core.c 174.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
39
#include <linux/mm_types.h>
40
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
41

42 43
#include "internal.h"

44 45
#include <asm/irq_regs.h>

46
struct remote_function_call {
47 48 49 50
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
84 85 86 87
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
108 109 110 111
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
112 113 114 115 116 117 118
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
119 120 121 122
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

123 124 125 126 127 128 129
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

130 131 132 133 134 135
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
136 137 138 139
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
140
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
141
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
142
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
143

144 145 146
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
147

P
Peter Zijlstra 已提交
148 149 150 151
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

152
/*
153
 * perf event paranoia level:
154 155
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
156
 *   1 - disallow cpu events for unpriv
157
 *   2 - disallow kernel profiling for unpriv
158
 */
159
int sysctl_perf_event_paranoid __read_mostly = 1;
160

161 162
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
163 164

/*
165
 * max perf event sample rate
166
 */
P
Peter Zijlstra 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
185

186
static atomic64_t perf_event_id;
187

188 189 190 191
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
192 193 194 195 196
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
197

198 199 200
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

201
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
202

203
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
204
{
205
	return "pmu";
T
Thomas Gleixner 已提交
206 207
}

208 209 210 211 212
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
213 214 215 216 217 218
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
235 236
#ifdef CONFIG_CGROUP_PERF

237 238 239 240 241 242 243 244 245 246 247
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
248
	struct perf_cgroup_info	__percpu *info;
249 250
};

251 252 253 254 255
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

272
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
273
{
274
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
323 324
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
325
	/*
326 327
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
328
	 */
329
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
330 331
		return;

332 333 334 335 336 337
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
338 339 340
}

static inline void
341 342
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
343 344 345 346
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

347 348 349 350 351 352
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
353 354 355 356
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
357
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
390 391
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
401 402
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
403 404 405 406 407 408 409 410 411 412 413

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
414
				WARN_ON_ONCE(cpuctx->cgrp);
415 416 417 418
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
419 420 421 422
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
423 424
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
425 426 427 428 429 430 431 432
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

433 434
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
458 459
}

460 461
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
462
{
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
481 482 483 484 485 486 487 488
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
489 490
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
491

492
	if (!f.file)
S
Stephane Eranian 已提交
493 494
		return -EBADF;

495
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
496 497 498 499
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
500 501 502 503

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

504
	/* must be done before we fput() the file */
505 506 507 508 509
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
510

S
Stephane Eranian 已提交
511 512 513 514 515 516 517 518 519
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
520
out:
521
	fdput(f);
S
Stephane Eranian 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

595 596
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
597 598 599
{
}

600 601
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
602 603 604 605 606 607 608 609 610 611 612
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
613 614
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
645
void perf_pmu_disable(struct pmu *pmu)
646
{
P
Peter Zijlstra 已提交
647 648 649
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
650 651
}

P
Peter Zijlstra 已提交
652
void perf_pmu_enable(struct pmu *pmu)
653
{
P
Peter Zijlstra 已提交
654 655 656
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
657 658
}

659 660 661 662 663 664 665
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
666
static void perf_pmu_rotate_start(struct pmu *pmu)
667
{
P
Peter Zijlstra 已提交
668
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
669
	struct list_head *head = &__get_cpu_var(rotation_list);
670

671
	WARN_ON(!irqs_disabled());
672

673 674
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
675 676
}

677
static void get_ctx(struct perf_event_context *ctx)
678
{
679
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
680 681
}

682
static void put_ctx(struct perf_event_context *ctx)
683
{
684 685 686
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
687 688
		if (ctx->task)
			put_task_struct(ctx->task);
689
		kfree_rcu(ctx, rcu_head);
690
	}
691 692
}

693
static void unclone_ctx(struct perf_event_context *ctx)
694 695 696 697 698 699 700
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

723
/*
724
 * If we inherit events we want to return the parent event id
725 726
 * to userspace.
 */
727
static u64 primary_event_id(struct perf_event *event)
728
{
729
	u64 id = event->id;
730

