core.c 200.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

A
Al Viro 已提交
617
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
876 877

/*
878 879 880 881
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
882
 */
883
static void perf_event_ctx_activate(struct perf_event_context *ctx)
884
{
885
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
886

887
	WARN_ON(!irqs_disabled());
888

889 890 891 892 893 894 895 896 897 898 899 900
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
901 902
}

903
static void get_ctx(struct perf_event_context *ctx)
904
{
905
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
906 907
}

908
static void put_ctx(struct perf_event_context *ctx)
909
{
910 911 912
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
913 914
		if (ctx->task)
			put_task_struct(ctx->task);
915
		kfree_rcu(ctx, rcu_head);
916
	}
917 918
}

P
Peter Zijlstra 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
960 961
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970 971 972 973
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
974
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
975 976 977 978 979 980 981 982 983
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
984 985 986 987 988 989
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
990 991 992 993 994 995 996
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

997 998 999 1000 1001 1002 1003
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1004
{
1005 1006 1007 1008 1009
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1010
		ctx->parent_ctx = NULL;
1011
	ctx->generation++;
1012 1013

	return parent_ctx;
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1038
/*
1039
 * If we inherit events we want to return the parent event id
1040 1041
 * to userspace.
 */
1042
static u64 primary_event_id(struct perf_event *event)
1043
{
1044
	u64 id = event->id;
1045

1046 1047
	if (event->parent)
		id = event->parent->id;
1048 1049 1050 1051

	return id;
}

1052
/*
1053
 * Get the perf_event_context for a task and lock it.
1054 1055 1056
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1057
static struct perf_event_context *
P
Peter Zijlstra 已提交
1058
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1059
{
1060
	struct perf_event_context *ctx;
1061

P
Peter Zijlstra 已提交
1062
retry:
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1074
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1075 1076 1077 1078
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1079
		 * perf_event_task_sched_out, though the
1080 1081 1082 1083 1084 1085
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1086
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1087
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1088
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1089 1090
			rcu_read_unlock();
			preempt_enable();
1091 1092
			goto retry;
		}
1093 1094

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1095
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1096 1097
			ctx = NULL;
		}
1098 1099
	}
	rcu_read_unlock();
1100
	preempt_enable();
1101 1102 1103 1104 1105 1106 1107 1108
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1109 1110
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1111
{
1112
	struct perf_event_context *ctx;
1113 1114
	unsigned long flags;

P
Peter Zijlstra 已提交
1115
	ctx = perf_lock_task_context(task, ctxn, &flags);
1116 1117
	if (ctx) {
		++ctx->pin_count;
1118
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1119 1120 1121 1122
	}
	return ctx;
}

1123
static void perf_unpin_context(struct perf_event_context *ctx)
1124 1125 1126
{
	unsigned long flags;

1127
	raw_spin_lock_irqsave(&ctx->lock, flags);
1128
	--ctx->pin_count;
1129
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1143 1144 1145
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1146 1147 1148 1149

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1150 1151 1152
	return ctx ? ctx->time : 0;
}

1153 1154
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1155
 * The caller of this function needs to hold the ctx->lock.
1156 1157 1158 1159 1160 1161 1162 1163 1164
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1176
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1177 1178
	else if (ctx->is_active)
		run_end = ctx->time;
1179 1180 1181 1182
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1183 1184 1185 1186

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1187
		run_end = perf_event_time(event);
1188 1189

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1190

1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1205 1206 1207 1208 1209 1210 1211 1212 1213
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1214
/*
1215
 * Add a event from the lists for its context.
1216 1217
 * Must be called with ctx->mutex and ctx->lock held.
 */
1218
static void
1219
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1220
{
1221 1222
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1223 1224

	/*
1225 1226 1227
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1228
	 */
1229
	if (event->group_leader == event) {
1230 1231
		struct list_head *list;

1232 1233 1234
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1235 1236
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1237
	}
P
Peter Zijlstra 已提交
1238

1239
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1240 1241
		ctx->nr_cgroups++;

1242 1243 1244
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1245 1246 1247
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1248
		ctx->nr_stat++;
1249 1250

	ctx->generation++;
1251 1252
}

J
Jiri Olsa 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1301 1302 1303 1304 1305 1306
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1307 1308 1309
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1310 1311 1312
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1313 1314 1315
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1316 1317 1318
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1319 1320 1321 1322 1323 1324 1325 1326 1327
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1328 1329 1330 1331 1332 1333
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1334 1335 1336
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1337 1338 1339 1340 1341 1342 1343 1344 1345
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1346
	event->id_header_size = size;
1347 1348
}

1349 1350
static void perf_group_attach(struct perf_event *event)
{
1351
	struct perf_event *group_leader = event->group_leader, *pos;
1352

P
Peter Zijlstra 已提交
1353 1354 1355 1356 1357 1358
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1359 1360 1361 1362 1363
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1364 1365
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1366 1367 1368 1369 1370 1371
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1372 1373 1374 1375 1376

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1377 1378
}

1379
/*
1380
 * Remove a event from the lists for its context.
1381
 * Must be called with ctx->mutex and ctx->lock held.
1382
 */
1383
static void
1384
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1385
{
1386
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1387 1388 1389 1390

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1391 1392 1393 1394
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1395
		return;
1396 1397 1398

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1399
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1400
		ctx->nr_cgroups--;
1401 1402 1403 1404 1405 1406 1407 1408 1409
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1410

1411 1412 1413
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1414 1415
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1416
		ctx->nr_stat--;
1417

1418
	list_del_rcu(&event->event_entry);
1419

1420 1421
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1422

1423
	update_group_times(event);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1434 1435

	ctx->generation++;
1436 1437
}

1438
static void perf_group_detach(struct perf_event *event)
1439 1440
{
	struct perf_event *sibling, *tmp;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1457
		goto out;
1458 1459 1460 1461
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1462

1463
	/*
1464 1465
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1466
	 * to whatever list we are on.
1467
	 */
1468
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1469 1470
		if (list)
			list_move_tail(&sibling->group_entry, list);
1471
		sibling->group_leader = sibling;
1472 1473 1474

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1475 1476

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1477
	}
1478 1479 1480 1481 1482 1483

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1525 1526 1527
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1528 1529
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1530 1531
}

1532 1533
static void
event_sched_out(struct perf_event *event,
1534
		  struct perf_cpu_context *cpuctx,
1535
		  struct perf_event_context *ctx)
1536
{
1537
	u64 tstamp = perf_event_time(event);
1538
	u64 delta;
P
Peter Zijlstra 已提交
1539 1540 1541 1542

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1543 1544 1545 1546 1547 1548 1549 1550
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1551
		delta = tstamp - event->tstamp_stopped;
1552
		event->tstamp_running += delta;
1553
		event->tstamp_stopped = tstamp;
1554 1555
	}

1556
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1557
		return;
1558

1559 1560
	perf_pmu_disable(event->pmu);

1561 1562 1563 1564
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1565
	}
1566
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1567
	event->pmu->del(event, 0);
1568
	event->oncpu = -1;
1569

1570
	if (!is_software_event(event))
1571
		cpuctx->active_oncpu--;
1572 1573
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1574 1575
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1576
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1577
		cpuctx->exclusive = 0;
1578

1579 1580 1581
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1582
	perf_pmu_enable(event->pmu);
1583 1584
}

1585
static void
1586
group_sched_out(struct perf_event *group_event,
1587
		struct perf_cpu_context *cpuctx,
1588
		struct perf_event_context *ctx)
1589
{
1590
	struct perf_event *event;
1591
	int state = group_event->state;
1592

1593
	event_sched_out(group_event, cpuctx, ctx);
1594 1595 1596 1597

	/*
	 * Schedule out siblings (if any):
	 */
1598 1599
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1600

1601
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1602 1603 1604
		cpuctx->exclusive = 0;
}

1605 1606 1607 1608 1609
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1610
/*
1611
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1612
 *
1613
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1614 1615
 * remove it from the context list.
 */
1616
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1617
{
1618 1619
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1620
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1621
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1622

1623
	raw_spin_lock(&ctx->lock);
1624
	event_sched_out(event, cpuctx, ctx);
1625 1626
	if (re->detach_group)
		perf_group_detach(event);
1627
	list_del_event(event, ctx);
1628 1629 1630 1631
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1632
	raw_spin_unlock(&ctx->lock);
1633 1634

	return 0;
T
Thomas Gleixner 已提交
1635 1636 1637 1638
}


/*
1639
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1640
 *
1641
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1642
 * call when the task is on a CPU.
1643
 *
1644 1645
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1646 1647
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1648
 * When called from perf_event_exit_task, it's OK because the
1649
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1650
 */
1651
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1652
{
1653
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1654
	struct task_struct *task = ctx->task;
1655 1656 1657 1658
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1659

1660 1661
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1662 1663
	if (!task) {
		/*
1664 1665 1666 1667
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1668
		 */
1669
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1670 1671 1672 1673
		return;
	}

retry:
1674
	if (!task_function_call(task, __perf_remove_from_context, &re))
1675
		return;
T
Thomas Gleixner 已提交
1676

1677
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1678
	/*
1679 1680
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1681
	 */
1682
	if (ctx->is_active) {
1683
		raw_spin_unlock_irq(&ctx->lock);
1684 1685 1686 1687 1688
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1689 1690 1691 1692
		goto retry;
	}

	/*
1693 1694
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1695
	 */
1696 1697
	if (detach_group)
		perf_group_detach(event);
1698
	list_del_event(event, ctx);
1699
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1700 1701
}

1702
/*
1703
 * Cross CPU call to disable a performance event
1704
 */
1705
int __perf_event_disable(void *info)
1706
{
1707 1708
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1709
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1710 1711

	/*
1712 1713
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1714 1715 1716
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1717
	 */
1718
	if (ctx->task && cpuctx->task_ctx != ctx)
1719
		return -EINVAL;
1720

1721
	raw_spin_lock(&ctx->lock);
1722 1723

	/*
1724
	 * If the event is on, turn it off.
1725 1726
	 * If it is in error state, leave it in error state.
	 */
1727
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1728
		update_context_time(ctx);
S
Stephane Eranian 已提交
1729
		update_cgrp_time_from_event(event);
1730 1731 1732
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1733
		else
1734 1735
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1736 1737
	}

1738
	raw_spin_unlock(&ctx->lock);
1739 1740

	return 0;
1741 1742 1743
}

/*
1744
 * Disable a event.
1745
 *
1746 1747
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1748
 * remains valid.  This condition is satisifed when called through
1749 1750 1751 1752
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1753
 * is the current context on this CPU and preemption is disabled,
1754
 * hence we can't get into perf_event_task_sched_out for this context.
1755
 */
P
Peter Zijlstra 已提交
1756
static void _perf_event_disable(struct perf_event *event)
1757
{
1758
	struct perf_event_context *ctx = event->ctx;
1759 1760 1761 1762
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1763
		 * Disable the event on the cpu that it's on
1764
		 */
1765
		cpu_function_call(event->cpu, __perf_event_disable, event);
1766 1767 1768
		return;
	}

P
Peter Zijlstra 已提交
1769
retry:
1770 1771
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1772

1773
	raw_spin_lock_irq(&ctx->lock);
1774
	/*
1775
	 * If the event is still active, we need to retry the cross-call.
1776
	 */
1777
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1778
		raw_spin_unlock_irq(&ctx->lock);
1779 1780 1781 1782 1783
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1784 1785 1786 1787 1788 1789 1790
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1791 1792 1793
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1794
	}
1795
	raw_spin_unlock_irq(&ctx->lock);
1796
}
P
Peter Zijlstra 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1810
EXPORT_SYMBOL_GPL(perf_event_disable);
1811

S
Stephane Eranian 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1847 1848 1849 1850
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1851
static int
1852
event_sched_in(struct perf_event *event,
1853
		 struct perf_cpu_context *cpuctx,
1854
		 struct perf_event_context *ctx)
1855
{
1856
	u64 tstamp = perf_event_time(event);
1857
	int ret = 0;
1858

1859 1860
	lockdep_assert_held(&ctx->lock);

1861
	if (event->state <= PERF_EVENT_STATE_OFF)
1862 1863
		return 0;

1864
	event->state = PERF_EVENT_STATE_ACTIVE;
1865
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1877 1878 1879 1880 1881
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1882 1883
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1884
	if (event->pmu->add(event, PERF_EF_START)) {
1885 1886
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1887 1888
		ret = -EAGAIN;
		goto out;
1889 1890
	}

1891
	event->tstamp_running += tstamp - event->tstamp_stopped;
1892

S
Stephane Eranian 已提交
1893
	perf_set_shadow_time(event, ctx, tstamp);
1894

1895
	if (!is_software_event(event))
1896
		cpuctx->active_oncpu++;
1897 1898
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1899 1900
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1901

1902
	if (event->attr.exclusive)
1903 1904
		cpuctx->exclusive = 1;

1905 1906 1907
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1908 1909 1910 1911
out:
	perf_pmu_enable(event->pmu);

	return ret;
1912 1913
}

1914
static int
1915
group_sched_in(struct perf_event *group_event,
1916
	       struct perf_cpu_context *cpuctx,
1917
	       struct perf_event_context *ctx)
1918
{
1919
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1920
	struct pmu *pmu = ctx->pmu;
1921 1922
	u64 now = ctx->time;
	bool simulate = false;
1923

1924
	if (group_event->state == PERF_EVENT_STATE_OFF)
1925 1926
		return 0;

P
Peter Zijlstra 已提交
1927
	pmu->start_txn(pmu);
1928

1929
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1930
		pmu->cancel_txn(pmu);
1931
		perf_cpu_hrtimer_restart(cpuctx);
1932
		return -EAGAIN;
1933
	}
1934 1935 1936 1937

	/*
	 * Schedule in siblings as one group (if any):
	 */
1938
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1939
		if (event_sched_in(event, cpuctx, ctx)) {
1940
			partial_group = event;
1941 1942 1943 1944
			goto group_error;
		}
	}

