,
					 &perf_event_cgrp_subsys);
623 624 625 626
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
640
out:
641
	fdput(f);
S
Stephane Eranian 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

715 716
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
717 718 719
{
}

720 721
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
722 723 724 725 726 727 728 729 730 731 732
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
733 734
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
828
	int timer;
829 830 831 832 833

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

834 835 836 837 838 839 840 841 842
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
865
void perf_pmu_disable(struct pmu *pmu)
866
{
P
Peter Zijlstra 已提交
867 868 869
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
870 871
}

P
Peter Zijlstra 已提交
872
void perf_pmu_enable(struct pmu *pmu)
873
{
P
Peter Zijlstra 已提交
874 875 876
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
877 878
}

879 880 881 882 883 884 885
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
886
static void perf_pmu_rotate_start(struct pmu *pmu)
887
{
P
Peter Zijlstra 已提交
888
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
889
	struct list_head *head = &__get_cpu_var(rotation_list);
890

891
	WARN_ON(!irqs_disabled());
892

893
	if (list_empty(&cpuctx->rotation_list))
894
		list_add(&cpuctx->rotation_list, head);
895 896
}

897
static void get_ctx(struct perf_event_context *ctx)
898
{
899
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
900 901
}

902
static void put_ctx(struct perf_event_context *ctx)
903
{
904 905 906
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
907 908
		if (ctx->task)
			put_task_struct(ctx->task);
909
		kfree_rcu(ctx, rcu_head);
910
	}
911 912
}

913
static void unclone_ctx(struct perf_event_context *ctx)
914 915 916 917 918
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
919
	ctx->generation++;
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

944
/*
945
 * If we inherit events we want to return the parent event id
946 947
 * to userspace.
 */
948
static u64 primary_event_id(struct perf_event *event)
949
{
950
	u64 id = event->id;
951

952 953
	if (event->parent)
		id = event->parent->id;
954 955 956 957

	return id;
}

958
/*
959
 * Get the perf_event_context for a task and lock it.
960 961 962
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
963
static struct perf_event_context *
P
Peter Zijlstra 已提交
964
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
965
{
966
	struct perf_event_context *ctx;
967

P
Peter Zijlstra 已提交
968
retry:
969 970 971 972 973 974 975 976 977 978 979
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
980
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
981 982 983 984
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
985
		 * perf_event_task_sched_out, though the
986 987 988 989 990 991
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
992
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
993
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
994
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
995 996
			rcu_read_unlock();
			preempt_enable();
997 998
			goto retry;
		}
999 1000

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1001
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1002 1003
			ctx = NULL;
		}
1004 1005
	}
	rcu_read_unlock();
1006
	preempt_enable();
1007 1008 1009 1010 1011 1012 1013 1014
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1015 1016
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1017
{
1018
	struct perf_event_context *ctx;
1019 1020
	unsigned long flags;

P
Peter Zijlstra 已提交
1021
	ctx = perf_lock_task_context(task, ctxn, &flags);
1022 1023
	if (ctx) {
		++ctx->pin_count;
1024
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1025 1026 1027 1028
	}
	return ctx;
}

1029
static void perf_unpin_context(struct perf_event_context *ctx)
1030 1031 1032
{
	unsigned long flags;

1033
	raw_spin_lock_irqsave(&ctx->lock, flags);
1034
	--ctx->pin_count;
1035
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1036 1037
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1049 1050 1051
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1052 1053 1054 1055

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1056 1057 1058
	return ctx ? ctx->time : 0;
}

1059 1060
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1061
 * The caller of this function needs to hold the ctx->lock.
1062 1063 1064 1065 1066 1067 1068 1069 1070
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1082
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1083 1084
	else if (ctx->is_active)
		run_end = ctx->time;
1085 1086 1087 1088
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1089 1090 1091 1092

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1093
		run_end = perf_event_time(event);
1094 1095

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1096

1097 1098
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1111 1112 1113 1114 1115 1116 1117 1118 1119
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1120
/*
1121
 * Add a event from the lists for its context.
1122 1123
 * Must be called with ctx->mutex and ctx->lock held.
 */
1124
static void
1125
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1126
{
1127 1128
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1129 1130

	/*
1131 1132 1133
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1134
	 */
1135
	if (event->group_leader == event) {
1136 1137
		struct list_head *list;

1138 1139 1140
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1141 1142
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1143
	}
P
Peter Zijlstra 已提交
1144

1145
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1146 1147
		ctx->nr_cgroups++;

1148 1149 1150
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1151
	list_add_rcu(&event->event_entry, &ctx->event_list);
1152
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1153
		perf_pmu_rotate_start(ctx->pmu);
1154 1155
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1156
		ctx->nr_stat++;
1157 1158

	ctx->generation++;
1159 1160
}

J
Jiri Olsa 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1209 1210 1211 1212 1213 1214
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1215 1216 1217
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1218 1219 1220
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1221 1222 1223
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1224 1225 1226
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1227 1228 1229 1230 1231 1232 1233 1234 1235
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1236 1237 1238 1239 1240 1241
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1242 1243 1244
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1245 1246 1247 1248 1249 1250 1251 1252 1253
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1254
	event->id_header_size = size;
1255 1256
}

1257 1258
static void perf_group_attach(struct perf_event *event)
{
1259
	struct perf_event *group_leader = event->group_leader, *pos;
1260

P
Peter Zijlstra 已提交
1261 1262 1263 1264 1265 1266
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1278 1279 1280 1281 1282

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1283 1284
}

1285
/*
1286
 * Remove a event from the lists for its context.
1287
 * Must be called with ctx->mutex and ctx->lock held.
1288
 */
1289
static void
1290
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1291
{
1292
	struct perf_cpu_context *cpuctx;
1293 1294 1295 1296
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1297
		return;
1298 1299 1300

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1301
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1302
		ctx->nr_cgroups--;
1303 1304 1305 1306 1307 1308 1309 1310 1311
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1312

1313 1314 1315
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1316 1317
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1318
		ctx->nr_stat--;
1319

1320
	list_del_rcu(&event->event_entry);
1321

1322 1323
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1324

1325
	update_group_times(event);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1336 1337

	ctx->generation++;
1338 1339
}

1340
static void perf_group_detach(struct perf_event *event)
1341 1342
{
	struct perf_event *sibling, *tmp;
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1359
		goto out;
1360 1361 1362 1363
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1364

1365
	/*
1366 1367
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1368
	 * to whatever list we are on.
1369
	 */
1370
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1371 1372
		if (list)
			list_move_tail(&sibling->group_entry, list);
1373
		sibling->group_leader = sibling;
1374 1375 1376

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1377
	}
1378 1379 1380 1381 1382 1383

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1384 1385
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1425 1426 1427
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1428 1429
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1430 1431
}

1432 1433
static void
event_sched_out(struct perf_event *event,
1434
		  struct perf_cpu_context *cpuctx,
1435
		  struct perf_event_context *ctx)
1436
{
1437
	u64 tstamp = perf_event_time(event);
1438 1439 1440 1441 1442 1443 1444 1445 1446
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1447
		delta = tstamp - event->tstamp_stopped;
1448
		event->tstamp_running += delta;
1449
		event->tstamp_stopped = tstamp;
1450 1451
	}

1452
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1453
		return;
1454

1455 1456
	perf_pmu_disable(event->pmu);

1457 1458 1459 1460
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1461
	}
1462
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1463
	event->pmu->del(event, 0);
1464
	event->oncpu = -1;
1465

1466
	if (!is_software_event(event))
1467 1468
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1469 1470
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1471
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1472
		cpuctx->exclusive = 0;
1473

1474 1475 1476
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1477
	perf_pmu_enable(event->pmu);
1478 1479
}

1480
static void
1481
group_sched_out(struct perf_event *group_event,
1482
		struct perf_cpu_context *cpuctx,
1483
		struct perf_event_context *ctx)
1484
{
1485
	struct perf_event *event;
1486
	int state = group_event->state;
1487

1488
	event_sched_out(group_event, cpuctx, ctx);
1489 1490 1491 1492

	/*
	 * Schedule out siblings (if any):
	 */
1493 1494
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1495

1496
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1497 1498 1499
		cpuctx->exclusive = 0;
}

1500 1501 1502 1503 1504
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1505
/*
1506
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1507
 *
1508
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1509 1510
 * remove it from the context list.
 */
1511
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1512
{
1513 1514
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1515
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1516
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1517

1518
	raw_spin_lock(&ctx->lock);
1519
	event_sched_out(event, cpuctx, ctx);
1520 1521
	if (re->detach_group)
		perf_group_detach(event);
1522
	list_del_event(event, ctx);
1523 1524 1525 1526
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1527
	raw_spin_unlock(&ctx->lock);
1528 1529

	return 0;
T
Thomas Gleixner 已提交
1530 1531 1532 1533
}


/*
1534
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1535
 *
1536
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1537
 * call when the task is on a CPU.
1538
 *
1539 1540
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1541 1542
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1543
 * When called from perf_event_exit_task, it's OK because the
1544
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1545
 */
1546
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1547
{
1548
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1549
	struct task_struct *task = ctx->task;
1550 1551 1552 1553
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1554

1555 1556
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1557 1558
	if (!task) {
		/*
1559
		 * Per cpu events are removed via an smp call and
1560
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1561
		 */
1562
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1563 1564 1565 1566
		return;
	}

retry:
1567
	if (!task_function_call(task, __perf_remove_from_context, &re))
1568
		return;
T
Thomas Gleixner 已提交
1569

1570
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1571
	/*
1572 1573
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1574
	 */
1575
	if (ctx->is_active) {
1576
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1577 1578 1579 1580
		goto retry;
	}

	/*
1581 1582
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1583
	 */
1584 1585
	if (detach_group)
		perf_group_detach(event);
1586
	list_del_event(event, ctx);
1587
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1588 1589
}

1590
/*
1591
 * Cross CPU call to disable a performance event
1592
 */
1593
int __perf_event_disable(void *info)
1594
{
1595 1596
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1597
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1598 1599

	/*
1600 1601
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1602 1603 1604
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1605
	 */
1606
	if (ctx->task && cpuctx->task_ctx != ctx)
1607
		return -EINVAL;
1608

1609
	raw_spin_lock(&ctx->lock);
1610 1611

	/*
1612
	 * If the event is on, turn it off.
1613 1614
	 * If it is in error state, leave it in error state.
	 */
1615
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1616
		update_context_time(ctx);
S
Stephane Eranian 已提交
1617
		update_cgrp_time_from_event(event);
1618 1619 1620
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1621
		else
1622 1623
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1624 1625
	}

1626
	raw_spin_unlock(&ctx->lock);
1627 1628

	return 0;
1629 1630 1631
}

/*
1632
 * Disable a event.
1633
 *
1634 1635
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1636
 * remains valid.  This condition is satisifed when called through
1637 1638 1639 1640
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1641
 * is the current context on this CPU and preemption is disabled,
1642
 * hence we can't get into perf_event_task_sched_out for this context.
1643
 */
1644
void perf_event_disable(struct perf_event *event)
1645
{
1646
	struct perf_event_context *ctx = event->ctx;
1647 1648 1649 1650
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1651
		 * Disable the event on the cpu that it's on
1652
		 */
1653
		cpu_function_call(event->cpu, __perf_event_disable, event);
1654 1655 1656
		return;
	}

P
Peter Zijlstra 已提交
1657
retry:
1658 1659
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1660

1661
	raw_spin_lock_irq(&ctx->lock);
1662
	/*
1663
	 * If the event is still active, we need to retry the cross-call.
1664
	 */
1665
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1666
		raw_spin_unlock_irq(&ctx->lock);
1667 1668 1669 1670 1671
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1672 1673 1674 1675 1676 1677 1678
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1679 1680 1681
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1682
	}
1683
	raw_spin_unlock_irq(&ctx->lock);
1684
}
1685
EXPORT_SYMBOL_GPL(perf_event_disable);
1686

S
Stephane Eranian 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1722 1723 1724 1725
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1726
static int
1727
event_sched_in(struct perf_event *event,
1728
		 struct perf_cpu_context *cpuctx,
1729
		 struct perf_event_context *ctx)
1730
{
1731
	u64 tstamp = perf_event_time(event);
1732
	int ret = 0;
1733

1734 1735
	lockdep_assert_held(&ctx->lock);

1736
	if (event->state <= PERF_EVENT_STATE_OFF)
1737 1738
		return 0;

1739
	event->state = PERF_EVENT_STATE_ACTIVE;
1740
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1752 1753 1754 1755 1756
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1757 1758
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1759
	if (event->pmu->add(event, PERF_EF_START)) {
1760 1761
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1762 1763
		ret = -EAGAIN;
		goto out;
1764 1765
	}

1766
	event->tstamp_running += tstamp - event->tstamp_stopped;
1767

S
Stephane Eranian 已提交
1768
	perf_set_shadow_time(event, ctx, tstamp);
1769

1770
	if (!is_software_event(event))
1771
		cpuctx->active_oncpu++;
1772
	ctx->nr_active++;
1773 1774
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1775

1776
	if (event->attr.exclusive)
1777 1778
		cpuctx->exclusive = 1;

1779 1780 1781
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1782 1783 1784 1785
out:
	perf_pmu_enable(event->pmu);

	return ret;
1786 1787
}

1788
static int
1789
group_sched_in(struct perf_event *group_event,
1790
	       struct perf_cpu_context *cpuctx,
1791
	       struct perf_event_context *ctx)
1792
{
1793
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1794
	struct pmu *pmu = ctx->pmu;
1795 1796
	u64 now = ctx->time;
	bool simulate = false;
1797

1798
	if (group_event->state == PERF_EVENT_STATE_OFF)
1799 1800
		return 0;