731 732
	if (event->parent)
		id = event->parent->id;
733 734 735 736

	return id;
}

737
/*
738
 * Get the perf_event_context for a task and lock it.
739 740 741
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
742
static struct perf_event_context *
P
Peter Zijlstra 已提交
743
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
744
{
745
	struct perf_event_context *ctx;
746 747

	rcu_read_lock();
P
Peter Zijlstra 已提交
748
retry:
P
Peter Zijlstra 已提交
749
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
750 751 752 753
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
754
		 * perf_event_task_sched_out, though the
755 756 757 758 759 760
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
761
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
762
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
763
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
764 765
			goto retry;
		}
766 767

		if (!atomic_inc_not_zero(&ctx->refcount)) {
768
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
769 770
			ctx = NULL;
		}
771 772 773 774 775 776 777 778 779 780
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
781 782
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
783
{
784
	struct perf_event_context *ctx;
785 786
	unsigned long flags;

P
Peter Zijlstra 已提交
787
	ctx = perf_lock_task_context(task, ctxn, &flags);
788 789
	if (ctx) {
		++ctx->pin_count;
790
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
791 792 793 794
	}
	return ctx;
}

795
static void perf_unpin_context(struct perf_event_context *ctx)
796 797 798
{
	unsigned long flags;

799
	raw_spin_lock_irqsave(&ctx->lock, flags);
800
	--ctx->pin_count;
801
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
802 803
}

804 805 806 807 808 809 810 811 812 813 814
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

815 816 817
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
818 819 820 821

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

822 823 824
	return ctx ? ctx->time : 0;
}

825 826
/*
 * Update the total_time_enabled and total_time_running fields for a event.
827
 * The caller of this function needs to hold the ctx->lock.
828 829 830 831 832 833 834 835 836
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
837 838 839 840 841 842 843 844 845 846 847
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
848
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
849 850
	else if (ctx->is_active)
		run_end = ctx->time;
851 852 853 854
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
855 856 857 858

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
859
		run_end = perf_event_time(event);
860 861

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
862

863 864
}

865 866 867 868 869 870 871 872 873 874 875 876
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

877 878 879 880 881 882 883 884 885
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

886
/*
887
 * Add a event from the lists for its context.
888 889
 * Must be called with ctx->mutex and ctx->lock held.
 */
890
static void
891
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
892
{
893 894
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
895 896

	/*
897 898 899
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
900
	 */
901
	if (event->group_leader == event) {
902 903
		struct list_head *list;

904 905 906
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

907 908
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
909
	}
P
Peter Zijlstra 已提交
910

911
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
912 913
		ctx->nr_cgroups++;

914 915 916
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

917
	list_add_rcu(&event->event_entry, &ctx->event_list);
918
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
919
		perf_pmu_rotate_start(ctx->pmu);
920 921
	ctx->nr_events++;
	if (event->attr.inherit_stat)
922
		ctx->nr_stat++;
923 924
}

J
Jiri Olsa 已提交
925 926 927 928 929 930 931 932 933
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1006
	event->id_header_size = size;
1007 1008
}

1009 1010
static void perf_group_attach(struct perf_event *event)
{
1011
	struct perf_event *group_leader = event->group_leader, *pos;
1012

P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1030 1031 1032 1033 1034

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1035 1036
}

1037
/*
1038
 * Remove a event from the lists for its context.
1039
 * Must be called with ctx->mutex and ctx->lock held.
1040
 */
1041
static void
1042
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1043
{
1044
	struct perf_cpu_context *cpuctx;
1045 1046 1047 1048
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1049
		return;
1050 1051 1052

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1053
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1054
		ctx->nr_cgroups--;
1055 1056 1057 1058 1059 1060 1061 1062 1063
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1064

1065 1066 1067
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1068 1069
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1070
		ctx->nr_stat--;
1071

1072
	list_del_rcu(&event->event_entry);
1073

1074 1075
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1076

1077
	update_group_times(event);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1088 1089
}

1090
static void perf_group_detach(struct perf_event *event)
1091 1092
{
	struct perf_event *sibling, *tmp;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1109
		goto out;
1110 1111 1112 1113
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1114