1945
	if (!pmu->commit_txn(pmu))
1946
		return 0;
1947

1948 1949 1950 1951
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1962
	 */
1963 1964
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1965 1966 1967 1968 1969 1970 1971 1972
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1973
	}
1974
	event_sched_out(group_event, cpuctx, ctx);
1975

P
Peter Zijlstra 已提交
1976
	pmu->cancel_txn(pmu);
1977

1978 1979
	perf_cpu_hrtimer_restart(cpuctx);

1980 1981 1982
	return -EAGAIN;
}

1983
/*
1984
 * Work out whether we can put this event group on the CPU now.
1985
 */
1986
static int group_can_go_on(struct perf_event *event,
1987 1988 1989 1990
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1991
	 * Groups consisting entirely of software events can always go on.
1992
	 */
1993
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1994 1995 1996
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1997
	 * events can go on.
1998 1999 2000 2001 2002
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2003
	 * events on the CPU, it can't go on.
2004
	 */
2005
	if (event->attr.exclusive && cpuctx->active_oncpu)
2006 2007 2008 2009 2010 2011 2012 2013
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2014 2015
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2016
{
2017 2018
	u64 tstamp = perf_event_time(event);

2019
	list_add_event(event, ctx);
2020
	perf_group_attach(event);
2021 2022 2023
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2024 2025
}

2026 2027 2028 2029 2030 2031
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2045
/*
2046
 * Cross CPU call to install and enable a performance event
2047 2048
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2049
 */
2050
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2051
{
2052 2053
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2054
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2055 2056 2057
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2058
	perf_ctx_lock(cpuctx, task_ctx);
2059
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2060 2061

	/*
2062
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2063
	 */
2064
	if (task_ctx)
2065
		task_ctx_sched_out(task_ctx);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2080 2081
		task = task_ctx->task;
	}
2082

2083
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2084

2085
	update_context_time(ctx);
S
Stephane Eranian 已提交
2086 2087 2088 2089 2090 2091
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2092

2093
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2094

2095
	/*
2096
	 * Schedule everything back in
2097
	 */
2098
	perf_event_sched_in(cpuctx, task_ctx, task);
2099 2100 2101

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2102 2103

	return 0;
T
Thomas Gleixner 已提交
2104 2105 2106
}

/*
2107
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2108
 *
2109 2110
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2111
 *
2112
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2113 2114 2115 2116
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2117 2118
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2119 2120 2121 2122
			int cpu)
{
	struct task_struct *task = ctx->task;

2123 2124
	lockdep_assert_held(&ctx->mutex);

2125
	event->ctx = ctx;
2126 2127
	if (event->cpu != -1)
		event->cpu = cpu;
2128

T
Thomas Gleixner 已提交
2129 2130
	if (!task) {
		/*
2131
		 * Per cpu events are installed via an smp call and
2132
		 * the install is always successful.
T
Thomas Gleixner 已提交
2133
		 */
2134
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2135 2136 2137 2138
		return;
	}

retry:
2139 2140
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2141

2142
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2143
	/*
2144 2145
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2146
	 */
2147
	if (ctx->is_active) {
2148
		raw_spin_unlock_irq(&ctx->lock);
2149 2150 2151 2152 2153
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2154 2155 2156 2157
		goto retry;
	}

	/*
2158 2159
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2160
	 */
2161
	add_event_to_ctx(event, ctx);
2162
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2163 2164
}

2165
/*
2166
 * Put a event into inactive state and update time fields.
2167 2168 2169 2170 2171 2172
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2173
static void __perf_event_mark_enabled(struct perf_event *event)
2174
{
2175
	struct perf_event *sub;
2176
	u64 tstamp = perf_event_time(event);
2177

2178
	event->state = PERF_EVENT_STATE_INACTIVE;
2179
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2180
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2181 2182
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2183
	}
2184 2185
}

2186
/*
2187
 * Cross CPU call to enable a performance event
2188
 */
2189
static int __perf_event_enable(void *info)
2190
{
2191 2192 2193
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2194
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2195
	int err;
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2207
		return -EINVAL;
2208

2209
	raw_spin_lock(&ctx->lock);
2210
	update_context_time(ctx);
2211

2212
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2213
		goto unlock;
S
Stephane Eranian 已提交
2214 2215 2216 2217

	/*
	 * set current task's cgroup time reference point
	 */
2218
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2219

2220
	__perf_event_mark_enabled(event);
2221

S
Stephane Eranian 已提交
2222 2223 2224
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2225
		goto unlock;
S
Stephane Eranian 已提交
2226
	}
2227

2228
	/*
2229
	 * If the event is in a group and isn't the group leader,
2230
	 * then don't put it on unless the group is on.
2231
	 */
2232
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2233
		goto unlock;
2234

2235
	if (!group_can_go_on(event, cpuctx, 1)) {
2236
		err = -EEXIST;
2237
	} else {
2238
		if (event == leader)
2239
			err = group_sched_in(event, cpuctx, ctx);
2240
		else
2241
			err = event_sched_in(event, cpuctx, ctx);
2242
	}
2243 2244 2245

	if (err) {
		/*
2246
		 * If this event can't go on and it's part of a
2247 2248
		 * group, then the whole group has to come off.
		 */
2249
		if (leader != event) {
2250
			group_sched_out(leader, cpuctx, ctx);
2251 2252
			perf_cpu_hrtimer_restart(cpuctx);
		}
2253
		if (leader->attr.pinned) {
2254
			update_group_times(leader);
2255
			leader->state = PERF_EVENT_STATE_ERROR;
2256
		}
2257 2258
	}

P
Peter Zijlstra 已提交
2259
unlock:
2260
	raw_spin_unlock(&ctx->lock);
2261 2262

	return 0;
2263 2264 2265
}

/*
2266
 * Enable a event.
2267
 *
2268 2269
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2270
 * remains valid.  This condition is satisfied when called through
2271 2272
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2273
 */
P
Peter Zijlstra 已提交
2274
static void _perf_event_enable(struct perf_event *event)
2275
{
2276
	struct perf_event_context *ctx = event->ctx;
2277 2278 2279 2280
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2281
		 * Enable the event on the cpu that it's on
2282
		 */
2283
		cpu_function_call(event->cpu, __perf_event_enable, event);
2284 2285 2286
		return;
	}

2287
	raw_spin_lock_irq(&ctx->lock);
2288
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2289 2290 2291
		goto out;

	/*
2292 2293
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2294 2295 2296 2297
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2298 2299
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2300

P
Peter Zijlstra 已提交
2301
retry:
2302
	if (!ctx->is_active) {
2303
		__perf_event_mark_enabled(event);
2304 2305 2306
		goto out;
	}

2307
	raw_spin_unlock_irq(&ctx->lock);
2308 2309 2310

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2311

2312
	raw_spin_lock_irq(&ctx->lock);
2313 2314

	/*
2315
	 * If the context is active and the event is still off,
2316 2317
	 * we need to retry the cross-call.
	 */
2318 2319 2320 2321 2322 2323
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2324
		goto retry;
2325
	}
2326

P
Peter Zijlstra 已提交
2327
out:
2328
	raw_spin_unlock_irq(&ctx->lock);
2329
}
P
Peter Zijlstra 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2342
EXPORT_SYMBOL_GPL(perf_event_enable);
2343

P
Peter Zijlstra 已提交
2344
static int _perf_event_refresh(struct perf_event *event, int refresh)
2345
{
2346
	/*
2347
	 * not supported on inherited events
2348
	 */
2349
	if (event->attr.inherit || !is_sampling_event(event))
2350 2351
		return -EINVAL;

2352
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2353
	_perf_event_enable(event);
2354 2355

	return 0;
2356
}
P
Peter Zijlstra 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2372
EXPORT_SYMBOL_GPL(perf_event_refresh);
2373

2374 2375 2376
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2377
{
2378
	struct perf_event *event;
2379
	int is_active = ctx->is_active;
2380

2381
	ctx->is_active &= ~event_type;
2382
	if (likely(!ctx->nr_events))
2383 2384
		return;

2385
	update_context_time(ctx);
S
Stephane Eranian 已提交
2386
	update_cgrp_time_from_cpuctx(cpuctx);
2387
	if (!ctx->nr_active)
2388
		return;
2389

P
Peter Zijlstra 已提交
2390
	perf_pmu_disable(ctx->pmu);
2391
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2392 2393
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2394
	}
2395

2396
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2397
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2398
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2399
	}
P
Peter Zijlstra 已提交
2400
	perf_pmu_enable(ctx->pmu);
2401 2402
}

2403
/*
2404 2405 2406 2407 2408 2409
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2410
 */
2411 2412
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2413
{
2414 2415 2416
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2439 2440
}

2441 2442
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2443 2444 2445
{
	u64 value;

2446
	if (!event->attr.inherit_stat)
2447 2448 2449
		return;

	/*
2450
	 * Update the event value, we cannot use perf_event_read()
2451 2452
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2453
	 * we know the event must be on the current CPU, therefore we
2454 2455
	 * don't need to use it.
	 */
2456 2457
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2458 2459
		event->pmu->read(event);
		/* fall-through */
2460

2461 2462
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2463 2464 2465 2466 2467 2468 2469
		break;

	default:
		break;
	}

	/*
2470
	 * In order to keep per-task stats reliable we need to flip the event
2471 2472
	 * values when we flip the contexts.
	 */
2473 2474 2475
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2476

2477 2478
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2479

2480
	/*
2481
	 * Since we swizzled the values, update the user visible data too.
2482
	 */
2483 2484
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2485 2486
}

2487 2488
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2489
{
2490
	struct perf_event *event, *next_event;
2491 2492 2493 2494

	if (!ctx->nr_stat)
		return;

2495 2496
	update_context_time(ctx);

2497 2498
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2499

2500 2501
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2502

2503 2504
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2505

2506
		__perf_event_sync_stat(event, next_event);
2507

2508 2509
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2510 2511 2512
	}
}

2513 2514
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2515
{
P
Peter Zijlstra 已提交
2516
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2517
	struct perf_event_context *next_ctx;
2518
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2519
	struct perf_cpu_context *cpuctx;
2520
	int do_switch = 1;
T
Thomas Gleixner 已提交
2521

P
Peter Zijlstra 已提交
2522 2523
	if (likely(!ctx))
		return;
2524

P
Peter Zijlstra 已提交
2525 2526
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2527 2528
		return;

2529
	rcu_read_lock();
P
Peter Zijlstra 已提交
2530
	next_ctx = next->perf_event_ctxp[ctxn];
2531 2532 2533 2534 2535 2536 2537
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2538
	if (!parent && !next_parent)
2539 2540 2541
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2542 2543 2544 2545 2546 2547 2548 2549 2550
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2551 2552
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2553
		if (context_equiv(ctx, next_ctx)) {
2554 2555
			/*
			 * XXX do we need a memory barrier of sorts
2556
			 * wrt to rcu_dereference() of perf_event_ctxp
2557
			 */
P
Peter Zijlstra 已提交
2558 2559
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2560 2561 2562
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2563

2564
			perf_event_sync_stat(ctx, next_ctx);
2565
		}
2566 2567
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2568
	}
2569
unlock:
2570
	rcu_read_unlock();
2571

2572
	if (do_switch) {
2573
		raw_spin_lock(&ctx->lock);
2574
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2575
		cpuctx->task_ctx = NULL;
2576
		raw_spin_unlock(&ctx->lock);
2577
	}
T
Thomas Gleixner 已提交
2578 2579
}

P
Peter Zijlstra 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2594 2595
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2596 2597 2598 2599 2600
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2601 2602 2603 2604 2605 2606

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2607
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2608
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2609 2610
}

2611
static void task_ctx_sched_out(struct perf_event_context *ctx)
2612
{
P
Peter Zijlstra 已提交
2613
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2614

2615 2616
	if (!cpuctx->task_ctx)
		return;
2617 2618 2619 2620

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2621
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2622 2623 2624
	cpuctx->task_ctx = NULL;
}

2625 2626 2627 2628 2629 2630 2631
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2632 2633
}

2634
static void
2635
ctx_pinned_sched_in(struct perf_event_context *ctx,
2636
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2637
{
2638
	struct perf_event *event;
T
Thomas Gleixner 已提交
2639

2640 2641
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2642
			continue;
2643
		if (!event_filter_match(event))
2644 2645
			continue;

S
Stephane Eranian 已提交
2646 2647 2648 2649
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2650
		if (group_can_go_on(event, cpuctx, 1))
2651
			group_sched_in(event, cpuctx, ctx);
2652 2653 2654 2655 2656

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2657 2658 2659
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2660
		}
2661
	}
2662 2663 2664 2665
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2666
		      struct perf_cpu_context *cpuctx)
2667 2668 2669
{
	struct perf_event *event;
	int can_add_hw = 1;
2670

2671 2672 2673
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2674
			continue;
2675 2676
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2677
		 * of events:
2678
		 */
2679
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2680 2681
			continue;

S
Stephane Eranian 已提交
2682 2683 2684 2685
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2686
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2687
			if (group_sched_in(event, cpuctx, ctx))
2688
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2689
		}
T
Thomas Gleixner 已提交
2690
	}
2691 2692 2693 2694 2695
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2696 2697
	     enum event_type_t event_type,
	     struct task_struct *task)
2698
{
S
Stephane Eranian 已提交
2699
	u64 now;
2700
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2701

2702
	ctx->is_active |= event_type;
2703
	if (likely(!ctx->nr_events))
2704
		return;
2705

S
Stephane Eranian 已提交
2706 2707
	now = perf_clock();
	ctx->timestamp = now;
2708
	perf_cgroup_set_timestamp(task, ctx);
2709 2710 2711 2712
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2713
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2714
		ctx_pinned_sched_in(ctx, cpuctx);
2715 2716

	/* Then walk through the lower prio flexible groups */
2717
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2718
		ctx_flexible_sched_in(ctx, cpuctx);
2719 2720
}