P
Peter Zijlstra 已提交
1801
	pmu->start_txn(pmu);
1802

1803
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1804
		pmu->cancel_txn(pmu);
1805
		perf_cpu_hrtimer_restart(cpuctx);
1806
		return -EAGAIN;
1807
	}
1808 1809 1810 1811

	/*
	 * Schedule in siblings as one group (if any):
	 */
1812
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1813
		if (event_sched_in(event, cpuctx, ctx)) {
1814
			partial_group = event;
1815 1816 1817 1818
			goto group_error;
		}
	}

1819
	if (!pmu->commit_txn(pmu))
1820
		return 0;
1821

1822 1823 1824 1825
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1836
	 */
1837 1838
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1839 1840 1841 1842 1843 1844 1845 1846
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1847
	}
1848
	event_sched_out(group_event, cpuctx, ctx);
1849

P
Peter Zijlstra 已提交
1850
	pmu->cancel_txn(pmu);
1851

1852 1853
	perf_cpu_hrtimer_restart(cpuctx);

1854 1855 1856
	return -EAGAIN;
}

1857
/*
1858
 * Work out whether we can put this event group on the CPU now.
1859
 */
1860
static int group_can_go_on(struct perf_event *event,
1861 1862 1863 1864
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1865
	 * Groups consisting entirely of software events can always go on.
1866
	 */
1867
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1868 1869 1870
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1871
	 * events can go on.
1872 1873 1874 1875 1876
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1877
	 * events on the CPU, it can't go on.
1878
	 */
1879
	if (event->attr.exclusive && cpuctx->active_oncpu)
1880 1881 1882 1883 1884 1885 1886 1887
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1888 1889
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1890
{
1891 1892
	u64 tstamp = perf_event_time(event);

1893
	list_add_event(event, ctx);
1894
	perf_group_attach(event);
1895 1896 1897
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1898 1899
}

1900 1901 1902 1903 1904 1905
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1919
/*
1920
 * Cross CPU call to install and enable a performance event
1921 1922
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1923
 */
1924
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1925
{
1926 1927
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1928
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1929 1930 1931
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1932
	perf_ctx_lock(cpuctx, task_ctx);
1933
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1934 1935

	/*
1936
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1937
	 */
1938
	if (task_ctx)
1939
		task_ctx_sched_out(task_ctx);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1954 1955
		task = task_ctx->task;
	}
1956

1957
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1958

1959
	update_context_time(ctx);
S
Stephane Eranian 已提交
1960 1961 1962 1963 1964 1965
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1966

1967
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1968

1969
	/*
1970
	 * Schedule everything back in
1971
	 */
1972
	perf_event_sched_in(cpuctx, task_ctx, task);
1973 1974 1975

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1976 1977

	return 0;
T
Thomas Gleixner 已提交
1978 1979 1980
}

/*
1981
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1982
 *
1983 1984
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1985
 *
1986
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1987 1988 1989 1990
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1991 1992
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1993 1994 1995 1996
			int cpu)
{
	struct task_struct *task = ctx->task;

1997 1998
	lockdep_assert_held(&ctx->mutex);

1999
	event->ctx = ctx;
2000 2001
	if (event->cpu != -1)
		event->cpu = cpu;
2002

T
Thomas Gleixner 已提交
2003 2004
	if (!task) {
		/*
2005
		 * Per cpu events are installed via an smp call and
2006
		 * the install is always successful.
T
Thomas Gleixner 已提交
2007
		 */
2008
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2009 2010 2011 2012
		return;
	}

retry:
2013 2014
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2015

2016
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2017
	/*
2018 2019
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2020
	 */
2021
	if (ctx->is_active) {
2022
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2023 2024 2025 2026
		goto retry;
	}

	/*
2027 2028
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2029
	 */
2030
	add_event_to_ctx(event, ctx);
2031
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2032 2033
}

2034
/*
2035
 * Put a event into inactive state and update time fields.
2036 2037 2038 2039 2040 2041
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2042
static void __perf_event_mark_enabled(struct perf_event *event)
2043
{
2044
	struct perf_event *sub;
2045
	u64 tstamp = perf_event_time(event);
2046

2047
	event->state = PERF_EVENT_STATE_INACTIVE;
2048
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2049
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2050 2051
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2052
	}
2053 2054
}

2055
/*
2056
 * Cross CPU call to enable a performance event
2057
 */
2058
static int __perf_event_enable(void *info)
2059
{
2060 2061 2062
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2063
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2064
	int err;
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2076
		return -EINVAL;
2077

2078
	raw_spin_lock(&ctx->lock);
2079
	update_context_time(ctx);
2080

2081
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2082
		goto unlock;
S
Stephane Eranian 已提交
2083 2084 2085 2086

	/*
	 * set current task's cgroup time reference point
	 */
2087
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2088

2089
	__perf_event_mark_enabled(event);
2090

S
Stephane Eranian 已提交
2091 2092 2093
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2094
		goto unlock;
S
Stephane Eranian 已提交
2095
	}
2096

2097
	/*
2098
	 * If the event is in a group and isn't the group leader,
2099
	 * then don't put it on unless the group is on.
2100
	 */
2101
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2102
		goto unlock;
2103

2104
	if (!group_can_go_on(event, cpuctx, 1)) {
2105
		err = -EEXIST;
2106
	} else {
2107
		if (event == leader)
2108
			err = group_sched_in(event, cpuctx, ctx);
2109
		else
2110
			err = event_sched_in(event, cpuctx, ctx);
2111
	}
2112 2113 2114

	if (err) {
		/*
2115
		 * If this event can't go on and it's part of a
2116 2117
		 * group, then the whole group has to come off.
		 */
2118
		if (leader != event) {
2119
			group_sched_out(leader, cpuctx, ctx);
2120 2121
			perf_cpu_hrtimer_restart(cpuctx);
		}
2122
		if (leader->attr.pinned) {
2123
			update_group_times(leader);
2124
			leader->state = PERF_EVENT_STATE_ERROR;
2125
		}
2126 2127
	}

P
Peter Zijlstra 已提交
2128
unlock:
2129
	raw_spin_unlock(&ctx->lock);
2130 2131

	return 0;
2132 2133 2134
}

/*
2135
 * Enable a event.
2136
 *
2137 2138
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2139
 * remains valid.  This condition is satisfied when called through
2140 2141
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2142
 */
2143
void perf_event_enable(struct perf_event *event)
2144
{
2145
	struct perf_event_context *ctx = event->ctx;
2146 2147 2148 2149
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2150
		 * Enable the event on the cpu that it's on
2151
		 */
2152
		cpu_function_call(event->cpu, __perf_event_enable, event);
2153 2154 2155
		return;
	}

2156
	raw_spin_lock_irq(&ctx->lock);
2157
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2158 2159 2160
		goto out;

	/*
2161 2162
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2163 2164 2165 2166
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2167 2168
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2169

P
Peter Zijlstra 已提交
2170
retry:
2171
	if (!ctx->is_active) {
2172
		__perf_event_mark_enabled(event);
2173 2174 2175
		goto out;
	}

2176
	raw_spin_unlock_irq(&ctx->lock);
2177 2178 2179

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2180

2181
	raw_spin_lock_irq(&ctx->lock);
2182 2183

	/*
2184
	 * If the context is active and the event is still off,
2185 2186
	 * we need to retry the cross-call.
	 */
2187 2188 2189 2190 2191 2192
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2193
		goto retry;
2194
	}
2195

P
Peter Zijlstra 已提交
2196
out:
2197
	raw_spin_unlock_irq(&ctx->lock);
2198
}
2199
EXPORT_SYMBOL_GPL(perf_event_enable);
2200

2201
int perf_event_refresh(struct perf_event *event, int refresh)
2202
{
2203
	/*
2204
	 * not supported on inherited events
2205
	 */
2206
	if (event->attr.inherit || !is_sampling_event(event))
2207 2208
		return -EINVAL;

2209 2210
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2211 2212

	return 0;
2213
}
2214
EXPORT_SYMBOL_GPL(perf_event_refresh);
2215

2216 2217 2218
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2219
{
2220
	struct perf_event *event;
2221
	int is_active = ctx->is_active;
2222

2223
	ctx->is_active &= ~event_type;
2224
	if (likely(!ctx->nr_events))
2225 2226
		return;

2227
	update_context_time(ctx);
S
Stephane Eranian 已提交
2228
	update_cgrp_time_from_cpuctx(cpuctx);
2229
	if (!ctx->nr_active)
2230
		return;
2231

P
Peter Zijlstra 已提交
2232
	perf_pmu_disable(ctx->pmu);
2233
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2234 2235
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2236
	}
2237

2238
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2239
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2240
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2241
	}
P
Peter Zijlstra 已提交
2242
	perf_pmu_enable(ctx->pmu);
2243 2244
}

2245
/*
2246 2247 2248 2249 2250 2251
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2252
 */
2253 2254
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2255
{
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2278 2279
}

2280 2281
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2282 2283 2284
{
	u64 value;

2285
	if (!event->attr.inherit_stat)
2286 2287 2288
		return;

	/*
2289
	 * Update the event value, we cannot use perf_event_read()
2290 2291
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2292
	 * we know the event must be on the current CPU, therefore we
2293 2294
	 * don't need to use it.
	 */
2295 2296
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2297 2298
		event->pmu->read(event);
		/* fall-through */
2299

2300 2301
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2302 2303 2304 2305 2306 2307 2308
		break;

	default:
		break;
	}

	/*
2309
	 * In order to keep per-task stats reliable we need to flip the event
2310 2311
	 * values when we flip the contexts.
	 */
2312 2313 2314
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2315

2316 2317
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2318

2319
	/*
2320
	 * Since we swizzled the values, update the user visible data too.
2321
	 */
2322 2323
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2324 2325
}

2326 2327
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2328
{
2329
	struct perf_event *event, *next_event;
2330 2331 2332 2333

	if (!ctx->nr_stat)
		return;

2334 2335
	update_context_time(ctx);

2336 2337
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2338

2339 2340
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2341

2342 2343
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2344

2345
		__perf_event_sync_stat(event, next_event);
2346

2347 2348
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2349 2350 2351
	}
}

2352 2353
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2354
{
P
Peter Zijlstra 已提交
2355
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2356
	struct perf_event_context *next_ctx;
2357
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2358
	struct perf_cpu_context *cpuctx;
2359
	int do_switch = 1;
T
Thomas Gleixner 已提交
2360

P
Peter Zijlstra 已提交
2361 2362
	if (likely(!ctx))
		return;
2363

P
Peter Zijlstra 已提交
2364 2365
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2366 2367
		return;

2368
	rcu_read_lock();
P
Peter Zijlstra 已提交
2369
	next_ctx = next->perf_event_ctxp[ctxn];
2370 2371 2372 2373 2374 2375 2376
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2377
	if (!parent || !next_parent)
2378 2379 2380
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2381 2382 2383 2384 2385 2386 2387 2388 2389
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2390 2391
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2392
		if (context_equiv(ctx, next_ctx)) {
2393 2394
			/*
			 * XXX do we need a memory barrier of sorts
2395
			 * wrt to rcu_dereference() of perf_event_ctxp
2396
			 */
P
Peter Zijlstra 已提交
2397 2398
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2399 2400 2401
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2402

2403
			perf_event_sync_stat(ctx, next_ctx);
2404
		}
2405 2406
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2407
	}
2408
unlock:
2409
	rcu_read_unlock();
2410

2411
	if (do_switch) {
2412
		raw_spin_lock(&ctx->lock);
2413
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2414
		cpuctx->task_ctx = NULL;
2415
		raw_spin_unlock(&ctx->lock);
2416
	}
T
Thomas Gleixner 已提交
2417 2418
}

P
Peter Zijlstra 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2433 2434
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2435 2436 2437 2438 2439
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2440 2441 2442 2443 2444 2445 2446

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2447
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2448 2449
}

2450
static void task_ctx_sched_out(struct perf_event_context *ctx)
2451
{
P
Peter Zijlstra 已提交
2452
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2453

2454 2455
	if (!cpuctx->task_ctx)
		return;
2456 2457 2458 2459

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2460
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2461 2462 2463
	cpuctx->task_ctx = NULL;
}

2464 2465 2466 2467 2468 2469 2470
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2471 2472
}

2473
static void
2474
ctx_pinned_sched_in(struct perf_event_context *ctx,
2475
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2476
{
2477
	struct perf_event *event;
T
Thomas Gleixner 已提交
2478

2479 2480
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2481
			continue;
2482
		if (!event_filter_match(event))
2483 2484
			continue;

S
Stephane Eranian 已提交
2485 2486 2487 2488
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2489
		if (group_can_go_on(event, cpuctx, 1))
2490
			group_sched_in(event, cpuctx, ctx);
2491 2492 2493 2494 2495

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2496 2497 2498
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2499
		}
2500
	}
2501 2502 2503 2504
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2505
		      struct perf_cpu_context *cpuctx)
2506 2507 2508
{
	struct perf_event *event;
	int can_add_hw = 1;
2509

2510 2511 2512
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2513
			continue;
2514 2515
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2516
		 * of events:
2517
		 */
2518
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2519 2520
			continue;

S
Stephane Eranian 已提交
2521 2522 2523 2524
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2525
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2526
			if (group_sched_in(event, cpuctx, ctx))
2527
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2528
		}
T
Thomas Gleixner 已提交
2529
	}
2530 2531 2532 2533 2534
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2535 2536
	     enum event_type_t event_type,
	     struct task_struct *task)
2537
{
S
Stephane Eranian 已提交
2538
	u64 now;
2539
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2540

2541
	ctx->is_active |= event_type;
2542
	if (likely(!ctx->nr_events))
2543
		return;
2544

S
Stephane Eranian 已提交
2545 2546
	now = perf_clock();
	ctx->timestamp = now;
2547
	perf_cgroup_set_timestamp(task, ctx);
2548 2549 2550 2551
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2552
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2553
		ctx_pinned_sched_in(ctx, cpuctx);
2554 2555

