core.c 169.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41
struct remote_function_call {
42 43 44 45
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
79 80 81 82
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
103 104 105 106
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
107 108 109 110 111 112 113
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
128
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
129 130
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148 149
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150 151

/*
152
 * max perf event sample rate
153
 */
P
Peter Zijlstra 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
172

173
static atomic64_t perf_event_id;
174

175 176 177 178
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
179 180 181 182 183
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
184

185
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
186

187
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
188
{
189
	return "pmu";
T
Thomas Gleixner 已提交
190 191
}

192 193 194 195 196
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
197 198 199 200 201 202
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
219 220
#ifdef CONFIG_CGROUP_PERF

221 222 223 224 225
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
293 294
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
295
	/*
296 297
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
298
	 */
299
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
300 301
		return;

302 303 304 305 306 307
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
308 309 310
}

static inline void
311 312
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
313 314 315 316
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

317 318 319 320 321 322
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
323 324 325 326
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
327
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
369 370
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
371 372 373 374 375 376 377 378 379 380 381

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
382
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
383 384 385 386 387 388 389
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
390 391
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
424 425 426 427
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
428 429 430 431

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

432 433 434
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
435 436 437 438 439 440 441 442 443
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
444
out:
S
Stephane Eranian 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
535 536
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
567
void perf_pmu_disable(struct pmu *pmu)
568
{
P
Peter Zijlstra 已提交
569 570 571
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
572 573
}

P
Peter Zijlstra 已提交
574
void perf_pmu_enable(struct pmu *pmu)
575
{
P
Peter Zijlstra 已提交
576 577 578
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
579 580
}

581 582 583 584 585 586 587
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
588
static void perf_pmu_rotate_start(struct pmu *pmu)
589
{
P
Peter Zijlstra 已提交
590
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
591
	struct list_head *head = &__get_cpu_var(rotation_list);
592

593
	WARN_ON(!irqs_disabled());
594

595 596
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
597 598
}

599
static void get_ctx(struct perf_event_context *ctx)
600
{
601
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
602 603
}

604
static void put_ctx(struct perf_event_context *ctx)
605
{
606 607 608
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
609 610
		if (ctx->task)
			put_task_struct(ctx->task);
611
		kfree_rcu(ctx, rcu_head);
612
	}
613 614
}

615
static void unclone_ctx(struct perf_event_context *ctx)
616 617 618 619 620 621 622
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

645
/*
646
 * If we inherit events we want to return the parent event id
647 648
 * to userspace.
 */
649
static u64 primary_event_id(struct perf_event *event)
650
{
651
	u64 id = event->id;
652

653 654
	if (event->parent)
		id = event->parent->id;
655 656 657 658

	return id;
}

659
/*
660
 * Get the perf_event_context for a task and lock it.
661 662 663
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
664
static struct perf_event_context *
P
Peter Zijlstra 已提交
665
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
666
{
667
	struct perf_event_context *ctx;
668 669

	rcu_read_lock();
P
Peter Zijlstra 已提交
670
retry:
P
Peter Zijlstra 已提交
671
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
672 673 674 675
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
676
		 * perf_event_task_sched_out, though the
677 678 679 680 681 682
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
683
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
684
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
685
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
686 687
			goto retry;
		}
688 689

		if (!atomic_inc_not_zero(&ctx->refcount)) {
690
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
691 692
			ctx = NULL;
		}
693 694 695 696 697 698 699 700 701 702
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
703 704
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
705
{
706
	struct perf_event_context *ctx;
707 708
	unsigned long flags;

P
Peter Zijlstra 已提交
709
	ctx = perf_lock_task_context(task, ctxn, &flags);
710 711
	if (ctx) {
		++ctx->pin_count;
712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
713 714 715 716
	}
	return ctx;
}

717
static void perf_unpin_context(struct perf_event_context *ctx)
718 719 720
{
	unsigned long flags;

721
	raw_spin_lock_irqsave(&ctx->lock, flags);
722
	--ctx->pin_count;
723
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

737 738 739
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
740 741 742 743

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

744 745 746
	return ctx ? ctx->time : 0;
}

747 748 749 750 751 752 753 754 755 756 757
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
758 759 760 761 762 763 764 765 766 767 768
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
769
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
770 771
	else if (ctx->is_active)
		run_end = ctx->time;
772 773 774 775
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
776 777 778 779

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
780
		run_end = perf_event_time(event);
781 782

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
783

784 785
}

786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

798 799 800 801 802 803 804 805 806
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

807
/*
808
 * Add a event from the lists for its context.
809 810
 * Must be called with ctx->mutex and ctx->lock held.
 */
811
static void
812
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
813
{
814 815
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
816 817

	/*
818 819 820
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
821
	 */
822
	if (event->group_leader == event) {
823 824
		struct list_head *list;

825 826 827
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

828 829
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
830
	}
P
Peter Zijlstra 已提交
831

832
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
833 834
		ctx->nr_cgroups++;

835
	list_add_rcu(&event->event_entry, &ctx->event_list);
836
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
837
		perf_pmu_rotate_start(ctx->pmu);
838 839
	ctx->nr_events++;
	if (event->attr.inherit_stat)
840
		ctx->nr_stat++;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

915
	event->id_header_size = size;
916 917
}

918 919
static void perf_group_attach(struct perf_event *event)
{
920
	struct perf_event *group_leader = event->group_leader, *pos;
921

P
Peter Zijlstra 已提交
922 923 924 925 926 927
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

928 929 930 931 932 933 934 935 936 937 938
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
939 940 941 942 943

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
944 945
}

946
/*
947
 * Remove a event from the lists for its context.
948
 * Must be called with ctx->mutex and ctx->lock held.
949
 */
950
static void
951
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
952
{
953
	struct perf_cpu_context *cpuctx;
954 955 956 957
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
958
		return;
959 960 961

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

962
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
963
		ctx->nr_cgroups--;
964 965 966 967 968 969 970 971 972
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
973

974 975
	ctx->nr_events--;
	if (event->attr.inherit_stat)
976
		ctx->nr_stat--;
977

978
	list_del_rcu(&event->event_entry);
979

980 981
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
982

983
	update_group_times(event);
984 985 986 987 988 989 990 991 992 993

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
994 995
}

996
static void perf_group_detach(struct perf_event *event)
997 998
{
	struct perf_event *sibling, *tmp;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1015
		goto out;
1016 1017 1018 1019
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1020

1021
	/*
1022 1023
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1024
	 * to whatever list we are on.
1025
	 */
1026
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1027 1028
		if (list)
			list_move_tail(&sibling->group_entry, list);
1029
		sibling->group_leader = sibling;
1030 1031 1032

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1033
	}
1034 1035 1036 1037 1038 1039

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1040 1041
}

1042 1043 1044
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1045 1046
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1047 1048
}

1049 1050
static void
event_sched_out(struct perf_event *event,
1051
		  struct perf_cpu_context *cpuctx,
1052
		  struct perf_event_context *ctx)
1053
{
1054
	u64 tstamp = perf_event_time(event);
1055 1056 1057 1058 1059 1060 1061 1062 1063
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1064
		delta = tstamp - event->tstamp_stopped;
1065
		event->tstamp_running += delta;
1066
		event->tstamp_stopped = tstamp;
1067 1068
	}

1069
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1070
		return;
1071

1072 1073 1074 1075
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1076
	}
1077
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1078
	event->pmu->del(event, 0);
1079
	event->oncpu = -1;
1080

1081
	if (!is_software_event(event))
1082 1083
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1084
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1085 1086 1087
		cpuctx->exclusive = 0;
}

1088
static void
1089
group_sched_out(struct perf_event *group_event,
1090
		struct perf_cpu_context *cpuctx,
1091
		struct perf_event_context *ctx)
1092
{
1093
	struct perf_event *event;
1094
	int state = group_event->state;
1095

1096
	event_sched_out(group_event, cpuctx, ctx);
1097 1098 1099 1100

	/*
	 * Schedule out siblings (if any):
	 */
1101 1102
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1103

1104
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1105 1106 1107
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1108
/*
1109
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1110
 *
1111
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1112 1113
 * remove it from the context list.
 */
1114
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1115
{
1116 1117
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1118
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1119

1120
	raw_spin_lock(&ctx->lock);
1121 1122
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1123 1124 1125 1126
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1127
	raw_spin_unlock(&ctx->lock);
1128 1129

	return 0;
T
Thomas Gleixner 已提交
1130 1131 1132 1133
}


/*
1134
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1135
 *
1136
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1137
 * call when the task is on a CPU.
1138
 *
1139 1140
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1141 1142
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1143
 * When called from perf_event_exit_task, it's OK because the
1144
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1145
 */
1146
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1147
{
1148
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1149 1150
	struct task_struct *task = ctx->task;

1151 1152
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1153 1154
	if (!task) {
		/*
1155
		 * Per cpu events are removed via an smp call and
1156
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1157
		 */
1158
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1159 1160 1161 1162
		return;
	}

retry:
1163 1164
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1165

1166
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1167
	/*
1168 1169
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1170
	 */
1171
	if (ctx->is_active) {
1172
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1173 1174 1175 1176
		goto retry;
	}

	/*
1177 1178
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1179
	 */
1180
	list_del_event(event, ctx);
1181
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1182 1183
}

1184
/*
1185
 * Cross CPU call to disable a performance event
1186
 */
1187
static int __perf_event_disable(void *info)
1188
{
1189 1190
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1191
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1192 1193

	/*
1194 1195
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1196 1197 1198
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1199
	 */
1200
	if (ctx->task && cpuctx->task_ctx != ctx)
1201
		return -EINVAL;
1202

1203
	raw_spin_lock(&ctx->lock);
1204 1205

	/*
1206
	 * If the event is on, turn it off.
1207 1208
	 * If it is in error state, leave it in error state.
	 */
1209
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1210
		update_context_time(ctx);
S
Stephane Eranian 已提交
1211
		update_cgrp_time_from_event(event);
1212 1213 1214
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1215
		else
1216 1217
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1218 1219
	}

1220
	raw_spin_unlock(&ctx->lock);
1221 1222

	return 0;
1223 1224 1225
}

/*
1226
 * Disable a event.
1227
 *
1228 1229
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1230
 * remains valid.  This condition is satisifed when called through
1231 1232 1233 1234
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1235
 * is the current context on this CPU and preemption is disabled,
1236
 * hence we can't get into perf_event_task_sched_out for this context.
1237
 */
1238
void perf_event_disable(struct perf_event *event)
1239
{
1240
	struct perf_event_context *ctx = event->ctx;
1241 1242 1243 1244
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1245
		 * Disable the event on the cpu that it's on
1246
		 */
1247
		cpu_function_call(event->cpu, __perf_event_disable, event);
1248 1249 1250
		return;
	}

P
Peter Zijlstra 已提交
1251
retry:
1252 1253
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1254

1255
	raw_spin_lock_irq(&ctx->lock);
1256
	/*
1257
	 * If the event is still active, we need to retry the cross-call.
1258
	 */
1259
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1260
		raw_spin_unlock_irq(&ctx->lock);
1261 1262 1263 1264 1265
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1266 1267 1268 1269 1270 1271 1272
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1273 1274 1275
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1276
	}
1277
	raw_spin_unlock_irq(&ctx->lock);
1278 1279
}

S
Stephane Eranian 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1315 1316 1317 1318
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1319
static int
1320
event_sched_in(struct perf_event *event,
1321
		 struct perf_cpu_context *cpuctx,
1322
		 struct perf_event_context *ctx)
1323
{
1324 1325
	u64 tstamp = perf_event_time(event);

1326
	if (event->state <= PERF_EVENT_STATE_OFF)
1327 1328
		return 0;

1329
	event->state = PERF_EVENT_STATE_ACTIVE;
1330
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1342 1343 1344 1345 1346
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1347
	if (event->pmu->add(event, PERF_EF_START)) {
1348 1349
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1350 1351 1352
		return -EAGAIN;
	}

1353
	event->tstamp_running += tstamp - event->tstamp_stopped;
1354

S
Stephane Eranian 已提交
1355
	perf_set_shadow_time(event, ctx, tstamp);
1356

1357
	if (!is_software_event(event))
1358
		cpuctx->active_oncpu++;
1359 1360
	ctx->nr_active++;

1361
	if (event->attr.exclusive)
1362 1363
		cpuctx->exclusive = 1;

1364 1365 1366
	return 0;
}

1367
static int
1368
group_sched_in(struct perf_event *group_event,
1369
	       struct perf_cpu_context *cpuctx,
1370
	       struct perf_event_context *ctx)
1371
{
1372
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1373
	struct pmu *pmu = group_event->pmu;
1374 1375
	u64 now = ctx->time;
	bool simulate = false;
1376

1377
	if (group_event->state == PERF_EVENT_STATE_OFF)
1378 1379
		return 0;

P
Peter Zijlstra 已提交
1380
	pmu->start_txn(pmu);
1381

1382
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1383
		pmu->cancel_txn(pmu);
1384
		return -EAGAIN;
1385
	}
1386 1387 1388 1389

	/*
	 * Schedule in siblings as one group (if any):
	 */
1390
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1391
		if (event_sched_in(event, cpuctx, ctx)) {
1392
			partial_group = event;
1393 1394 1395 1396
			goto group_error;
		}
	}