2721
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2722 2723
			     enum event_type_t event_type,
			     struct task_struct *task)
2724 2725 2726
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2727
	ctx_sched_in(ctx, cpuctx, event_type, task);
2728 2729
}

S
Stephane Eranian 已提交
2730 2731
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2732
{
P
Peter Zijlstra 已提交
2733
	struct perf_cpu_context *cpuctx;
2734

P
Peter Zijlstra 已提交
2735
	cpuctx = __get_cpu_context(ctx);
2736 2737 2738
	if (cpuctx->task_ctx == ctx)
		return;

2739
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2740
	perf_pmu_disable(ctx->pmu);
2741 2742 2743 2744 2745 2746 2747
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2748 2749
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2750

2751 2752
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2753 2754
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2755 2756
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2826 2827
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2837
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2838
	}
S
Stephane Eranian 已提交
2839 2840 2841 2842 2843
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2844
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2845
		perf_cgroup_sched_in(prev, task);
2846 2847

	/* check for system-wide branch_stack events */
2848
	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2849
		perf_branch_stack_sched_in(prev, task);
2850 2851
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2879
#define REDUCE_FLS(a, b)		\
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2919 2920 2921
	if (!divisor)
		return dividend;

2922 2923 2924
	return div64_u64(dividend, divisor);
}

2925 2926 2927
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2928
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2929
{
2930
	struct hw_perf_event *hwc = &event->hw;
2931
	s64 period, sample_period;
2932 2933
	s64 delta;

2934
	period = perf_calculate_period(event, nsec, count);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2945

2946
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2947 2948 2949
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2950
		local64_set(&hwc->period_left, 0);
2951 2952 2953

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2954
	}
2955 2956
}

2957 2958 2959 2960 2961 2962 2963
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2964
{
2965 2966
	struct perf_event *event;
	struct hw_perf_event *hwc;
2967
	u64 now, period = TICK_NSEC;
2968
	s64 delta;
2969

2970 2971 2972 2973 2974 2975
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2976 2977
		return;

2978
	raw_spin_lock(&ctx->lock);
2979
	perf_pmu_disable(ctx->pmu);
2980

2981
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2982
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2983 2984
			continue;

2985
		if (!event_filter_match(event))
2986 2987
			continue;

2988 2989
		perf_pmu_disable(event->pmu);

2990
		hwc = &event->hw;
2991

2992
		if (hwc->interrupts == MAX_INTERRUPTS) {
2993
			hwc->interrupts = 0;
2994
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2995
			event->pmu->start(event, 0);
2996 2997
		}

2998
		if (!event->attr.freq || !event->attr.sample_freq)
2999
			goto next;
3000

3001 3002 3003 3004 3005
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3006
		now = local64_read(&event->count);
3007 3008
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3009

3010 3011 3012
		/*
		 * restart the event
		 * reload only if value has changed
3013 3014 3015
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3016
		 */
3017
		if (delta > 0)
3018
			perf_adjust_period(event, period, delta, false);
3019 3020

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3021 3022
	next:
		perf_pmu_enable(event->pmu);
3023
	}
3024

3025
	perf_pmu_enable(ctx->pmu);
3026
	raw_spin_unlock(&ctx->lock);
3027 3028
}

3029
/*
3030
 * Round-robin a context's events:
3031
 */
3032
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3033
{
3034 3035 3036 3037 3038 3039
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3040 3041
}

3042
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3043
{
P
Peter Zijlstra 已提交
3044
	struct perf_event_context *ctx = NULL;
3045
	int rotate = 0;
3046

3047 3048 3049 3050
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3051

P
Peter Zijlstra 已提交
3052
	ctx = cpuctx->task_ctx;
3053 3054 3055 3056
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3057

3058
	if (!rotate)
3059 3060
		goto done;

3061
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3062
	perf_pmu_disable(cpuctx->ctx.pmu);
3063

3064 3065 3066
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3067

3068 3069 3070
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3071

3072
	perf_event_sched_in(cpuctx, ctx, current);
3073

3074 3075
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3076
done:
3077 3078

	return rotate;
3079 3080
}

3081 3082 3083
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3084
	if (atomic_read(&nr_freq_events) ||
3085
	    __this_cpu_read(perf_throttled_count))
3086
		return false;
3087 3088
	else
		return true;
3089 3090 3091
}
#endif

3092 3093
void perf_event_task_tick(void)
{
3094 3095
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3096
	int throttled;
3097

3098 3099
	WARN_ON(!irqs_disabled());

3100 3101 3102
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3103
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3104
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3105 3106
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3117
	__perf_event_mark_enabled(event);
3118 3119 3120 3121

	return 1;
}

3122
/*
3123
 * Enable all of a task's events that have been marked enable-on-exec.
3124 3125
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3126
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3127
{
3128
	struct perf_event_context *clone_ctx = NULL;
3129
	struct perf_event *event;
3130 3131
	unsigned long flags;
	int enabled = 0;
3132
	int ret;
3133 3134

	local_irq_save(flags);
3135
	if (!ctx || !ctx->nr_events)
3136 3137
		goto out;

3138 3139 3140 3141 3142 3143 3144
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3145
	perf_cgroup_sched_out(current, NULL);
3146

3147
	raw_spin_lock(&ctx->lock);
3148
	task_ctx_sched_out(ctx);
3149

3150
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3151 3152 3153
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3154 3155 3156
	}

	/*
3157
	 * Unclone this context if we enabled any event.
3158
	 */
3159
	if (enabled)
3160
		clone_ctx = unclone_ctx(ctx);
3161

3162
	raw_spin_unlock(&ctx->lock);
3163

3164 3165 3166
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3167
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3168
out:
3169
	local_irq_restore(flags);
3170 3171 3172

	if (clone_ctx)
		put_ctx(clone_ctx);
3173 3174
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3191
/*
3192
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3193
 */
3194
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3195
{
3196 3197
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3198
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3199

3200 3201 3202 3203
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3204 3205
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3206 3207 3208 3209
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3210
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3211
	if (ctx->is_active) {
3212
		update_context_time(ctx);
S
Stephane Eranian 已提交
3213 3214
		update_cgrp_time_from_event(event);
	}
3215
	update_event_times(event);
3216 3217
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3218
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3219 3220
}

P
Peter Zijlstra 已提交
3221 3222
static inline u64 perf_event_count(struct perf_event *event)
{
3223
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3224 3225
}

3226
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3227 3228
{
	/*
3229 3230
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3231
	 */
3232 3233 3234 3235
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3236 3237 3238
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3239
		raw_spin_lock_irqsave(&ctx->lock, flags);
3240 3241 3242 3243 3244
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3245
		if (ctx->is_active) {
3246
			update_context_time(ctx);
S
Stephane Eranian 已提交
3247 3248
			update_cgrp_time_from_event(event);
		}
3249
		update_event_times(event);
3250
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3251 3252
	}

P
Peter Zijlstra 已提交
3253
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3254 3255
}

3256
/*
3257
 * Initialize the perf_event context in a task_struct:
3258
 */
3259
static void __perf_event_init_context(struct perf_event_context *ctx)
3260
{
3261
	raw_spin_lock_init(&ctx->lock);
3262
	mutex_init(&ctx->mutex);
3263
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3264 3265
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3266 3267
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3268
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3284
	}
3285 3286 3287
	ctx->pmu = pmu;

	return ctx;
3288 3289
}

3290 3291 3292 3293 3294
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3295 3296

	rcu_read_lock();
3297
	if (!vpid)
T
Thomas Gleixner 已提交
3298 3299
		task = current;
	else
3300
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3301 3302 3303 3304 3305 3306 3307 3308
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3309 3310 3311 3312
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3313 3314 3315 3316 3317 3318 3319
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3320 3321 3322
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3323
static struct perf_event_context *
M
Matt Helsley 已提交
3324
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3325
{
3326
	struct perf_event_context *ctx, *clone_ctx = NULL;
3327
	struct perf_cpu_context *cpuctx;
3328
	unsigned long flags;
P
Peter Zijlstra 已提交
3329
	int ctxn, err;
T
Thomas Gleixner 已提交
3330

3331
	if (!task) {
3332
		/* Must be root to operate on a CPU event: */
3333
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3334 3335 3336
			return ERR_PTR(-EACCES);

		/*
3337
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3338 3339 3340
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3341
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3342 3343
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3344
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3345
		ctx = &cpuctx->ctx;
3346
		get_ctx(ctx);
3347
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3348 3349 3350 3351

		return ctx;
	}

P
Peter Zijlstra 已提交
3352 3353 3354 3355 3356
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3357
retry:
P
Peter Zijlstra 已提交
3358
	ctx = perf_lock_task_context(task, ctxn, &flags);
3359
	if (ctx) {
3360
		clone_ctx = unclone_ctx(ctx);
3361
		++ctx->pin_count;
3362
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3363 3364 3365

		if (clone_ctx)
			put_ctx(clone_ctx);
3366
	} else {
3367
		ctx = alloc_perf_context(pmu, task);
3368 3369 3370
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3371

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3382
		else {
3383
			get_ctx(ctx);
3384
			++ctx->pin_count;
3385
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3386
		}
3387 3388 3389
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3390
			put_ctx(ctx);
3391 3392 3393 3394

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3395 3396 3397
		}
	}

T
Thomas Gleixner 已提交
3398
	return ctx;
3399

P
Peter Zijlstra 已提交
3400
errout:
3401
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3402 3403
}

L
Li Zefan 已提交
3404 3405
static void perf_event_free_filter(struct perf_event *event);

3406
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3407
{
3408
	struct perf_event *event;
P
Peter Zijlstra 已提交
3409

3410 3411 3412
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3413
	perf_event_free_filter(event);
3414
	kfree(event);
P
Peter Zijlstra 已提交
3415 3416
}

3417
static void ring_buffer_put(struct ring_buffer *rb);
3418 3419
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3420

3421
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3422
{
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3433

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3447 3448
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3449 3450 3451 3452 3453 3454 3455
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3456

3457 3458
static void __free_event(struct perf_event *event)
{
3459
	if (!event->parent) {
3460 3461
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3462
	}
3463

3464 3465 3466 3467 3468 3469
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3470 3471 3472
	if (event->pmu)
		module_put(event->pmu->module);

3473 3474
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3475 3476

static void _free_event(struct perf_event *event)
3477
{
3478
	irq_work_sync(&event->pending);
3479

3480
	unaccount_event(event);
3481

3482
	if (event->rb) {
3483 3484 3485 3486 3487 3488 3489
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3490
		ring_buffer_attach(event, NULL);
3491
		mutex_unlock(&event->mmap_mutex);
3492 3493
	}

S
Stephane Eranian 已提交
3494 3495 3496
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3497
	__free_event(event);
3498 3499
}

P
Peter Zijlstra 已提交
3500 3501 3502 3503 3504
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3505
{
P
Peter Zijlstra 已提交
3506 3507 3508 3509 3510 3511
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3512

P
Peter Zijlstra 已提交
3513
	_free_event(event);
T
Thomas Gleixner 已提交
3514 3515
}

3516
/*
3517
 * Remove user event from the owner task.
3518
 */
3519
static void perf_remove_from_owner(struct perf_event *event)
3520
{
P
Peter Zijlstra 已提交
3521
	struct task_struct *owner;
3522

P
Peter Zijlstra 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3564 3565 3566 3567 3568 3569 3570
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3571
	struct perf_event_context *ctx;
3572 3573 3574 3575 3576 3577

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3578

P
Peter Zijlstra 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3591 3592
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3593 3594 3595 3596
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3597 3598
}

P
Peter Zijlstra 已提交
3599 3600 3601 3602 3603 3604 3605
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3606 3607 3608 3609
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3610 3611
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3648
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3649
{
3650
	struct perf_event *child;
3651 3652
	u64 total = 0;

3653 3654 3655
	*enabled = 0;
	*running = 0;

3656
	mutex_lock(&event->child_mutex);
3657
	total += perf_event_read(event);
3658 3659 3660 3661 3662 3663
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3664
		total += perf_event_read(child);
3665 3666 3667
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3668
	mutex_unlock(&event->child_mutex);
3669 3670 3671

	return total;
}
3672
EXPORT_SYMBOL_GPL(perf_event_read_value);
3673

3674
static int perf_event_read_group(struct perf_event *event,
3675 3676
				   u64 read_format, char __user *buf)
{
3677
	struct perf_event *leader = event->group_leader, *sub;
3678
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3679
	int n = 0, size = 0, ret;
3680
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3681 3682 3683
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3684

3685
	count = perf_event_read_value(leader, &enabled, &running);
3686 3687

	values[n++] = 1 + leader->nr_siblings;
3688 3689 3690 3691
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3692 3693 3694
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3695 3696 3697 3698

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3699
		return -EFAULT;
3700

3701
	ret = size;
3702

3703
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3704
		n = 0;
3705

3706
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3707 3708 3709 3710 3711
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3712
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3713
			return -EFAULT;
3714
		}
3715 3716

		ret += size;
3717 3718
	}

3719
	return ret;
3720 3721
}

3722
static int perf_event_read_one(struct perf_event *event,
3723 3724
				 u64 read_format, char __user *buf)
{
3725
	u64 enabled, running;
3726 3727 3728
	u64 values[4];
	int n = 0;

3729 3730 3731 3732 3733
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3734
	if (read_format & PERF_FORMAT_ID)
3735
		values[n++] = primary_event_id(event);
3736 3737 3738 3739 3740 3741 3742

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3756
/*
3757
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3758 3759
 */
static ssize_t
3760
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3761
{
3762
	u64 read_format = event->attr.read_format;
3763
	int ret;
T
Thomas Gleixner 已提交
3764

3765
	/*
3766
	 * Return end-of-file for a read on a event that is in
3767 3768 3769
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3770
	if (event->state == PERF_EVENT_STATE_ERROR)
3771 3772
		return 0;

3773
	if (count < event->read_size)
3774 3775
		return -ENOSPC;