1115
	/*
1116 1117
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1118
	 * to whatever list we are on.
1119
	 */
1120
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1121 1122
		if (list)
			list_move_tail(&sibling->group_entry, list);
1123
		sibling->group_leader = sibling;
1124 1125 1126

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1127
	}
1128 1129 1130 1131 1132 1133

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1134 1135
}

1136 1137 1138
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1139 1140
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1141 1142
}

1143 1144
static void
event_sched_out(struct perf_event *event,
1145
		  struct perf_cpu_context *cpuctx,
1146
		  struct perf_event_context *ctx)
1147
{
1148
	u64 tstamp = perf_event_time(event);
1149 1150 1151 1152 1153 1154 1155 1156 1157
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1158
		delta = tstamp - event->tstamp_stopped;
1159
		event->tstamp_running += delta;
1160
		event->tstamp_stopped = tstamp;
1161 1162
	}

1163
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1164
		return;
1165

1166 1167 1168 1169
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1170
	}
1171
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1172
	event->pmu->del(event, 0);
1173
	event->oncpu = -1;
1174

1175
	if (!is_software_event(event))
1176 1177
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1178 1179
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1180
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1181 1182 1183
		cpuctx->exclusive = 0;
}

1184
static void
1185
group_sched_out(struct perf_event *group_event,
1186
		struct perf_cpu_context *cpuctx,
1187
		struct perf_event_context *ctx)
1188
{
1189
	struct perf_event *event;
1190
	int state = group_event->state;
1191

1192
	event_sched_out(group_event, cpuctx, ctx);
1193 1194 1195 1196

	/*
	 * Schedule out siblings (if any):
	 */
1197 1198
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1199

1200
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1201 1202 1203
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1204
/*
1205
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1206
 *
1207
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1208 1209
 * remove it from the context list.
 */
1210
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1211
{
1212 1213
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1214
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1215

1216
	raw_spin_lock(&ctx->lock);
1217 1218
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1219 1220 1221 1222
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1223
	raw_spin_unlock(&ctx->lock);
1224 1225

	return 0;
T
Thomas Gleixner 已提交
1226 1227 1228 1229
}


/*
1230
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1231
 *
1232
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1233
 * call when the task is on a CPU.
1234
 *
1235 1236
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1237 1238
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1239
 * When called from perf_event_exit_task, it's OK because the
1240
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1241
 */
1242
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1243
{
1244
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1245 1246
	struct task_struct *task = ctx->task;

1247 1248
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1249 1250
	if (!task) {
		/*
1251
		 * Per cpu events are removed via an smp call and
1252
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1253
		 */
1254
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1255 1256 1257 1258
		return;
	}

retry:
1259 1260
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1261

1262
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1263
	/*
1264 1265
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1266
	 */
1267
	if (ctx->is_active) {
1268
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1269 1270 1271 1272
		goto retry;
	}

	/*
1273 1274
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1275
	 */
1276
	list_del_event(event, ctx);
1277
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1278 1279
}

1280
/*
1281
 * Cross CPU call to disable a performance event
1282
 */
1283
int __perf_event_disable(void *info)
1284
{
1285 1286
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1287
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1288 1289

	/*
1290 1291
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1292 1293 1294
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1295
	 */
1296
	if (ctx->task && cpuctx->task_ctx != ctx)
1297
		return -EINVAL;
1298

1299
	raw_spin_lock(&ctx->lock);
1300 1301

	/*
1302
	 * If the event is on, turn it off.
1303 1304
	 * If it is in error state, leave it in error state.
	 */
1305
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1306
		update_context_time(ctx);
S
Stephane Eranian 已提交
1307
		update_cgrp_time_from_event(event);
1308 1309 1310
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1311
		else
1312 1313
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1314 1315
	}