	/* Then walk through the lower prio flexible groups */
2556
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2557
		ctx_flexible_sched_in(ctx, cpuctx);
2558 2559
}

2560
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2561 2562
			     enum event_type_t event_type,
			     struct task_struct *task)
2563 2564 2565
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2566
	ctx_sched_in(ctx, cpuctx, event_type, task);
2567 2568
}

S
Stephane Eranian 已提交
2569 2570
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2571
{
P
Peter Zijlstra 已提交
2572
	struct perf_cpu_context *cpuctx;
2573

P
Peter Zijlstra 已提交
2574
	cpuctx = __get_cpu_context(ctx);
2575 2576 2577
	if (cpuctx->task_ctx == ctx)
		return;

2578
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2579
	perf_pmu_disable(ctx->pmu);
2580 2581 2582 2583 2584 2585 2586
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2587 2588
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2589

2590 2591
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2592 2593 2594
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2595 2596 2597 2598
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2599
	perf_pmu_rotate_start(ctx->pmu);
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2671 2672
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2682
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2683
	}
S
Stephane Eranian 已提交
2684 2685 2686 2687 2688 2689
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2690
		perf_cgroup_sched_in(prev, task);
2691 2692 2693 2694

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2695 2696
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2724
#define REDUCE_FLS(a, b)		\
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2764 2765 2766
	if (!divisor)
		return dividend;

2767 2768 2769
	return div64_u64(dividend, divisor);
}

2770 2771 2772
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2773
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2774
{
2775
	struct hw_perf_event *hwc = &event->hw;
2776
	s64 period, sample_period;
2777 2778
	s64 delta;

2779
	period = perf_calculate_period(event, nsec, count);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2790

2791
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2792 2793 2794
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2795
		local64_set(&hwc->period_left, 0);
2796 2797 2798

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2799
	}
2800 2801
}

2802 2803 2804 2805 2806 2807 2808
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2809
{
2810 2811
	struct perf_event *event;
	struct hw_perf_event *hwc;
2812
	u64 now, period = TICK_NSEC;
2813
	s64 delta;
2814

2815 2816 2817 2818 2819 2820
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2821 2822
		return;

2823
	raw_spin_lock(&ctx->lock);
2824
	perf_pmu_disable(ctx->pmu);
2825

2826
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2827
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2828 2829
			continue;

2830
		if (!event_filter_match(event))
2831 2832
			continue;

2833 2834
		perf_pmu_disable(event->pmu);

2835
		hwc = &event->hw;
2836

2837
		if (hwc->interrupts == MAX_INTERRUPTS) {
2838
			hwc->interrupts = 0;
2839
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2840
			event->pmu->start(event, 0);
2841 2842
		}

2843
		if (!event->attr.freq || !event->attr.sample_freq)
2844
			goto next;
2845

2846 2847 2848 2849 2850
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2851
		now = local64_read(&event->count);
2852 2853
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2854

2855 2856 2857
		/*
		 * restart the event
		 * reload only if value has changed
2858 2859 2860
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2861
		 */
2862
		if (delta > 0)
2863
			perf_adjust_period(event, period, delta, false);
2864 2865

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2866 2867
	next:
		perf_pmu_enable(event->pmu);
2868
	}
2869

2870
	perf_pmu_enable(ctx->pmu);
2871
	raw_spin_unlock(&ctx->lock);
2872 2873
}

2874
/*
2875
 * Round-robin a context's events:
2876
 */
2877
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2878
{
2879 2880 2881 2882 2883 2884
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2885 2886
}

2887
/*
2888 2889 2890
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2891
 */
2892
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2893
{
P
Peter Zijlstra 已提交
2894
	struct perf_event_context *ctx = NULL;
2895
	int rotate = 0, remove = 1;
2896

2897
	if (cpuctx->ctx.nr_events) {
2898
		remove = 0;
2899 2900 2901
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2902

P
Peter Zijlstra 已提交
2903
	ctx = cpuctx->task_ctx;
2904
	if (ctx && ctx->nr_events) {
2905
		remove = 0;
2906 2907 2908
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2909

2910
	if (!rotate)
2911 2912
		goto done;

2913
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2914
	perf_pmu_disable(cpuctx->ctx.pmu);
2915

2916 2917 2918
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2919

2920 2921 2922
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2923

2924
	perf_event_sched_in(cpuctx, ctx, current);
2925

2926 2927
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2928
done:
2929 2930
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2931 2932

	return rotate;
2933 2934
}

2935 2936 2937
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2938
	if (atomic_read(&nr_freq_events) ||
2939
	    __this_cpu_read(perf_throttled_count))
2940
		return false;
2941 2942
	else
		return true;
2943 2944 2945
}
#endif

2946 2947 2948 2949
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2950 2951
	struct perf_event_context *ctx;
	int throttled;
2952

2953 2954
	WARN_ON(!irqs_disabled());

2955 2956 2957
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2958
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2959 2960 2961 2962 2963 2964
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2965
	}
T
Thomas Gleixner 已提交
2966 2967
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2978
	__perf_event_mark_enabled(event);
2979 2980 2981 2982

	return 1;
}

2983
/*
2984
 * Enable all of a task's events that have been marked enable-on-exec.
2985 2986
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2987
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2988
{
2989
	struct perf_event *event;
2990 2991
	unsigned long flags;
	int enabled = 0;
2992
	int ret;
2993 2994

	local_irq_save(flags);
2995
	if (!ctx || !ctx->nr_events)
2996 2997
		goto out;

2998 2999 3000 3001 3002 3003 3004
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3005
	perf_cgroup_sched_out(current, NULL);
3006

3007
	raw_spin_lock(&ctx->lock);
3008
	task_ctx_sched_out(ctx);
3009

3010
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3011 3012 3013
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3014 3015 3016
	}

	/*
3017
	 * Unclone this context if we enabled any event.
3018
	 */
3019 3020
	if (enabled)
		unclone_ctx(ctx);
3021

3022
	raw_spin_unlock(&ctx->lock);
3023

3024 3025 3026
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3027
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3028
out:
3029 3030 3031
	local_irq_restore(flags);
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3048
/*
3049
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3050
 */
3051
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3052
{
3053 3054
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3055
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3056

3057 3058 3059 3060
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3061 3062
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3063 3064 3065 3066
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3067
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3068
	if (ctx->is_active) {
3069
		update_context_time(ctx);
S
Stephane Eranian 已提交
3070 3071
		update_cgrp_time_from_event(event);
	}
3072
	update_event_times(event);
3073 3074
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3075
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3076 3077
}

P
Peter Zijlstra 已提交
3078 3079
static inline u64 perf_event_count(struct perf_event *event)
{
3080
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3081 3082
}

3083
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3084 3085
{
	/*
3086 3087
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3088
	 */
3089 3090 3091 3092
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3093 3094 3095
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3096
		raw_spin_lock_irqsave(&ctx->lock, flags);
3097 3098 3099 3100 3101
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3102
		if (ctx->is_active) {
3103
			update_context_time(ctx);
S
Stephane Eranian 已提交
3104 3105
			update_cgrp_time_from_event(event);
		}
3106
		update_event_times(event);
3107
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3108 3109
	}

P
Peter Zijlstra 已提交
3110
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3111 3112
}

3113
/*
3114
 * Initialize the perf_event context in a task_struct:
3115
 */
3116
static void __perf_event_init_context(struct perf_event_context *ctx)
3117
{
3118
	raw_spin_lock_init(&ctx->lock);
3119
	mutex_init(&ctx->mutex);
3120 3121
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3122 3123
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3124
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3140
	}
3141 3142 3143
	ctx->pmu = pmu;

	return ctx;
3144 3145
}

3146 3147 3148 3149 3150
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3151 3152

	rcu_read_lock();
3153
	if (!vpid)
T
Thomas Gleixner 已提交
3154 3155
		task = current;
	else
3156
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3157 3158 3159 3160 3161 3162 3163 3164
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3165 3166 3167 3168
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3169 3170 3171 3172 3173 3174 3175
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3176 3177 3178
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3179
static struct perf_event_context *
M
Matt Helsley 已提交
3180
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3181
{
3182
	struct perf_event_context *ctx;
3183
	struct perf_cpu_context *cpuctx;
3184
	unsigned long flags;
P
Peter Zijlstra 已提交
3185
	int ctxn, err;
T
Thomas Gleixner 已提交
3186

3187
	if (!task) {
3188
		/* Must be root to operate on a CPU event: */
3189
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3190 3191 3192
			return ERR_PTR(-EACCES);

		/*
3193
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3194 3195 3196
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3197
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3198 3199
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3200
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3201
		ctx = &cpuctx->ctx;
3202
		get_ctx(ctx);
3203
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3204 3205 3206 3207

		return ctx;
	}

P
Peter Zijlstra 已提交
3208 3209 3210 3211 3212
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3213
retry:
P
Peter Zijlstra 已提交
3214
	ctx = perf_lock_task_context(task, ctxn, &flags);
3215
	if (ctx) {
3216
		unclone_ctx(ctx);
3217
		++ctx->pin_count;
3218
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3219
	} else {
3220
		ctx = alloc_perf_context(pmu, task);
3221 3222 3223
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3235
		else {
3236
			get_ctx(ctx);
3237
			++ctx->pin_count;
3238
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3239
		}
3240 3241 3242
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3243
			put_ctx(ctx);
3244 3245 3246 3247

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3248 3249 3250
		}
	}

T
Thomas Gleixner 已提交
3251
	return ctx;
3252

P
Peter Zijlstra 已提交
3253
errout:
3254
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3255 3256
}

L
Li Zefan 已提交
3257 3258
static void perf_event_free_filter(struct perf_event *event);

3259
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3260
{
3261
	struct perf_event *event;
P
Peter Zijlstra 已提交
3262

3263 3264 3265
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3266
	perf_event_free_filter(event);
3267
	kfree(event);
P
Peter Zijlstra 已提交
3268 3269
}

3270
static void ring_buffer_put(struct ring_buffer *rb);
3271 3272
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3273

3274
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3275
{
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3300 3301
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3302 3303 3304 3305 3306 3307 3308
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3309

3310 3311
static void __free_event(struct perf_event *event)
{
3312
	if (!event->parent) {
3313 3314
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3315
	}
3316

3317 3318 3319 3320 3321 3322
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3323 3324 3325
	if (event->pmu)
		module_put(event->pmu->module);

3326 3327
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3328 3329

static void _free_event(struct perf_event *event)
3330
{
3331
	irq_work_sync(&event->pending);
3332

3333
	unaccount_event(event);
3334

3335
	if (event->rb) {
3336 3337 3338 3339 3340 3341 3342
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3343
		ring_buffer_attach(event, NULL);
3344
		mutex_unlock(&event->mmap_mutex);
3345 3346
	}

S
Stephane Eranian 已提交
3347 3348 3349
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3350
	__free_event(event);
3351 3352
}

P
Peter Zijlstra 已提交
3353 3354 3355 3356 3357
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3358
{
P
Peter Zijlstra 已提交
3359 3360 3361 3362 3363 3364
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3365

P
Peter Zijlstra 已提交
3366
	_free_event(event);
T
Thomas Gleixner 已提交
3367 3368
}

3369
/*
3370
 * Remove user event from the owner task.
3371
 */
3372
static void perf_remove_from_owner(struct perf_event *event)
3373
{
P
Peter Zijlstra 已提交
3374
	struct task_struct *owner;
3375

P
Peter Zijlstra 已提交
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3422

P
Peter Zijlstra 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	WARN_ON_ONCE(ctx->parent_ctx);
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3441 3442
}

P
Peter Zijlstra 已提交
3443 3444 3445 3446 3447 3448 3449
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3450 3451 3452 3453
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3454 3455
}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3492
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3493
{
3494
	struct perf_event *child;
3495 3496
	u64 total = 0;

3497 3498 3499
	*enabled = 0;
	*running = 0;

3500
	mutex_lock(&event->child_mutex);
3501
	total += perf_event_read(event);
3502 3503 3504 3505 3506 3507
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3508
		total += perf_event_read(child);
3509 3510 3511
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3512
	mutex_unlock(&event->child_mutex);
3513 3514 3515

	return total;
}
3516
EXPORT_SYMBOL_GPL(perf_event_read_value);
3517

3518
static int perf_event_read_group(struct perf_event *event,
3519 3520
				   u64 read_format, char __user *buf)
{
3521
	struct perf_event *leader = event->group_leader, *sub;
3522 3523
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3524
	u64 values[5];
3525
	u64 count, enabled, running;
3526

3527
	mutex_lock(&ctx->mutex);
3528
	count = perf_event_read_value(leader, &enabled, &running);
3529 3530

	values[n++] = 1 + leader->nr_siblings;
3531 3532 3533 3534
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3535 3536 3537
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3538 3539 3540 3541

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3542
		goto unlock;
3543

3544
	ret = size;
3545

3546
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3547
		n = 0;
3548

3549
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3550 3551 3552 3553 3554
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3555
		if (copy_to_user(buf + ret, values, size)) {
3556 3557 3558
			ret = -EFAULT;
			goto unlock;
		}
3559 3560

		ret += size;
3561
	}
3562 3563
unlock:
	mutex_unlock(&ctx->mutex);
3564

3565
	return ret;
3566 3567
}

3568
static int perf_event_read_one(struct perf_event *event,
3569 3570
				 u64 read_format, char __user *buf)
{
3571
	u64 enabled, running;
3572 3573 3574
	u64 values[4];
	int n = 0;

3575 3576 3577 3578 3579
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3580
	if (read_format & PERF_FORMAT_ID)
3581
		values[n++] = primary_event_id(event);
3582 3583 3584 3585 3586 3587 3588