3776
	WARN_ON_ONCE(event->ctx->parent_ctx);
3777
	if (read_format & PERF_FORMAT_GROUP)
3778
		ret = perf_event_read_group(event, read_format, buf);
3779
	else
3780
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3781

3782
	return ret;
T
Thomas Gleixner 已提交
3783 3784 3785 3786 3787
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3788
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3789 3790
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3791

P
Peter Zijlstra 已提交
3792 3793 3794 3795 3796
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3797 3798 3799 3800
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3801
	struct perf_event *event = file->private_data;
3802
	struct ring_buffer *rb;
3803
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3804

3805
	poll_wait(file, &event->waitq, wait);
3806

3807
	if (is_event_hup(event))
3808
		return events;
P
Peter Zijlstra 已提交
3809

3810
	/*
3811 3812
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3813 3814
	 */
	mutex_lock(&event->mmap_mutex);
3815 3816
	rb = event->rb;
	if (rb)
3817
		events = atomic_xchg(&rb->poll, 0);
3818
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3819 3820 3821
	return events;
}

P
Peter Zijlstra 已提交
3822
static void _perf_event_reset(struct perf_event *event)
3823
{
3824
	(void)perf_event_read(event);
3825
	local64_set(&event->count, 0);
3826
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3827 3828
}

3829
/*
3830 3831 3832 3833
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3834
 */
3835 3836
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3837
{
3838
	struct perf_event *child;
P
Peter Zijlstra 已提交
3839

3840
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3841

3842 3843 3844
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3845
		func(child);
3846
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3847 3848
}

3849 3850
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3851
{
3852 3853
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3854

P
Peter Zijlstra 已提交
3855 3856
	lockdep_assert_held(&ctx->mutex);

3857
	event = event->group_leader;
3858

3859 3860
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3861
		perf_event_for_each_child(sibling, func);
3862 3863
}

3864
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3865
{
3866
	struct perf_event_context *ctx = event->ctx;
3867
	int ret = 0, active;
3868 3869
	u64 value;

3870
	if (!is_sampling_event(event))
3871 3872
		return -EINVAL;

3873
	if (copy_from_user(&value, arg, sizeof(value)))
3874 3875 3876 3877 3878
		return -EFAULT;

	if (!value)
		return -EINVAL;

3879
	raw_spin_lock_irq(&ctx->lock);
3880 3881
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3882 3883 3884 3885
			ret = -EINVAL;
			goto unlock;
		}

3886
		event->attr.sample_freq = value;
3887
	} else {
3888 3889
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3890
	}
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3905
unlock:
3906
	raw_spin_unlock_irq(&ctx->lock);
3907 3908 3909 3910

	return ret;
}

3911 3912
static const struct file_operations perf_fops;

3913
static inline int perf_fget_light(int fd, struct fd *p)
3914
{
3915 3916 3917
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3918

3919 3920 3921
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3922
	}
3923 3924
	*p = f;
	return 0;
3925 3926 3927 3928
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3929
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3930

P
Peter Zijlstra 已提交
3931
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3932
{
3933
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3934
	u32 flags = arg;
3935 3936

	switch (cmd) {
3937
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
3938
		func = _perf_event_enable;
3939
		break;
3940
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
3941
		func = _perf_event_disable;
3942
		break;
3943
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
3944
		func = _perf_event_reset;
3945
		break;
P
Peter Zijlstra 已提交
3946

3947
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
3948
		return _perf_event_refresh(event, arg);
3949

3950 3951
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3962
	case PERF_EVENT_IOC_SET_OUTPUT:
3963 3964 3965
	{
		int ret;
		if (arg != -1) {
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3976 3977 3978
		}
		return ret;
	}
3979

L
Li Zefan 已提交
3980 3981 3982
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3983
	default:
P
Peter Zijlstra 已提交
3984
		return -ENOTTY;
3985
	}
P
Peter Zijlstra 已提交
3986 3987

	if (flags & PERF_IOC_FLAG_GROUP)
3988
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3989
	else
3990
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3991 3992

	return 0;
3993 3994
}

P
Peter Zijlstra 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4028
int perf_event_task_enable(void)
4029
{
P
Peter Zijlstra 已提交
4030
	struct perf_event_context *ctx;
4031
	struct perf_event *event;
4032

4033
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4034 4035 4036 4037 4038
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4039
	mutex_unlock(&current->perf_event_mutex);
4040 4041 4042 4043

	return 0;
}

4044
int perf_event_task_disable(void)
4045
{
P
Peter Zijlstra 已提交
4046
	struct perf_event_context *ctx;
4047
	struct perf_event *event;
4048

4049
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4050 4051 4052 4053 4054
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4055
	mutex_unlock(&current->perf_event_mutex);
4056 4057 4058 4059

	return 0;
}

4060
static int perf_event_index(struct perf_event *event)
4061
{
P
Peter Zijlstra 已提交
4062 4063 4064
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4065
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4066 4067
		return 0;

4068
	return event->pmu->event_idx(event);
4069 4070
}

4071
static void calc_timer_values(struct perf_event *event,
4072
				u64 *now,
4073 4074
				u64 *enabled,
				u64 *running)
4075
{
4076
	u64 ctx_time;
4077

4078 4079
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4080 4081 4082 4083
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

4104
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
4105 4106 4107
{
}

4108 4109 4110 4111 4112
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4113
void perf_event_update_userpage(struct perf_event *event)
4114
{
4115
	struct perf_event_mmap_page *userpg;
4116
	struct ring_buffer *rb;
4117
	u64 enabled, running, now;
4118 4119

	rcu_read_lock();
4120 4121 4122 4123
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4124 4125 4126 4127 4128 4129 4130 4131 4132
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4133
	calc_timer_values(event, &now, &enabled, &running);
4134

4135
	userpg = rb->user_page;
4136 4137 4138 4139 4140
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4141
	++userpg->lock;
4142
	barrier();
4143
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4144
	userpg->offset = perf_event_count(event);
4145
	if (userpg->index)
4146
		userpg->offset -= local64_read(&event->hw.prev_count);
4147

4148
	userpg->time_enabled = enabled +
4149
			atomic64_read(&event->child_total_time_enabled);
4150

4151
	userpg->time_running = running +
4152
			atomic64_read(&event->child_total_time_running);
4153

4154
	arch_perf_update_userpage(userpg, now);
4155

4156
	barrier();
4157
	++userpg->lock;
4158
	preempt_enable();
4159
unlock:
4160
	rcu_read_unlock();
4161 4162
}

4163 4164 4165
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4166
	struct ring_buffer *rb;
4167 4168 4169 4170 4171 4172 4173 4174 4175
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4176 4177
	rb = rcu_dereference(event->rb);
	if (!rb)
4178 4179 4180 4181 4182
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4183
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4198 4199 4200
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4201
	struct ring_buffer *old_rb = NULL;
4202 4203
	unsigned long flags;

4204 4205 4206 4207 4208 4209
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4210

4211 4212 4213
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4214

4215 4216 4217 4218
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4219

4220 4221 4222 4223
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4224

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4242 4243 4244 4245 4246 4247 4248 4249
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4250 4251 4252 4253
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4254 4255 4256
	rcu_read_unlock();
}

4257
static void rb_free_rcu(struct rcu_head *rcu_head)
4258
{
4259
	struct ring_buffer *rb;
4260

4261 4262
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4263 4264
}

4265
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4266
{
4267
	struct ring_buffer *rb;
4268

4269
	rcu_read_lock();
4270 4271 4272 4273
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4274 4275 4276
	}
	rcu_read_unlock();

4277
	return rb;
4278 4279
}

4280
static void ring_buffer_put(struct ring_buffer *rb)
4281
{
4282
	if (!atomic_dec_and_test(&rb->refcount))
4283
		return;
4284

4285
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4286

4287
	call_rcu(&rb->rcu_head, rb_free_rcu);
4288 4289 4290 4291
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4292
	struct perf_event *event = vma->vm_file->private_data;
4293

4294
	atomic_inc(&event->mmap_count);
4295
	atomic_inc(&event->rb->mmap_count);
4296 4297 4298

	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4299 4300
}

4301 4302 4303 4304 4305 4306 4307 4308
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4309 4310
static void perf_mmap_close(struct vm_area_struct *vma)
{
4311
	struct perf_event *event = vma->vm_file->private_data;
4312

4313
	struct ring_buffer *rb = ring_buffer_get(event);
4314 4315 4316
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4317

4318 4319 4320
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4321 4322 4323
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4324
		goto out_put;
4325

4326
	ring_buffer_attach(event, NULL);
4327 4328 4329
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4330 4331
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4332

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4361 4362 4363
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4364
		mutex_unlock(&event->mmap_mutex);
4365
		put_event(event);
4366

4367 4368 4369 4370 4371
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4372
	}
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4388
out_put:
4389
	ring_buffer_put(rb); /* could be last */
4390 4391
}

4392
static const struct vm_operations_struct perf_mmap_vmops = {
4393 4394 4395 4396
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4397 4398 4399 4400
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4401
	struct perf_event *event = file->private_data;
4402
	unsigned long user_locked, user_lock_limit;
4403
	struct user_struct *user = current_user();
4404
	unsigned long locked, lock_limit;
4405
	struct ring_buffer *rb;
4406 4407
	unsigned long vma_size;
	unsigned long nr_pages;
4408
	long user_extra, extra;
4409
	int ret = 0, flags = 0;
4410

4411 4412 4413
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4414
	 * same rb.
4415 4416 4417 4418
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4419
	if (!(vma->vm_flags & VM_SHARED))
4420
		return -EINVAL;
4421 4422 4423 4424

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4425
	/*
4426
	 * If we have rb pages ensure they're a power-of-two number, so we
4427 4428 4429
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4430 4431
		return -EINVAL;

4432
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4433 4434
		return -EINVAL;

4435 4436
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4437

4438
	WARN_ON_ONCE(event->ctx->parent_ctx);
4439
again:
4440
	mutex_lock(&event->mmap_mutex);
4441
	if (event->rb) {
4442
		if (event->rb->nr_pages != nr_pages) {
4443
			ret = -EINVAL;
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4457 4458 4459
		goto unlock;
	}

4460
	user_extra = nr_pages + 1;
4461
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4462 4463 4464 4465 4466 4467

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4468
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4469

4470 4471 4472
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4473

4474
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4475
	lock_limit >>= PAGE_SHIFT;
4476
	locked = vma->vm_mm->pinned_vm + extra;
4477

4478 4479
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4480 4481 4482
		ret = -EPERM;
		goto unlock;
	}
4483

4484
	WARN_ON(event->rb);
4485

4486
	if (vma->vm_flags & VM_WRITE)
4487
		flags |= RING_BUFFER_WRITABLE;
4488

4489 4490 4491 4492
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4493
	if (!rb) {
4494
		ret = -ENOMEM;
4495
		goto unlock;
4496
	}
P
Peter Zijlstra 已提交
4497

4498
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4499 4500
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4501

4502
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4503 4504
	vma->vm_mm->pinned_vm += extra;

4505
	ring_buffer_attach(event, rb);
4506

4507
	perf_event_init_userpage(event);
4508 4509
	perf_event_update_userpage(event);

4510
unlock:
4511 4512
	if (!ret)
		atomic_inc(&event->mmap_count);
4513
	mutex_unlock(&event->mmap_mutex);
4514

4515 4516 4517 4518
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4519
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4520
	vma->vm_ops = &perf_mmap_vmops;
4521

4522 4523 4524
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4525
	return ret;
4526 4527
}

P
Peter Zijlstra 已提交
4528 4529
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4530
	struct inode *inode = file_inode(filp);
4531
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4532 4533 4534
	int retval;

	mutex_lock(&inode->i_mutex);
4535
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4536 4537 4538 4539 4540 4541 4542 4543
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4544
static const struct file_operations perf_fops = {
4545
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4546 4547 4548
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4549
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4550
	.compat_ioctl		= perf_compat_ioctl,
4551
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4552
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4553 4554
};

4555
/*
4556
 * Perf event wakeup
4557 4558 4559 4560 4561
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4562
void perf_event_wakeup(struct perf_event *event)
4563
{
4564
	ring_buffer_wakeup(event);
4565

4566 4567 4568
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4569
	}
4570 4571
}

4572
static void perf_pending_event(struct irq_work *entry)
4573
{
4574 4575
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4576

4577 4578 4579
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4580 4581
	}

4582 4583 4584
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4585 4586 4587
	}
}

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4624
static void perf_sample_regs_user(struct perf_regs *regs_user,
4625 4626
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4627
{
4628 4629
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4630
		regs_user->regs = regs;
4631 4632
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4633 4634 4635
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4636 4637 4638
	}
}

4639 4640 4641 4642 4643 4644 4645 4646
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4742 4743 4744
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4760
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4772 4773 4774
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4799 4800 4801

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4802 4803
}

4804 4805 4806
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4807 4808 4809 4810 4811
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4812
static void perf_output_read_one(struct perf_output_handle *handle,
4813 4814
				 struct perf_event *event,
				 u64 enabled, u64 running)
4815
{
4816
	u64 read_format = event->attr.read_format;
4817 4818 4819
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4820
	values[n++] = perf_event_count(event);
4821
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4822
		values[n++] = enabled +
4823
			atomic64_read(&event->child_total_time_enabled);
4824 4825
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4826
		values[n++] = running +
4827
			atomic64_read(&event->child_total_time_running);
4828 4829
	}
	if (read_format & PERF_FORMAT_ID)
4830
		values[n++] = primary_event_id(event);
4831

4832
	__output_copy(handle, values, n * sizeof(u64));
4833 4834 4835
}

/*
4836
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4837 4838
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4839 4840
			    struct perf_event *event,
			    u64 enabled, u64 running)
4841
{
4842 4843
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4844 4845 4846 4847 4848 4849
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4850
		values[n++] = enabled;
4851 4852

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4853
		values[n++] = running;
4854

4855
	if (leader != event)
4856 4857
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4858
	values[n++] = perf_event_count(leader);
4859
	if (read_format & PERF_FORMAT_ID)
4860
		values[n++] = primary_event_id(leader);
4861