1316
	raw_spin_unlock(&ctx->lock);
1317 1318

	return 0;
1319 1320 1321
}

/*
1322
 * Disable a event.
1323
 *
1324 1325
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1326
 * remains valid.  This condition is satisifed when called through
1327 1328 1329 1330
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1331
 * is the current context on this CPU and preemption is disabled,
1332
 * hence we can't get into perf_event_task_sched_out for this context.
1333
 */
1334
void perf_event_disable(struct perf_event *event)
1335
{
1336
	struct perf_event_context *ctx = event->ctx;
1337 1338 1339 1340
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1341
		 * Disable the event on the cpu that it's on
1342
		 */
1343
		cpu_function_call(event->cpu, __perf_event_disable, event);
1344 1345 1346
		return;
	}

P
Peter Zijlstra 已提交
1347
retry:
1348 1349
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1350

1351
	raw_spin_lock_irq(&ctx->lock);
1352
	/*
1353
	 * If the event is still active, we need to retry the cross-call.
1354
	 */
1355
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1356
		raw_spin_unlock_irq(&ctx->lock);
1357 1358 1359 1360 1361
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1362 1363 1364 1365 1366 1367 1368
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1369 1370 1371
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1372
	}
1373
	raw_spin_unlock_irq(&ctx->lock);
1374
}
1375
EXPORT_SYMBOL_GPL(perf_event_disable);
1376

S
Stephane Eranian 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1412 1413 1414 1415
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1416
static int
1417
event_sched_in(struct perf_event *event,
1418
		 struct perf_cpu_context *cpuctx,
1419
		 struct perf_event_context *ctx)
1420
{
1421 1422
	u64 tstamp = perf_event_time(event);

1423
	if (event->state <= PERF_EVENT_STATE_OFF)
1424 1425
		return 0;

1426
	event->state = PERF_EVENT_STATE_ACTIVE;
1427
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1439 1440 1441 1442 1443
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1444
	if (event->pmu->add(event, PERF_EF_START)) {
1445 1446
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1447 1448 1449
		return -EAGAIN;
	}

1450
	event->tstamp_running += tstamp - event->tstamp_stopped;
1451

S
Stephane Eranian 已提交
1452
	perf_set_shadow_time(event, ctx, tstamp);
1453

1454
	if (!is_software_event(event))
1455
		cpuctx->active_oncpu++;
1456
	ctx->nr_active++;
1457 1458
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1459

1460
	if (event->attr.exclusive)
1461 1462
		cpuctx->exclusive = 1;

1463 1464 1465
	return 0;
}

1466
static int
1467
group_sched_in(struct perf_event *group_event,
1468
	       struct perf_cpu_context *cpuctx,
1469
	       struct perf_event_context *ctx)
1470
{
1471
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1472
	struct pmu *pmu = group_event->pmu;
1473 1474
	u64 now = ctx->time;
	bool simulate = false;
1475

1476
	if (group_event->state == PERF_EVENT_STATE_OFF)
1477 1478
		return 0;

P
Peter Zijlstra 已提交
1479
	pmu->start_txn(pmu);
1480

1481
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1482
		pmu->cancel_txn(pmu);
1483
		return -EAGAIN;
1484
	}
1485 1486 1487 1488

	/*
	 * Schedule in siblings as one group (if any):
	 */
1489
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1490
		if (event_sched_in(event, cpuctx, ctx)) {
1491
			partial_group = event;
1492 1493 1494 1495
			goto group_error;
		}
	}

1496
	if (!pmu->commit_txn(pmu))
1497
		return 0;
1498

1499 1500 1501 1502
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1513
	 */
1514 1515
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1516 1517 1518 1519 1520 1521 1522 1523
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1524
	}
1525
	event_sched_out(group_event, cpuctx, ctx);
1526

P
Peter Zijlstra 已提交
1527
	pmu->cancel_txn(pmu);
1528

1529 1530 1531
	return -EAGAIN;
}

1532
/*
1533
 * Work out whether we can put this event group on the CPU now.
1534
 */
1535
static int group_can_go_on(struct perf_event *event,
1536 1537 1538 1539
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1540
	 * Groups consisting entirely of software events can always go on.
1541
	 */
1542
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1543 1544 1545
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1546
	 * events can go on.
1547 1548 1549 1550 1551
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1552
	 * events on the CPU, it can't go on.
1553
	 */
1554
	if (event->attr.exclusive && cpuctx->active_oncpu)
1555 1556 1557 1558 1559 1560 1561 1562
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1563 1564
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1565
{
1566 1567
	u64 tstamp = perf_event_time(event);