1397
	if (!pmu->commit_txn(pmu))
1398
		return 0;
1399

1400 1401 1402 1403
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1414
	 */
1415 1416
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1417 1418 1419 1420 1421 1422 1423 1424
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1425
	}
1426
	event_sched_out(group_event, cpuctx, ctx);
1427

P
Peter Zijlstra 已提交
1428
	pmu->cancel_txn(pmu);
1429

1430 1431 1432
	return -EAGAIN;
}

1433
/*
1434
 * Work out whether we can put this event group on the CPU now.
1435
 */
1436
static int group_can_go_on(struct perf_event *event,
1437 1438 1439 1440
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1441
	 * Groups consisting entirely of software events can always go on.
1442
	 */
1443
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1444 1445 1446
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1447
	 * events can go on.
1448 1449 1450 1451 1452
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1453
	 * events on the CPU, it can't go on.
1454
	 */
1455
	if (event->attr.exclusive && cpuctx->active_oncpu)
1456 1457 1458 1459 1460 1461 1462 1463
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1464 1465
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1466
{
1467 1468
	u64 tstamp = perf_event_time(event);

1469
	list_add_event(event, ctx);
1470
	perf_group_attach(event);
1471 1472 1473
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1474 1475
}

1476 1477 1478 1479 1480 1481
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1495
/*
1496
 * Cross CPU call to install and enable a performance event
1497 1498
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1499
 */
1500
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1501
{
1502 1503
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1504
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1505 1506 1507
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1508
	perf_ctx_lock(cpuctx, task_ctx);
1509
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1510 1511

	/*
1512
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1513
	 */
1514
	if (task_ctx)
1515
		task_ctx_sched_out(task_ctx);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1530 1531
		task = task_ctx->task;
	}
1532

1533
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1534

1535
	update_context_time(ctx);
S
Stephane Eranian 已提交
1536 1537 1538 1539 1540 1541
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1542

1543
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1544

1545
	/*
1546
	 * Schedule everything back in
1547
	 */
1548
	perf_event_sched_in(cpuctx, task_ctx, task);
1549 1550 1551

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1552 1553

	return 0;
T
Thomas Gleixner 已提交
1554 1555 1556
}

/*
1557
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1558
 *
1559 1560
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1561
 *
1562
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1563 1564 1565 1566
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1567 1568
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1569 1570 1571 1572
			int cpu)
{
	struct task_struct *task = ctx->task;

1573 1574
	lockdep_assert_held(&ctx->mutex);

1575 1576
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1577 1578
	if (!task) {
		/*
1579
		 * Per cpu events are installed via an smp call and
1580
		 * the install is always successful.
T
Thomas Gleixner 已提交
1581
		 */
1582
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1583 1584 1585 1586
		return;
	}

retry:
1587 1588
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1589

1590
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1591
	/*
1592 1593
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1594
	 */
1595
	if (ctx->is_active) {
1596
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1597 1598 1599 1600
		goto retry;
	}

	/*
1601 1602
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1603
	 */
1604
	add_event_to_ctx(event, ctx);
1605
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1606 1607
}

1608
/*
1609
 * Put a event into inactive state and update time fields.
1610 1611 1612 1613 1614 1615
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1616 1617
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1618
{
1619
	struct perf_event *sub;
1620
	u64 tstamp = perf_event_time(event);
1621

1622
	event->state = PERF_EVENT_STATE_INACTIVE;
1623
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1624
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1625 1626
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1627
	}
1628 1629
}

1630
/*
1631
 * Cross CPU call to enable a performance event
1632
 */
1633
static int __perf_event_enable(void *info)
1634
{
1635 1636 1637
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1638
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1639
	int err;
1640

1641 1642
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1643

1644
	raw_spin_lock(&ctx->lock);
1645
	update_context_time(ctx);
1646

1647
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1648
		goto unlock;
S
Stephane Eranian 已提交
1649 1650 1651 1652

	/*
	 * set current task's cgroup time reference point
	 */
1653
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1654

1655
	__perf_event_mark_enabled(event, ctx);
1656

S
Stephane Eranian 已提交
1657 1658 1659
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1660
		goto unlock;
S
Stephane Eranian 已提交
1661
	}
1662

1663
	/*
1664
	 * If the event is in a group and isn't the group leader,
1665
	 * then don't put it on unless the group is on.
1666
	 */
1667
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1668
		goto unlock;
1669

1670
	if (!group_can_go_on(event, cpuctx, 1)) {
1671
		err = -EEXIST;
1672
	} else {
1673
		if (event == leader)
1674
			err = group_sched_in(event, cpuctx, ctx);
1675
		else
1676
			err = event_sched_in(event, cpuctx, ctx);
1677
	}
1678 1679 1680

	if (err) {
		/*
1681
		 * If this event can't go on and it's part of a
1682 1683
		 * group, then the whole group has to come off.
		 */
1684
		if (leader != event)
1685
			group_sched_out(leader, cpuctx, ctx);
1686
		if (leader->attr.pinned) {
1687
			update_group_times(leader);
1688
			leader->state = PERF_EVENT_STATE_ERROR;
1689
		}
1690 1691
	}

P
Peter Zijlstra 已提交
1692
unlock:
1693
	raw_spin_unlock(&ctx->lock);
1694 1695

	return 0;
1696 1697 1698
}

/*
1699
 * Enable a event.
1700
 *
1701 1702
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1703
 * remains valid.  This condition is satisfied when called through
1704 1705
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1706
 */
1707
void perf_event_enable(struct perf_event *event)
1708
{
1709
	struct perf_event_context *ctx = event->ctx;
1710 1711 1712 1713
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1714
		 * Enable the event on the cpu that it's on
1715
		 */
1716
		cpu_function_call(event->cpu, __perf_event_enable, event);
1717 1718 1719
		return;
	}

1720
	raw_spin_lock_irq(&ctx->lock);
1721
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1722 1723 1724
		goto out;

	/*
1725 1726
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1727 1728 1729 1730
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1731 1732
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1733

P
Peter Zijlstra 已提交
1734
retry:
1735 1736 1737 1738 1739
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1740
	raw_spin_unlock_irq(&ctx->lock);
1741 1742 1743

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1744

1745
	raw_spin_lock_irq(&ctx->lock);
1746 1747

	/*
1748
	 * If the context is active and the event is still off,
1749 1750
	 * we need to retry the cross-call.
	 */
1751 1752 1753 1754 1755 1756
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1757
		goto retry;
1758
	}
1759

P
Peter Zijlstra 已提交
1760
out:
1761
	raw_spin_unlock_irq(&ctx->lock);
1762 1763
}

1764
static int perf_event_refresh(struct perf_event *event, int refresh)
1765
{
1766
	/*
1767
	 * not supported on inherited events
1768
	 */
1769
	if (event->attr.inherit || !is_sampling_event(event))
1770 1771
		return -EINVAL;

1772 1773
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1774 1775

	return 0;
1776 1777
}

1778 1779 1780
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1781
{
1782
	struct perf_event *event;
1783
	int is_active = ctx->is_active;
1784

1785
	ctx->is_active &= ~event_type;
1786
	if (likely(!ctx->nr_events))
1787 1788
		return;

1789
	update_context_time(ctx);
S
Stephane Eranian 已提交
1790
	update_cgrp_time_from_cpuctx(cpuctx);
1791
	if (!ctx->nr_active)
1792
		return;
1793

P
Peter Zijlstra 已提交
1794
	perf_pmu_disable(ctx->pmu);
1795
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1796 1797
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1798
	}
1799

1800
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1801
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1802
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1803
	}
P
Peter Zijlstra 已提交
1804
	perf_pmu_enable(ctx->pmu);
1805 1806
}

1807 1808 1809
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1810 1811 1812 1813
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1814
 * in them directly with an fd; we can only enable/disable all
1815
 * events via prctl, or enable/disable all events in a family
1816 1817
 * via ioctl, which will have the same effect on both contexts.
 */
1818 1819
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1820 1821
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1822
		&& ctx1->parent_gen == ctx2->parent_gen
1823
		&& !ctx1->pin_count && !ctx2->pin_count;
1824 1825
}

1826 1827
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1828 1829 1830
{
	u64 value;

1831
	if (!event->attr.inherit_stat)
1832 1833 1834
		return;

	/*
1835
	 * Update the event value, we cannot use perf_event_read()
1836 1837
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1838
	 * we know the event must be on the current CPU, therefore we
1839 1840
	 * don't need to use it.
	 */
1841 1842
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1843 1844
		event->pmu->read(event);
		/* fall-through */
1845

1846 1847
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1848 1849 1850 1851 1852 1853 1854
		break;

	default:
		break;
	}

	/*
1855
	 * In order to keep per-task stats reliable we need to flip the event
1856 1857
	 * values when we flip the contexts.
	 */
1858 1859 1860
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1861

1862 1863
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1864

1865
	/*
1866
	 * Since we swizzled the values, update the user visible data too.
1867
	 */
1868 1869
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1870 1871 1872 1873 1874
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1875 1876
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1877
{
1878
	struct perf_event *event, *next_event;
1879 1880 1881 1882

	if (!ctx->nr_stat)
		return;

1883 1884
	update_context_time(ctx);

1885 1886
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1887

1888 1889
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1890

1891 1892
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1893

1894
		__perf_event_sync_stat(event, next_event);
1895

1896 1897
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1898 1899 1900
	}
}

1901 1902
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1903
{
P
Peter Zijlstra 已提交
1904
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1905 1906
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1907
	struct perf_cpu_context *cpuctx;
1908
	int do_switch = 1;
T
Thomas Gleixner 已提交
1909

P
Peter Zijlstra 已提交
1910 1911
	if (likely(!ctx))
		return;
1912

P
Peter Zijlstra 已提交
1913 1914
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1915 1916
		return;

1917 1918
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1919
	next_ctx = next->perf_event_ctxp[ctxn];
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1931 1932
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1933
		if (context_equiv(ctx, next_ctx)) {
1934 1935
			/*
			 * XXX do we need a memory barrier of sorts
1936
			 * wrt to rcu_dereference() of perf_event_ctxp
1937
			 */
P
Peter Zijlstra 已提交
1938 1939
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1940 1941 1942
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1943

1944
			perf_event_sync_stat(ctx, next_ctx);
1945
		}
1946 1947
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1948
	}
1949
	rcu_read_unlock();
1950

1951
	if (do_switch) {
1952
		raw_spin_lock(&ctx->lock);
1953
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1954
		cpuctx->task_ctx = NULL;
1955
		raw_spin_unlock(&ctx->lock);
1956
	}
T
Thomas Gleixner 已提交
1957 1958
}

P
Peter Zijlstra 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1973 1974
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1975 1976 1977 1978 1979
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1980 1981 1982 1983 1984 1985 1986 1987

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1988 1989
}

1990
static void task_ctx_sched_out(struct perf_event_context *ctx)
1991
{
P
Peter Zijlstra 已提交
1992
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1993

1994 1995
	if (!cpuctx->task_ctx)
		return;
1996 1997 1998 1999

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2000
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2001 2002 2003
	cpuctx->task_ctx = NULL;
}

2004 2005 2006 2007 2008 2009 2010
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2011 2012
}

2013
static void
2014
ctx_pinned_sched_in(struct perf_event_context *ctx,
2015
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2016
{
2017
	struct perf_event *event;
T
Thomas Gleixner 已提交
2018

2019 2020
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2021
			continue;
2022
		if (!event_filter_match(event))
2023 2024
			continue;

S
Stephane Eranian 已提交
2025 2026 2027 2028
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2029
		if (group_can_go_on(event, cpuctx, 1))
2030
			group_sched_in(event, cpuctx, ctx);
2031 2032 2033 2034 2035

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2036 2037 2038
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2039
		}
2040
	}
2041 2042 2043 2044
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2045
		      struct perf_cpu_context *cpuctx)
2046 2047 2048
{
	struct perf_event *event;
	int can_add_hw = 1;
2049

2050 2051 2052
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2053
			continue;
2054 2055
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2056
		 * of events:
2057
		 */
2058
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2059 2060
			continue;

S
Stephane Eranian 已提交
2061 2062 2063 2064
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2065
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2066
			if (group_sched_in(event, cpuctx, ctx))
2067
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2068
		}
T
Thomas Gleixner 已提交
2069
	}
2070 2071 2072 2073 2074
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2075 2076
	     enum event_type_t event_type,
	     struct task_struct *task)
2077
{
S
Stephane Eranian 已提交
2078
	u64 now;
2079
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2080

2081
	ctx->is_active |= event_type;
2082
	if (likely(!ctx->nr_events))
2083
		return;
2084

S
Stephane Eranian 已提交
2085 2086
	now = perf_clock();
	ctx->timestamp = now;
2087
	perf_cgroup_set_timestamp(task, ctx);
2088 2089 2090 2091
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2092
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2093
		ctx_pinned_sched_in(ctx, cpuctx);
2094 2095

	/* Then walk through the lower prio flexible groups */
2096
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2097
		ctx_flexible_sched_in(ctx, cpuctx);
2098 2099
}

2100
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2101 2102
			     enum event_type_t event_type,
			     struct task_struct *task)
2103 2104 2105
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2106
	ctx_sched_in(ctx, cpuctx, event_type, task);
2107 2108
}

S
Stephane Eranian 已提交
2109 2110
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2111
{
P
Peter Zijlstra 已提交
2112
	struct perf_cpu_context *cpuctx;
2113