4862
	__output_copy(handle, values, n * sizeof(u64));
4863

4864
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4865 4866
		n = 0;

4867 4868
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4869 4870
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4871
		values[n++] = perf_event_count(sub);
4872
		if (read_format & PERF_FORMAT_ID)
4873
			values[n++] = primary_event_id(sub);
4874

4875
		__output_copy(handle, values, n * sizeof(u64));
4876 4877 4878
	}
}

4879 4880 4881
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4882
static void perf_output_read(struct perf_output_handle *handle,
4883
			     struct perf_event *event)
4884
{
4885
	u64 enabled = 0, running = 0, now;
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4897
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4898
		calc_timer_values(event, &now, &enabled, &running);
4899

4900
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4901
		perf_output_read_group(handle, event, enabled, running);
4902
	else
4903
		perf_output_read_one(handle, event, enabled, running);
4904 4905
}

4906 4907 4908
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4909
			struct perf_event *event)
4910 4911 4912 4913 4914
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4915 4916 4917
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4943
		perf_output_read(handle, event);
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4954
			__output_copy(handle, data->callchain, size);
4955 4956 4957 4958 4959 4960 4961 4962 4963
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4964 4965
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4977

4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5012

5013
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5014 5015 5016
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5017
	}
A
Andi Kleen 已提交
5018 5019 5020

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5021 5022 5023

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5024

A
Andi Kleen 已提交
5025 5026 5027
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5058 5059 5060 5061
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5062
			 struct perf_event *event,
5063
			 struct pt_regs *regs)
5064
{
5065
	u64 sample_type = event->attr.sample_type;
5066

5067
	header->type = PERF_RECORD_SAMPLE;
5068
	header->size = sizeof(*header) + event->header_size;
5069 5070 5071

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5072

5073
	__perf_event_header__init_id(header, data, event);
5074

5075
	if (sample_type & PERF_SAMPLE_IP)
5076 5077
		data->ip = perf_instruction_pointer(regs);

5078
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5079
		int size = 1;
5080

5081
		data->callchain = perf_callchain(event, regs);
5082 5083 5084 5085 5086

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5087 5088
	}

5089
	if (sample_type & PERF_SAMPLE_RAW) {
5090 5091 5092 5093 5094 5095 5096 5097
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5098
		header->size += size;
5099
	}
5100 5101 5102 5103 5104 5105 5106 5107 5108

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5109

5110
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5111 5112
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5113

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5137
						     data->regs_user.regs);
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5165
}
5166

5167
static void perf_event_output(struct perf_event *event,
5168 5169 5170 5171 5172
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5173

5174 5175 5176
	/* protect the callchain buffers */
	rcu_read_lock();

5177
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5178

5179
	if (perf_output_begin(&handle, event, header.size))
5180
		goto exit;
5181

5182
	perf_output_sample(&handle, &header, data, event);
5183

5184
	perf_output_end(&handle);
5185 5186 5187

exit:
	rcu_read_unlock();
5188 5189
}

5190
/*
5191
 * read event_id
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5202
perf_event_read_event(struct perf_event *event,
5203 5204 5205
			struct task_struct *task)
{
	struct perf_output_handle handle;
5206
	struct perf_sample_data sample;
5207
	struct perf_read_event read_event = {
5208
		.header = {
5209
			.type = PERF_RECORD_READ,
5210
			.misc = 0,
5211
			.size = sizeof(read_event) + event->read_size,
5212
		},
5213 5214
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5215
	};
5216
	int ret;
5217

5218
	perf_event_header__init_id(&read_event.header, &sample, event);
5219
	ret = perf_output_begin(&handle, event, read_event.header.size);
5220 5221 5222
	if (ret)
		return;

5223
	perf_output_put(&handle, read_event);
5224
	perf_output_read(&handle, event);
5225
	perf_event__output_id_sample(event, &handle, &sample);
5226

5227 5228 5229
	perf_output_end(&handle);
}

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5244
		output(event, data);
5245 5246 5247 5248
	}
}

static void
5249
perf_event_aux(perf_event_aux_output_cb output, void *data,
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5262
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5263 5264 5265 5266 5267 5268 5269
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5270
			perf_event_aux_ctx(ctx, output, data);
5271 5272 5273 5274 5275 5276
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5277
		perf_event_aux_ctx(task_ctx, output, data);
5278 5279 5280 5281 5282
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5283
/*
P
Peter Zijlstra 已提交
5284 5285
 * task tracking -- fork/exit
 *
5286
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5287 5288
 */

P
Peter Zijlstra 已提交
5289
struct perf_task_event {
5290
	struct task_struct		*task;
5291
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5292 5293 5294 5295 5296 5297

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5298 5299
		u32				tid;
		u32				ptid;
5300
		u64				time;
5301
	} event_id;
P
Peter Zijlstra 已提交
5302 5303
};

5304 5305
static int perf_event_task_match(struct perf_event *event)
{
5306 5307 5308
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5309 5310
}

5311
static void perf_event_task_output(struct perf_event *event,
5312
				   void *data)
P
Peter Zijlstra 已提交
5313
{
5314
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5315
	struct perf_output_handle handle;
5316
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5317
	struct task_struct *task = task_event->task;
5318
	int ret, size = task_event->event_id.header.size;
5319

5320 5321 5322
	if (!perf_event_task_match(event))
		return;

5323
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5324

5325
	ret = perf_output_begin(&handle, event,
5326
				task_event->event_id.header.size);
5327
	if (ret)
5328
		goto out;
P
Peter Zijlstra 已提交
5329

5330 5331
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5332

5333 5334
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5335

5336
	perf_output_put(&handle, task_event->event_id);
5337

5338 5339
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5340
	perf_output_end(&handle);
5341 5342
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5343 5344
}

5345 5346
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5347
			      int new)
P
Peter Zijlstra 已提交
5348
{
P
Peter Zijlstra 已提交
5349
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5350

5351 5352 5353
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5354 5355
		return;

P
Peter Zijlstra 已提交
5356
	task_event = (struct perf_task_event){
5357 5358
		.task	  = task,
		.task_ctx = task_ctx,
5359
		.event_id    = {
P
Peter Zijlstra 已提交
5360
			.header = {
5361
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5362
				.misc = 0,
5363
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5364
			},
5365 5366
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5367 5368
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5369
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5370 5371 5372
		},
	};

5373
	perf_event_aux(perf_event_task_output,
5374 5375
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5376 5377
}

5378
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5379
{
5380
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5381 5382
}

5383 5384 5385 5386 5387
/*
 * comm tracking
 */

struct perf_comm_event {
5388 5389
	struct task_struct	*task;
	char			*comm;
5390 5391 5392 5393 5394 5395 5396
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5397
	} event_id;
5398 5399
};

5400 5401 5402 5403 5404
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5405
static void perf_event_comm_output(struct perf_event *event,
5406
				   void *data)
5407
{
5408
	struct perf_comm_event *comm_event = data;
5409
	struct perf_output_handle handle;
5410
	struct perf_sample_data sample;
5411
	int size = comm_event->event_id.header.size;
5412 5413
	int ret;

5414 5415 5416
	if (!perf_event_comm_match(event))
		return;

5417 5418
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5419
				comm_event->event_id.header.size);
5420 5421

	if (ret)
5422
		goto out;
5423

5424 5425
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5426

5427
	perf_output_put(&handle, comm_event->event_id);
5428
	__output_copy(&handle, comm_event->comm,
5429
				   comm_event->comm_size);
5430 5431 5432

	perf_event__output_id_sample(event, &handle, &sample);

5433
	perf_output_end(&handle);
5434 5435
out:
	comm_event->event_id.header.size = size;
5436 5437
}

5438
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5439
{
5440
	char comm[TASK_COMM_LEN];
5441 5442
	unsigned int size;

5443
	memset(comm, 0, sizeof(comm));
5444
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5445
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5446 5447 5448 5449

	comm_event->comm = comm;
	comm_event->comm_size = size;

5450
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5451

5452
	perf_event_aux(perf_event_comm_output,
5453 5454
		       comm_event,
		       NULL);
5455 5456
}

5457
void perf_event_comm(struct task_struct *task, bool exec)
5458
{
5459 5460
	struct perf_comm_event comm_event;

5461
	if (!atomic_read(&nr_comm_events))
5462
		return;
5463

5464
	comm_event = (struct perf_comm_event){
5465
		.task	= task,
5466 5467
		/* .comm      */
		/* .comm_size */
5468
		.event_id  = {
5469
			.header = {
5470
				.type = PERF_RECORD_COMM,
5471
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5472 5473 5474 5475
				/* .size */
			},
			/* .pid */
			/* .tid */
5476 5477 5478
		},
	};

5479
	perf_event_comm_event(&comm_event);
5480 5481
}

5482 5483 5484 5485 5486
/*
 * mmap tracking
 */

struct perf_mmap_event {
5487 5488 5489 5490
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5491 5492 5493
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5494
	u32			prot, flags;
5495 5496 5497 5498 5499 5500 5501 5502 5503

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5504
	} event_id;
5505 5506
};

5507 5508 5509 5510 5511 5512 5513 5514
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5515
	       (executable && (event->attr.mmap || event->attr.mmap2));
5516 5517
}

5518
static void perf_event_mmap_output(struct perf_event *event,
5519
				   void *data)
5520
{
5521
	struct perf_mmap_event *mmap_event = data;
5522
	struct perf_output_handle handle;
5523
	struct perf_sample_data sample;
5524
	int size = mmap_event->event_id.header.size;
5525
	int ret;
5526

5527 5528 5529
	if (!perf_event_mmap_match(event, data))
		return;

5530 5531 5532 5533 5534
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5535
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5536 5537
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5538 5539
	}

5540 5541
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5542
				mmap_event->event_id.header.size);
5543
	if (ret)
5544
		goto out;
5545

5546 5547
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5548

5549
	perf_output_put(&handle, mmap_event->event_id);
5550 5551 5552 5553 5554 5555

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5556 5557
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5558 5559
	}

5560
	__output_copy(&handle, mmap_event->file_name,
5561
				   mmap_event->file_size);
5562 5563 5564

	perf_event__output_id_sample(event, &handle, &sample);

5565
	perf_output_end(&handle);
5566 5567
out:
	mmap_event->event_id.header.size = size;
5568 5569
}

5570
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5571
{
5572 5573
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5574 5575
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5576
	u32 prot = 0, flags = 0;
5577 5578 5579
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5580
	char *name;
5581

5582
	if (file) {
5583 5584
		struct inode *inode;
		dev_t dev;
5585

5586
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5587
		if (!buf) {
5588 5589
			name = "//enomem";
			goto cpy_name;
5590
		}
5591
		/*
5592
		 * d_path() works from the end of the rb backwards, so we
5593 5594 5595
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5596
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5597
		if (IS_ERR(name)) {
5598 5599
			name = "//toolong";
			goto cpy_name;
5600
		}
5601 5602 5603 5604 5605 5606
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5629
		goto got_name;
5630
	} else {
5631 5632 5633 5634 5635 5636
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5637
		name = (char *)arch_vma_name(vma);
5638 5639
		if (name)
			goto cpy_name;
5640

5641
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5642
				vma->vm_end >= vma->vm_mm->brk) {
5643 5644
			name = "[heap]";
			goto cpy_name;
5645 5646
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5647
				vma->vm_end >= vma->vm_mm->start_stack) {
5648 5649
			name = "[stack]";
			goto cpy_name;
5650 5651
		}

5652 5653
		name = "//anon";
		goto cpy_name;
5654 5655
	}

5656 5657 5658
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5659
got_name:
5660 5661 5662 5663 5664 5665 5666 5667
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5668 5669 5670

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5671 5672 5673 5674
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5675 5676
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5677

5678 5679 5680
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5681
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5682

5683
	perf_event_aux(perf_event_mmap_output,
5684 5685
		       mmap_event,
		       NULL);
5686

5687 5688 5689
	kfree(buf);
}

5690
void perf_event_mmap(struct vm_area_struct *vma)
5691
{
5692 5693
	struct perf_mmap_event mmap_event;

5694
	if (!atomic_read(&nr_mmap_events))
5695 5696 5697
		return;

	mmap_event = (struct perf_mmap_event){
5698
		.vma	= vma,
5699 5700
		/* .file_name */
		/* .file_size */
5701
		.event_id  = {
5702
			.header = {
5703
				.type = PERF_RECORD_MMAP,
5704
				.misc = PERF_RECORD_MISC_USER,
5705 5706 5707 5708
				/* .size */
			},
			/* .pid */
			/* .tid */
5709 5710
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5711
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5712
		},
5713 5714 5715 5716
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5717 5718
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5719 5720
	};

5721
	perf_event_mmap_event(&mmap_event);
5722 5723
}

5724 5725 5726 5727
/*
 * IRQ throttle logging
 */

5728
static void perf_log_throttle(struct perf_event *event, int enable)
5729 5730
{
	struct perf_output_handle handle;
5731
	struct perf_sample_data sample;
5732 5733 5734 5735 5736
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5737
		u64				id;
5738
		u64				stream_id;
5739 5740
	} throttle_event = {
		.header = {
5741
			.type = PERF_RECORD_THROTTLE,
5742 5743 5744
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5745
		.time		= perf_clock(),
5746 5747
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5748 5749
	};

5750
	if (enable)
5751
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5752

5753 5754 5755
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5756
				throttle_event.header.size);
5757 5758 5759 5760
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5761
	perf_event__output_id_sample(event, &handle, &sample);
5762 5763 5764
	perf_output_end(&handle);
}

5765
/*
5766
 * Generic event overflow handling, sampling.
5767 5768
 */

5769
static int __perf_event_overflow(struct perf_event *event,
5770 5771
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5772
{
5773 5774
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5775
	u64 seq;
5776 5777
	int ret = 0;