1568
	list_add_event(event, ctx);
1569
	perf_group_attach(event);
1570 1571 1572
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1573 1574
}

1575 1576 1577 1578 1579 1580
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1594
/*
1595
 * Cross CPU call to install and enable a performance event
1596 1597
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1598
 */
1599
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1600
{
1601 1602
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1603
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1604 1605 1606
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1607
	perf_ctx_lock(cpuctx, task_ctx);
1608
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1609 1610

	/*
1611
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1612
	 */
1613
	if (task_ctx)
1614
		task_ctx_sched_out(task_ctx);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1629 1630
		task = task_ctx->task;
	}
1631

1632
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1633

1634
	update_context_time(ctx);
S
Stephane Eranian 已提交
1635 1636 1637 1638 1639 1640
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1641

1642
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1643

1644
	/*
1645
	 * Schedule everything back in
1646
	 */
1647
	perf_event_sched_in(cpuctx, task_ctx, task);
1648 1649 1650

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1651 1652

	return 0;
T
Thomas Gleixner 已提交
1653 1654 1655
}

/*
1656
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1657
 *
1658 1659
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1660
 *
1661
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1662 1663 1664 1665
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1666 1667
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1668 1669 1670 1671
			int cpu)
{
	struct task_struct *task = ctx->task;

1672 1673
	lockdep_assert_held(&ctx->mutex);

1674
	event->ctx = ctx;
1675 1676
	if (event->cpu != -1)
		event->cpu = cpu;
1677

T
Thomas Gleixner 已提交
1678 1679
	if (!task) {
		/*
1680
		 * Per cpu events are installed via an smp call and
1681
		 * the install is always successful.
T
Thomas Gleixner 已提交
1682
		 */
1683
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1684 1685 1686 1687
		return;
	}

retry:
1688 1689
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1690

1691
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1692
	/*
1693 1694
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1695
	 */
1696
	if (ctx->is_active) {
1697
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1698 1699 1700 1701
		goto retry;
	}

	/*
1702 1703
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1704
	 */
1705
	add_event_to_ctx(event, ctx);
1706
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1707 1708
}

1709
/*
1710
 * Put a event into inactive state and update time fields.
1711 1712 1713 1714 1715 1716
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1717
static void __perf_event_mark_enabled(struct perf_event *event)
1718
{
1719
	struct perf_event *sub;
1720
	u64 tstamp = perf_event_time(event);
1721

1722
	event->state = PERF_EVENT_STATE_INACTIVE;
1723
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1724
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1725 1726
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1727
	}
1728 1729
}

1730
/*
1731
 * Cross CPU call to enable a performance event
1732
 */
1733
static int __perf_event_enable(void *info)
1734
{
1735 1736 1737
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1738
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1739
	int err;
1740

1741 1742
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1743

1744
	raw_spin_lock(&ctx->lock);
1745
	update_context_time(ctx);
1746

1747
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1748
		goto unlock;
S
Stephane Eranian 已提交
1749 1750 1751 1752

	/*
	 * set current task's cgroup time reference point
	 */
1753
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1754

1755
	__perf_event_mark_enabled(event);
1756

S
Stephane Eranian 已提交
1757 1758 1759
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1760
		goto unlock;
S
Stephane Eranian 已提交
1761
	}
1762

1763
	/*
1764
	 * If the event is in a group and isn't the group leader,
1765
	 * then don't put it on unless the group is on.
1766
	 */
1767
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1768
		goto unlock;
1769

1770
	if (!group_can_go_on(event, cpuctx, 1)) {
1771
		err = -EEXIST;
1772
	} else {
1773
		if (event == leader)
1774
			err = group_sched_in(event, cpuctx, ctx);
1775
		else
1776
			err = event_sched_in(event, cpuctx, ctx);
1777
	}
1778 1779 1780

	if (err) {
		/*
1781
		 * If this event can't go on and it's part of a
1782 1783
		 * group, then the whole group has to come off.
		 */
1784
		if (leader != event)
1785
			group_sched_out(leader, cpuctx, ctx);
1786
		if (leader->attr.pinned) {
1787
			update_group_times(leader);
1788
			leader->state = PERF_EVENT_STATE_ERROR;
1789
		}
1790 1791
	}