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3589
/*
3590
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3591 3592
 */
static ssize_t
3593
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3594
{
3595
	u64 read_format = event->attr.read_format;
3596
	int ret;
T
Thomas Gleixner 已提交
3597

3598
	/*
3599
	 * Return end-of-file for a read on a event that is in
3600 3601 3602
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3603
	if (event->state == PERF_EVENT_STATE_ERROR)
3604 3605
		return 0;

3606
	if (count < event->read_size)
3607 3608
		return -ENOSPC;

3609
	WARN_ON_ONCE(event->ctx->parent_ctx);
3610
	if (read_format & PERF_FORMAT_GROUP)
3611
		ret = perf_event_read_group(event, read_format, buf);
3612
	else
3613
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3614

3615
	return ret;
T
Thomas Gleixner 已提交
3616 3617 3618 3619 3620
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3621
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3622

3623
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3624 3625 3626 3627
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3628
	struct perf_event *event = file->private_data;
3629
	struct ring_buffer *rb;
3630
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3631

3632
	/*
3633 3634
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3635 3636
	 */
	mutex_lock(&event->mmap_mutex);
3637 3638
	rb = event->rb;
	if (rb)
3639
		events = atomic_xchg(&rb->poll, 0);
3640 3641
	mutex_unlock(&event->mmap_mutex);

3642
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3643 3644 3645 3646

	return events;
}

3647
static void perf_event_reset(struct perf_event *event)
3648
{
3649
	(void)perf_event_read(event);
3650
	local64_set(&event->count, 0);
3651
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3652 3653
}

3654
/*
3655 3656 3657 3658
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3659
 */
3660 3661
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3662
{
3663
	struct perf_event *child;
P
Peter Zijlstra 已提交
3664

3665 3666 3667 3668
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3669
		func(child);
3670
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3671 3672
}

3673 3674
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3675
{
3676 3677
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3678

3679 3680
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3681
	event = event->group_leader;
3682

3683 3684
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3685
		perf_event_for_each_child(sibling, func);
3686
	mutex_unlock(&ctx->mutex);
3687 3688
}

3689
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3690
{
3691
	struct perf_event_context *ctx = event->ctx;
3692
	int ret = 0, active;
3693 3694
	u64 value;

3695
	if (!is_sampling_event(event))
3696 3697
		return -EINVAL;

3698
	if (copy_from_user(&value, arg, sizeof(value)))
3699 3700 3701 3702 3703
		return -EFAULT;

	if (!value)
		return -EINVAL;

3704
	raw_spin_lock_irq(&ctx->lock);
3705 3706
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3707 3708 3709 3710
			ret = -EINVAL;
			goto unlock;
		}

3711
		event->attr.sample_freq = value;
3712
	} else {
3713 3714
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3715
	}
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3730
unlock:
3731
	raw_spin_unlock_irq(&ctx->lock);
3732 3733 3734 3735

	return ret;
}

3736 3737
static const struct file_operations perf_fops;

3738
static inline int perf_fget_light(int fd, struct fd *p)
3739
{
3740 3741 3742
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3743

3744 3745 3746
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3747
	}
3748 3749
	*p = f;
	return 0;
3750 3751 3752 3753
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3754
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3755

3756 3757
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3758 3759
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3760
	u32 flags = arg;
3761 3762

	switch (cmd) {
3763 3764
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3765
		break;
3766 3767
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3768
		break;
3769 3770
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3771
		break;
P
Peter Zijlstra 已提交
3772

3773 3774
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3775

3776 3777
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3778

3779 3780 3781 3782 3783 3784 3785 3786 3787
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3788
	case PERF_EVENT_IOC_SET_OUTPUT:
3789 3790 3791
	{
		int ret;
		if (arg != -1) {
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3802 3803 3804
		}
		return ret;
	}
3805

L
Li Zefan 已提交
3806 3807 3808
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3809
	default:
P
Peter Zijlstra 已提交
3810
		return -ENOTTY;
3811
	}
P
Peter Zijlstra 已提交
3812 3813

	if (flags & PERF_IOC_FLAG_GROUP)
3814
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3815
	else
3816
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3817 3818

	return 0;
3819 3820
}

3821
int perf_event_task_enable(void)
3822
{
3823
	struct perf_event *event;
3824

3825 3826 3827 3828
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3829 3830 3831 3832

	return 0;
}

3833
int perf_event_task_disable(void)
3834
{
3835
	struct perf_event *event;
3836

3837 3838 3839 3840
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3841 3842 3843 3844

	return 0;
}

3845
static int perf_event_index(struct perf_event *event)
3846
{
P
Peter Zijlstra 已提交
3847 3848 3849
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3850
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3851 3852
		return 0;

3853
	return event->pmu->event_idx(event);
3854 3855
}

3856
static void calc_timer_values(struct perf_event *event,
3857
				u64 *now,
3858 3859
				u64 *enabled,
				u64 *running)
3860
{
3861
	u64 ctx_time;
3862

3863 3864
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3865 3866 3867 3868
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3889
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3890 3891 3892
{
}

3893 3894 3895 3896 3897
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3898
void perf_event_update_userpage(struct perf_event *event)
3899
{
3900
	struct perf_event_mmap_page *userpg;
3901
	struct ring_buffer *rb;
3902
	u64 enabled, running, now;
3903 3904

	rcu_read_lock();
3905 3906 3907 3908
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3909 3910 3911 3912 3913 3914 3915 3916 3917
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3918
	calc_timer_values(event, &now, &enabled, &running);
3919

3920
	userpg = rb->user_page;
3921 3922 3923 3924 3925
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3926
	++userpg->lock;
3927
	barrier();
3928
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3929
	userpg->offset = perf_event_count(event);
3930
	if (userpg->index)
3931
		userpg->offset -= local64_read(&event->hw.prev_count);
3932

3933
	userpg->time_enabled = enabled +
3934
			atomic64_read(&event->child_total_time_enabled);
3935

3936
	userpg->time_running = running +
3937
			atomic64_read(&event->child_total_time_running);
3938

3939
	arch_perf_update_userpage(userpg, now);
3940

3941
	barrier();
3942
	++userpg->lock;
3943
	preempt_enable();
3944
unlock:
3945
	rcu_read_unlock();
3946 3947
}

3948 3949 3950
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3951
	struct ring_buffer *rb;
3952 3953 3954 3955 3956 3957 3958 3959 3960
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3961 3962
	rb = rcu_dereference(event->rb);
	if (!rb)
3963 3964 3965 3966 3967
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3968
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3983 3984 3985
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
3986
	struct ring_buffer *old_rb = NULL;
3987 3988
	unsigned long flags;

3989 3990 3991 3992 3993 3994
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
3995

3996 3997 3998
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
3999

4000 4001 4002 4003
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4004

4005 4006 4007 4008
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4027 4028 4029 4030 4031 4032 4033 4034
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4035 4036 4037 4038
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4039 4040 4041
	rcu_read_unlock();
}

4042
static void rb_free_rcu(struct rcu_head *rcu_head)
4043
{
4044
	struct ring_buffer *rb;
4045

4046 4047
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4048 4049
}

4050
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4051
{
4052
	struct ring_buffer *rb;
4053

4054
	rcu_read_lock();
4055 4056 4057 4058
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4059 4060 4061
	}
	rcu_read_unlock();

4062
	return rb;
4063 4064
}

4065
static void ring_buffer_put(struct ring_buffer *rb)
4066
{
4067
	if (!atomic_dec_and_test(&rb->refcount))
4068
		return;
4069

4070
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4071

4072
	call_rcu(&rb->rcu_head, rb_free_rcu);
4073 4074 4075 4076
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4077
	struct perf_event *event = vma->vm_file->private_data;
4078

4079
	atomic_inc(&event->mmap_count);
4080
	atomic_inc(&event->rb->mmap_count);
4081 4082
}

4083 4084 4085 4086 4087 4088 4089 4090
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4091 4092
static void perf_mmap_close(struct vm_area_struct *vma)
{
4093
	struct perf_event *event = vma->vm_file->private_data;
4094

4095
	struct ring_buffer *rb = ring_buffer_get(event);
4096 4097 4098
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4099

4100 4101 4102
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4103
		goto out_put;
4104

4105
	ring_buffer_attach(event, NULL);
4106 4107 4108
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4109 4110
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4111

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4128

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4140 4141 4142
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4143
		mutex_unlock(&event->mmap_mutex);
4144
		put_event(event);
4145

4146 4147 4148 4149 4150
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4151
	}
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4167
out_put:
4168
	ring_buffer_put(rb); /* could be last */
4169 4170
}

4171
static const struct vm_operations_struct perf_mmap_vmops = {
4172 4173 4174 4175
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4176 4177 4178 4179
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4180
	struct perf_event *event = file->private_data;
4181
	unsigned long user_locked, user_lock_limit;
4182
	struct user_struct *user = current_user();
4183
	unsigned long locked, lock_limit;
4184
	struct ring_buffer *rb;
4185 4186
	unsigned long vma_size;
	unsigned long nr_pages;
4187
	long user_extra, extra;
4188
	int ret = 0, flags = 0;
4189

4190 4191 4192
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4193
	 * same rb.
4194 4195 4196 4197
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4198
	if (!(vma->vm_flags & VM_SHARED))
4199
		return -EINVAL;
4200 4201 4202 4203

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4204
	/*
4205
	 * If we have rb pages ensure they're a power-of-two number, so we
4206 4207 4208
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4209 4210
		return -EINVAL;

4211
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4212 4213
		return -EINVAL;

4214 4215
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4216

4217
	WARN_ON_ONCE(event->ctx->parent_ctx);
4218
again:
4219
	mutex_lock(&event->mmap_mutex);
4220
	if (event->rb) {
4221
		if (event->rb->nr_pages != nr_pages) {
4222
			ret = -EINVAL;
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4236 4237 4238
		goto unlock;
	}

4239
	user_extra = nr_pages + 1;
4240
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4241 4242 4243 4244 4245 4246

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4247
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4248

4249 4250 4251
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4252

4253
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4254
	lock_limit >>= PAGE_SHIFT;
4255
	locked = vma->vm_mm->pinned_vm + extra;
4256

4257 4258
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4259 4260 4261
		ret = -EPERM;
		goto unlock;
	}
4262

4263
	WARN_ON(event->rb);
4264

4265
	if (vma->vm_flags & VM_WRITE)
4266
		flags |= RING_BUFFER_WRITABLE;
4267

4268 4269 4270 4271
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4272
	if (!rb) {
4273
		ret = -ENOMEM;
4274
		goto unlock;
4275
	}
P
Peter Zijlstra 已提交
4276

4277
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4278 4279
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4280

4281
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4282 4283
	vma->vm_mm->pinned_vm += extra;

4284
	ring_buffer_attach(event, rb);
4285

4286
	perf_event_init_userpage(event);
4287 4288
	perf_event_update_userpage(event);

4289
unlock:
4290 4291
	if (!ret)
		atomic_inc(&event->mmap_count);
4292
	mutex_unlock(&event->mmap_mutex);
4293

4294 4295 4296 4297
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4298
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4299
	vma->vm_ops = &perf_mmap_vmops;
4300 4301

	return ret;
4302 4303
}

P
Peter Zijlstra 已提交
4304 4305
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4306
	struct inode *inode = file_inode(filp);
4307
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4308 4309 4310
	int retval;

	mutex_lock(&inode->i_mutex);
4311
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4312 4313 4314 4315 4316 4317 4318 4319
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4320
static const struct file_operations perf_fops = {
4321
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4322 4323 4324
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4325 4326
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4327
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4328
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4329 4330
};

4331
/*
4332
 * Perf event wakeup
4333 4334 4335 4336 4337
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4338
void perf_event_wakeup(struct perf_event *event)
4339
{
4340
	ring_buffer_wakeup(event);
4341

4342 4343 4344
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4345
	}
4346 4347
}

4348
static void perf_pending_event(struct irq_work *entry)
4349
{
4350 4351
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4352

4353 4354 4355
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4356 4357
	}

4358 4359 4360
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4361 4362 4363
	}
}

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4511 4512 4513
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4529
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4541 4542 4543
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4568 4569 4570

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4571 4572
}

4573 4574 4575
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4576 4577 4578 4579 4580
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4581
static void perf_output_read_one(struct perf_output_handle *handle,
4582 4583
				 struct perf_event *event,
				 u64 enabled, u64 running)
4584
{
4585
	u64 read_format = event->attr.read_format;
4586 4587 4588
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4589
	values[n++] = perf_event_count(event);
4590
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4591
		values[n++] = enabled +
4592
			atomic64_read(&event->child_total_time_enabled);
4593 4594
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4595
		values[n++] = running +
4596
			atomic64_read(&event->child_total_time_running);
4597 4598
	}
	if (read_format & PERF_FORMAT_ID)
4599
		values[n++] = primary_event_id(event);
4600

4601
	__output_copy(handle, values, n * sizeof(u64));
4602 4603 4604
}

/*
4605
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4606 4607
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4608 4609
			    struct perf_event *event,
			    u64 enabled, u64 running)
4610
{
4611 4612
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4613 4614 4615 4616 4617 4618
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4619
		values[n++] = enabled;
4620 4621

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4622
		values[n++] = running;
4623

4624
	if (leader != event)
4625 4626
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4627
	values[n++] = perf_event_count(leader);
4628
	if (read_format & PERF_FORMAT_ID)
4629
		values[n++] = primary_event_id(leader);
4630

4631
	__output_copy(handle, values, n * sizeof(u64));
4632

4633
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4634 4635
		n = 0;

4636 4637
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4638 4639
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4640
		values[n++] = perf_event_count(sub);
4641
		if (read_format & PERF_FORMAT_ID)
4642
			values[n++] = primary_event_id(sub);
4643