P
Peter Zijlstra 已提交
2114
	cpuctx = __get_cpu_context(ctx);
2115 2116 2117
	if (cpuctx->task_ctx == ctx)
		return;

2118
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2119
	perf_pmu_disable(ctx->pmu);
2120 2121 2122 2123 2124 2125 2126
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2127
	perf_event_sched_in(cpuctx, ctx, task);
2128 2129

	cpuctx->task_ctx = ctx;
2130

2131 2132 2133
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2134 2135 2136 2137
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2138
	perf_pmu_rotate_start(ctx->pmu);
2139 2140
}

P
Peter Zijlstra 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2152
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2162
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2163
	}
S
Stephane Eranian 已提交
2164 2165 2166 2167 2168 2169 2170
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2200
#define REDUCE_FLS(a, b)		\
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2240 2241 2242
	if (!divisor)
		return dividend;

2243 2244 2245 2246
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2247
{
2248
	struct hw_perf_event *hwc = &event->hw;
2249
	s64 period, sample_period;
2250 2251
	s64 delta;

2252
	period = perf_calculate_period(event, nsec, count);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2263

2264
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2265
		event->pmu->stop(event, PERF_EF_UPDATE);
2266
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2267
		event->pmu->start(event, PERF_EF_RELOAD);
2268
	}
2269 2270
}

2271
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2272
{
2273 2274
	struct perf_event *event;
	struct hw_perf_event *hwc;
2275 2276
	u64 interrupts, now;
	s64 delta;
2277

2278
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2279
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2280 2281
			continue;

2282
		if (!event_filter_match(event))
2283 2284
			continue;

2285
		hwc = &event->hw;
2286 2287 2288

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2289

2290
		/*
2291
		 * unthrottle events on the tick
2292
		 */
2293
		if (interrupts == MAX_INTERRUPTS) {
2294
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2295
			event->pmu->start(event, 0);
2296 2297
		}

2298
		if (!event->attr.freq || !event->attr.sample_freq)
2299 2300
			continue;

2301
		event->pmu->read(event);
2302
		now = local64_read(&event->count);
2303 2304
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2305

2306
		if (delta > 0)
2307
			perf_adjust_period(event, period, delta);
2308 2309 2310
	}
}

2311
/*
2312
 * Round-robin a context's events:
2313
 */
2314
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2315
{
2316 2317 2318 2319 2320 2321
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2322 2323
}

2324
/*
2325 2326 2327
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2328
 */
2329
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2330
{
2331
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2332
	struct perf_event_context *ctx = NULL;
2333
	int rotate = 0, remove = 1;
2334

2335
	if (cpuctx->ctx.nr_events) {
2336
		remove = 0;
2337 2338 2339
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2340

P
Peter Zijlstra 已提交
2341
	ctx = cpuctx->task_ctx;
2342
	if (ctx && ctx->nr_events) {
2343
		remove = 0;
2344 2345 2346
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2347

2348
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2349
	perf_pmu_disable(cpuctx->ctx.pmu);
2350
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2351
	if (ctx)
2352
		perf_ctx_adjust_freq(ctx, interval);
2353

2354
	if (!rotate)
2355
		goto done;
2356

2357
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2358
	if (ctx)
2359
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2360

2361
	rotate_ctx(&cpuctx->ctx);
2362 2363
	if (ctx)
		rotate_ctx(ctx);
2364

2365
	perf_event_sched_in(cpuctx, ctx, current);
2366 2367

done:
2368 2369 2370
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2371
	perf_pmu_enable(cpuctx->ctx.pmu);
2372
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2373 2374 2375 2376 2377 2378
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2379

2380 2381 2382 2383 2384 2385 2386
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2387 2388
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2404
/*
2405
 * Enable all of a task's events that have been marked enable-on-exec.
2406 2407
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2408
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2409
{
2410
	struct perf_event *event;
2411 2412
	unsigned long flags;
	int enabled = 0;
2413
	int ret;
2414 2415

	local_irq_save(flags);
2416
	if (!ctx || !ctx->nr_events)
2417 2418
		goto out;

2419 2420 2421 2422 2423 2424 2425 2426
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
2427

2428
	raw_spin_lock(&ctx->lock);
2429
	task_ctx_sched_out(ctx);
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2441 2442 2443
	}

	/*
2444
	 * Unclone this context if we enabled any event.
2445
	 */
2446 2447
	if (enabled)
		unclone_ctx(ctx);
2448

2449
	raw_spin_unlock(&ctx->lock);
2450

2451 2452 2453
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2454
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2455
out:
2456 2457 2458
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2459
/*
2460
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2461
 */
2462
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2463
{
2464 2465
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2466
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2467

2468 2469 2470 2471
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2472 2473
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2474 2475 2476 2477
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2478
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2479
	if (ctx->is_active) {
2480
		update_context_time(ctx);
S
Stephane Eranian 已提交
2481 2482
		update_cgrp_time_from_event(event);
	}
2483
	update_event_times(event);
2484 2485
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2486
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2487 2488
}

P
Peter Zijlstra 已提交
2489 2490
static inline u64 perf_event_count(struct perf_event *event)
{
2491
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2492 2493
}

2494
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2495 2496
{
	/*
2497 2498
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2499
	 */
2500 2501 2502 2503
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2504 2505 2506
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2507
		raw_spin_lock_irqsave(&ctx->lock, flags);
2508 2509 2510 2511 2512
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2513
		if (ctx->is_active) {
2514
			update_context_time(ctx);
S
Stephane Eranian 已提交
2515 2516
			update_cgrp_time_from_event(event);
		}
2517
		update_event_times(event);
2518
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2519 2520
	}

P
Peter Zijlstra 已提交
2521
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2522 2523
}

2524
/*
2525
 * Callchain support
2526
 */
2527 2528 2529 2530 2531 2532

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2533
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2534 2535 2536 2537 2538 2539 2540
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2541 2542 2543
{
}

2544 2545
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2546
{
2547
}
T
Thomas Gleixner 已提交
2548

2549 2550 2551 2552
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2553

2554
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2555

2556 2557
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2558

2559 2560
	kfree(entries);
}
T
Thomas Gleixner 已提交
2561

2562 2563 2564
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2565

2566 2567 2568 2569
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2570

2571 2572 2573 2574 2575
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2576

2577
	/*
2578 2579 2580
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2581
	 */
2582
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2583

2584 2585 2586
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2587

2588
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2589

2590 2591 2592 2593 2594
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2595 2596
	}

2597
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2733
/*
2734
 * Initialize the perf_event context in a task_struct:
2735
 */
2736
static void __perf_event_init_context(struct perf_event_context *ctx)
2737
{
2738
	raw_spin_lock_init(&ctx->lock);
2739
	mutex_init(&ctx->mutex);
2740 2741
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2742 2743
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2759
	}
2760 2761 2762
	ctx->pmu = pmu;

	return ctx;
2763 2764
}

2765 2766 2767 2768 2769
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2770 2771

	rcu_read_lock();
2772
	if (!vpid)
T
Thomas Gleixner 已提交
2773 2774
		task = current;
	else
2775
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2776 2777 2778 2779 2780 2781 2782 2783
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2784 2785 2786 2787
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2788 2789 2790 2791 2792 2793 2794
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2795 2796 2797
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2798
static struct perf_event_context *
M
Matt Helsley 已提交
2799
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2800
{
2801
	struct perf_event_context *ctx;
2802
	struct perf_cpu_context *cpuctx;
2803
	unsigned long flags;
P
Peter Zijlstra 已提交
2804
	int ctxn, err;
T
Thomas Gleixner 已提交
2805

2806
	if (!task) {
2807
		/* Must be root to operate on a CPU event: */
2808
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2809 2810 2811
			return ERR_PTR(-EACCES);

		/*
2812
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2813 2814 2815
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2816
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2817 2818
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2819
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2820
		ctx = &cpuctx->ctx;
2821
		get_ctx(ctx);
2822
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2823 2824 2825 2826

		return ctx;
	}

P
Peter Zijlstra 已提交
2827 2828 2829 2830 2831
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2832
retry:
P
Peter Zijlstra 已提交
2833
	ctx = perf_lock_task_context(task, ctxn, &flags);
2834
	if (ctx) {
2835
		unclone_ctx(ctx);
2836
		++ctx->pin_count;
2837
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2838
	} else {
2839
		ctx = alloc_perf_context(pmu, task);
2840 2841 2842
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2854
		else {
2855
			get_ctx(ctx);
2856
			++ctx->pin_count;
2857
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2858
		}
2859 2860 2861
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2862
			put_ctx(ctx);
2863 2864 2865 2866

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2867 2868 2869
		}
	}

T
Thomas Gleixner 已提交
2870
	return ctx;
2871

P
Peter Zijlstra 已提交
2872
errout:
2873
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2874 2875
}

L
Li Zefan 已提交
2876 2877
static void perf_event_free_filter(struct perf_event *event);

2878
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2879
{
2880
	struct perf_event *event;
P
Peter Zijlstra 已提交
2881

2882 2883 2884
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2885
	perf_event_free_filter(event);
2886
	kfree(event);
P
Peter Zijlstra 已提交
2887 2888
}

2889
static void perf_buffer_put(struct perf_buffer *buffer);
2890

2891
static void free_event(struct perf_event *event)
2892
{
2893
	irq_work_sync(&event->pending);
2894

2895
	if (!event->parent) {
2896
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2897
			jump_label_dec(&perf_sched_events);
2898
		if (event->attr.mmap || event->attr.mmap_data)
2899 2900 2901 2902 2903
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2904 2905
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2906 2907 2908 2909
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2910
	}
2911

2912 2913 2914
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2915 2916
	}

S
Stephane Eranian 已提交
2917 2918 2919
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2920 2921
	if (event->destroy)
		event->destroy(event);
2922

P
Peter Zijlstra 已提交
2923 2924 2925
	if (event->ctx)
		put_ctx(event->ctx);

2926
	call_rcu(&event->rcu_head, free_event_rcu);
2927 2928
}

2929
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2930
{
2931
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2932

2933
	WARN_ON_ONCE(ctx->parent_ctx);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2947
	raw_spin_lock_irq(&ctx->lock);
2948
	perf_group_detach(event);
2949
	raw_spin_unlock_irq(&ctx->lock);
2950
	perf_remove_from_context(event);
2951
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2952

2953
	free_event(event);
T
Thomas Gleixner 已提交
2954 2955 2956

	return 0;
}
2957
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2958

2959 2960 2961 2962
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2963
{
2964
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2965
	struct task_struct *owner;
2966

2967
	file->private_data = NULL;
2968

P
Peter Zijlstra 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3002
	return perf_event_release_kernel(event);
3003 3004
}

3005
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3006
{
3007
	struct perf_event *child;
3008 3009
	u64 total = 0;

3010 3011 3012
	*enabled = 0;
	*running = 0;

3013
	mutex_lock(&event->child_mutex);
3014
	total += perf_event_read(event);
3015 3016 3017 3018 3019 3020
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3021
		total += perf_event_read(child);
3022 3023 3024
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3025
	mutex_unlock(&event->child_mutex);
3026 3027 3028

	return total;
}
3029
EXPORT_SYMBOL_GPL(perf_event_read_value);
3030

3031
static int perf_event_read_group(struct perf_event *event,
3032 3033
				   u64 read_format, char __user *buf)
{
3034
	struct perf_event *leader = event->group_leader, *sub;
3035 3036
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3037
	u64 values[5];
3038
	u64 count, enabled, running;
3039

3040
	mutex_lock(&ctx->mutex);
3041
	count = perf_event_read_value(leader, &enabled, &running);
3042 3043

	values[n++] = 1 + leader->nr_siblings;
3044 3045 3046 3047
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3048 3049 3050
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3051 3052 3053 3054

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3055
		goto unlock;
3056

3057
	ret = size;
3058

3059
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3060
		n = 0;
3061

3062
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3063 3064 3065 3066 3067
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3068
		if (copy_to_user(buf + ret, values, size)) {
3069 3070 3071
			ret = -EFAULT;
			goto unlock;
		}
3072 3073

		ret += size;
3074
	}
3075 3076
unlock:
	mutex_unlock(&ctx->mutex);
3077

3078
	return ret;
3079 3080
}

3081
static int perf_event_read_one(struct perf_event *event,
3082 3083
				 u64 read_format, char __user *buf)
{
3084
	u64 enabled, running;
3085 3086 3087
	u64 values[4];
	int n = 0;

3088 3089 3090 3091 3092
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3093
	if (read_format & PERF_FORMAT_ID)
3094
		values[n++] = primary_event_id(event);
3095 3096 3097 3098 3099 3100 3101

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3102
/*
3103
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3104 3105
 */
static ssize_t
3106
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3107
{
3108
	u64 read_format = event->attr.read_format;
3109
	int ret;
T
Thomas Gleixner 已提交
3110

3111
	/*
3112
	 * Return end-of-file for a read on a event that is in
3113 3114 3115
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3116
	if (event->state == PERF_EVENT_STATE_ERROR)
3117 3118
		return 0;

3119
	if (count < event->read_size)
3120 3121
		return -ENOSPC;

3122
	WARN_ON_ONCE(event->ctx->parent_ctx);
3123
	if (read_format & PERF_FORMAT_GROUP)
3124
		ret = perf_event_read_group(event, read_format, buf);
3125
	else
3126
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3127