P
Peter Zijlstra 已提交
1792
unlock:
1793
	raw_spin_unlock(&ctx->lock);
1794 1795

	return 0;
1796 1797 1798
}

/*
1799
 * Enable a event.
1800
 *
1801 1802
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1803
 * remains valid.  This condition is satisfied when called through
1804 1805
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1806
 */
1807
void perf_event_enable(struct perf_event *event)
1808
{
1809
	struct perf_event_context *ctx = event->ctx;
1810 1811 1812 1813
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1814
		 * Enable the event on the cpu that it's on
1815
		 */
1816
		cpu_function_call(event->cpu, __perf_event_enable, event);
1817 1818 1819
		return;
	}

1820
	raw_spin_lock_irq(&ctx->lock);
1821
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1822 1823 1824
		goto out;

	/*
1825 1826
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1827 1828 1829 1830
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1831 1832
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1833

P
Peter Zijlstra 已提交
1834
retry:
1835
	if (!ctx->is_active) {
1836
		__perf_event_mark_enabled(event);
1837 1838 1839
		goto out;
	}

1840
	raw_spin_unlock_irq(&ctx->lock);
1841 1842 1843

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1844

1845
	raw_spin_lock_irq(&ctx->lock);
1846 1847

	/*
1848
	 * If the context is active and the event is still off,
1849 1850
	 * we need to retry the cross-call.
	 */
1851 1852 1853 1854 1855 1856
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1857
		goto retry;
1858
	}
1859

P
Peter Zijlstra 已提交
1860
out:
1861
	raw_spin_unlock_irq(&ctx->lock);
1862
}
1863
EXPORT_SYMBOL_GPL(perf_event_enable);
1864

1865
int perf_event_refresh(struct perf_event *event, int refresh)
1866
{
1867
	/*
1868
	 * not supported on inherited events
1869
	 */
1870
	if (event->attr.inherit || !is_sampling_event(event))
1871 1872
		return -EINVAL;

1873 1874
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1875 1876

	return 0;
1877
}
1878
EXPORT_SYMBOL_GPL(perf_event_refresh);
1879

1880 1881 1882
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1883
{
1884
	struct perf_event *event;
1885
	int is_active = ctx->is_active;
1886

1887
	ctx->is_active &= ~event_type;
1888
	if (likely(!ctx->nr_events))
1889 1890
		return;

1891
	update_context_time(ctx);
S
Stephane Eranian 已提交
1892
	update_cgrp_time_from_cpuctx(cpuctx);
1893
	if (!ctx->nr_active)
1894
		return;
1895

P
Peter Zijlstra 已提交
1896
	perf_pmu_disable(ctx->pmu);
1897
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1898 1899
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1900
	}
1901

1902
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1903
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1904
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1905
	}
P
Peter Zijlstra 已提交
1906
	perf_pmu_enable(ctx->pmu);
1907 1908
}

1909 1910 1911
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1912 1913 1914 1915
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1916
 * in them directly with an fd; we can only enable/disable all
1917
 * events via prctl, or enable/disable all events in a family
1918 1919
 * via ioctl, which will have the same effect on both contexts.
 */
1920 1921
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1922 1923
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1924
		&& ctx1->parent_gen == ctx2->parent_gen
1925
		&& !ctx1->pin_count && !ctx2->pin_count;
1926 1927
}

1928 1929
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1930 1931 1932
{
	u64 value;

1933
	if (!event->attr.inherit_stat)
1934 1935 1936
		return;

	/*
1937
	 * Update the event value, we cannot use perf_event_read()
1938 1939
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1940
	 * we know the event must be on the current CPU, therefore we
1941 1942
	 * don't need to use it.
	 */
1943 1944
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1945 1946
		event->pmu->read(event);
		/* fall-through */
1947