4644
		__output_copy(handle, values, n * sizeof(u64));
4645 4646 4647
	}
}

4648 4649 4650
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4651
static void perf_output_read(struct perf_output_handle *handle,
4652
			     struct perf_event *event)
4653
{
4654
	u64 enabled = 0, running = 0, now;
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4666
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4667
		calc_timer_values(event, &now, &enabled, &running);
4668

4669
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4670
		perf_output_read_group(handle, event, enabled, running);
4671
	else
4672
		perf_output_read_one(handle, event, enabled, running);
4673 4674
}

4675 4676 4677
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4678
			struct perf_event *event)
4679 4680 4681 4682 4683
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4684 4685 4686
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4712
		perf_output_read(handle, event);
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4723
			__output_copy(handle, data->callchain, size);
4724 4725 4726 4727 4728 4729 4730 4731 4732
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4733 4734
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4746

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4781

4782
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4783 4784 4785
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4786
	}
A
Andi Kleen 已提交
4787 4788 4789

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4790 4791 4792

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4793

A
Andi Kleen 已提交
4794 4795 4796
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4810 4811 4812 4813
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4814
			 struct perf_event *event,
4815
			 struct pt_regs *regs)
4816
{
4817
	u64 sample_type = event->attr.sample_type;
4818

4819
	header->type = PERF_RECORD_SAMPLE;
4820
	header->size = sizeof(*header) + event->header_size;
4821 4822 4823

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4824

4825
	__perf_event_header__init_id(header, data, event);
4826

4827
	if (sample_type & PERF_SAMPLE_IP)
4828 4829
		data->ip = perf_instruction_pointer(regs);

4830
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4831
		int size = 1;
4832

4833
		data->callchain = perf_callchain(event, regs);
4834 4835 4836 4837 4838

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4839 4840
	}

4841
	if (sample_type & PERF_SAMPLE_RAW) {
4842 4843 4844 4845 4846 4847 4848 4849
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4850
		header->size += size;
4851
	}
4852 4853 4854 4855 4856 4857 4858 4859 4860

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4904
}
4905

4906
static void perf_event_output(struct perf_event *event,
4907 4908 4909 4910 4911
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4912

4913 4914 4915
	/* protect the callchain buffers */
	rcu_read_lock();

4916
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4917

4918
	if (perf_output_begin(&handle, event, header.size))
4919
		goto exit;
4920

4921
	perf_output_sample(&handle, &header, data, event);
4922

4923
	perf_output_end(&handle);
4924 4925 4926

exit:
	rcu_read_unlock();
4927 4928
}

4929
/*
4930
 * read event_id
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4941
perf_event_read_event(struct perf_event *event,
4942 4943 4944
			struct task_struct *task)
{
	struct perf_output_handle handle;
4945
	struct perf_sample_data sample;
4946
	struct perf_read_event read_event = {
4947
		.header = {
4948
			.type = PERF_RECORD_READ,
4949
			.misc = 0,
4950
			.size = sizeof(read_event) + event->read_size,
4951
		},
4952 4953
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4954
	};
4955
	int ret;
4956

4957
	perf_event_header__init_id(&read_event.header, &sample, event);
4958
	ret = perf_output_begin(&handle, event, read_event.header.size);
4959 4960 4961
	if (ret)
		return;

4962
	perf_output_put(&handle, read_event);
4963
	perf_output_read(&handle, event);
4964
	perf_event__output_id_sample(event, &handle, &sample);
4965

4966 4967 4968
	perf_output_end(&handle);
}

4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4983
		output(event, data);
4984 4985 4986 4987
	}
}

static void
4988
perf_event_aux(perf_event_aux_output_cb output, void *data,
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5001
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5002 5003 5004 5005 5006 5007 5008
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5009
			perf_event_aux_ctx(ctx, output, data);
5010 5011 5012 5013 5014 5015
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5016
		perf_event_aux_ctx(task_ctx, output, data);
5017 5018 5019 5020 5021
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5022
/*
P
Peter Zijlstra 已提交
5023 5024
 * task tracking -- fork/exit
 *
5025
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5026 5027
 */

P
Peter Zijlstra 已提交
5028
struct perf_task_event {
5029
	struct task_struct		*task;
5030
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5031 5032 5033 5034 5035 5036

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5037 5038
		u32				tid;
		u32				ptid;
5039
		u64				time;
5040
	} event_id;
P
Peter Zijlstra 已提交
5041 5042
};

5043 5044
static int perf_event_task_match(struct perf_event *event)
{
5045 5046 5047
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5048 5049
}

5050
static void perf_event_task_output(struct perf_event *event,
5051
				   void *data)
P
Peter Zijlstra 已提交
5052
{
5053
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5054
	struct perf_output_handle handle;
5055
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5056
	struct task_struct *task = task_event->task;
5057
	int ret, size = task_event->event_id.header.size;
5058

5059 5060 5061
	if (!perf_event_task_match(event))
		return;

5062
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5063

5064
	ret = perf_output_begin(&handle, event,
5065
				task_event->event_id.header.size);
5066
	if (ret)
5067
		goto out;
P
Peter Zijlstra 已提交
5068

5069 5070
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5071

5072 5073
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5074

5075
	perf_output_put(&handle, task_event->event_id);
5076

5077 5078
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5079
	perf_output_end(&handle);
5080 5081
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5082 5083
}

5084 5085
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5086
			      int new)
P
Peter Zijlstra 已提交
5087
{
P
Peter Zijlstra 已提交
5088
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5089

5090 5091 5092
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5093 5094
		return;

P
Peter Zijlstra 已提交
5095
	task_event = (struct perf_task_event){
5096 5097
		.task	  = task,
		.task_ctx = task_ctx,
5098
		.event_id    = {
P
Peter Zijlstra 已提交
5099
			.header = {
5100
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5101
				.misc = 0,
5102
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5103
			},
5104 5105
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5106 5107
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5108
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5109 5110 5111
		},
	};

5112
	perf_event_aux(perf_event_task_output,
5113 5114
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5115 5116
}

5117
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5118
{
5119
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5120 5121
}

5122 5123 5124 5125 5126
/*
 * comm tracking
 */

struct perf_comm_event {
5127 5128
	struct task_struct	*task;
	char			*comm;
5129 5130 5131 5132 5133 5134 5135
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5136
	} event_id;
5137 5138
};

5139 5140 5141 5142 5143
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5144
static void perf_event_comm_output(struct perf_event *event,
5145
				   void *data)
5146
{
5147
	struct perf_comm_event *comm_event = data;
5148
	struct perf_output_handle handle;
5149
	struct perf_sample_data sample;
5150
	int size = comm_event->event_id.header.size;
5151 5152
	int ret;

5153 5154 5155
	if (!perf_event_comm_match(event))
		return;

5156 5157
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5158
				comm_event->event_id.header.size);
5159 5160

	if (ret)
5161
		goto out;
5162

5163 5164
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5165

5166
	perf_output_put(&handle, comm_event->event_id);
5167
	__output_copy(&handle, comm_event->comm,
5168
				   comm_event->comm_size);
5169 5170 5171

	perf_event__output_id_sample(event, &handle, &sample);

5172
	perf_output_end(&handle);
5173 5174
out:
	comm_event->event_id.header.size = size;
5175 5176
}

5177
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5178
{
5179
	char comm[TASK_COMM_LEN];
5180 5181
	unsigned int size;

5182
	memset(comm, 0, sizeof(comm));
5183
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5184
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5185 5186 5187 5188

	comm_event->comm = comm;
	comm_event->comm_size = size;

5189
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5190

5191
	perf_event_aux(perf_event_comm_output,
5192 5193
		       comm_event,
		       NULL);
5194 5195
}

5196
void perf_event_comm(struct task_struct *task, bool exec)
5197
{
5198 5199
	struct perf_comm_event comm_event;

5200
	if (!atomic_read(&nr_comm_events))
5201
		return;
5202

5203
	comm_event = (struct perf_comm_event){
5204
		.task	= task,
5205 5206
		/* .comm      */
		/* .comm_size */
5207
		.event_id  = {
5208
			.header = {
5209
				.type = PERF_RECORD_COMM,
5210
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5211 5212 5213 5214
				/* .size */
			},
			/* .pid */
			/* .tid */
5215 5216 5217
		},
	};

5218
	perf_event_comm_event(&comm_event);
5219 5220
}

5221 5222 5223 5224 5225
/*
 * mmap tracking
 */

struct perf_mmap_event {
5226 5227 5228 5229
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5230 5231 5232
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5233
	u32			prot, flags;
5234 5235 5236 5237 5238 5239 5240 5241 5242

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5243
	} event_id;
5244 5245
};

5246 5247 5248 5249 5250 5251 5252 5253
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5254
	       (executable && (event->attr.mmap || event->attr.mmap2));
5255 5256
}

5257
static void perf_event_mmap_output(struct perf_event *event,
5258
				   void *data)
5259
{
5260
	struct perf_mmap_event *mmap_event = data;
5261
	struct perf_output_handle handle;
5262
	struct perf_sample_data sample;
5263
	int size = mmap_event->event_id.header.size;
5264
	int ret;
5265

5266 5267 5268
	if (!perf_event_mmap_match(event, data))
		return;

5269 5270 5271 5272 5273
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5274
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5275 5276
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5277 5278
	}

5279 5280
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5281
				mmap_event->event_id.header.size);
5282
	if (ret)
5283
		goto out;
5284

5285 5286
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5287

5288
	perf_output_put(&handle, mmap_event->event_id);
5289 5290 5291 5292 5293 5294

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5295 5296
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5297 5298
	}

5299
	__output_copy(&handle, mmap_event->file_name,
5300
				   mmap_event->file_size);
5301 5302 5303

	perf_event__output_id_sample(event, &handle, &sample);

5304
	perf_output_end(&handle);
5305 5306
out:
	mmap_event->event_id.header.size = size;
5307 5308
}

5309
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5310
{
5311 5312
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5313 5314
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5315
	u32 prot = 0, flags = 0;
5316 5317 5318
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5319
	char *name;
5320

5321
	if (file) {
5322 5323
		struct inode *inode;
		dev_t dev;
5324

5325
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5326
		if (!buf) {
5327 5328
			name = "//enomem";
			goto cpy_name;
5329
		}
5330
		/*
5331
		 * d_path() works from the end of the rb backwards, so we
5332 5333 5334
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5335
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5336
		if (IS_ERR(name)) {
5337 5338
			name = "//toolong";
			goto cpy_name;
5339
		}
5340 5341 5342 5343 5344 5345
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5368
		goto got_name;
5369
	} else {
5370 5371 5372 5373 5374 5375
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5376
		name = (char *)arch_vma_name(vma);
5377 5378
		if (name)
			goto cpy_name;
5379

5380
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5381
				vma->vm_end >= vma->vm_mm->brk) {
5382 5383
			name = "[heap]";
			goto cpy_name;
5384 5385
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5386
				vma->vm_end >= vma->vm_mm->start_stack) {
5387 5388
			name = "[stack]";
			goto cpy_name;
5389 5390
		}

5391 5392
		name = "//anon";
		goto cpy_name;
5393 5394
	}

5395 5396 5397
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5398
got_name:
5399 5400 5401 5402 5403 5404 5405 5406
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5407 5408 5409

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5410 5411 5412 5413
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5414 5415
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5416

5417 5418 5419
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5420
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5421

5422
	perf_event_aux(perf_event_mmap_output,
5423 5424
		       mmap_event,
		       NULL);
5425

5426 5427 5428
	kfree(buf);
}

5429
void perf_event_mmap(struct vm_area_struct *vma)
5430
{
5431 5432
	struct perf_mmap_event mmap_event;

5433
	if (!atomic_read(&nr_mmap_events))
5434 5435 5436
		return;

	mmap_event = (struct perf_mmap_event){
5437
		.vma	= vma,
5438 5439
		/* .file_name */
		/* .file_size */
5440
		.event_id  = {
5441
			.header = {
5442
				.type = PERF_RECORD_MMAP,
5443
				.misc = PERF_RECORD_MISC_USER,
5444 5445 5446 5447
				/* .size */
			},
			/* .pid */
			/* .tid */
5448 5449
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5450
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5451
		},
5452 5453 5454 5455
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5456 5457
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5458 5459
	};

5460
	perf_event_mmap_event(&mmap_event);
5461 5462
}

5463 5464 5465 5466
/*
 * IRQ throttle logging
 */

5467
static void perf_log_throttle(struct perf_event *event, int enable)
5468 5469
{
	struct perf_output_handle handle;
5470
	struct perf_sample_data sample;
5471 5472 5473 5474 5475
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5476
		u64				id;
5477
		u64				stream_id;
5478 5479
	} throttle_event = {
		.header = {
5480
			.type = PERF_RECORD_THROTTLE,
5481 5482 5483
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5484
		.time		= perf_clock(),
5485 5486
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5487 5488
	};

5489
	if (enable)
5490
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5491

5492 5493 5494
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5495
				throttle_event.header.size);
5496 5497 5498 5499
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5500
	perf_event__output_id_sample(event, &handle, &sample);
5501 5502 5503
	perf_output_end(&handle);
}

5504
/*
5505
 * Generic event overflow handling, sampling.
5506 5507
 */

5508
static int __perf_event_overflow(struct perf_event *event,
5509 5510
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5511
{
5512 5513
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5514
	u64 seq;
5515 5516
	int ret = 0;

5517 5518 5519 5520 5521 5522 5523
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5524 5525 5526 5527 5528 5529 5530 5531 5532
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5533 5534
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5535
			tick_nohz_full_kick();
5536 5537
			ret = 1;
		}
5538
	}
5539

5540
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5541
		u64 now = perf_clock();
5542
		s64 delta = now - hwc->freq_time_stamp;
5543

5544
		hwc->freq_time_stamp = now;
5545

5546
		if (delta > 0 && delta < 2*TICK_NSEC)
5547
			perf_adjust_period(event, delta, hwc->last_period, true);
5548 5549
	}