5778 5779 5780 5781 5782 5783 5784
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5785 5786 5787 5788 5789 5790 5791 5792 5793
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5794 5795
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5796
			tick_nohz_full_kick();
5797 5798
			ret = 1;
		}
5799
	}
5800

5801
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5802
		u64 now = perf_clock();
5803
		s64 delta = now - hwc->freq_time_stamp;
5804

5805
		hwc->freq_time_stamp = now;
5806

5807
		if (delta > 0 && delta < 2*TICK_NSEC)
5808
			perf_adjust_period(event, delta, hwc->last_period, true);
5809 5810
	}

5811 5812
	/*
	 * XXX event_limit might not quite work as expected on inherited
5813
	 * events
5814 5815
	 */

5816 5817
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5818
		ret = 1;
5819
		event->pending_kill = POLL_HUP;
5820 5821
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5822 5823
	}

5824
	if (event->overflow_handler)
5825
		event->overflow_handler(event, data, regs);
5826
	else
5827
		perf_event_output(event, data, regs);
5828

P
Peter Zijlstra 已提交
5829
	if (event->fasync && event->pending_kill) {
5830 5831
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5832 5833
	}

5834
	return ret;
5835 5836
}

5837
int perf_event_overflow(struct perf_event *event,
5838 5839
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5840
{
5841
	return __perf_event_overflow(event, 1, data, regs);
5842 5843
}

5844
/*
5845
 * Generic software event infrastructure
5846 5847
 */

5848 5849 5850 5851 5852 5853 5854
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5855 5856 5857

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5858 5859 5860 5861
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5862
/*
5863 5864
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5865 5866 5867 5868
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5869
u64 perf_swevent_set_period(struct perf_event *event)
5870
{
5871
	struct hw_perf_event *hwc = &event->hw;
5872 5873 5874 5875 5876
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5877 5878

again:
5879
	old = val = local64_read(&hwc->period_left);
5880 5881
	if (val < 0)
		return 0;
5882

5883 5884 5885
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5886
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5887
		goto again;
5888

5889
	return nr;
5890 5891
}

5892
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5893
				    struct perf_sample_data *data,
5894
				    struct pt_regs *regs)
5895
{
5896
	struct hw_perf_event *hwc = &event->hw;
5897
	int throttle = 0;
5898

5899 5900
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5901

5902 5903
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5904

5905
	for (; overflow; overflow--) {
5906
		if (__perf_event_overflow(event, throttle,
5907
					    data, regs)) {
5908 5909 5910 5911 5912 5913
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5914
		throttle = 1;
5915
	}
5916 5917
}

P
Peter Zijlstra 已提交
5918
static void perf_swevent_event(struct perf_event *event, u64 nr,
5919
			       struct perf_sample_data *data,
5920
			       struct pt_regs *regs)
5921
{
5922
	struct hw_perf_event *hwc = &event->hw;
5923

5924
	local64_add(nr, &event->count);
5925

5926 5927 5928
	if (!regs)
		return;

5929
	if (!is_sampling_event(event))
5930
		return;
5931

5932 5933 5934 5935 5936 5937
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5938
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5939
		return perf_swevent_overflow(event, 1, data, regs);
5940

5941
	if (local64_add_negative(nr, &hwc->period_left))
5942
		return;
5943

5944
	perf_swevent_overflow(event, 0, data, regs);
5945 5946
}

5947 5948 5949
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5950
	if (event->hw.state & PERF_HES_STOPPED)
5951
		return 1;
P
Peter Zijlstra 已提交
5952

5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5964
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5965
				enum perf_type_id type,
L
Li Zefan 已提交
5966 5967 5968
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5969
{
5970
	if (event->attr.type != type)
5971
		return 0;
5972

5973
	if (event->attr.config != event_id)
5974 5975
		return 0;

5976 5977
	if (perf_exclude_event(event, regs))
		return 0;
5978 5979 5980 5981

	return 1;
}

5982 5983 5984 5985 5986 5987 5988
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5989 5990
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5991
{
5992 5993 5994 5995
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5996

5997 5998
/* For the read side: events when they trigger */
static inline struct hlist_head *
5999
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6000 6001
{
	struct swevent_hlist *hlist;
6002

6003
	hlist = rcu_dereference(swhash->swevent_hlist);
6004 6005 6006
	if (!hlist)
		return NULL;

6007 6008 6009 6010 6011
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6012
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6023
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6024 6025 6026 6027 6028
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6029 6030 6031
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6032
				    u64 nr,
6033 6034
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6035
{
6036
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6037
	struct perf_event *event;
6038
	struct hlist_head *head;
6039

6040
	rcu_read_lock();
6041
	head = find_swevent_head_rcu(swhash, type, event_id);
6042 6043 6044
	if (!head)
		goto end;

6045
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6046
		if (perf_swevent_match(event, type, event_id, data, regs))
6047
			perf_swevent_event(event, nr, data, regs);
6048
	}
6049 6050
end:
	rcu_read_unlock();
6051 6052
}

6053 6054
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6055
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6056
{
6057
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6058

6059
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6060
}
I
Ingo Molnar 已提交
6061
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6062

6063
inline void perf_swevent_put_recursion_context(int rctx)
6064
{
6065
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6066

6067
	put_recursion_context(swhash->recursion, rctx);
6068
}
6069

6070
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6071
{
6072
	struct perf_sample_data data;
6073

6074
	if (WARN_ON_ONCE(!regs))
6075
		return;
6076

6077
	perf_sample_data_init(&data, addr, 0);
6078
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6091 6092

	perf_swevent_put_recursion_context(rctx);
6093
fail:
6094
	preempt_enable_notrace();
6095 6096
}

6097
static void perf_swevent_read(struct perf_event *event)
6098 6099 6100
{
}

P
Peter Zijlstra 已提交
6101
static int perf_swevent_add(struct perf_event *event, int flags)
6102
{
6103
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6104
	struct hw_perf_event *hwc = &event->hw;
6105 6106
	struct hlist_head *head;

6107
	if (is_sampling_event(event)) {
6108
		hwc->last_period = hwc->sample_period;
6109
		perf_swevent_set_period(event);
6110
	}
6111

P
Peter Zijlstra 已提交
6112 6113
	hwc->state = !(flags & PERF_EF_START);

6114
	head = find_swevent_head(swhash, event);
6115 6116 6117 6118 6119 6120
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6121
		return -EINVAL;
6122
	}
6123 6124 6125

	hlist_add_head_rcu(&event->hlist_entry, head);

6126 6127 6128
	return 0;
}

P
Peter Zijlstra 已提交
6129
static void perf_swevent_del(struct perf_event *event, int flags)
6130
{
6131
	hlist_del_rcu(&event->hlist_entry);
6132 6133
}

P
Peter Zijlstra 已提交
6134
static void perf_swevent_start(struct perf_event *event, int flags)
6135
{
P
Peter Zijlstra 已提交
6136
	event->hw.state = 0;
6137
}
I
Ingo Molnar 已提交
6138

P
Peter Zijlstra 已提交
6139
static void perf_swevent_stop(struct perf_event *event, int flags)
6140
{
P
Peter Zijlstra 已提交
6141
	event->hw.state = PERF_HES_STOPPED;
6142 6143
}

6144 6145
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6146
swevent_hlist_deref(struct swevent_htable *swhash)
6147
{
6148 6149
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6150 6151
}

6152
static void swevent_hlist_release(struct swevent_htable *swhash)
6153
{
6154
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6155

6156
	if (!hlist)
6157 6158
		return;

6159
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6160
	kfree_rcu(hlist, rcu_head);
6161 6162 6163 6164
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6165
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6166

6167
	mutex_lock(&swhash->hlist_mutex);
6168

6169 6170
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6171

6172
	mutex_unlock(&swhash->hlist_mutex);
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6185
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6186 6187
	int err = 0;

6188
	mutex_lock(&swhash->hlist_mutex);
6189

6190
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6191 6192 6193 6194 6195 6196 6197
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6198
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6199
	}
6200
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6201
exit:
6202
	mutex_unlock(&swhash->hlist_mutex);
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6223
fail:
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6234
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6235

6236 6237 6238
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6239

6240 6241
	WARN_ON(event->parent);

6242
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6243 6244 6245 6246 6247
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6248
	u64 event_id = event->attr.config;
6249 6250 6251 6252

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6253 6254 6255 6256 6257 6258
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6259 6260 6261 6262 6263 6264 6265 6266 6267
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6268
	if (event_id >= PERF_COUNT_SW_MAX)
6269 6270 6271 6272 6273 6274 6275 6276 6277
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6278
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6279 6280 6281 6282 6283 6284 6285
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6286
	.task_ctx_nr	= perf_sw_context,
6287

6288
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6289 6290 6291 6292
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6293 6294 6295
	.read		= perf_swevent_read,
};

6296 6297
#ifdef CONFIG_EVENT_TRACING

6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6312 6313
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6314 6315 6316 6317
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6318 6319 6320 6321 6322 6323 6324 6325 6326
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6327 6328
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6329 6330
{
	struct perf_sample_data data;
6331 6332
	struct perf_event *event;

6333 6334 6335 6336 6337
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6338
	perf_sample_data_init(&data, addr, 0);
6339 6340
	data.raw = &raw;

6341
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6342
		if (perf_tp_event_match(event, &data, regs))
6343
			perf_swevent_event(event, count, &data, regs);
6344
	}
6345

6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6371
	perf_swevent_put_recursion_context(rctx);
6372 6373 6374
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6375
static void tp_perf_event_destroy(struct perf_event *event)
6376
{
6377
	perf_trace_destroy(event);
6378 6379
}

6380
static int perf_tp_event_init(struct perf_event *event)
6381
{
6382 6383
	int err;

6384 6385 6386
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6387 6388 6389 6390 6391 6392
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6393 6394
	err = perf_trace_init(event);
	if (err)
6395
		return err;
6396

6397
	event->destroy = tp_perf_event_destroy;
6398

6399 6400 6401 6402
	return 0;
}

static struct pmu perf_tracepoint = {
6403 6404
	.task_ctx_nr	= perf_sw_context,

6405
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6406 6407 6408 6409
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6410 6411 6412 6413 6414
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6415
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6416
}
L
Li Zefan 已提交
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6441
#else
L
Li Zefan 已提交
6442

6443
static inline void perf_tp_register(void)
6444 6445
{
}
L
Li Zefan 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6456
#endif /* CONFIG_EVENT_TRACING */
6457

6458
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6459
void perf_bp_event(struct perf_event *bp, void *data)
6460
{
6461 6462 6463
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6464
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6465

P
Peter Zijlstra 已提交
6466
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6467
		perf_swevent_event(bp, 1, &sample, regs);
6468 6469 6470
}
#endif

6471 6472 6473
/*
 * hrtimer based swevent callback
 */
6474

6475
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6476
{
6477 6478 6479 6480 6481
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6482

6483
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6484 6485 6486 6487

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6488
	event->pmu->read(event);
6489

6490
	perf_sample_data_init(&data, 0, event->hw.last_period);
6491 6492 6493
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6494
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6495
			if (__perf_event_overflow(event, 1, &data, regs))
6496 6497
				ret = HRTIMER_NORESTART;
	}
6498

6499 6500
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6501

6502
	return ret;
6503 6504
}

6505
static void perf_swevent_start_hrtimer(struct perf_event *event)
6506
{
6507
	struct hw_perf_event *hwc = &event->hw;
6508 6509 6510 6511
	s64 period;

	if (!is_sampling_event(event))
		return;
6512

6513 6514 6515 6516
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6517

6518 6519 6520 6521 6522
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6523
				ns_to_ktime(period), 0,
6524
				HRTIMER_MODE_REL_PINNED, 0);
6525
}
6526 6527

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6528
{
6529 6530
	struct hw_perf_event *hwc = &event->hw;

6531
	if (is_sampling_event(event)) {
6532
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6533
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6534 6535 6536

		hrtimer_cancel(&hwc->hrtimer);
	}
6537 6538
}

P
Peter Zijlstra 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6559
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6560 6561 6562 6563
		event->attr.freq = 0;
	}
}

6564 6565 6566 6567 6568
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6569
{
6570 6571 6572
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6573
	now = local_clock();
6574 6575
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6576 6577
}

P
Peter Zijlstra 已提交
6578
static void cpu_clock_event_start(struct perf_event *event, int flags)
6579
{
P
Peter Zijlstra 已提交
6580
	local64_set(&event->hw.prev_count, local_clock());
6581 6582 6583
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6584
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6585
{
6586 6587 6588
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6589

P
Peter Zijlstra 已提交
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6603 6604 6605 6606
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6607

6608 6609 6610 6611 6612 6613 6614 6615
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6616 6617 6618 6619 6620 6621
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6622 6623
	perf_swevent_init_hrtimer(event);

6624
	return 0;
6625 6626
}

6627
static struct pmu perf_cpu_clock = {
6628 6629
	.task_ctx_nr	= perf_sw_context,

6630
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6631 6632 6633 6634
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6635 6636 6637 6638 6639 6640 6641 6642
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6643
{
6644 6645
	u64 prev;
	s64 delta;
6646

6647 6648 6649 6650
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6651

P
Peter Zijlstra 已提交
6652
static void task_clock_event_start(struct perf_event *event, int flags)
6653
{
P
Peter Zijlstra 已提交
6654
	local64_set(&event->hw.prev_count, event->ctx->time);
6655 6656 6657
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6658
static void task_clock_event_stop(struct perf_event *event, int flags)
6659 6660 6661
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6662 6663 6664 6665 6666 6667
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6668

P
Peter Zijlstra 已提交
6669 6670 6671 6672 6673 6674
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6675 6676 6677 6678
}

static void task_clock_event_read(struct perf_event *event)
{
6679 6680 6681
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6682 6683 6684 6685 6686

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6687
{
6688 6689 6690 6691 6692 6693
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6694 6695 6696 6697 6698 6699
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6700 6701
	perf_swevent_init_hrtimer(event);

6702
	return 0;
L
Li Zefan 已提交
6703 6704
}

6705
static struct pmu perf_task_clock = {
6706 6707
	.task_ctx_nr	= perf_sw_context,