1948 1949
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1950 1951 1952 1953 1954 1955 1956
		break;

	default:
		break;
	}

	/*
1957
	 * In order to keep per-task stats reliable we need to flip the event
1958 1959
	 * values when we flip the contexts.
	 */
1960 1961 1962
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1963

1964 1965
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1966

1967
	/*
1968
	 * Since we swizzled the values, update the user visible data too.
1969
	 */
1970 1971
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1972 1973 1974 1975 1976
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1977 1978
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1979
{
1980
	struct perf_event *event, *next_event;
1981 1982 1983 1984

	if (!ctx->nr_stat)
		return;

1985 1986
	update_context_time(ctx);

1987 1988
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1989

1990 1991
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1992

1993 1994
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1995

1996
		__perf_event_sync_stat(event, next_event);
1997

1998 1999
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2000 2001 2002
	}
}

2003 2004
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2005
{
P
Peter Zijlstra 已提交
2006
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2007 2008
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2009
	struct perf_cpu_context *cpuctx;
2010
	int do_switch = 1;
T
Thomas Gleixner 已提交
2011

P
Peter Zijlstra 已提交
2012 2013
	if (likely(!ctx))
		return;
2014

P
Peter Zijlstra 已提交
2015 2016
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2017 2018
		return;

2019 2020
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2021
	next_ctx = next->perf_event_ctxp[ctxn];
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2033 2034
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2035
		if (context_equiv(ctx, next_ctx)) {
2036 2037
			/*
			 * XXX do we need a memory barrier of sorts
2038
			 * wrt to rcu_dereference() of perf_event_ctxp
2039
			 */
P
Peter Zijlstra 已提交
2040 2041
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2042 2043 2044
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2045

2046
			perf_event_sync_stat(ctx, next_ctx);
2047
		}
2048 2049
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2050
	}
2051
	rcu_read_unlock();
2052

2053
	if (do_switch) {
2054
		raw_spin_lock(&ctx->lock);
2055
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056
		cpuctx->task_ctx = NULL;
2057
		raw_spin_unlock(&ctx->lock);
2058
	}
T
Thomas Gleixner 已提交
2059 2060
}

P
Peter Zijlstra 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2075 2076
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2077 2078 2079 2080 2081
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2082 2083 2084 2085 2086 2087 2088

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2089
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2090 2091
}

2092
static void task_ctx_sched_out(struct perf_event_context *ctx)
2093
{
P
Peter Zijlstra 已提交
2094
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2095

2096 2097
	if (!cpuctx->task_ctx)
		return;
2098 2099 2100 2101

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2102
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2103 2104 2105
	cpuctx->task_ctx = NULL;
}

2106 2107 2108 2109 2110 2111 2112
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2113 2114
}

2115
static void
2116
ctx_pinned_sched_in(struct perf_event_context *ctx,
2117
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2118
{
2119
	struct perf_event *event;
T
Thomas Gleixner 已提交
2120

2121 2122
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2123
			continue;
2124
		if (!event_filter_match(event))
2125 2126
			continue;

S
Stephane Eranian 已提交
2127 2128 2129 2130
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2131
		if (group_can_go_on(event, cpuctx, 1))
2132
			group_sched_in(event, cpuctx, ctx);
2133 2134 2135 2136 2137

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2138 2139 2140
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2141
		}
2142
	}
2143 2144 2145 2146
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2147
		      struct perf_cpu_context *cpuctx)
2148 2149 2150
{
	struct perf_event *event;
	int can_add_hw = 1;
2151

2152 2153 2154
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2155
			continue;
2156 2157
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2158
		 * of events:
2159
		 */
2160
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2161 2162
			continue;

S
Stephane Eranian 已提交
2163 2164 2165 2166
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2167
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2168
			if (group_sched_in(event, cpuctx, ctx))
2169
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2170
		}
T
Thomas Gleixner 已提交
2171
	}
2172 2173 2174 2175 2176
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2177 2178
	     enum event_type_t event_type,
	     struct task_struct *task)
2179
{
S
Stephane Eranian 已提交
2180
	u64 now;
2181
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2182