3128
	return ret;
T
Thomas Gleixner 已提交
3129 3130 3131 3132 3133
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3134
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3135

3136
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3137 3138 3139 3140
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3141
	struct perf_event *event = file->private_data;
3142
	struct perf_buffer *buffer;
3143
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3144 3145

	rcu_read_lock();
3146 3147 3148
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3149
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3150

3151
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3152 3153 3154 3155

	return events;
}

3156
static void perf_event_reset(struct perf_event *event)
3157
{
3158
	(void)perf_event_read(event);
3159
	local64_set(&event->count, 0);
3160
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3161 3162
}

3163
/*
3164 3165 3166 3167
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3168
 */
3169 3170
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3171
{
3172
	struct perf_event *child;
P
Peter Zijlstra 已提交
3173

3174 3175 3176 3177
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3178
		func(child);
3179
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3180 3181
}

3182 3183
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3184
{
3185 3186
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3187

3188 3189
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3190
	event = event->group_leader;
3191

3192 3193 3194 3195
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3196
	mutex_unlock(&ctx->mutex);
3197 3198
}

3199
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3200
{
3201
	struct perf_event_context *ctx = event->ctx;
3202 3203 3204
	int ret = 0;
	u64 value;

3205
	if (!is_sampling_event(event))
3206 3207
		return -EINVAL;

3208
	if (copy_from_user(&value, arg, sizeof(value)))
3209 3210 3211 3212 3213
		return -EFAULT;

	if (!value)
		return -EINVAL;

3214
	raw_spin_lock_irq(&ctx->lock);
3215 3216
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3217 3218 3219 3220
			ret = -EINVAL;
			goto unlock;
		}

3221
		event->attr.sample_freq = value;
3222
	} else {
3223 3224
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3225 3226
	}
unlock:
3227
	raw_spin_unlock_irq(&ctx->lock);
3228 3229 3230 3231

	return ret;
}

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3253
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3254

3255 3256
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3257 3258
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3259
	u32 flags = arg;
3260 3261

	switch (cmd) {
3262 3263
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3264
		break;
3265 3266
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3267
		break;
3268 3269
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3270
		break;
P
Peter Zijlstra 已提交
3271

3272 3273
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3274

3275 3276
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3277

3278
	case PERF_EVENT_IOC_SET_OUTPUT:
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3296

L
Li Zefan 已提交
3297 3298 3299
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3300
	default:
P
Peter Zijlstra 已提交
3301
		return -ENOTTY;
3302
	}
P
Peter Zijlstra 已提交
3303 3304

	if (flags & PERF_IOC_FLAG_GROUP)
3305
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3306
	else
3307
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3308 3309

	return 0;
3310 3311
}

3312
int perf_event_task_enable(void)
3313
{
3314
	struct perf_event *event;
3315

3316 3317 3318 3319
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3320 3321 3322 3323

	return 0;
}

3324
int perf_event_task_disable(void)
3325
{
3326
	struct perf_event *event;
3327

3328 3329 3330 3331
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3332 3333 3334 3335

	return 0;
}

3336 3337
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3338 3339
#endif

3340
static int perf_event_index(struct perf_event *event)
3341
{
P
Peter Zijlstra 已提交
3342 3343 3344
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3345
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3346 3347
		return 0;

3348
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3349 3350
}

3351 3352 3353 3354 3355
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3356
void perf_event_update_userpage(struct perf_event *event)
3357
{
3358
	struct perf_event_mmap_page *userpg;
3359
	struct perf_buffer *buffer;
3360 3361

	rcu_read_lock();
3362 3363
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3364 3365
		goto unlock;

3366
	userpg = buffer->user_page;
3367

3368 3369 3370 3371 3372
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3373
	++userpg->lock;
3374
	barrier();
3375
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3376
	userpg->offset = perf_event_count(event);
3377
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3378
		userpg->offset -= local64_read(&event->hw.prev_count);
3379

3380 3381
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3382

3383 3384
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3385

3386
	barrier();
3387
	++userpg->lock;
3388
	preempt_enable();
3389
unlock:
3390
	rcu_read_unlock();
3391 3392
}

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3412
#ifndef CONFIG_PERF_USE_VMALLOC
3413

3414 3415 3416
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3417

3418
static struct page *
3419
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3420
{
3421
	if (pgoff > buffer->nr_pages)
3422
		return NULL;
3423

3424
	if (pgoff == 0)
3425
		return virt_to_page(buffer->user_page);
3426

3427
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3428 3429
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3443
static struct perf_buffer *
3444
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3445
{
3446
	struct perf_buffer *buffer;
3447 3448 3449
	unsigned long size;
	int i;

3450
	size = sizeof(struct perf_buffer);
3451 3452
	size += nr_pages * sizeof(void *);

3453 3454
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3455 3456
		goto fail;

3457
	buffer->user_page = perf_mmap_alloc_page(cpu);
3458
	if (!buffer->user_page)
3459 3460 3461
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3462
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3463
		if (!buffer->data_pages[i])
3464 3465 3466
			goto fail_data_pages;
	}

3467
	buffer->nr_pages = nr_pages;
3468

3469 3470
	perf_buffer_init(buffer, watermark, flags);

3471
	return buffer;
3472 3473 3474

fail_data_pages:
	for (i--; i >= 0; i--)
3475
		free_page((unsigned long)buffer->data_pages[i]);
3476

3477
	free_page((unsigned long)buffer->user_page);
3478 3479

fail_user_page:
3480
	kfree(buffer);
3481 3482

fail:
3483
	return NULL;
3484 3485
}

3486 3487
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3488
	struct page *page = virt_to_page((void *)addr);
3489 3490 3491 3492 3493

	page->mapping = NULL;
	__free_page(page);
}

3494
static void perf_buffer_free(struct perf_buffer *buffer)
3495 3496 3497
{
	int i;

3498 3499 3500 3501
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3502 3503
}

3504
static inline int page_order(struct perf_buffer *buffer)
3505 3506 3507 3508
{
	return 0;
}

3509 3510 3511 3512 3513 3514 3515 3516
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3517
static inline int page_order(struct perf_buffer *buffer)
3518
{
3519
	return buffer->page_order;
3520 3521
}

3522
static struct page *
3523
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3524
{
3525
	if (pgoff > (1UL << page_order(buffer)))
3526 3527
		return NULL;

3528
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3529 3530 3531 3532 3533 3534 3535 3536 3537
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3538
static void perf_buffer_free_work(struct work_struct *work)
3539
{
3540
	struct perf_buffer *buffer;
3541 3542 3543
	void *base;
	int i, nr;

3544 3545
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3546

3547
	base = buffer->user_page;
3548 3549 3550 3551
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3552
	kfree(buffer);
3553 3554
}

3555
static void perf_buffer_free(struct perf_buffer *buffer)
3556
{
3557
	schedule_work(&buffer->work);
3558 3559
}

3560
static struct perf_buffer *
3561
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3562
{
3563
	struct perf_buffer *buffer;
3564 3565 3566
	unsigned long size;
	void *all_buf;

3567
	size = sizeof(struct perf_buffer);
3568 3569
	size += sizeof(void *);

3570 3571
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3572 3573
		goto fail;

3574
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3575 3576 3577 3578 3579

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3580 3581 3582 3583
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3584

3585 3586
	perf_buffer_init(buffer, watermark, flags);

3587
	return buffer;
3588 3589

fail_all_buf:
3590
	kfree(buffer);
3591 3592 3593 3594 3595 3596 3597

fail:
	return NULL;
}

#endif

3598
static unsigned long perf_data_size(struct perf_buffer *buffer)
3599
{
3600
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3601 3602
}

3603 3604 3605
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3606
	struct perf_buffer *buffer;
3607 3608 3609 3610 3611 3612 3613 3614 3615
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3616 3617
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3618 3619 3620 3621 3622
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3623
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3638
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3639
{
3640
	struct perf_buffer *buffer;
3641

3642 3643
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3644 3645
}

3646
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3647
{
3648
	struct perf_buffer *buffer;
3649

3650
	rcu_read_lock();
3651 3652 3653 3654
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3655 3656 3657
	}
	rcu_read_unlock();

3658
	return buffer;
3659 3660
}

3661
static void perf_buffer_put(struct perf_buffer *buffer)
3662
{
3663
	if (!atomic_dec_and_test(&buffer->refcount))
3664
		return;
3665

3666
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3667 3668 3669 3670
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3671
	struct perf_event *event = vma->vm_file->private_data;
3672

3673
	atomic_inc(&event->mmap_count);
3674 3675 3676 3677
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3678
	struct perf_event *event = vma->vm_file->private_data;
3679

3680
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3681
		unsigned long size = perf_data_size(event->buffer);
3682
		struct user_struct *user = event->mmap_user;
3683
		struct perf_buffer *buffer = event->buffer;
3684

3685
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3686
		vma->vm_mm->locked_vm -= event->mmap_locked;
3687
		rcu_assign_pointer(event->buffer, NULL);
3688
		mutex_unlock(&event->mmap_mutex);
3689

3690
		perf_buffer_put(buffer);
3691
		free_uid(user);
3692
	}
3693 3694
}

3695
static const struct vm_operations_struct perf_mmap_vmops = {
3696 3697 3698 3699
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3700 3701 3702 3703
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3704
	struct perf_event *event = file->private_data;
3705
	unsigned long user_locked, user_lock_limit;
3706
	struct user_struct *user = current_user();
3707
	unsigned long locked, lock_limit;
3708
	struct perf_buffer *buffer;
3709 3710
	unsigned long vma_size;
	unsigned long nr_pages;
3711
	long user_extra, extra;
3712
	int ret = 0, flags = 0;
3713

3714 3715 3716 3717 3718 3719 3720 3721
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3722
	if (!(vma->vm_flags & VM_SHARED))
3723
		return -EINVAL;
3724 3725 3726 3727

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3728
	/*
3729
	 * If we have buffer pages ensure they're a power-of-two number, so we
3730 3731 3732
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3733 3734
		return -EINVAL;

3735
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3736 3737
		return -EINVAL;

3738 3739
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3740

3741 3742
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3743 3744 3745
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3746
		else
3747 3748 3749 3750
			ret = -EINVAL;
		goto unlock;
	}

3751
	user_extra = nr_pages + 1;
3752
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3753 3754 3755 3756 3757 3758

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3759
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3760

3761 3762 3763
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3764

3765
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3766
	lock_limit >>= PAGE_SHIFT;
3767
	locked = vma->vm_mm->locked_vm + extra;
3768

3769 3770
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3771 3772 3773
		ret = -EPERM;
		goto unlock;
	}
3774

3775
	WARN_ON(event->buffer);
3776

3777 3778 3779 3780 3781
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3782
	if (!buffer) {
3783
		ret = -ENOMEM;
3784
		goto unlock;
3785
	}
3786
	rcu_assign_pointer(event->buffer, buffer);
3787

3788 3789 3790 3791 3792
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3793
unlock:
3794 3795
	if (!ret)
		atomic_inc(&event->mmap_count);
3796
	mutex_unlock(&event->mmap_mutex);
3797 3798 3799

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3800 3801

	return ret;
3802 3803
}

P
Peter Zijlstra 已提交
3804 3805 3806
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3807
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3808 3809 3810
	int retval;

	mutex_lock(&inode->i_mutex);
3811
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3812 3813 3814 3815 3816 3817 3818 3819
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3820
static const struct file_operations perf_fops = {
3821
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3822 3823 3824
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3825 3826
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3827
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3828
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3829 3830
};

3831
/*
3832
 * Perf event wakeup
3833 3834 3835 3836 3837
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3838
void perf_event_wakeup(struct perf_event *event)
3839
{
3840
	wake_up_all(&event->waitq);
3841

3842 3843 3844
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3845
	}
3846 3847
}

3848
static void perf_pending_event(struct irq_work *entry)
3849
{
3850 3851
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3852

3853 3854 3855
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3856 3857
	}

3858 3859 3860
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3861 3862 3863
	}
}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3885 3886 3887
/*
 * Output
 */
3888
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3889
			      unsigned long offset, unsigned long head)
3890 3891 3892
{
	unsigned long mask;

3893
	if (!buffer->writable)
3894 3895
		return true;

3896
	mask = perf_data_size(buffer) - 1;
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3907
static void perf_output_wakeup(struct perf_output_handle *handle)
3908
{
3909
	atomic_set(&handle->buffer->poll, POLL_IN);
3910

3911
	if (handle->nmi) {
3912
		handle->event->pending_wakeup = 1;
3913
		irq_work_queue(&handle->event->pending);
3914
	} else
3915
		perf_event_wakeup(handle->event);
3916 3917
}

3918
/*
3919
 * We need to ensure a later event_id doesn't publish a head when a former
3920
 * event isn't done writing. However since we need to deal with NMIs we
3921 3922 3923
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3924
 * event completes.
3925
 */
3926
static void perf_output_get_handle(struct perf_output_handle *handle)
3927
{
3928
	struct perf_buffer *buffer = handle->buffer;
3929

3930
	preempt_disable();
3931 3932
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3933 3934
}

3935
static void perf_output_put_handle(struct perf_output_handle *handle)
3936
{
3937
	struct perf_buffer *buffer = handle->buffer;
3938
	unsigned long head;
3939 3940

again:
3941
	head = local_read(&buffer->head);
3942 3943

	/*
3944
	 * IRQ/NMI can happen here, which means we can miss a head update.
3945 3946
	 */