6708
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6709 6710 6711 6712
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6713 6714
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6715

P
Peter Zijlstra 已提交
6716
static void perf_pmu_nop_void(struct pmu *pmu)
6717 6718
{
}
L
Li Zefan 已提交
6719

P
Peter Zijlstra 已提交
6720
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6721
{
P
Peter Zijlstra 已提交
6722
	return 0;
L
Li Zefan 已提交
6723 6724
}

P
Peter Zijlstra 已提交
6725
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6726
{
P
Peter Zijlstra 已提交
6727
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6728 6729
}

P
Peter Zijlstra 已提交
6730 6731 6732 6733 6734
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6735

P
Peter Zijlstra 已提交
6736
static void perf_pmu_cancel_txn(struct pmu *pmu)
6737
{
P
Peter Zijlstra 已提交
6738
	perf_pmu_enable(pmu);
6739 6740
}

6741 6742
static int perf_event_idx_default(struct perf_event *event)
{
6743
	return 0;
6744 6745
}

P
Peter Zijlstra 已提交
6746 6747 6748 6749
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6750
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6751
{
P
Peter Zijlstra 已提交
6752
	struct pmu *pmu;
6753

P
Peter Zijlstra 已提交
6754 6755
	if (ctxn < 0)
		return NULL;
6756

P
Peter Zijlstra 已提交
6757 6758 6759 6760
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6761

P
Peter Zijlstra 已提交
6762
	return NULL;
6763 6764
}

6765
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6766
{
6767 6768 6769 6770 6771 6772 6773
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6774 6775
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6776 6777 6778 6779 6780 6781
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6782

P
Peter Zijlstra 已提交
6783
	mutex_lock(&pmus_lock);
6784
	/*
P
Peter Zijlstra 已提交
6785
	 * Like a real lame refcount.
6786
	 */
6787 6788 6789
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6790
			goto out;
6791
		}
P
Peter Zijlstra 已提交
6792
	}
6793

6794
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6795 6796
out:
	mutex_unlock(&pmus_lock);
6797
}
P
Peter Zijlstra 已提交
6798
static struct idr pmu_idr;
6799

P
Peter Zijlstra 已提交
6800 6801 6802 6803 6804 6805 6806
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6807
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6808

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6852
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6853

6854 6855 6856 6857
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6858
};
6859
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6860 6861 6862 6863

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6864
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6880
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6901
static struct lock_class_key cpuctx_mutex;
6902
static struct lock_class_key cpuctx_lock;
6903

6904
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6905
{
P
Peter Zijlstra 已提交
6906
	int cpu, ret;
6907

6908
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6909 6910 6911 6912
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6913

P
Peter Zijlstra 已提交
6914 6915 6916 6917 6918 6919
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6920 6921 6922
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6923 6924 6925 6926 6927
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6928 6929 6930 6931 6932 6933
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6934
skip_type:
P
Peter Zijlstra 已提交
6935 6936 6937
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6938

W
Wei Yongjun 已提交
6939
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6940 6941
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6942
		goto free_dev;
6943

P
Peter Zijlstra 已提交
6944 6945 6946 6947
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6948
		__perf_event_init_context(&cpuctx->ctx);
6949
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6950
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6951
		cpuctx->ctx.pmu = pmu;
6952 6953 6954

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6955
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6956
	}
6957

P
Peter Zijlstra 已提交
6958
got_cpu_context:
P
Peter Zijlstra 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6973
		}
6974
	}
6975

P
Peter Zijlstra 已提交
6976 6977 6978 6979 6980
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6981 6982 6983
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6984
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6985 6986
	ret = 0;
unlock:
6987 6988
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6989
	return ret;
P
Peter Zijlstra 已提交
6990

P
Peter Zijlstra 已提交
6991 6992 6993 6994
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6995 6996 6997 6998
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6999 7000 7001
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7002
}
7003
EXPORT_SYMBOL_GPL(perf_pmu_register);
7004

7005
void perf_pmu_unregister(struct pmu *pmu)
7006
{
7007 7008 7009
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7010

7011
	/*
P
Peter Zijlstra 已提交
7012 7013
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7014
	 */
7015
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7016
	synchronize_rcu();
7017

P
Peter Zijlstra 已提交
7018
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7019 7020
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7021 7022
	device_del(pmu->dev);
	put_device(pmu->dev);
7023
	free_pmu_context(pmu);
7024
}
7025
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7026

7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
	event->pmu = pmu;
	ret = pmu->event_init(event);
	if (ret)
		module_put(pmu->module);

	return ret;
}

7041 7042 7043 7044
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7045
	int ret;
7046 7047

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7048 7049 7050 7051

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7052
	if (pmu) {
7053
		ret = perf_try_init_event(pmu, event);
7054 7055
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7056
		goto unlock;
7057
	}
P
Peter Zijlstra 已提交
7058

7059
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7060
		ret = perf_try_init_event(pmu, event);
7061
		if (!ret)
P
Peter Zijlstra 已提交
7062
			goto unlock;
7063

7064 7065
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7066
			goto unlock;
7067
		}
7068
	}
P
Peter Zijlstra 已提交
7069 7070
	pmu = ERR_PTR(-ENOENT);
unlock:
7071
	srcu_read_unlock(&pmus_srcu, idx);
7072

7073
	return pmu;
7074 7075
}

7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7089 7090
static void account_event(struct perf_event *event)
{
7091 7092 7093
	if (event->parent)
		return;

7094 7095 7096 7097 7098 7099 7100 7101
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7102 7103 7104 7105
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7106
	if (has_branch_stack(event))
7107
		static_key_slow_inc(&perf_sched_events.key);
7108
	if (is_cgroup_event(event))
7109
		static_key_slow_inc(&perf_sched_events.key);
7110 7111

	account_event_cpu(event, event->cpu);
7112 7113
}

T
Thomas Gleixner 已提交
7114
/*
7115
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7116
 */
7117
static struct perf_event *
7118
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7119 7120 7121
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7122 7123
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
7124
{
P
Peter Zijlstra 已提交
7125
	struct pmu *pmu;
7126 7127
	struct perf_event *event;
	struct hw_perf_event *hwc;
7128
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7129

7130 7131 7132 7133 7134
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7135
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7136
	if (!event)
7137
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7138

7139
	/*
7140
	 * Single events are their own group leaders, with an
7141 7142 7143
	 * empty sibling list:
	 */
	if (!group_leader)
7144
		group_leader = event;
7145

7146 7147
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7148

7149 7150 7151
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7152
	INIT_LIST_HEAD(&event->rb_entry);
7153
	INIT_LIST_HEAD(&event->active_entry);
7154 7155
	INIT_HLIST_NODE(&event->hlist_entry);

7156

7157
	init_waitqueue_head(&event->waitq);
7158
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7159

7160
	mutex_init(&event->mmap_mutex);
7161

7162
	atomic_long_set(&event->refcount, 1);
7163 7164 7165 7166 7167
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7168

7169
	event->parent		= parent_event;
7170

7171
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7172
	event->id		= atomic64_inc_return(&perf_event_id);
7173

7174
	event->state		= PERF_EVENT_STATE_INACTIVE;
7175

7176 7177
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7178 7179 7180

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7181 7182 7183 7184
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7185
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7186 7187 7188 7189
			event->hw.bp_target = task;
#endif
	}

7190
	if (!overflow_handler && parent_event) {
7191
		overflow_handler = parent_event->overflow_handler;
7192 7193
		context = parent_event->overflow_handler_context;
	}
7194

7195
	event->overflow_handler	= overflow_handler;
7196
	event->overflow_handler_context = context;
7197

J
Jiri Olsa 已提交
7198
	perf_event__state_init(event);
7199

7200
	pmu = NULL;
7201

7202
	hwc = &event->hw;
7203
	hwc->sample_period = attr->sample_period;
7204
	if (attr->freq && attr->sample_freq)
7205
		hwc->sample_period = 1;
7206
	hwc->last_period = hwc->sample_period;
7207

7208
	local64_set(&hwc->period_left, hwc->sample_period);
7209

7210
	/*
7211
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7212
	 */
7213
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7214
		goto err_ns;
7215

7216
	pmu = perf_init_event(event);
7217
	if (!pmu)
7218 7219
		goto err_ns;
	else if (IS_ERR(pmu)) {
7220
		err = PTR_ERR(pmu);
7221
		goto err_ns;
I
Ingo Molnar 已提交
7222
	}
7223

7224
	if (!event->parent) {
7225 7226
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7227 7228
			if (err)
				goto err_pmu;
7229
		}
7230
	}
7231

7232
	return event;
7233 7234 7235 7236

err_pmu:
	if (event->destroy)
		event->destroy(event);
7237
	module_put(pmu->module);
7238 7239 7240 7241 7242 7243
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7244 7245
}

7246 7247
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7248 7249
{
	u32 size;
7250
	int ret;
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7275 7276 7277
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7278 7279
	 */
	if (size > sizeof(*attr)) {
7280 7281 7282
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7283

7284 7285
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7286

7287
		for (; addr < end; addr++) {
7288 7289 7290 7291 7292 7293
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7294
		size = sizeof(*attr);
7295 7296 7297 7298 7299 7300
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7301
	if (attr->__reserved_1)
7302 7303 7304 7305 7306 7307 7308 7309
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7338 7339
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7340 7341
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7342
	}
7343

7344
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7345
		ret = perf_reg_validate(attr->sample_regs_user);
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7364

7365 7366
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7367 7368 7369 7370 7371 7372 7373 7374 7375
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7376 7377
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7378
{
7379
	struct ring_buffer *rb = NULL;
7380 7381
	int ret = -EINVAL;

7382
	if (!output_event)
7383 7384
		goto set;

7385 7386
	/* don't allow circular references */
	if (event == output_event)
7387 7388
		goto out;

7389 7390 7391 7392 7393 7394 7395
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7396
	 * If its not a per-cpu rb, it must be the same task.
7397 7398 7399 7400
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7401
set:
7402
	mutex_lock(&event->mmap_mutex);
7403 7404 7405
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7406

7407
	if (output_event) {
7408 7409 7410
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7411
			goto unlock;
7412 7413
	}

7414
	ring_buffer_attach(event, rb);
7415

7416
	ret = 0;
7417 7418 7419
unlock:
	mutex_unlock(&event->mmap_mutex);

7420 7421 7422 7423
out:
	return ret;
}

P
Peter Zijlstra 已提交
7424 7425 7426 7427 7428 7429 7430 7431 7432
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

T
Thomas Gleixner 已提交
7433
/**
7434
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7435
 *
7436
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7437
 * @pid:		target pid
I
Ingo Molnar 已提交
7438
 * @cpu:		target cpu
7439
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7440
 */
7441 7442
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7443
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7444
{
7445 7446
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7447
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7448
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7449
	struct file *event_file = NULL;
7450
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7451
	struct task_struct *task = NULL;
7452
	struct pmu *pmu;
7453
	int event_fd;
7454
	int move_group = 0;
7455
	int err;
7456
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7457

7458
	/* for future expandability... */
S
Stephane Eranian 已提交
7459
	if (flags & ~PERF_FLAG_ALL)
7460 7461
		return -EINVAL;

7462 7463 7464
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7465

7466 7467 7468 7469 7470
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7471
	if (attr.freq) {
7472
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7473
			return -EINVAL;
7474 7475 7476
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7477 7478
	}

S
Stephane Eranian 已提交
7479 7480 7481 7482 7483 7484 7485 7486 7487
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7488 7489 7490 7491
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7492 7493 7494
	if (event_fd < 0)
		return event_fd;

7495
	if (group_fd != -1) {
7496 7497
		err = perf_fget_light(group_fd, &group);
		if (err)
7498
			goto err_fd;
7499
		group_leader = group.file->private_data;
7500 7501 7502 7503 7504 7505
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7506
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7507 7508 7509 7510 7511 7512 7513
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7514 7515 7516 7517 7518 7519
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7520 7521
	get_online_cpus();

7522 7523
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7524 7525
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7526
		goto err_cpus;
7527 7528
	}

S
Stephane Eranian 已提交
7529 7530
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7531 7532
		if (err) {
			__free_event(event);
7533
			goto err_cpus;
7534
		}
S
Stephane Eranian 已提交
7535 7536
	}

7537 7538 7539 7540 7541 7542 7543
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7544 7545
	account_event(event);

7546 7547 7548 7549 7550
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7574 7575 7576 7577

	/*
	 * Get the target context (task or percpu):
	 */
7578
	ctx = find_get_context(pmu, task, event->cpu);
7579 7580
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7581
		goto err_alloc;
7582 7583
	}

7584 7585 7586 7587 7588
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7589
	/*
7590
	 * Look up the group leader (we will attach this event to it):
7591
	 */
7592
	if (group_leader) {
7593
		err = -EINVAL;
7594 7595

		/*
I
Ingo Molnar 已提交
7596 7597 7598 7599
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7600
			goto err_context;
I
Ingo Molnar 已提交
7601 7602 7603
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7604
		 */
7605
		if (move_group) {
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7619 7620 7621 7622 7623 7624
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7625 7626 7627
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7628
		if (attr.exclusive || attr.pinned)
7629
			goto err_context;
7630 7631 7632 7633 7634
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7635
			goto err_context;
7636
	}
T
Thomas Gleixner 已提交
7637

7638 7639
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7640 7641
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7642
		goto err_context;
7643
	}
7644

7645
	if (move_group) {
P
Peter Zijlstra 已提交
7646 7647 7648 7649 7650 7651 7652
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7653

7654
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7655

7656 7657
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7658
			perf_remove_from_context(sibling, false);
7659 7660
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
7661 7662
	} else {
		mutex_lock(&ctx->mutex);
7663
	}
7664

7665
	WARN_ON_ONCE(ctx->parent_ctx);
7666 7667

	if (move_group) {
P
Peter Zijlstra 已提交
7668 7669 7670 7671
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
7672
		synchronize_rcu();
P
Peter Zijlstra 已提交
7673