5550 5551
	/*
	 * XXX event_limit might not quite work as expected on inherited
5552
	 * events
5553 5554
	 */

5555 5556
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5557
		ret = 1;
5558
		event->pending_kill = POLL_HUP;
5559 5560
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5561 5562
	}

5563
	if (event->overflow_handler)
5564
		event->overflow_handler(event, data, regs);
5565
	else
5566
		perf_event_output(event, data, regs);
5567

P
Peter Zijlstra 已提交
5568
	if (event->fasync && event->pending_kill) {
5569 5570
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5571 5572
	}

5573
	return ret;
5574 5575
}

5576
int perf_event_overflow(struct perf_event *event,
5577 5578
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5579
{
5580
	return __perf_event_overflow(event, 1, data, regs);
5581 5582
}

5583
/*
5584
 * Generic software event infrastructure
5585 5586
 */

5587 5588 5589 5590 5591 5592 5593
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5594 5595 5596

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5597 5598 5599 5600
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5601
/*
5602 5603
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5604 5605 5606 5607
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5608
u64 perf_swevent_set_period(struct perf_event *event)
5609
{
5610
	struct hw_perf_event *hwc = &event->hw;
5611 5612 5613 5614 5615
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5616 5617

again:
5618
	old = val = local64_read(&hwc->period_left);
5619 5620
	if (val < 0)
		return 0;
5621

5622 5623 5624
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5625
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5626
		goto again;
5627

5628
	return nr;
5629 5630
}

5631
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5632
				    struct perf_sample_data *data,
5633
				    struct pt_regs *regs)
5634
{
5635
	struct hw_perf_event *hwc = &event->hw;
5636
	int throttle = 0;
5637

5638 5639
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5640

5641 5642
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5643

5644
	for (; overflow; overflow--) {
5645
		if (__perf_event_overflow(event, throttle,
5646
					    data, regs)) {
5647 5648 5649 5650 5651 5652
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5653
		throttle = 1;
5654
	}
5655 5656
}

P
Peter Zijlstra 已提交
5657
static void perf_swevent_event(struct perf_event *event, u64 nr,
5658
			       struct perf_sample_data *data,
5659
			       struct pt_regs *regs)
5660
{
5661
	struct hw_perf_event *hwc = &event->hw;
5662

5663
	local64_add(nr, &event->count);
5664

5665 5666 5667
	if (!regs)
		return;

5668
	if (!is_sampling_event(event))
5669
		return;
5670

5671 5672 5673 5674 5675 5676
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5677
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5678
		return perf_swevent_overflow(event, 1, data, regs);
5679

5680
	if (local64_add_negative(nr, &hwc->period_left))
5681
		return;
5682

5683
	perf_swevent_overflow(event, 0, data, regs);
5684 5685
}

5686 5687 5688
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5689
	if (event->hw.state & PERF_HES_STOPPED)
5690
		return 1;
P
Peter Zijlstra 已提交
5691

5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5703
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5704
				enum perf_type_id type,
L
Li Zefan 已提交
5705 5706 5707
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5708
{
5709
	if (event->attr.type != type)
5710
		return 0;
5711

5712
	if (event->attr.config != event_id)
5713 5714
		return 0;

5715 5716
	if (perf_exclude_event(event, regs))
		return 0;
5717 5718 5719 5720

	return 1;
}

5721 5722 5723 5724 5725 5726 5727
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5728 5729
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5730
{
5731 5732 5733 5734
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5735

5736 5737
/* For the read side: events when they trigger */
static inline struct hlist_head *
5738
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5739 5740
{
	struct swevent_hlist *hlist;
5741

5742
	hlist = rcu_dereference(swhash->swevent_hlist);
5743 5744 5745
	if (!hlist)
		return NULL;

5746 5747 5748 5749 5750
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5751
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5762
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5763 5764 5765 5766 5767
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5768 5769 5770
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5771
				    u64 nr,
5772 5773
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5774
{
5775
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5776
	struct perf_event *event;
5777
	struct hlist_head *head;
5778

5779
	rcu_read_lock();
5780
	head = find_swevent_head_rcu(swhash, type, event_id);
5781 5782 5783
	if (!head)
		goto end;

5784
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5785
		if (perf_swevent_match(event, type, event_id, data, regs))
5786
			perf_swevent_event(event, nr, data, regs);
5787
	}
5788 5789
end:
	rcu_read_unlock();
5790 5791
}

5792
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5793
{
5794
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5795

5796
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5797
}
I
Ingo Molnar 已提交
5798
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5799

5800
inline void perf_swevent_put_recursion_context(int rctx)
5801
{
5802
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5803

5804
	put_recursion_context(swhash->recursion, rctx);
5805
}
5806

5807
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5808
{
5809
	struct perf_sample_data data;
5810 5811
	int rctx;

5812
	preempt_disable_notrace();
5813 5814 5815
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5816

5817
	perf_sample_data_init(&data, addr, 0);
5818

5819
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5820 5821

	perf_swevent_put_recursion_context(rctx);
5822
	preempt_enable_notrace();
5823 5824
}

5825
static void perf_swevent_read(struct perf_event *event)
5826 5827 5828
{
}

P
Peter Zijlstra 已提交
5829
static int perf_swevent_add(struct perf_event *event, int flags)
5830
{
5831
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5832
	struct hw_perf_event *hwc = &event->hw;
5833 5834
	struct hlist_head *head;

5835
	if (is_sampling_event(event)) {
5836
		hwc->last_period = hwc->sample_period;
5837
		perf_swevent_set_period(event);
5838
	}
5839

P
Peter Zijlstra 已提交
5840 5841
	hwc->state = !(flags & PERF_EF_START);

5842
	head = find_swevent_head(swhash, event);
5843 5844 5845 5846 5847 5848
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
5849
		return -EINVAL;
5850
	}
5851 5852 5853

	hlist_add_head_rcu(&event->hlist_entry, head);

5854 5855 5856
	return 0;
}

P
Peter Zijlstra 已提交
5857
static void perf_swevent_del(struct perf_event *event, int flags)
5858
{
5859
	hlist_del_rcu(&event->hlist_entry);
5860 5861
}

P
Peter Zijlstra 已提交
5862
static void perf_swevent_start(struct perf_event *event, int flags)
5863
{
P
Peter Zijlstra 已提交
5864
	event->hw.state = 0;
5865
}
I
Ingo Molnar 已提交
5866

P
Peter Zijlstra 已提交
5867
static void perf_swevent_stop(struct perf_event *event, int flags)
5868
{
P
Peter Zijlstra 已提交
5869
	event->hw.state = PERF_HES_STOPPED;
5870 5871
}

5872 5873
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5874
swevent_hlist_deref(struct swevent_htable *swhash)
5875
{
5876 5877
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5878 5879
}

5880
static void swevent_hlist_release(struct swevent_htable *swhash)
5881
{
5882
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5883

5884
	if (!hlist)
5885 5886
		return;

5887
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5888
	kfree_rcu(hlist, rcu_head);
5889 5890 5891 5892
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5893
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5894

5895
	mutex_lock(&swhash->hlist_mutex);
5896

5897 5898
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5899

5900
	mutex_unlock(&swhash->hlist_mutex);
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5913
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5914 5915
	int err = 0;

5916
	mutex_lock(&swhash->hlist_mutex);
5917

5918
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5919 5920 5921 5922 5923 5924 5925
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5926
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5927
	}
5928
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5929
exit:
5930
	mutex_unlock(&swhash->hlist_mutex);
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5951
fail:
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5962
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5963

5964 5965 5966
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5967

5968 5969
	WARN_ON(event->parent);

5970
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5971 5972 5973 5974 5975
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5976
	u64 event_id = event->attr.config;
5977 5978 5979 5980

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5981 5982 5983 5984 5985 5986
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5987 5988 5989 5990 5991 5992 5993 5994 5995
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5996
	if (event_id >= PERF_COUNT_SW_MAX)
5997 5998 5999 6000 6001 6002 6003 6004 6005
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6006
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6007 6008 6009 6010 6011 6012
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

6013 6014 6015 6016 6017
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

6018
static struct pmu perf_swevent = {
6019
	.task_ctx_nr	= perf_sw_context,
6020

6021
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6022 6023 6024 6025
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6026
	.read		= perf_swevent_read,
6027 6028

	.event_idx	= perf_swevent_event_idx,
6029 6030
};

6031 6032
#ifdef CONFIG_EVENT_TRACING

6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6047 6048
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6049 6050 6051 6052
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6053 6054 6055 6056 6057 6058 6059 6060 6061
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6062 6063
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6064 6065
{
	struct perf_sample_data data;
6066 6067
	struct perf_event *event;

6068 6069 6070 6071 6072
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6073
	perf_sample_data_init(&data, addr, 0);
6074 6075
	data.raw = &raw;

6076
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6077
		if (perf_tp_event_match(event, &data, regs))
6078
			perf_swevent_event(event, count, &data, regs);
6079
	}
6080

6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6106
	perf_swevent_put_recursion_context(rctx);
6107 6108 6109
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6110
static void tp_perf_event_destroy(struct perf_event *event)
6111
{
6112
	perf_trace_destroy(event);
6113 6114
}

6115
static int perf_tp_event_init(struct perf_event *event)
6116
{
6117 6118
	int err;

6119 6120 6121
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6122 6123 6124 6125 6126 6127
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6128 6129
	err = perf_trace_init(event);
	if (err)
6130
		return err;
6131

6132
	event->destroy = tp_perf_event_destroy;
6133

6134 6135 6136 6137
	return 0;
}

static struct pmu perf_tracepoint = {
6138 6139
	.task_ctx_nr	= perf_sw_context,

6140
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6141 6142 6143 6144
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6145
	.read		= perf_swevent_read,
6146 6147

	.event_idx	= perf_swevent_event_idx,
6148 6149 6150 6151
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6152
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6153
}
L
Li Zefan 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6178
#else
L
Li Zefan 已提交
6179

6180
static inline void perf_tp_register(void)
6181 6182
{
}
L
Li Zefan 已提交
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6193
#endif /* CONFIG_EVENT_TRACING */
6194

6195
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6196
void perf_bp_event(struct perf_event *bp, void *data)
6197
{
6198 6199 6200
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6201
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6202

P
Peter Zijlstra 已提交
6203
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6204
		perf_swevent_event(bp, 1, &sample, regs);
6205 6206 6207
}
#endif

6208 6209 6210
/*
 * hrtimer based swevent callback
 */
6211

6212
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6213
{
6214 6215 6216 6217 6218
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6219

6220
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6221 6222 6223 6224

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6225
	event->pmu->read(event);
6226

6227
	perf_sample_data_init(&data, 0, event->hw.last_period);
6228 6229 6230
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6231
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6232
			if (__perf_event_overflow(event, 1, &data, regs))
6233 6234
				ret = HRTIMER_NORESTART;
	}
6235

6236 6237
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6238

6239
	return ret;
6240 6241
}

6242
static void perf_swevent_start_hrtimer(struct perf_event *event)
6243
{
6244
	struct hw_perf_event *hwc = &event->hw;
6245 6246 6247 6248
	s64 period;

	if (!is_sampling_event(event))
		return;
6249

6250 6251 6252 6253
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6254

6255 6256 6257 6258 6259
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6260
				ns_to_ktime(period), 0,
6261
				HRTIMER_MODE_REL_PINNED, 0);
6262
}
6263 6264

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6265
{
6266 6267
	struct hw_perf_event *hwc = &event->hw;

6268
	if (is_sampling_event(event)) {
6269
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6270
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6271 6272 6273

		hrtimer_cancel(&hwc->hrtimer);
	}
6274 6275
}

P
Peter Zijlstra 已提交
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6296
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6297 6298 6299 6300
		event->attr.freq = 0;
	}
}

6301 6302 6303 6304 6305
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6306
{
6307 6308 6309
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6310
	now = local_clock();
6311 6312
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6313 6314
}

P
Peter Zijlstra 已提交
6315
static void cpu_clock_event_start(struct perf_event *event, int flags)
6316
{
P
Peter Zijlstra 已提交
6317
	local64_set(&event->hw.prev_count, local_clock());
6318 6319 6320
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6321
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6322
{
6323 6324 6325
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6326

P
Peter Zijlstra 已提交
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6340 6341 6342 6343
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6344

6345 6346 6347 6348 6349 6350 6351 6352
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6353 6354 6355 6356 6357 6358
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6359 6360
	perf_swevent_init_hrtimer(event);

6361
	return 0;
6362 6363
}

6364
static struct pmu perf_cpu_clock = {
6365 6366
	.task_ctx_nr	= perf_sw_context,

6367
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6368 6369 6370 6371
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6372
	.read		= cpu_clock_event_read,
6373 6374

	.event_idx	= perf_swevent_event_idx,
6375 6376 6377 6378 6379 6380 6381
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6382
{
6383 6384
	u64 prev;
	s64 delta;
6385

6386 6387 6388 6389
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6390

P
Peter Zijlstra 已提交
6391
static void task_clock_event_start(struct perf_event *event, int flags)
6392
{
P
Peter Zijlstra 已提交
6393
	local64_set(&event->hw.prev_count, event->ctx->time);
6394 6395 6396
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6397
static void task_clock_event_stop(struct perf_event *event, int flags)
6398 6399 6400
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6401 6402 6403 6404 6405 6406
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6407

P
Peter Zijlstra 已提交
6408 6409 6410 6411 6412 6413
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6414 6415 6416 6417
}

static void task_clock_event_read(struct perf_event *event)
{
6418 6419 6420
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6421 6422 6423 6424 6425

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6426
{
6427 6428 6429 6430 6431 6432
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6433 6434 6435 6436 6437 6438
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6439 6440
	perf_swevent_init_hrtimer(event);