3947
	if (!local_dec_and_test(&buffer->nest))
3948
		goto out;
3949 3950

	/*
3951
	 * Publish the known good head. Rely on the full barrier implied
3952
	 * by atomic_dec_and_test() order the buffer->head read and this
3953
	 * write.
3954
	 */
3955
	buffer->user_page->data_head = head;
3956

3957 3958
	/*
	 * Now check if we missed an update, rely on the (compiler)
3959
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3960
	 */
3961 3962
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3963 3964 3965
		goto again;
	}

3966
	if (handle->wakeup != local_read(&buffer->wakeup))
3967
		perf_output_wakeup(handle);
3968

P
Peter Zijlstra 已提交
3969
out:
3970
	preempt_enable();
3971 3972
}

3973
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3974
		      const void *buf, unsigned int len)
3975
{
3976
	do {
3977
		unsigned long size = min_t(unsigned long, handle->size, len);
3978 3979 3980 3981 3982

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3983
		buf += size;
3984 3985
		handle->size -= size;
		if (!handle->size) {
3986
			struct perf_buffer *buffer = handle->buffer;
3987

3988
			handle->page++;
3989 3990 3991
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3992 3993
		}
	} while (len);
3994 3995
}

3996 3997 3998
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4063
int perf_output_begin(struct perf_output_handle *handle,
4064
		      struct perf_event *event, unsigned int size,
4065
		      int nmi, int sample)
4066
{
4067
	struct perf_buffer *buffer;
4068
	unsigned long tail, offset, head;
4069
	int have_lost;
4070
	struct perf_sample_data sample_data;
4071 4072 4073 4074 4075
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4076

4077
	rcu_read_lock();
4078
	/*
4079
	 * For inherited events we send all the output towards the parent.
4080
	 */
4081 4082
	if (event->parent)
		event = event->parent;
4083

4084 4085
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4086 4087
		goto out;

4088
	handle->buffer	= buffer;
4089
	handle->event	= event;
4090 4091
	handle->nmi	= nmi;
	handle->sample	= sample;
4092

4093
	if (!buffer->nr_pages)
4094
		goto out;
4095

4096
	have_lost = local_read(&buffer->lost);
4097 4098 4099 4100 4101 4102
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4103

4104
	perf_output_get_handle(handle);
4105

4106
	do {
4107 4108 4109 4110 4111
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4112
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4113
		smp_rmb();
4114
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4115
		head += size;
4116
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4117
			goto fail;
4118
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4119

4120 4121
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4122

4123 4124 4125 4126
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4127
	handle->addr += handle->size;
4128
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4129

4130
	if (have_lost) {
4131
		lost_event.header.type = PERF_RECORD_LOST;
4132
		lost_event.header.misc = 0;
4133
		lost_event.id          = event->id;
4134
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4135 4136

		perf_output_put(handle, lost_event);
4137
		perf_event__output_id_sample(event, handle, &sample_data);
4138 4139
	}

4140
	return 0;
4141

4142
fail:
4143
	local_inc(&buffer->lost);
4144
	perf_output_put_handle(handle);
4145 4146
out:
	rcu_read_unlock();
4147

4148 4149
	return -ENOSPC;
}
4150

4151
void perf_output_end(struct perf_output_handle *handle)
4152
{
4153
	struct perf_event *event = handle->event;
4154
	struct perf_buffer *buffer = handle->buffer;
4155

4156
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4157

4158
	if (handle->sample && wakeup_events) {
4159
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4160
		if (events >= wakeup_events) {
4161 4162
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4163
		}
4164 4165
	}

4166
	perf_output_put_handle(handle);
4167
	rcu_read_unlock();
4168 4169
}

4170
static void perf_output_read_one(struct perf_output_handle *handle,
4171 4172
				 struct perf_event *event,
				 u64 enabled, u64 running)
4173
{
4174
	u64 read_format = event->attr.read_format;
4175 4176 4177
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4178
	values[n++] = perf_event_count(event);
4179
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4180
		values[n++] = enabled +
4181
			atomic64_read(&event->child_total_time_enabled);
4182 4183
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4184
		values[n++] = running +
4185
			atomic64_read(&event->child_total_time_running);
4186 4187
	}
	if (read_format & PERF_FORMAT_ID)
4188
		values[n++] = primary_event_id(event);
4189 4190 4191 4192 4193

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4194
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4195 4196
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4197 4198
			    struct perf_event *event,
			    u64 enabled, u64 running)
4199
{
4200 4201
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4202 4203 4204 4205 4206 4207
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4208
		values[n++] = enabled;
4209 4210

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4211
		values[n++] = running;
4212

4213
	if (leader != event)
4214 4215
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4216
	values[n++] = perf_event_count(leader);
4217
	if (read_format & PERF_FORMAT_ID)
4218
		values[n++] = primary_event_id(leader);
4219 4220 4221

	perf_output_copy(handle, values, n * sizeof(u64));

4222
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4223 4224
		n = 0;

4225
		if (sub != event)
4226 4227
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4228
		values[n++] = perf_event_count(sub);
4229
		if (read_format & PERF_FORMAT_ID)
4230
			values[n++] = primary_event_id(sub);
4231 4232 4233 4234 4235

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4236 4237 4238
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4239
static void perf_output_read(struct perf_output_handle *handle,
4240
			     struct perf_event *event)
4241
{
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4261
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4262
		perf_output_read_group(handle, event, enabled, running);
4263
	else
4264
		perf_output_read_one(handle, event, enabled, running);
4265 4266
}

4267 4268 4269
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4270
			struct perf_event *event)
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4301
		perf_output_read(handle, event);
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4339
			 struct perf_event *event,
4340
			 struct pt_regs *regs)
4341
{
4342
	u64 sample_type = event->attr.sample_type;
4343

4344
	header->type = PERF_RECORD_SAMPLE;
4345
	header->size = sizeof(*header) + event->header_size;
4346 4347 4348

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4349

4350
	__perf_event_header__init_id(header, data, event);
4351

4352
	if (sample_type & PERF_SAMPLE_IP)
4353 4354
		data->ip = perf_instruction_pointer(regs);

4355
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4356
		int size = 1;
4357

4358 4359 4360 4361 4362 4363
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4364 4365
	}

4366
	if (sample_type & PERF_SAMPLE_RAW) {
4367 4368 4369 4370 4371 4372 4373 4374
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4375
		header->size += size;
4376
	}
4377
}
4378

4379
static void perf_event_output(struct perf_event *event, int nmi,
4380 4381 4382 4383 4384
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4385

4386 4387 4388
	/* protect the callchain buffers */
	rcu_read_lock();

4389
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4390

4391
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4392
		goto exit;
4393

4394
	perf_output_sample(&handle, &header, data, event);
4395

4396
	perf_output_end(&handle);
4397 4398 4399

exit:
	rcu_read_unlock();
4400 4401
}

4402
/*
4403
 * read event_id
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4414
perf_event_read_event(struct perf_event *event,
4415 4416 4417
			struct task_struct *task)
{
	struct perf_output_handle handle;
4418
	struct perf_sample_data sample;
4419
	struct perf_read_event read_event = {
4420
		.header = {
4421
			.type = PERF_RECORD_READ,
4422
			.misc = 0,
4423
			.size = sizeof(read_event) + event->read_size,
4424
		},
4425 4426
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4427
	};
4428
	int ret;
4429

4430
	perf_event_header__init_id(&read_event.header, &sample, event);
4431
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4432 4433 4434
	if (ret)
		return;

4435
	perf_output_put(&handle, read_event);
4436
	perf_output_read(&handle, event);
4437
	perf_event__output_id_sample(event, &handle, &sample);
4438

4439 4440 4441
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4442
/*
P
Peter Zijlstra 已提交
4443 4444
 * task tracking -- fork/exit
 *
4445
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4446 4447
 */

P
Peter Zijlstra 已提交
4448
struct perf_task_event {
4449
	struct task_struct		*task;
4450
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4451 4452 4453 4454 4455 4456

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4457 4458
		u32				tid;
		u32				ptid;
4459
		u64				time;
4460
	} event_id;
P
Peter Zijlstra 已提交
4461 4462
};

4463
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4464
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4465 4466
{
	struct perf_output_handle handle;
4467
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4468
	struct task_struct *task = task_event->task;
4469
	int ret, size = task_event->event_id.header.size;
4470

4471
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4472

4473 4474
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4475
	if (ret)
4476
		goto out;
P
Peter Zijlstra 已提交
4477

4478 4479
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4480

4481 4482
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4483

4484
	perf_output_put(&handle, task_event->event_id);
4485

4486 4487
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4488
	perf_output_end(&handle);
4489 4490
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4491 4492
}

4493
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4494
{
P
Peter Zijlstra 已提交
4495
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4496 4497
		return 0;

4498
	if (!event_filter_match(event))
4499 4500
		return 0;

4501 4502
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4503 4504 4505 4506 4507
		return 1;

	return 0;
}

4508
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4509
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4510
{
4511
	struct perf_event *event;
P
Peter Zijlstra 已提交
4512

4513 4514 4515
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4516 4517 4518
	}
}

4519
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4520 4521
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4522
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4523
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4524
	int ctxn;
P
Peter Zijlstra 已提交
4525

4526
	rcu_read_lock();
P
Peter Zijlstra 已提交
4527
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4528
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4529 4530
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4531
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4532 4533 4534 4535 4536

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4537
				goto next;
P
Peter Zijlstra 已提交
4538 4539 4540 4541
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4542 4543
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4544
	}
P
Peter Zijlstra 已提交
4545 4546 4547
	rcu_read_unlock();
}

4548 4549
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4550
			      int new)
P
Peter Zijlstra 已提交
4551
{
P
Peter Zijlstra 已提交
4552
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4553

4554 4555 4556
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4557 4558
		return;

P
Peter Zijlstra 已提交
4559
	task_event = (struct perf_task_event){
4560 4561
		.task	  = task,
		.task_ctx = task_ctx,
4562
		.event_id    = {
P
Peter Zijlstra 已提交
4563
			.header = {
4564
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4565
				.misc = 0,
4566
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4567
			},
4568 4569
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4570 4571
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4572
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4573 4574 4575
		},
	};

4576
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4577 4578
}

4579
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4580
{
4581
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4582 4583
}

4584 4585 4586 4587 4588
/*
 * comm tracking
 */

struct perf_comm_event {
4589 4590
	struct task_struct	*task;
	char			*comm;
4591 4592 4593 4594 4595 4596 4597
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4598
	} event_id;
4599 4600
};

4601
static void perf_event_comm_output(struct perf_event *event,
4602 4603 4604
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4605
	struct perf_sample_data sample;
4606
	int size = comm_event->event_id.header.size;
4607 4608 4609 4610 4611
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4612 4613

	if (ret)
4614
		goto out;
4615

4616 4617
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4618

4619
	perf_output_put(&handle, comm_event->event_id);
4620 4621
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4622 4623 4624

	perf_event__output_id_sample(event, &handle, &sample);

4625
	perf_output_end(&handle);
4626 4627
out:
	comm_event->event_id.header.size = size;
4628 4629
}

4630
static int perf_event_comm_match(struct perf_event *event)
4631
{
P
Peter Zijlstra 已提交
4632
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4633 4634
		return 0;

4635
	if (!event_filter_match(event))
4636 4637
		return 0;

4638
	if (event->attr.comm)
4639 4640 4641 4642 4643
		return 1;

	return 0;
}

4644
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4645 4646
				  struct perf_comm_event *comm_event)
{
4647
	struct perf_event *event;
4648

4649 4650 4651
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4652 4653 4654
	}
}

4655
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4656 4657
{
	struct perf_cpu_context *cpuctx;
4658
	struct perf_event_context *ctx;
4659
	char comm[TASK_COMM_LEN];
4660
	unsigned int size;
P
Peter Zijlstra 已提交
4661
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4662
	int ctxn;
4663

4664
	memset(comm, 0, sizeof(comm));
4665
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4666
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4667 4668 4669 4670

	comm_event->comm = comm;
	comm_event->comm_size = size;

4671
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4672
	rcu_read_lock();
P
Peter Zijlstra 已提交
4673
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4674
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4675 4676
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4677
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4678 4679 4680

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4681
			goto next;
P
Peter Zijlstra 已提交
4682 4683 4684 4685

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4686 4687
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4688
	}
4689
	rcu_read_unlock();
4690 4691
}

4692
void perf_event_comm(struct task_struct *task)
4693
{
4694
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4695 4696
	struct perf_event_context *ctx;
	int ctxn;
4697

P
Peter Zijlstra 已提交
4698 4699 4700 4701
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4702

P
Peter Zijlstra 已提交
4703 4704
		perf_event_enable_on_exec(ctx);
	}
4705

4706
	if (!atomic_read(&nr_comm_events))
4707
		return;
4708

4709
	comm_event = (struct perf_comm_event){
4710
		.task	= task,
4711 4712
		/* .comm      */
		/* .comm_size */
4713
		.event_id  = {
4714
			.header = {
4715
				.type = PERF_RECORD_COMM,
4716 4717 4718 4719 4720
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4721 4722 4723
		},
	};