7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
7684 7685
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7686
			perf_event__state_init(sibling);
7687
			perf_install_in_context(ctx, sibling, sibling->cpu);
7688 7689
			get_ctx(ctx);
		}
7690 7691 7692 7693 7694 7695 7696 7697 7698

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
7699 7700
	}

7701
	perf_install_in_context(ctx, event, event->cpu);
7702
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
7703 7704 7705 7706 7707

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
7708
	mutex_unlock(&ctx->mutex);
7709

7710 7711
	put_online_cpus();

7712
	event->owner = current;
P
Peter Zijlstra 已提交
7713

7714 7715 7716
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7717

7718 7719 7720 7721
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7722
	perf_event__id_header_size(event);
7723

7724 7725 7726 7727 7728 7729
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7730
	fdput(group);
7731 7732
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7733

7734
err_context:
7735
	perf_unpin_context(ctx);
7736
	put_ctx(ctx);
7737
err_alloc:
7738
	free_event(event);
7739
err_cpus:
7740
	put_online_cpus();
7741
err_task:
P
Peter Zijlstra 已提交
7742 7743
	if (task)
		put_task_struct(task);
7744
err_group_fd:
7745
	fdput(group);
7746 7747
err_fd:
	put_unused_fd(event_fd);
7748
	return err;
T
Thomas Gleixner 已提交
7749 7750
}

7751 7752 7753 7754 7755
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7756
 * @task: task to profile (NULL for percpu)
7757 7758 7759
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7760
				 struct task_struct *task,
7761 7762
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7763 7764
{
	struct perf_event_context *ctx;
7765
	struct perf_event *event;
7766
	int err;
7767

7768 7769 7770
	/*
	 * Get the target context (task or percpu):
	 */
7771

7772 7773
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7774 7775 7776 7777
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7778

7779 7780 7781
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7782 7783
	account_event(event);

M
Matt Helsley 已提交
7784
	ctx = find_get_context(event->pmu, task, cpu);
7785 7786
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7787
		goto err_free;
7788
	}
7789 7790 7791 7792

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7793
	perf_unpin_context(ctx);
7794 7795 7796 7797
	mutex_unlock(&ctx->mutex);

	return event;

7798 7799 7800
err_free:
	free_event(event);
err:
7801
	return ERR_PTR(err);
7802
}
7803
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7804

7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
7815 7816 7817 7818 7819
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7820 7821
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7822
		perf_remove_from_context(event, false);
7823
		unaccount_event_cpu(event, src_cpu);
7824
		put_ctx(src_ctx);
7825
		list_add(&event->migrate_entry, &events);
7826 7827
	}

7828 7829 7830
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
7831 7832
	synchronize_rcu();

7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
7857 7858
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7859 7860
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7861
		account_event_cpu(event, dst_cpu);
7862 7863 7864 7865
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
7866
	mutex_unlock(&src_ctx->mutex);
7867 7868 7869
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7870
static void sync_child_event(struct perf_event *child_event,
7871
			       struct task_struct *child)
7872
{
7873
	struct perf_event *parent_event = child_event->parent;
7874
	u64 child_val;
7875

7876 7877
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7878

P
Peter Zijlstra 已提交
7879
	child_val = perf_event_count(child_event);
7880 7881 7882 7883

	/*
	 * Add back the child's count to the parent's count:
	 */
7884
	atomic64_add(child_val, &parent_event->child_count);
7885 7886 7887 7888
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7889 7890

	/*
7891
	 * Remove this event from the parent's list
7892
	 */
7893 7894 7895 7896
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7897

7898 7899 7900 7901 7902 7903
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7904
	/*
7905
	 * Release the parent event, if this was the last
7906 7907
	 * reference to it.
	 */
7908
	put_event(parent_event);
7909 7910
}

7911
static void
7912 7913
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7914
			 struct task_struct *child)
7915
{
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7929

7930
	/*
7931
	 * It can happen that the parent exits first, and has events
7932
	 * that are still around due to the child reference. These
7933
	 * events need to be zapped.
7934
	 */
7935
	if (child_event->parent) {
7936 7937
		sync_child_event(child_event, child);
		free_event(child_event);
7938 7939 7940
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7941
	}
7942 7943
}

P
Peter Zijlstra 已提交
7944
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7945
{
7946
	struct perf_event *child_event, *next;
7947
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7948
	unsigned long flags;
7949

P
Peter Zijlstra 已提交
7950
	if (likely(!child->perf_event_ctxp[ctxn])) {
7951
		perf_event_task(child, NULL, 0);
7952
		return;
P
Peter Zijlstra 已提交
7953
	}
7954

7955
	local_irq_save(flags);
7956 7957 7958 7959 7960 7961
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7962
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7963 7964 7965

	/*
	 * Take the context lock here so that if find_get_context is
7966
	 * reading child->perf_event_ctxp, we wait until it has
7967 7968
	 * incremented the context's refcount before we do put_ctx below.
	 */
7969
	raw_spin_lock(&child_ctx->lock);
7970
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7971
	child->perf_event_ctxp[ctxn] = NULL;
7972

7973 7974 7975
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7976
	 * the events from it.
7977
	 */
7978
	clone_ctx = unclone_ctx(child_ctx);
7979
	update_context_time(child_ctx);
7980
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7981

7982 7983
	if (clone_ctx)
		put_ctx(clone_ctx);
7984

P
Peter Zijlstra 已提交
7985
	/*
7986 7987 7988
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7989
	 */
7990
	perf_event_task(child, child_ctx, 0);
7991

7992 7993 7994
	/*
	 * We can recurse on the same lock type through:
	 *
7995 7996
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7997 7998
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7999 8000 8001
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8002
	mutex_lock(&child_ctx->mutex);
8003

8004
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8005
		__perf_event_exit_task(child_event, child_ctx, child);
8006

8007 8008 8009
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8010 8011
}

P
Peter Zijlstra 已提交
8012 8013 8014 8015 8016
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8017
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8018 8019
	int ctxn;

P
Peter Zijlstra 已提交
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8035 8036 8037 8038
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8051
	put_event(parent);
8052

P
Peter Zijlstra 已提交
8053
	raw_spin_lock_irq(&ctx->lock);
8054
	perf_group_detach(event);
8055
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8056
	raw_spin_unlock_irq(&ctx->lock);
8057 8058 8059
	free_event(event);
}

8060
/*
P
Peter Zijlstra 已提交
8061
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8062
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8063 8064 8065
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8066
 */
8067
void perf_event_free_task(struct task_struct *task)
8068
{
P
Peter Zijlstra 已提交
8069
	struct perf_event_context *ctx;
8070
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8071
	int ctxn;
8072

P
Peter Zijlstra 已提交
8073 8074 8075 8076
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8077

P
Peter Zijlstra 已提交
8078
		mutex_lock(&ctx->mutex);
8079
again:
P
Peter Zijlstra 已提交
8080 8081 8082
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8083

P
Peter Zijlstra 已提交
8084 8085 8086
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8087

P
Peter Zijlstra 已提交
8088 8089 8090
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8091

P
Peter Zijlstra 已提交
8092
		mutex_unlock(&ctx->mutex);
8093

P
Peter Zijlstra 已提交
8094 8095
		put_ctx(ctx);
	}
8096 8097
}

8098 8099 8100 8101 8102 8103 8104 8105
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8117
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8118
	struct perf_event *child_event;
8119
	unsigned long flags;
P
Peter Zijlstra 已提交
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8132
					   child,
P
Peter Zijlstra 已提交
8133
					   group_leader, parent_event,
8134
				           NULL, NULL);
P
Peter Zijlstra 已提交
8135 8136
	if (IS_ERR(child_event))
		return child_event;
8137

8138 8139
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8140 8141 8142 8143
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8144 8145 8146 8147 8148 8149 8150
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8151
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8168 8169
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8170

8171 8172 8173 8174
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8175
	perf_event__id_header_size(child_event);
8176

P
Peter Zijlstra 已提交
8177 8178 8179
	/*
	 * Link it up in the child's context:
	 */
8180
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8181
	add_event_to_ctx(child_event, child_ctx);
8182
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8216 8217 8218 8219 8220
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8221
		   struct task_struct *child, int ctxn,
8222 8223 8224
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8225
	struct perf_event_context *child_ctx;
8226 8227 8228 8229

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8230 8231
	}

8232
	child_ctx = child->perf_event_ctxp[ctxn];
8233 8234 8235 8236 8237 8238 8239
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8240

8241
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8242 8243
		if (!child_ctx)
			return -ENOMEM;
8244

P
Peter Zijlstra 已提交
8245
		child->perf_event_ctxp[ctxn] = child_ctx;
8246 8247 8248 8249 8250 8251 8252 8253 8254
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8255 8256
}

8257
/*
8258
 * Initialize the perf_event context in task_struct
8259
 */
8260
static int perf_event_init_context(struct task_struct *child, int ctxn)
8261
{
8262
	struct perf_event_context *child_ctx, *parent_ctx;
8263 8264
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8265
	struct task_struct *parent = current;
8266
	int inherited_all = 1;
8267
	unsigned long flags;
8268
	int ret = 0;
8269

P
Peter Zijlstra 已提交
8270
	if (likely(!parent->perf_event_ctxp[ctxn]))
8271 8272
		return 0;

8273
	/*
8274 8275
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8276
	 */
P
Peter Zijlstra 已提交
8277
	parent_ctx = perf_pin_task_context(parent, ctxn);
8278 8279
	if (!parent_ctx)
		return 0;
8280

8281 8282 8283 8284 8285 8286 8287
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8288 8289 8290 8291
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8292
	mutex_lock(&parent_ctx->mutex);
8293 8294 8295 8296 8297

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8298
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8299 8300
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8301 8302 8303
		if (ret)
			break;
	}
8304

8305 8306 8307 8308 8309 8310 8311 8312 8313
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8314
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8315 8316
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8317
		if (ret)
8318
			break;
8319 8320
	}

8321 8322 8323
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8324
	child_ctx = child->perf_event_ctxp[ctxn];
8325

8326
	if (child_ctx && inherited_all) {
8327 8328 8329
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8330 8331 8332
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8333
		 */
P
Peter Zijlstra 已提交
8334
		cloned_ctx = parent_ctx->parent_ctx;
8335 8336
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8337
			child_ctx->parent_gen = parent_ctx->parent_gen;
8338 8339 8340 8341 8342
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8343 8344
	}

P
Peter Zijlstra 已提交
8345
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8346
	mutex_unlock(&parent_ctx->mutex);
8347

8348
	perf_unpin_context(parent_ctx);
8349
	put_ctx(parent_ctx);
8350

8351
	return ret;
8352 8353
}

P
Peter Zijlstra 已提交
8354 8355 8356 8357 8358 8359 8360
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8361 8362 8363 8364
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8365 8366
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8367 8368
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8369
			return ret;
P
Peter Zijlstra 已提交
8370
		}
P
Peter Zijlstra 已提交
8371 8372 8373 8374 8375
	}

	return 0;
}

8376 8377
static void __init perf_event_init_all_cpus(void)
{
8378
	struct swevent_htable *swhash;
8379 8380 8381
	int cpu;

	for_each_possible_cpu(cpu) {
8382 8383
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8384
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8385 8386 8387
	}
}

8388
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8389
{
P
Peter Zijlstra 已提交
8390
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8391

8392
	mutex_lock(&swhash->hlist_mutex);
8393
	swhash->online = true;
8394
	if (swhash->hlist_refcount > 0) {
8395 8396
		struct swevent_hlist *hlist;

8397 8398 8399
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8400
	}
8401
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8402 8403
}

P
Peter Zijlstra 已提交
8404
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8405
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8406
{
8407
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8408
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8409

P
Peter Zijlstra 已提交
8410
	rcu_read_lock();
8411 8412
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8413
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8414
}
P
Peter Zijlstra 已提交
8415 8416 8417 8418 8419 8420 8421 8422 8423

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8424
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8425 8426 8427 8428 8429 8430 8431 8432

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8433
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8434
{
8435
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8436

P
Peter Zijlstra 已提交
8437 8438
	perf_event_exit_cpu_context(cpu);

8439
	mutex_lock(&swhash->hlist_mutex);
8440
	swhash->online = false;
8441 8442
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8443 8444
}
#else
8445
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8446 8447
#endif

P
Peter Zijlstra 已提交
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8468
static int
T
Thomas Gleixner 已提交
8469 8470 8471 8472
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8473
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8474 8475

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8476
	case CPU_DOWN_FAILED:
8477
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8478 8479
		break;

P
Peter Zijlstra 已提交
8480
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8481
	case CPU_DOWN_PREPARE:
8482
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8483 8484 8485 8486 8487 8488 8489 8490
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8491
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8492
{
8493 8494
	int ret;

P
Peter Zijlstra 已提交
8495 8496
	idr_init(&pmu_idr);

8497
	perf_event_init_all_cpus();
8498
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8499 8500 8501
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8502 8503
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8504
	register_reboot_notifier(&perf_reboot_notifier);
8505 8506 8507

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8508 8509 8510

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8511 8512 8513 8514 8515 8516 8517

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8518
}
P
Peter Zijlstra 已提交
8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8547 8548

#ifdef CONFIG_CGROUP_PERF
8549 8550
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8551 8552 8553
{
	struct perf_cgroup *jc;

8554
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8567
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8568
{
8569 8570
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8582 8583
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8584
{
8585 8586
	struct task_struct *task;

8587
	cgroup_taskset_for_each(task, tset)
8588
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8589 8590
}

8591 8592
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8593
			     struct task_struct *task)
S
Stephane Eranian 已提交
8594 8595 8596 8597 8598 8599 8600 8601 8602
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8603
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8604 8605
}

8606
struct cgroup_subsys perf_event_cgrp_subsys = {
8607 8608
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8609
	.exit		= perf_cgroup_exit,
8610
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8611 8612
};
#endif /* CONFIG_CGROUP_PERF */