6441
	return 0;
L
Li Zefan 已提交
6442 6443
}

6444
static struct pmu perf_task_clock = {
6445 6446
	.task_ctx_nr	= perf_sw_context,

6447
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6448 6449 6450 6451
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6452
	.read		= task_clock_event_read,
6453 6454

	.event_idx	= perf_swevent_event_idx,
6455
};
L
Li Zefan 已提交
6456

P
Peter Zijlstra 已提交
6457
static void perf_pmu_nop_void(struct pmu *pmu)
6458 6459
{
}
L
Li Zefan 已提交
6460

P
Peter Zijlstra 已提交
6461
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6462
{
P
Peter Zijlstra 已提交
6463
	return 0;
L
Li Zefan 已提交
6464 6465
}

P
Peter Zijlstra 已提交
6466
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6467
{
P
Peter Zijlstra 已提交
6468
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6469 6470
}

P
Peter Zijlstra 已提交
6471 6472 6473 6474 6475
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6476

P
Peter Zijlstra 已提交
6477
static void perf_pmu_cancel_txn(struct pmu *pmu)
6478
{
P
Peter Zijlstra 已提交
6479
	perf_pmu_enable(pmu);
6480 6481
}

6482 6483 6484 6485 6486
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6487 6488 6489 6490
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6491
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6492
{
P
Peter Zijlstra 已提交
6493
	struct pmu *pmu;
6494

P
Peter Zijlstra 已提交
6495 6496
	if (ctxn < 0)
		return NULL;
6497

P
Peter Zijlstra 已提交
6498 6499 6500 6501
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6502

P
Peter Zijlstra 已提交
6503
	return NULL;
6504 6505
}

6506
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6507
{
6508 6509 6510 6511 6512 6513 6514
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6515 6516
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6517 6518 6519 6520 6521 6522
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6523

P
Peter Zijlstra 已提交
6524
	mutex_lock(&pmus_lock);
6525
	/*
P
Peter Zijlstra 已提交
6526
	 * Like a real lame refcount.
6527
	 */
6528 6529 6530
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6531
			goto out;
6532
		}
P
Peter Zijlstra 已提交
6533
	}
6534

6535
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6536 6537
out:
	mutex_unlock(&pmus_lock);
6538
}
P
Peter Zijlstra 已提交
6539
static struct idr pmu_idr;
6540

P
Peter Zijlstra 已提交
6541 6542 6543 6544 6545 6546 6547
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6548
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6549

6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6593
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6594

6595 6596 6597 6598
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6599
};
6600
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6601 6602 6603 6604

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6605
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6621
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6642
static struct lock_class_key cpuctx_mutex;
6643
static struct lock_class_key cpuctx_lock;
6644

6645
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6646
{
P
Peter Zijlstra 已提交
6647
	int cpu, ret;
6648

6649
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6650 6651 6652 6653
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6654

P
Peter Zijlstra 已提交
6655 6656 6657 6658 6659 6660
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6661 6662 6663
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6664 6665 6666 6667 6668
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6669 6670 6671 6672 6673 6674
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6675
skip_type:
P
Peter Zijlstra 已提交
6676 6677 6678
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6679

W
Wei Yongjun 已提交
6680
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6681 6682
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6683
		goto free_dev;
6684

P
Peter Zijlstra 已提交
6685 6686 6687 6688
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6689
		__perf_event_init_context(&cpuctx->ctx);
6690
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6691
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6692
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6693
		cpuctx->ctx.pmu = pmu;
6694 6695 6696

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6697
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6698
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6699
	}
6700

P
Peter Zijlstra 已提交
6701
got_cpu_context:
P
Peter Zijlstra 已提交
6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6716
		}
6717
	}
6718

P
Peter Zijlstra 已提交
6719 6720 6721 6722 6723
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6724 6725 6726
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6727
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6728 6729
	ret = 0;
unlock:
6730 6731
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6732
	return ret;
P
Peter Zijlstra 已提交
6733

P
Peter Zijlstra 已提交
6734 6735 6736 6737
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6738 6739 6740 6741
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6742 6743 6744
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6745
}
6746
EXPORT_SYMBOL_GPL(perf_pmu_register);
6747

6748
void perf_pmu_unregister(struct pmu *pmu)
6749
{
6750 6751 6752
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6753

6754
	/*
P
Peter Zijlstra 已提交
6755 6756
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6757
	 */
6758
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6759
	synchronize_rcu();
6760

P
Peter Zijlstra 已提交
6761
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6762 6763
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6764 6765
	device_del(pmu->dev);
	put_device(pmu->dev);
6766
	free_pmu_context(pmu);
6767
}
6768
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6769

6770 6771 6772 6773
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6774
	int ret;
6775 6776

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6777 6778 6779 6780

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6781
	if (pmu) {
6782 6783 6784 6785
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6786
		event->pmu = pmu;
6787 6788 6789
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6790
		goto unlock;
6791
	}
P
Peter Zijlstra 已提交
6792

6793
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6794 6795 6796 6797
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6798
		event->pmu = pmu;
6799
		ret = pmu->event_init(event);
6800
		if (!ret)
P
Peter Zijlstra 已提交
6801
			goto unlock;
6802

6803 6804
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6805
			goto unlock;
6806
		}
6807
	}
P
Peter Zijlstra 已提交
6808 6809
	pmu = ERR_PTR(-ENOENT);
unlock:
6810
	srcu_read_unlock(&pmus_srcu, idx);
6811

6812
	return pmu;
6813 6814
}

6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6828 6829
static void account_event(struct perf_event *event)
{
6830 6831 6832
	if (event->parent)
		return;

6833 6834 6835 6836 6837 6838 6839 6840
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6841 6842 6843 6844
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6845
	if (has_branch_stack(event))
6846
		static_key_slow_inc(&perf_sched_events.key);
6847
	if (is_cgroup_event(event))
6848
		static_key_slow_inc(&perf_sched_events.key);
6849 6850

	account_event_cpu(event, event->cpu);
6851 6852
}

T
Thomas Gleixner 已提交
6853
/*
6854
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6855
 */
6856
static struct perf_event *
6857
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6858 6859 6860
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6861 6862
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6863
{
P
Peter Zijlstra 已提交
6864
	struct pmu *pmu;
6865 6866
	struct perf_event *event;
	struct hw_perf_event *hwc;
6867
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6868

6869 6870 6871 6872 6873
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6874
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6875
	if (!event)
6876
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6877

6878
	/*
6879
	 * Single events are their own group leaders, with an
6880 6881 6882
	 * empty sibling list:
	 */
	if (!group_leader)
6883
		group_leader = event;
6884

6885 6886
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6887

6888 6889 6890
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6891
	INIT_LIST_HEAD(&event->rb_entry);
6892
	INIT_LIST_HEAD(&event->active_entry);
6893 6894
	INIT_HLIST_NODE(&event->hlist_entry);

6895

6896
	init_waitqueue_head(&event->waitq);
6897
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6898

6899
	mutex_init(&event->mmap_mutex);
6900

6901
	atomic_long_set(&event->refcount, 1);
6902 6903 6904 6905 6906
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6907

6908
	event->parent		= parent_event;
6909

6910
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6911
	event->id		= atomic64_inc_return(&perf_event_id);
6912

6913
	event->state		= PERF_EVENT_STATE_INACTIVE;
6914

6915 6916
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6917 6918 6919

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6920 6921 6922 6923
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6924
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6925 6926 6927 6928
			event->hw.bp_target = task;
#endif
	}

6929
	if (!overflow_handler && parent_event) {
6930
		overflow_handler = parent_event->overflow_handler;
6931 6932
		context = parent_event->overflow_handler_context;
	}
6933

6934
	event->overflow_handler	= overflow_handler;
6935
	event->overflow_handler_context = context;
6936

J
Jiri Olsa 已提交
6937
	perf_event__state_init(event);
6938

6939
	pmu = NULL;
6940

6941
	hwc = &event->hw;
6942
	hwc->sample_period = attr->sample_period;
6943
	if (attr->freq && attr->sample_freq)
6944
		hwc->sample_period = 1;
6945
	hwc->last_period = hwc->sample_period;
6946

6947
	local64_set(&hwc->period_left, hwc->sample_period);
6948

6949
	/*
6950
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6951
	 */
6952
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6953
		goto err_ns;
6954

6955
	pmu = perf_init_event(event);
6956
	if (!pmu)
6957 6958
		goto err_ns;
	else if (IS_ERR(pmu)) {
6959
		err = PTR_ERR(pmu);
6960
		goto err_ns;
I
Ingo Molnar 已提交
6961
	}
6962

6963
	if (!event->parent) {
6964 6965
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6966 6967
			if (err)
				goto err_pmu;
6968
		}
6969
	}
6970

6971
	return event;
6972 6973 6974 6975

err_pmu:
	if (event->destroy)
		event->destroy(event);
6976
	module_put(pmu->module);
6977 6978 6979 6980 6981 6982
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6983 6984
}

6985 6986
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6987 6988
{
	u32 size;
6989
	int ret;
6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7014 7015 7016
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7017 7018
	 */
	if (size > sizeof(*attr)) {
7019 7020 7021
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7022

7023 7024
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7025

7026
		for (; addr < end; addr++) {
7027 7028 7029 7030 7031 7032
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7033
		size = sizeof(*attr);
7034 7035 7036 7037 7038 7039
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7040
	if (attr->__reserved_1)
7041 7042 7043 7044 7045 7046 7047 7048
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7077 7078
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7079 7080
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7081
	}
7082

7083
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7084
		ret = perf_reg_validate(attr->sample_regs_user);
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7103

7104 7105 7106 7107 7108 7109 7110 7111 7112
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7113 7114
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7115
{
7116
	struct ring_buffer *rb = NULL;
7117 7118
	int ret = -EINVAL;

7119
	if (!output_event)
7120 7121
		goto set;

7122 7123
	/* don't allow circular references */
	if (event == output_event)
7124 7125
		goto out;

7126 7127 7128 7129 7130 7131 7132
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7133
	 * If its not a per-cpu rb, it must be the same task.
7134 7135 7136 7137
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7138
set:
7139
	mutex_lock(&event->mmap_mutex);
7140 7141 7142
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7143

7144
	if (output_event) {
7145 7146 7147
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7148
			goto unlock;
7149 7150
	}

7151
	ring_buffer_attach(event, rb);
7152

7153
	ret = 0;
7154 7155 7156
unlock:
	mutex_unlock(&event->mmap_mutex);

7157 7158 7159 7160
out:
	return ret;
}

T
Thomas Gleixner 已提交
7161
/**
7162
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7163
 *
7164
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7165
 * @pid:		target pid
I
Ingo Molnar 已提交
7166
 * @cpu:		target cpu
7167
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7168
 */
7169 7170
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7171
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7172
{
7173 7174
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7175 7176 7177
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7178
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7179
	struct task_struct *task = NULL;
7180
	struct pmu *pmu;
7181
	int event_fd;
7182
	int move_group = 0;
7183
	int err;
7184
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7185

7186
	/* for future expandability... */
S
Stephane Eranian 已提交
7187
	if (flags & ~PERF_FLAG_ALL)
7188 7189
		return -EINVAL;

7190 7191 7192
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7193

7194 7195 7196 7197 7198
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7199
	if (attr.freq) {
7200
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7201
			return -EINVAL;
7202 7203 7204
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7205 7206
	}

S
Stephane Eranian 已提交
7207 7208 7209 7210 7211 7212 7213 7214 7215
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7216 7217 7218 7219
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7220 7221 7222
	if (event_fd < 0)
		return event_fd;

7223
	if (group_fd != -1) {
7224 7225
		err = perf_fget_light(group_fd, &group);
		if (err)
7226
			goto err_fd;
7227
		group_leader = group.file->private_data;
7228 7229 7230 7231 7232 7233
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7234
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7235 7236 7237 7238 7239 7240 7241
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7242 7243 7244 7245 7246 7247
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7248 7249
	get_online_cpus();

7250 7251
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7252 7253
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7254
		goto err_cpus;
7255 7256
	}

S
Stephane Eranian 已提交
7257 7258
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7259 7260
		if (err) {
			__free_event(event);
7261
			goto err_cpus;
7262
		}
S
Stephane Eranian 已提交
7263 7264
	}

7265 7266 7267 7268 7269 7270 7271
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7272 7273
	account_event(event);

7274 7275 7276 7277 7278
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7302 7303 7304 7305

	/*
	 * Get the target context (task or percpu):
	 */
7306
	ctx = find_get_context(pmu, task, event->cpu);
7307 7308
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7309
		goto err_alloc;
7310 7311
	}

7312 7313 7314 7315 7316
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7317
	/*
7318
	 * Look up the group leader (we will attach this event to it):
7319
	 */
7320
	if (group_leader) {
7321
		err = -EINVAL;
7322 7323

		/*
I
Ingo Molnar 已提交
7324 7325 7326 7327
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7328
			goto err_context;
I
Ingo Molnar 已提交
7329 7330 7331
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7332
		 */
7333 7334 7335 7336 7337 7338 7339 7340
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7341 7342 7343
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7344
		if (attr.exclusive || attr.pinned)
7345
			goto err_context;
7346 7347 7348 7349 7350
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7351
			goto err_context;
7352
	}
T
Thomas Gleixner 已提交
7353

7354 7355
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7356 7357
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7358
		goto err_context;
7359
	}
7360

7361 7362 7363 7364
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7365
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7366 7367 7368 7369 7370 7371 7372

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7373 7374
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7375
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7376
			perf_event__state_init(sibling);
7377 7378 7379 7380
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7381
	}
7382

7383
	WARN_ON_ONCE(ctx->parent_ctx);
7384
	mutex_lock(&ctx->mutex);
7385 7386

	if (move_group) {
7387
		synchronize_rcu();
7388
		perf_install_in_context(ctx, group_leader, event->cpu);
7389 7390 7391
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7392
			perf_install_in_context(ctx, sibling, event->cpu);
7393 7394 7395 7396
			get_ctx(ctx);
		}
	}