4724
	perf_event_comm_event(&comm_event);
4725 4726
}

4727 4728 4729 4730 4731
/*
 * mmap tracking
 */

struct perf_mmap_event {
4732 4733 4734 4735
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4736 4737 4738 4739 4740 4741 4742 4743 4744

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4745
	} event_id;
4746 4747
};

4748
static void perf_event_mmap_output(struct perf_event *event,
4749 4750 4751
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4752
	struct perf_sample_data sample;
4753
	int size = mmap_event->event_id.header.size;
4754
	int ret;
4755

4756 4757 4758
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4759
	if (ret)
4760
		goto out;
4761

4762 4763
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4764

4765
	perf_output_put(&handle, mmap_event->event_id);
4766 4767
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4768 4769 4770

	perf_event__output_id_sample(event, &handle, &sample);

4771
	perf_output_end(&handle);
4772 4773
out:
	mmap_event->event_id.header.size = size;
4774 4775
}

4776
static int perf_event_mmap_match(struct perf_event *event,
4777 4778
				   struct perf_mmap_event *mmap_event,
				   int executable)
4779
{
P
Peter Zijlstra 已提交
4780
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4781 4782
		return 0;

4783
	if (!event_filter_match(event))
4784 4785
		return 0;

4786 4787
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4788 4789 4790 4791 4792
		return 1;

	return 0;
}

4793
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4794 4795
				  struct perf_mmap_event *mmap_event,
				  int executable)
4796
{
4797
	struct perf_event *event;
4798

4799
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4800
		if (perf_event_mmap_match(event, mmap_event, executable))
4801
			perf_event_mmap_output(event, mmap_event);
4802 4803 4804
	}
}

4805
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4806 4807
{
	struct perf_cpu_context *cpuctx;
4808
	struct perf_event_context *ctx;
4809 4810
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4811 4812 4813
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4814
	const char *name;
P
Peter Zijlstra 已提交
4815
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4816
	int ctxn;
4817

4818 4819
	memset(tmp, 0, sizeof(tmp));

4820
	if (file) {
4821 4822 4823 4824 4825 4826
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4827 4828 4829 4830
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4831
		name = d_path(&file->f_path, buf, PATH_MAX);
4832 4833 4834 4835 4836
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4837 4838 4839
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4840
			goto got_name;
4841
		}
4842 4843 4844 4845

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4846 4847 4848 4849 4850 4851 4852 4853
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4854 4855
		}

4856 4857 4858 4859 4860
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4861
	size = ALIGN(strlen(name)+1, sizeof(u64));
4862 4863 4864 4865

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4866
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4867

4868
	rcu_read_lock();
P
Peter Zijlstra 已提交
4869
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4870
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4871 4872
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4873 4874
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4875 4876 4877

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4878
			goto next;
P
Peter Zijlstra 已提交
4879 4880 4881 4882 4883 4884

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4885 4886
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4887
	}
4888 4889
	rcu_read_unlock();

4890 4891 4892
	kfree(buf);
}

4893
void perf_event_mmap(struct vm_area_struct *vma)
4894
{
4895 4896
	struct perf_mmap_event mmap_event;

4897
	if (!atomic_read(&nr_mmap_events))
4898 4899 4900
		return;

	mmap_event = (struct perf_mmap_event){
4901
		.vma	= vma,
4902 4903
		/* .file_name */
		/* .file_size */
4904
		.event_id  = {
4905
			.header = {
4906
				.type = PERF_RECORD_MMAP,
4907
				.misc = PERF_RECORD_MISC_USER,
4908 4909 4910 4911
				/* .size */
			},
			/* .pid */
			/* .tid */
4912 4913
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4914
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4915 4916 4917
		},
	};

4918
	perf_event_mmap_event(&mmap_event);
4919 4920
}

4921 4922 4923 4924
/*
 * IRQ throttle logging
 */

4925
static void perf_log_throttle(struct perf_event *event, int enable)
4926 4927
{
	struct perf_output_handle handle;
4928
	struct perf_sample_data sample;
4929 4930 4931 4932 4933
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4934
		u64				id;
4935
		u64				stream_id;
4936 4937
	} throttle_event = {
		.header = {
4938
			.type = PERF_RECORD_THROTTLE,
4939 4940 4941
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4942
		.time		= perf_clock(),
4943 4944
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4945 4946
	};

4947
	if (enable)
4948
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4949

4950 4951 4952 4953
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4954 4955 4956 4957
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4958
	perf_event__output_id_sample(event, &handle, &sample);
4959 4960 4961
	perf_output_end(&handle);
}

4962
/*
4963
 * Generic event overflow handling, sampling.
4964 4965
 */

4966
static int __perf_event_overflow(struct perf_event *event, int nmi,
4967 4968
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4969
{
4970 4971
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4972 4973
	int ret = 0;

4974 4975 4976 4977 4978 4979 4980
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4981 4982 4983 4984
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4985 4986
			ret = 1;
		}
P
Peter Zijlstra 已提交
4987 4988
	} else
		hwc->interrupts++;
4989

4990
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4991
		u64 now = perf_clock();
4992
		s64 delta = now - hwc->freq_time_stamp;
4993

4994
		hwc->freq_time_stamp = now;
4995

4996 4997
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4998 4999
	}

5000 5001
	/*
	 * XXX event_limit might not quite work as expected on inherited
5002
	 * events
5003 5004
	 */

5005 5006
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5007
		ret = 1;
5008
		event->pending_kill = POLL_HUP;
5009
		if (nmi) {
5010
			event->pending_disable = 1;
5011
			irq_work_queue(&event->pending);
5012
		} else
5013
			perf_event_disable(event);
5014 5015
	}

5016 5017 5018 5019 5020
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

P
Peter Zijlstra 已提交
5021 5022 5023 5024 5025 5026 5027 5028
	if (event->fasync && event->pending_kill) {
		if (nmi) {
			event->pending_wakeup = 1;
			irq_work_queue(&event->pending);
		} else
			perf_event_wakeup(event);
	}

5029
	return ret;
5030 5031
}

5032
int perf_event_overflow(struct perf_event *event, int nmi,
5033 5034
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5035
{
5036
	return __perf_event_overflow(event, nmi, 1, data, regs);
5037 5038
}

5039
/*
5040
 * Generic software event infrastructure
5041 5042
 */

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5054
/*
5055 5056
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5057 5058 5059 5060
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5061
static u64 perf_swevent_set_period(struct perf_event *event)
5062
{
5063
	struct hw_perf_event *hwc = &event->hw;
5064 5065 5066 5067 5068
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5069 5070

again:
5071
	old = val = local64_read(&hwc->period_left);
5072 5073
	if (val < 0)
		return 0;
5074

5075 5076 5077
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5078
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5079
		goto again;
5080

5081
	return nr;
5082 5083
}

5084
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5085 5086
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5087
{
5088
	struct hw_perf_event *hwc = &event->hw;
5089
	int throttle = 0;
5090

5091
	data->period = event->hw.last_period;
5092 5093
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5094

5095 5096
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5097

5098
	for (; overflow; overflow--) {
5099
		if (__perf_event_overflow(event, nmi, throttle,
5100
					    data, regs)) {
5101 5102 5103 5104 5105 5106
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5107
		throttle = 1;
5108
	}
5109 5110
}

P
Peter Zijlstra 已提交
5111
static void perf_swevent_event(struct perf_event *event, u64 nr,
5112 5113
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5114
{
5115
	struct hw_perf_event *hwc = &event->hw;
5116

5117
	local64_add(nr, &event->count);
5118

5119 5120 5121
	if (!regs)
		return;

5122
	if (!is_sampling_event(event))
5123
		return;
5124

5125 5126 5127
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5128
	if (local64_add_negative(nr, &hwc->period_left))
5129
		return;
5130

5131
	perf_swevent_overflow(event, 0, nmi, data, regs);
5132 5133
}

5134 5135 5136
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5137
	if (event->hw.state & PERF_HES_STOPPED)
5138
		return 1;
P
Peter Zijlstra 已提交
5139

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5151
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5152
				enum perf_type_id type,
L
Li Zefan 已提交
5153 5154 5155
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5156
{
5157
	if (event->attr.type != type)
5158
		return 0;
5159

5160
	if (event->attr.config != event_id)
5161 5162
		return 0;

5163 5164
	if (perf_exclude_event(event, regs))
		return 0;
5165 5166 5167 5168

	return 1;
}

5169 5170 5171 5172 5173 5174 5175
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5176 5177
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5178
{
5179 5180 5181 5182
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5183

5184 5185
/* For the read side: events when they trigger */
static inline struct hlist_head *
5186
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5187 5188
{
	struct swevent_hlist *hlist;
5189

5190
	hlist = rcu_dereference(swhash->swevent_hlist);
5191 5192 5193
	if (!hlist)
		return NULL;

5194 5195 5196 5197 5198
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5199
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5210
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5211 5212 5213 5214 5215
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5216 5217 5218 5219 5220 5221
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5222
{
5223
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5224
	struct perf_event *event;
5225 5226
	struct hlist_node *node;
	struct hlist_head *head;
5227

5228
	rcu_read_lock();
5229
	head = find_swevent_head_rcu(swhash, type, event_id);
5230 5231 5232 5233
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5234
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5235
			perf_swevent_event(event, nr, nmi, data, regs);
5236
	}
5237 5238
end:
	rcu_read_unlock();
5239 5240
}

5241
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5242
{
5243
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5244

5245
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5246
}
I
Ingo Molnar 已提交
5247
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5248

5249
inline void perf_swevent_put_recursion_context(int rctx)
5250
{
5251
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5252

5253
	put_recursion_context(swhash->recursion, rctx);
5254
}
5255

5256
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5257
			    struct pt_regs *regs, u64 addr)
5258
{
5259
	struct perf_sample_data data;
5260 5261
	int rctx;

5262
	preempt_disable_notrace();
5263 5264 5265
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5266

5267
	perf_sample_data_init(&data, addr);
5268

5269
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5270 5271

	perf_swevent_put_recursion_context(rctx);
5272
	preempt_enable_notrace();
5273 5274
}

5275
static void perf_swevent_read(struct perf_event *event)
5276 5277 5278
{
}

P
Peter Zijlstra 已提交
5279
static int perf_swevent_add(struct perf_event *event, int flags)
5280
{
5281
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5282
	struct hw_perf_event *hwc = &event->hw;
5283 5284
	struct hlist_head *head;

5285
	if (is_sampling_event(event)) {
5286
		hwc->last_period = hwc->sample_period;
5287
		perf_swevent_set_period(event);
5288
	}
5289

P
Peter Zijlstra 已提交
5290 5291
	hwc->state = !(flags & PERF_EF_START);

5292
	head = find_swevent_head(swhash, event);
5293 5294 5295 5296 5297
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5298 5299 5300
	return 0;
}

P
Peter Zijlstra 已提交
5301
static void perf_swevent_del(struct perf_event *event, int flags)
5302
{
5303
	hlist_del_rcu(&event->hlist_entry);
5304 5305
}

P
Peter Zijlstra 已提交
5306
static void perf_swevent_start(struct perf_event *event, int flags)
5307
{
P
Peter Zijlstra 已提交
5308
	event->hw.state = 0;
5309
}
I
Ingo Molnar 已提交
5310

P
Peter Zijlstra 已提交
5311
static void perf_swevent_stop(struct perf_event *event, int flags)
5312
{
P
Peter Zijlstra 已提交
5313
	event->hw.state = PERF_HES_STOPPED;
5314 5315
}

5316 5317
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5318
swevent_hlist_deref(struct swevent_htable *swhash)
5319
{
5320 5321
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5322 5323
}

5324
static void swevent_hlist_release(struct swevent_htable *swhash)
5325
{
5326
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5327

5328
	if (!hlist)
5329 5330
		return;

5331
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5332
	kfree_rcu(hlist, rcu_head);
5333 5334 5335 5336
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5337
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5338

5339
	mutex_lock(&swhash->hlist_mutex);
5340

5341 5342
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5343

5344
	mutex_unlock(&swhash->hlist_mutex);
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5362
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5363 5364
	int err = 0;

5365
	mutex_lock(&swhash->hlist_mutex);
5366

5367
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5368 5369 5370 5371 5372 5373 5374
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5375
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5376
	}
5377
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5378
exit:
5379
	mutex_unlock(&swhash->hlist_mutex);
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5403
fail:
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5414
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5415

5416 5417 5418
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5419

5420 5421
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5422
	jump_label_dec(&perf_swevent_enabled[event_id]);
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5442
	if (event_id >= PERF_COUNT_SW_MAX)
5443 5444 5445 5446 5447 5448 5449 5450 5451
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5452
		jump_label_inc(&perf_swevent_enabled[event_id]);
5453 5454 5455 5456 5457 5458 5459
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5460
	.task_ctx_nr	= perf_sw_context,
5461

5462
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5463 5464 5465 5466
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5467 5468 5469
	.read		= perf_swevent_read,
};

5470 5471
#ifdef CONFIG_EVENT_TRACING

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5486 5487
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5488 5489 5490 5491
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5492 5493 5494 5495 5496 5497 5498 5499 5500
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5501
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5502 5503
{
	struct perf_sample_data data;
5504 5505 5506
	struct perf_event *event;
	struct hlist_node *node;

5507 5508 5509 5510 5511 5512 5513 5514
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5515 5516
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5517
			perf_swevent_event(event, count, 1, &data, regs);
5518
	}
5519 5520

	perf_swevent_put_recursion_context(rctx);
5521 5522 5523
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5524
static void tp_perf_event_destroy(struct perf_event *event)
5525
{
5526
	perf_trace_destroy(event);
5527 5528
}

5529
static int perf_tp_event_init(struct perf_event *event)
5530
{
5531 5532
	int err;

5533 5534 5535
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5536 5537
	err = perf_trace_init(event);
	if (err)
5538
		return err;
5539

5540
	event->destroy = tp_perf_event_destroy;
5541

5542 5543 5544 5545
	return 0;
}

static struct pmu perf_tracepoint = {
5546 5547
	.task_ctx_nr	= perf_sw_context,

5548
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5549 5550 5551 5552
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5553 5554 5555 5556 5557
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5558
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5559
}
L
Li Zefan 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5584
#else
L
Li Zefan 已提交
5585

5586
static inline void perf_tp_register(void)
5587 5588
{
}
L
Li Zefan 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5599
#endif /* CONFIG_EVENT_TRACING */
5600

5601
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5602
void perf_bp_event(struct perf_event *bp, void *data)
5603
{
5604 5605 5606
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5607
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5608

P
Peter Zijlstra 已提交
5609 5610
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5611 5612 5613
}
#endif

5614 5615 5616
/*
 * hrtimer based swevent callback
 */
5617

5618
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5619
{
5620 5621 5622 5623 5624
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5625

5626
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5627 5628 5629 5630

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5631
	event->pmu->read(event);
5632

5633 5634 5635 5636 5637 5638 5639 5640 5641
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5642

5643 5644
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5645

5646
	return ret;
5647 5648
}

5649
static void perf_swevent_start_hrtimer(struct perf_event *event)
5650
{
5651
	struct hw_perf_event *hwc = &event->hw;
5652 5653 5654 5655
	s64 period;

	if (!is_sampling_event(event))
		return;
5656

5657 5658 5659 5660
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5661

5662 5663 5664 5665 5666
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5667
				ns_to_ktime(period), 0,
5668
				HRTIMER_MODE_REL_PINNED, 0);
5669
}
5670 5671

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5672
{
5673 5674
	struct hw_perf_event *hwc = &event->hw;

5675
	if (is_sampling_event(event)) {
5676
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5677
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5678 5679 5680

		hrtimer_cancel(&hwc->hrtimer);
	}
5681 5682
}

P
Peter Zijlstra 已提交
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5707 5708 5709 5710 5711
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5712
{
5713 5714 5715
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5716
	now = local_clock();
5717 5718
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5719 5720
}

P
Peter Zijlstra 已提交
5721
static void cpu_clock_event_start(struct perf_event *event, int flags)
5722
{
P
Peter Zijlstra 已提交
5723
	local64_set(&event->hw.prev_count, local_clock());
5724 5725 5726
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5727
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5728
{
5729 5730 5731
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5732

P
Peter Zijlstra 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5746 5747 5748 5749
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5750

5751 5752 5753 5754 5755 5756 5757 5758
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5759 5760
	perf_swevent_init_hrtimer(event);

5761
	return 0;
5762 5763
}

5764
static struct pmu perf_cpu_clock = {
5765 5766
	.task_ctx_nr	= perf_sw_context,

5767
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5768 5769 5770 5771
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5772 5773 5774 5775 5776 5777 5778 5779
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5780
{
5781 5782
	u64 prev;
	s64 delta;
5783

5784 5785 5786 5787
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5788

P
Peter Zijlstra 已提交
5789
static void task_clock_event_start(struct perf_event *event, int flags)
5790
{
P
Peter Zijlstra 已提交
5791
	local64_set(&event->hw.prev_count, event->ctx->time);
5792 5793 5794
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5795
static void task_clock_event_stop(struct perf_event *event, int flags)
5796 5797 5798
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5799 5800 5801 5802 5803 5804
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5805

P
Peter Zijlstra 已提交
5806 5807 5808 5809 5810 5811
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5812 5813 5814 5815
}

static void task_clock_event_read(struct perf_event *event)
{
5816 5817 5818
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5819 5820 5821 5822 5823

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5824
{
5825 5826 5827 5828 5829 5830
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5831 5832
	perf_swevent_init_hrtimer(event);

5833
	return 0;
L
Li Zefan 已提交
5834 5835
}

5836
static struct pmu perf_task_clock = {
5837 5838
	.task_ctx_nr	= perf_sw_context,

5839
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5840 5841 5842 5843
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5844 5845
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5846

P
Peter Zijlstra 已提交
5847
static void perf_pmu_nop_void(struct pmu *pmu)
5848 5849
{
}
L
Li Zefan 已提交
5850

P
Peter Zijlstra 已提交
5851
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5852
{
P
Peter Zijlstra 已提交
5853
	return 0;
L
Li Zefan 已提交
5854 5855
}

P
Peter Zijlstra 已提交
5856
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5857
{
P
Peter Zijlstra 已提交
5858
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5859 5860
}

P
Peter Zijlstra 已提交
5861 5862 5863 5864 5865
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5866

P
Peter Zijlstra 已提交
5867
static void perf_pmu_cancel_txn(struct pmu *pmu)
5868
{
P
Peter Zijlstra 已提交
5869
	perf_pmu_enable(pmu);
5870 5871
}

P
Peter Zijlstra 已提交
5872 5873 5874 5875 5876
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5877
{
P
Peter Zijlstra 已提交
5878
	struct pmu *pmu;
5879

P
Peter Zijlstra 已提交
5880 5881
	if (ctxn < 0)
		return NULL;
5882

P
Peter Zijlstra 已提交
5883 5884 5885 5886
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5887

P
Peter Zijlstra 已提交
5888
	return NULL;
5889 5890
}

5891
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5892
{
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5908

P
Peter Zijlstra 已提交
5909
	mutex_lock(&pmus_lock);
5910
	/*
P
Peter Zijlstra 已提交
5911
	 * Like a real lame refcount.
5912
	 */
5913 5914 5915
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5916
			goto out;
5917
		}
P
Peter Zijlstra 已提交
5918
	}
5919

5920
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5921 5922
out:
	mutex_unlock(&pmus_lock);
5923
}
P
Peter Zijlstra 已提交
5924
static struct idr pmu_idr;
5925

P
Peter Zijlstra 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5978
static struct lock_class_key cpuctx_mutex;
5979
static struct lock_class_key cpuctx_lock;
5980

P
Peter Zijlstra 已提交
5981
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5982
{
P
Peter Zijlstra 已提交
5983
	int cpu, ret;
5984

5985
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5986 5987 5988 5989
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5990

P
Peter Zijlstra 已提交
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6009 6010 6011 6012 6013 6014
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6015
skip_type:
P
Peter Zijlstra 已提交
6016 6017 6018
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6019

P
Peter Zijlstra 已提交
6020 6021
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6022
		goto free_dev;
6023

P
Peter Zijlstra 已提交
6024 6025 6026 6027
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6028
		__perf_event_init_context(&cpuctx->ctx);
6029
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6030
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6031
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6032
		cpuctx->ctx.pmu = pmu;
6033 6034
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6035
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6036
	}
6037

P
Peter Zijlstra 已提交
6038
got_cpu_context:
P
Peter Zijlstra 已提交
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6053
		}
6054
	}
6055

P
Peter Zijlstra 已提交
6056 6057 6058 6059 6060
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6061
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6062 6063
	ret = 0;
unlock:
6064 6065
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6066
	return ret;
P
Peter Zijlstra 已提交
6067

P
Peter Zijlstra 已提交
6068 6069 6070 6071
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6072 6073 6074 6075
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6076 6077 6078
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6079 6080
}

6081
void perf_pmu_unregister(struct pmu *pmu)
6082
{
6083 6084 6085
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6086

6087
	/*
P
Peter Zijlstra 已提交
6088 6089
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6090
	 */
6091
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6092
	synchronize_rcu();
6093

P
Peter Zijlstra 已提交
6094
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6095 6096
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6097 6098
	device_del(pmu->dev);
	put_device(pmu->dev);
6099
	free_pmu_context(pmu);
6100
}
6101

6102 6103 6104 6105
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6106
	int ret;
6107 6108

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6109 6110 6111 6112

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6113 6114 6115 6116
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6117
		goto unlock;
6118
	}
P
Peter Zijlstra 已提交
6119

6120
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6121
		ret = pmu->event_init(event);
6122
		if (!ret)
P
Peter Zijlstra 已提交
6123
			goto unlock;
6124

6125 6126
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6127
			goto unlock;
6128
		}
6129
	}
P
Peter Zijlstra 已提交
6130 6131
	pmu = ERR_PTR(-ENOENT);
unlock:
6132
	srcu_read_unlock(&pmus_srcu, idx);
6133

6134
	return pmu;
6135 6136
}

T
Thomas Gleixner 已提交
6137
/*
6138
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6139
 */
6140
static struct perf_event *
6141
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6142 6143 6144 6145
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6146
{
P
Peter Zijlstra 已提交
6147
	struct pmu *pmu;
6148 6149
	struct perf_event *event;
	struct hw_perf_event *hwc;
6150
	long err;
T
Thomas Gleixner 已提交
6151

6152 6153 6154 6155 6156
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6157
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6158
	if (!event)
6159
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6160

6161
	/*
6162
	 * Single events are their own group leaders, with an
6163 6164 6165
	 * empty sibling list:
	 */
	if (!group_leader)
6166
		group_leader = event;
6167

6168 6169
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6170

6171 6172 6173 6174
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6175
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6176

6177
	mutex_init(&event->mmap_mutex);
6178

6179 6180 6181 6182 6183
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6184

6185
	event->parent		= parent_event;
6186

6187 6188
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6189

6190
	event->state		= PERF_EVENT_STATE_INACTIVE;
6191

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6203 6204
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6205

6206
	event->overflow_handler	= overflow_handler;
6207

6208
	if (attr->disabled)
6209
		event->state = PERF_EVENT_STATE_OFF;
6210

6211
	pmu = NULL;
6212

6213
	hwc = &event->hw;
6214
	hwc->sample_period = attr->sample_period;
6215
	if (attr->freq && attr->sample_freq)
6216
		hwc->sample_period = 1;
6217
	hwc->last_period = hwc->sample_period;
6218

6219
	local64_set(&hwc->period_left, hwc->sample_period);
6220

6221
	/*
6222
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6223
	 */
6224
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6225 6226
		goto done;

6227
	pmu = perf_init_event(event);
6228

6229 6230
done:
	err = 0;
6231
	if (!pmu)
6232
		err = -EINVAL;
6233 6234
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6235

6236
	if (err) {
6237 6238 6239
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6240
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6241
	}
6242

6243
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6244

6245
	if (!event->parent) {
6246
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6247
			jump_label_inc(&perf_sched_events);
6248
		if (event->attr.mmap || event->attr.mmap_data)
6249 6250 6251 6252 6253
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6254 6255 6256 6257 6258 6259 6260
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6261
	}
6262

6263
	return event;
T
Thomas Gleixner 已提交
6264 6265
}

6266 6267
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6268 6269
{
	u32 size;
6270
	int ret;
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6295 6296 6297
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6298 6299
	 */
	if (size > sizeof(*attr)) {
6300 6301 6302
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6303

6304 6305
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6306

6307
		for (; addr < end; addr++) {
6308 6309 6310 6311 6312 6313
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6314
		size = sizeof(*attr);
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6328
	if (attr->__reserved_1)
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6346 6347
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6348
{
6349
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6350 6351
	int ret = -EINVAL;

6352
	if (!output_event)
6353 6354
		goto set;

6355 6356
	/* don't allow circular references */
	if (event == output_event)
6357 6358
		goto out;

6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6371
set:
6372
	mutex_lock(&event->mmap_mutex);
6373 6374 6375
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6376

6377 6378
	if (output_event) {
		/* get the buffer we want to redirect to */
6379 6380
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6381
			goto unlock;
6382 6383
	}

6384 6385
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6386
	ret = 0;
6387 6388 6389
unlock:
	mutex_unlock(&event->mmap_mutex);

6390 6391
	if (old_buffer)
		perf_buffer_put(old_buffer);
6392 6393 6394 6395
out:
	return ret;
}

T
Thomas Gleixner 已提交
6396
/**
6397
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6398
 *
6399
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6400
 * @pid:		target pid
I
Ingo Molnar 已提交
6401
 * @cpu:		target cpu
6402
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6403
 */
6404 6405
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6406
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6407
{
6408 6409
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6410 6411 6412
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6413
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6414
	struct task_struct *task = NULL;
6415
	struct pmu *pmu;
6416
	int event_fd;
6417
	int move_group = 0;
6418
	int fput_needed = 0;
6419
	int err;
T
Thomas Gleixner 已提交
6420

6421
	/* for future expandability... */
S
Stephane Eranian 已提交
6422
	if (flags & ~PERF_FLAG_ALL)
6423 6424
		return -EINVAL;

6425 6426 6427
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6428

6429 6430 6431 6432 6433
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6434
	if (attr.freq) {
6435
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6436 6437 6438
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6439 6440 6441 6442 6443 6444 6445 6446 6447
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6448 6449 6450 6451
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6452 6453 6454 6455
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6456
			goto err_fd;
6457 6458 6459 6460 6461 6462 6463 6464
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6465
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6466 6467 6468 6469 6470 6471 6472
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6473
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6474 6475
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6476
		goto err_task;
6477 6478
	}