7397
	perf_install_in_context(ctx, event, event->cpu);
7398
	perf_unpin_context(ctx);
7399
	mutex_unlock(&ctx->mutex);
7400

7401 7402
	put_online_cpus();

7403
	event->owner = current;
P
Peter Zijlstra 已提交
7404

7405 7406 7407
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7408

7409 7410 7411 7412
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7413
	perf_event__id_header_size(event);
7414

7415 7416 7417 7418 7419 7420
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7421
	fdput(group);
7422 7423
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7424

7425
err_context:
7426
	perf_unpin_context(ctx);
7427
	put_ctx(ctx);
7428
err_alloc:
7429
	free_event(event);
7430
err_cpus:
7431
	put_online_cpus();
7432
err_task:
P
Peter Zijlstra 已提交
7433 7434
	if (task)
		put_task_struct(task);
7435
err_group_fd:
7436
	fdput(group);
7437 7438
err_fd:
	put_unused_fd(event_fd);
7439
	return err;
T
Thomas Gleixner 已提交
7440 7441
}

7442 7443 7444 7445 7446
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7447
 * @task: task to profile (NULL for percpu)
7448 7449 7450
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7451
				 struct task_struct *task,
7452 7453
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7454 7455
{
	struct perf_event_context *ctx;
7456
	struct perf_event *event;
7457
	int err;
7458

7459 7460 7461
	/*
	 * Get the target context (task or percpu):
	 */
7462

7463 7464
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7465 7466 7467 7468
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7469

7470 7471 7472
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7473 7474
	account_event(event);

M
Matt Helsley 已提交
7475
	ctx = find_get_context(event->pmu, task, cpu);
7476 7477
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7478
		goto err_free;
7479
	}
7480 7481 7482 7483

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7484
	perf_unpin_context(ctx);
7485 7486 7487 7488
	mutex_unlock(&ctx->mutex);

	return event;

7489 7490 7491
err_free:
	free_event(event);
err:
7492
	return ERR_PTR(err);
7493
}
7494
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7495

7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7509
		perf_remove_from_context(event, false);
7510
		unaccount_event_cpu(event, src_cpu);
7511
		put_ctx(src_ctx);
7512
		list_add(&event->migrate_entry, &events);
7513 7514 7515 7516 7517 7518
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7519 7520
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7521 7522
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7523
		account_event_cpu(event, dst_cpu);
7524 7525 7526 7527 7528 7529 7530
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7531
static void sync_child_event(struct perf_event *child_event,
7532
			       struct task_struct *child)
7533
{
7534
	struct perf_event *parent_event = child_event->parent;
7535
	u64 child_val;
7536

7537 7538
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7539

P
Peter Zijlstra 已提交
7540
	child_val = perf_event_count(child_event);
7541 7542 7543 7544

	/*
	 * Add back the child's count to the parent's count:
	 */
7545
	atomic64_add(child_val, &parent_event->child_count);
7546 7547 7548 7549
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7550 7551

	/*
7552
	 * Remove this event from the parent's list
7553
	 */
7554 7555 7556 7557
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7558 7559

	/*
7560
	 * Release the parent event, if this was the last
7561 7562
	 * reference to it.
	 */
7563
	put_event(parent_event);
7564 7565
}

7566
static void
7567 7568
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7569
			 struct task_struct *child)
7570
{
7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7584

7585
	/*
7586
	 * It can happen that the parent exits first, and has events
7587
	 * that are still around due to the child reference. These
7588
	 * events need to be zapped.
7589
	 */
7590
	if (child_event->parent) {
7591 7592
		sync_child_event(child_event, child);
		free_event(child_event);
7593
	}
7594 7595
}

P
Peter Zijlstra 已提交
7596
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7597
{
7598
	struct perf_event *child_event, *next;
7599
	struct perf_event_context *child_ctx, *parent_ctx;
7600
	unsigned long flags;
7601

P
Peter Zijlstra 已提交
7602
	if (likely(!child->perf_event_ctxp[ctxn])) {
7603
		perf_event_task(child, NULL, 0);
7604
		return;
P
Peter Zijlstra 已提交
7605
	}
7606

7607
	local_irq_save(flags);
7608 7609 7610 7611 7612 7613
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7614
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7615 7616 7617

	/*
	 * Take the context lock here so that if find_get_context is
7618
	 * reading child->perf_event_ctxp, we wait until it has
7619 7620
	 * incremented the context's refcount before we do put_ctx below.
	 */
7621
	raw_spin_lock(&child_ctx->lock);
7622
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7623
	child->perf_event_ctxp[ctxn] = NULL;
7624 7625 7626 7627 7628 7629 7630 7631 7632

	/*
	 * In order to avoid freeing: child_ctx->parent_ctx->task
	 * under perf_event_context::lock, grab another reference.
	 */
	parent_ctx = child_ctx->parent_ctx;
	if (parent_ctx)
		get_ctx(parent_ctx);

7633 7634 7635
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7636
	 * the events from it.
7637 7638
	 */
	unclone_ctx(child_ctx);
7639
	update_context_time(child_ctx);
7640
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7641

7642 7643 7644 7645 7646 7647 7648
	/*
	 * Now that we no longer hold perf_event_context::lock, drop
	 * our extra child_ctx->parent_ctx reference.
	 */
	if (parent_ctx)
		put_ctx(parent_ctx);

P
Peter Zijlstra 已提交
7649
	/*
7650 7651 7652
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7653
	 */
7654
	perf_event_task(child, child_ctx, 0);
7655

7656 7657 7658
	/*
	 * We can recurse on the same lock type through:
	 *
7659 7660
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7661 7662
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7663 7664 7665
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7666
	mutex_lock(&child_ctx->mutex);
7667

7668
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7669
		__perf_event_exit_task(child_event, child_ctx, child);
7670

7671 7672 7673
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7674 7675
}

P
Peter Zijlstra 已提交
7676 7677 7678 7679 7680
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7681
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7682 7683
	int ctxn;

P
Peter Zijlstra 已提交
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7699 7700 7701 7702
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7715
	put_event(parent);
7716

7717
	perf_group_detach(event);
7718 7719 7720 7721
	list_del_event(event, ctx);
	free_event(event);
}

7722 7723
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7724
 * perf_event_init_task below, used by fork() in case of fail.
7725
 */
7726
void perf_event_free_task(struct task_struct *task)
7727
{
P
Peter Zijlstra 已提交
7728
	struct perf_event_context *ctx;
7729
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7730
	int ctxn;
7731

P
Peter Zijlstra 已提交
7732 7733 7734 7735
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7736

P
Peter Zijlstra 已提交
7737
		mutex_lock(&ctx->mutex);
7738
again:
P
Peter Zijlstra 已提交
7739 7740 7741
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7742

P
Peter Zijlstra 已提交
7743 7744 7745
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7746

P
Peter Zijlstra 已提交
7747 7748 7749
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7750

P
Peter Zijlstra 已提交
7751
		mutex_unlock(&ctx->mutex);
7752

P
Peter Zijlstra 已提交
7753 7754
		put_ctx(ctx);
	}
7755 7756
}

7757 7758 7759 7760 7761 7762 7763 7764
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7777
	unsigned long flags;
P
Peter Zijlstra 已提交
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7790
					   child,
P
Peter Zijlstra 已提交
7791
					   group_leader, parent_event,
7792
				           NULL, NULL);
P
Peter Zijlstra 已提交
7793 7794
	if (IS_ERR(child_event))
		return child_event;
7795

7796 7797
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
7798 7799 7800 7801
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7826 7827
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7828

7829 7830 7831 7832
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7833
	perf_event__id_header_size(child_event);
7834

P
Peter Zijlstra 已提交
7835 7836 7837
	/*
	 * Link it up in the child's context:
	 */
7838
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7839
	add_event_to_ctx(child_event, child_ctx);
7840
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7874 7875 7876 7877 7878
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7879
		   struct task_struct *child, int ctxn,
7880 7881 7882
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7883
	struct perf_event_context *child_ctx;
7884 7885 7886 7887

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7888 7889
	}

7890
	child_ctx = child->perf_event_ctxp[ctxn];
7891 7892 7893 7894 7895 7896 7897
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7898

7899
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7900 7901
		if (!child_ctx)
			return -ENOMEM;
7902

P
Peter Zijlstra 已提交
7903
		child->perf_event_ctxp[ctxn] = child_ctx;
7904 7905 7906 7907 7908 7909 7910 7911 7912
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7913 7914
}

7915
/*
7916
 * Initialize the perf_event context in task_struct
7917
 */
7918
static int perf_event_init_context(struct task_struct *child, int ctxn)
7919
{
7920
	struct perf_event_context *child_ctx, *parent_ctx;
7921 7922
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7923
	struct task_struct *parent = current;
7924
	int inherited_all = 1;
7925
	unsigned long flags;
7926
	int ret = 0;
7927

P
Peter Zijlstra 已提交
7928
	if (likely(!parent->perf_event_ctxp[ctxn]))
7929 7930
		return 0;

7931
	/*
7932 7933
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7934
	 */
P
Peter Zijlstra 已提交
7935
	parent_ctx = perf_pin_task_context(parent, ctxn);
7936 7937
	if (!parent_ctx)
		return 0;
7938

7939 7940 7941 7942 7943 7944 7945
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7946 7947 7948 7949
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7950
	mutex_lock(&parent_ctx->mutex);
7951 7952 7953 7954 7955

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7956
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7957 7958
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7959 7960 7961
		if (ret)
			break;
	}
7962

7963 7964 7965 7966 7967 7968 7969 7970 7971
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7972
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7973 7974
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7975
		if (ret)
7976
			break;
7977 7978
	}

7979 7980 7981
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7982
	child_ctx = child->perf_event_ctxp[ctxn];
7983

7984
	if (child_ctx && inherited_all) {
7985 7986 7987
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7988 7989 7990
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7991
		 */
P
Peter Zijlstra 已提交
7992
		cloned_ctx = parent_ctx->parent_ctx;
7993 7994
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7995
			child_ctx->parent_gen = parent_ctx->parent_gen;
7996 7997 7998 7999 8000
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8001 8002
	}

P
Peter Zijlstra 已提交
8003
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8004
	mutex_unlock(&parent_ctx->mutex);
8005

8006
	perf_unpin_context(parent_ctx);
8007
	put_ctx(parent_ctx);
8008

8009
	return ret;
8010 8011
}

P
Peter Zijlstra 已提交
8012 8013 8014 8015 8016 8017 8018
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8019 8020 8021 8022
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

8032 8033
static void __init perf_event_init_all_cpus(void)
{
8034
	struct swevent_htable *swhash;
8035 8036 8037
	int cpu;

	for_each_possible_cpu(cpu) {
8038 8039
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8040
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8041 8042 8043
	}
}

8044
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8045
{
P
Peter Zijlstra 已提交
8046
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8047

8048
	mutex_lock(&swhash->hlist_mutex);
8049
	swhash->online = true;
8050
	if (swhash->hlist_refcount > 0) {
8051 8052
		struct swevent_hlist *hlist;

8053 8054 8055
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8056
	}
8057
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8058 8059
}

P
Peter Zijlstra 已提交
8060
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8061
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
8062
{
8063 8064 8065 8066 8067 8068 8069
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
8070
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8071
{
8072
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
8073
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8074

P
Peter Zijlstra 已提交
8075
	perf_pmu_rotate_stop(ctx->pmu);
8076

P
Peter Zijlstra 已提交
8077
	rcu_read_lock();
8078 8079
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8080
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8081
}
P
Peter Zijlstra 已提交
8082 8083 8084 8085 8086 8087 8088 8089 8090

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8091
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8092 8093 8094 8095 8096 8097 8098 8099

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8100
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8101
{
8102
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8103

P
Peter Zijlstra 已提交
8104 8105
	perf_event_exit_cpu_context(cpu);

8106
	mutex_lock(&swhash->hlist_mutex);
8107
	swhash->online = false;
8108 8109
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8110 8111
}
#else
8112
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8113 8114
#endif

P
Peter Zijlstra 已提交
8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8135
static int
T
Thomas Gleixner 已提交
8136 8137 8138 8139
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8140
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8141 8142

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8143
	case CPU_DOWN_FAILED:
8144
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8145 8146
		break;

P
Peter Zijlstra 已提交
8147
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8148
	case CPU_DOWN_PREPARE:
8149
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8150 8151 8152 8153 8154 8155 8156 8157
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8158
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8159
{
8160 8161
	int ret;

P
Peter Zijlstra 已提交
8162 8163
	idr_init(&pmu_idr);

8164
	perf_event_init_all_cpus();
8165
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8166 8167 8168
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8169 8170
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8171
	register_reboot_notifier(&perf_reboot_notifier);
8172 8173 8174

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8175 8176 8177

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8178 8179 8180 8181 8182 8183 8184

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8185
}
P
Peter Zijlstra 已提交
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8214 8215

#ifdef CONFIG_CGROUP_PERF
8216 8217
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8218 8219 8220
{
	struct perf_cgroup *jc;

8221
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8234
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8235
{
8236 8237
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8249 8250
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8251
{
8252 8253
	struct task_struct *task;

8254
	cgroup_taskset_for_each(task, tset)
8255
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8256 8257
}

8258 8259
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8260
			     struct task_struct *task)
S
Stephane Eranian 已提交
8261 8262 8263 8264 8265 8266 8267 8268 8269
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8270
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8271 8272
}

8273
struct cgroup_subsys perf_event_cgrp_subsys = {
8274 8275
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8276
	.exit		= perf_cgroup_exit,
8277
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8278 8279
};
#endif /* CONFIG_CGROUP_PERF */