S
Stephane Eranian 已提交
6479 6480 6481 6482
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6483 6484 6485 6486 6487 6488 6489
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6490 6491
	}

6492 6493 6494 6495 6496
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6520 6521 6522 6523

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6524
	ctx = find_get_context(pmu, task, cpu);
6525 6526
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6527
		goto err_alloc;
6528 6529
	}

6530 6531 6532 6533 6534
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6535
	/*
6536
	 * Look up the group leader (we will attach this event to it):
6537
	 */
6538
	if (group_leader) {
6539
		err = -EINVAL;
6540 6541

		/*
I
Ingo Molnar 已提交
6542 6543 6544 6545
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6546
			goto err_context;
I
Ingo Molnar 已提交
6547 6548 6549
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6550
		 */
6551 6552 6553 6554 6555 6556 6557 6558
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6559 6560 6561
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6562
		if (attr.exclusive || attr.pinned)
6563
			goto err_context;
6564 6565 6566 6567 6568
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6569
			goto err_context;
6570
	}
T
Thomas Gleixner 已提交
6571

6572 6573 6574
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6575
		goto err_context;
6576
	}
6577

6578 6579 6580 6581
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6582
		perf_remove_from_context(group_leader);
6583 6584
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6585
			perf_remove_from_context(sibling);
6586 6587 6588 6589
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6590
	}
6591

6592
	event->filp = event_file;
6593
	WARN_ON_ONCE(ctx->parent_ctx);
6594
	mutex_lock(&ctx->mutex);
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6606
	perf_install_in_context(ctx, event, cpu);
6607
	++ctx->generation;
6608
	perf_unpin_context(ctx);
6609
	mutex_unlock(&ctx->mutex);
6610

6611
	event->owner = current;
P
Peter Zijlstra 已提交
6612

6613 6614 6615
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6616

6617 6618 6619 6620
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6621
	perf_event__id_header_size(event);
6622

6623 6624 6625 6626 6627 6628
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6629 6630 6631
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6632

6633
err_context:
6634
	perf_unpin_context(ctx);
6635
	put_ctx(ctx);
6636
err_alloc:
6637
	free_event(event);
P
Peter Zijlstra 已提交
6638 6639 6640
err_task:
	if (task)
		put_task_struct(task);
6641
err_group_fd:
6642
	fput_light(group_file, fput_needed);
6643 6644
err_fd:
	put_unused_fd(event_fd);
6645
	return err;
T
Thomas Gleixner 已提交
6646 6647
}

6648 6649 6650 6651 6652
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6653
 * @task: task to profile (NULL for percpu)
6654 6655 6656
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6657
				 struct task_struct *task,
6658
				 perf_overflow_handler_t overflow_handler)
6659 6660
{
	struct perf_event_context *ctx;
6661
	struct perf_event *event;
6662
	int err;
6663

6664 6665 6666
	/*
	 * Get the target context (task or percpu):
	 */
6667

6668
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6669 6670 6671 6672
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6673

M
Matt Helsley 已提交
6674
	ctx = find_get_context(event->pmu, task, cpu);
6675 6676
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6677
		goto err_free;
6678
	}
6679 6680 6681 6682 6683 6684

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6685
	perf_unpin_context(ctx);
6686 6687 6688 6689
	mutex_unlock(&ctx->mutex);

	return event;

6690 6691 6692
err_free:
	free_event(event);
err:
6693
	return ERR_PTR(err);
6694
}
6695
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6696

6697
static void sync_child_event(struct perf_event *child_event,
6698
			       struct task_struct *child)
6699
{
6700
	struct perf_event *parent_event = child_event->parent;
6701
	u64 child_val;
6702

6703 6704
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6705

P
Peter Zijlstra 已提交
6706
	child_val = perf_event_count(child_event);
6707 6708 6709 6710

	/*
	 * Add back the child's count to the parent's count:
	 */
6711
	atomic64_add(child_val, &parent_event->child_count);
6712 6713 6714 6715
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6716 6717

	/*
6718
	 * Remove this event from the parent's list
6719
	 */
6720 6721 6722 6723
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6724 6725

	/*
6726
	 * Release the parent event, if this was the last
6727 6728
	 * reference to it.
	 */
6729
	fput(parent_event->filp);
6730 6731
}

6732
static void
6733 6734
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6735
			 struct task_struct *child)
6736
{
6737 6738 6739 6740 6741
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6742

6743
	perf_remove_from_context(child_event);
6744

6745
	/*
6746
	 * It can happen that the parent exits first, and has events
6747
	 * that are still around due to the child reference. These
6748
	 * events need to be zapped.
6749
	 */
6750
	if (child_event->parent) {
6751 6752
		sync_child_event(child_event, child);
		free_event(child_event);
6753
	}
6754 6755
}

P
Peter Zijlstra 已提交
6756
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6757
{
6758 6759
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6760
	unsigned long flags;
6761

P
Peter Zijlstra 已提交
6762
	if (likely(!child->perf_event_ctxp[ctxn])) {
6763
		perf_event_task(child, NULL, 0);
6764
		return;
P
Peter Zijlstra 已提交
6765
	}
6766

6767
	local_irq_save(flags);
6768 6769 6770 6771 6772 6773
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6774
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6775 6776 6777

	/*
	 * Take the context lock here so that if find_get_context is
6778
	 * reading child->perf_event_ctxp, we wait until it has
6779 6780
	 * incremented the context's refcount before we do put_ctx below.
	 */
6781
	raw_spin_lock(&child_ctx->lock);
6782
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6783
	child->perf_event_ctxp[ctxn] = NULL;
6784 6785 6786
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6787
	 * the events from it.
6788 6789
	 */
	unclone_ctx(child_ctx);
6790
	update_context_time(child_ctx);
6791
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6792 6793

	/*
6794 6795 6796
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6797
	 */
6798
	perf_event_task(child, child_ctx, 0);
6799

6800 6801 6802
	/*
	 * We can recurse on the same lock type through:
	 *
6803 6804 6805
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6806 6807 6808 6809 6810
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6811
	mutex_lock(&child_ctx->mutex);
6812

6813
again:
6814 6815 6816 6817 6818
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6819
				 group_entry)
6820
		__perf_event_exit_task(child_event, child_ctx, child);
6821 6822

	/*
6823
	 * If the last event was a group event, it will have appended all
6824 6825 6826
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6827 6828
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6829
		goto again;
6830 6831 6832 6833

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6834 6835
}

P
Peter Zijlstra 已提交
6836 6837 6838 6839 6840
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6841
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6842 6843
	int ctxn;

P
Peter Zijlstra 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6859 6860 6861 6862
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6877
	perf_group_detach(event);
6878 6879 6880 6881
	list_del_event(event, ctx);
	free_event(event);
}

6882 6883
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6884
 * perf_event_init_task below, used by fork() in case of fail.
6885
 */
6886
void perf_event_free_task(struct task_struct *task)
6887
{
P
Peter Zijlstra 已提交
6888
	struct perf_event_context *ctx;
6889
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6890
	int ctxn;
6891

P
Peter Zijlstra 已提交
6892 6893 6894 6895
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6896

P
Peter Zijlstra 已提交
6897
		mutex_lock(&ctx->mutex);
6898
again:
P
Peter Zijlstra 已提交
6899 6900 6901
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6902

P
Peter Zijlstra 已提交
6903 6904 6905
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6906

P
Peter Zijlstra 已提交
6907 6908 6909
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6910

P
Peter Zijlstra 已提交
6911
		mutex_unlock(&ctx->mutex);
6912

P
Peter Zijlstra 已提交
6913 6914
		put_ctx(ctx);
	}
6915 6916
}

6917 6918 6919 6920 6921 6922 6923 6924
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6937
	unsigned long flags;
P
Peter Zijlstra 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6950
					   child,
P
Peter Zijlstra 已提交
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6980 6981 6982 6983
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6984
	perf_event__id_header_size(child_event);
6985

P
Peter Zijlstra 已提交
6986 6987 6988
	/*
	 * Link it up in the child's context:
	 */
6989
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6990
	add_event_to_ctx(child_event, child_ctx);
6991
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7033 7034 7035 7036 7037
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7038
		   struct task_struct *child, int ctxn,
7039 7040 7041
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7042
	struct perf_event_context *child_ctx;
7043 7044 7045 7046

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7047 7048
	}

7049
	child_ctx = child->perf_event_ctxp[ctxn];
7050 7051 7052 7053 7054 7055 7056
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7057

7058
		child_ctx = alloc_perf_context(event->pmu, child);
7059 7060
		if (!child_ctx)
			return -ENOMEM;
7061

P
Peter Zijlstra 已提交
7062
		child->perf_event_ctxp[ctxn] = child_ctx;
7063 7064 7065 7066 7067 7068 7069 7070 7071
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7072 7073
}

7074
/*
7075
 * Initialize the perf_event context in task_struct
7076
 */
P
Peter Zijlstra 已提交
7077
int perf_event_init_context(struct task_struct *child, int ctxn)
7078
{
7079
	struct perf_event_context *child_ctx, *parent_ctx;
7080 7081
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7082
	struct task_struct *parent = current;
7083
	int inherited_all = 1;
7084
	unsigned long flags;
7085
	int ret = 0;
7086

P
Peter Zijlstra 已提交
7087
	if (likely(!parent->perf_event_ctxp[ctxn]))
7088 7089
		return 0;

7090
	/*
7091 7092
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7093
	 */
P
Peter Zijlstra 已提交
7094
	parent_ctx = perf_pin_task_context(parent, ctxn);
7095

7096 7097 7098 7099 7100 7101 7102
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7103 7104 7105 7106
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7107
	mutex_lock(&parent_ctx->mutex);
7108 7109 7110 7111 7112

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7113
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7114 7115
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7116 7117 7118
		if (ret)
			break;
	}
7119

7120 7121 7122 7123 7124 7125 7126 7127 7128
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7129
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7130 7131
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7132
		if (ret)
7133
			break;
7134 7135
	}

7136 7137 7138
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7139
	child_ctx = child->perf_event_ctxp[ctxn];
7140

7141
	if (child_ctx && inherited_all) {
7142 7143 7144
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7145 7146 7147
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7148
		 */
P
Peter Zijlstra 已提交
7149
		cloned_ctx = parent_ctx->parent_ctx;
7150 7151
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7152
			child_ctx->parent_gen = parent_ctx->parent_gen;
7153 7154 7155 7156 7157
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7158 7159
	}

P
Peter Zijlstra 已提交
7160
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7161
	mutex_unlock(&parent_ctx->mutex);
7162

7163
	perf_unpin_context(parent_ctx);
7164
	put_ctx(parent_ctx);
7165

7166
	return ret;
7167 7168
}

P
Peter Zijlstra 已提交
7169 7170 7171 7172 7173 7174 7175
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7176 7177 7178 7179
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7180 7181 7182 7183 7184 7185 7186 7187 7188
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7189 7190
static void __init perf_event_init_all_cpus(void)
{
7191
	struct swevent_htable *swhash;
7192 7193 7194
	int cpu;

	for_each_possible_cpu(cpu) {
7195 7196
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7197
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7198 7199 7200
	}
}

7201
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7202
{
P
Peter Zijlstra 已提交
7203
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7204

7205 7206
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7207 7208
		struct swevent_hlist *hlist;

7209 7210 7211
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7212
	}
7213
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7214 7215
}

P
Peter Zijlstra 已提交
7216
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7217
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7218
{
7219 7220 7221 7222 7223 7224 7225
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7226
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7227
{
P
Peter Zijlstra 已提交
7228
	struct perf_event_context *ctx = __info;
7229
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7230

P
Peter Zijlstra 已提交
7231
	perf_pmu_rotate_stop(ctx->pmu);
7232

7233
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7234
		__perf_remove_from_context(event);
7235
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7236
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7237
}
P
Peter Zijlstra 已提交
7238 7239 7240 7241 7242 7243 7244 7245 7246

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7247
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7248 7249 7250 7251 7252 7253 7254 7255

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7256
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7257
{
7258
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7259

7260 7261 7262
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7263

P
Peter Zijlstra 已提交
7264
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7265 7266
}
#else
7267
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7268 7269
#endif

P
Peter Zijlstra 已提交
7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7290 7291 7292 7293 7294
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7295
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7296 7297

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7298
	case CPU_DOWN_FAILED:
7299
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7300 7301
		break;

P
Peter Zijlstra 已提交
7302
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7303
	case CPU_DOWN_PREPARE:
7304
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7305 7306 7307 7308 7309 7310 7311 7312 7313
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7314
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7315
{
7316 7317
	int ret;

P
Peter Zijlstra 已提交
7318 7319
	idr_init(&pmu_idr);

7320
	perf_event_init_all_cpus();
7321
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7322 7323 7324
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7325 7326
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7327
	register_reboot_notifier(&perf_reboot_notifier);
7328 7329 7330

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7331
}
P
Peter Zijlstra 已提交
7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7360 7361 7362 7363 7364 7365 7366

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7367
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7397 7398
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7414
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
7415 7416 7417
}

struct cgroup_subsys perf_subsys = {
7418 7419 7420 7421 7422
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7423
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
7424 7425
};
#endif /* CONFIG_CGROUP_PERF */