2183
	ctx->is_active |= event_type;
2184
	if (likely(!ctx->nr_events))
2185
		return;
2186

S
Stephane Eranian 已提交
2187 2188
	now = perf_clock();
	ctx->timestamp = now;
2189
	perf_cgroup_set_timestamp(task, ctx);
2190 2191 2192 2193
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2194
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2195
		ctx_pinned_sched_in(ctx, cpuctx);
2196 2197

	/* Then walk through the lower prio flexible groups */
2198
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2199
		ctx_flexible_sched_in(ctx, cpuctx);
2200 2201
}

2202
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2203 2204
			     enum event_type_t event_type,
			     struct task_struct *task)
2205 2206 2207
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2208
	ctx_sched_in(ctx, cpuctx, event_type, task);
2209 2210
}

S
Stephane Eranian 已提交
2211 2212
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2213
{
P
Peter Zijlstra 已提交
2214
	struct perf_cpu_context *cpuctx;
2215

P
Peter Zijlstra 已提交
2216
	cpuctx = __get_cpu_context(ctx);
2217 2218 2219
	if (cpuctx->task_ctx == ctx)
		return;

2220
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2221
	perf_pmu_disable(ctx->pmu);
2222 2223 2224 2225 2226 2227 2228
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2229 2230
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2231

2232 2233
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2234 2235 2236
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2237 2238 2239 2240
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2241
	perf_pmu_rotate_start(ctx->pmu);
2242 2243
}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2315 2316
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2326
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2327
	}
S
Stephane Eranian 已提交
2328 2329 2330 2331 2332 2333
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2334
		perf_cgroup_sched_in(prev, task);
2335 2336 2337 2338

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2339 2340
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2368
#define REDUCE_FLS(a, b)		\
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2408 2409 2410
	if (!divisor)
		return dividend;

2411 2412 2413
	return div64_u64(dividend, divisor);
}

2414 2415 2416
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2417
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2418
{
2419
	struct hw_perf_event *hwc = &event->hw;
2420
	s64 period, sample_period;
2421 2422
	s64 delta;

2423
	period = perf_calculate_period(event, nsec, count);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2434

2435
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2436 2437 2438
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2439
		local64_set(&hwc->period_left, 0);
2440 2441 2442

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2443
	}
2444 2445
}

2446 2447 2448 2449 2450 2451 2452
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2453
{
2454 2455
	struct perf_event *event;
	struct hw_perf_event *hwc;
2456
	u64 now, period = TICK_NSEC;
2457
	s64 delta;
2458

2459 2460 2461 2462 2463 2464
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2465 2466
		return;

2467
	raw_spin_lock(&ctx->lock);
2468
	perf_pmu_disable(ctx->pmu);
2469

2470
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2471
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2472 2473
			continue;

2474
		if (!event_filter_match(event))
2475 2476
			continue;

2477
		hwc = &event->hw;
2478

2479 2480
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2481
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2482
			event->pmu->start(event, 0);
2483 2484
		}

2485
		if (!event->attr.freq || !event->attr.sample_freq)
2486 2487
			continue;

2488 2489 2490 2491 2492
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2493
		now = local64_read(&event->count);
2494 2495
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2496

2497 2498 2499
		/*
		 * restart the event
		 * reload only if value has changed
2500 2501 2502
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2503
		 */
2504
		if (delta > 0)
2505
			perf_adjust_period(event, period, delta, false);
2506 2507

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2508
	}
2509

2510
	perf_pmu_enable(ctx->pmu);
2511
	raw_spin_unlock(&ctx->lock);
2512 2513
}

2514
/*
2515
 * Round-robin a context's events:
2516
 */
2517
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2518
{
2519 2520 2521 2522 2523 2524
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2525 2526
}

2527
/*
2528 2529 2530
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2531
 */
2532
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2533
{
P
Peter Zijlstra 已提交
2534
	struct perf_event_context *ctx = NULL;
2535
	int rotate = 0, remove = 1;
2536

2537
	if (cpuctx->ctx.nr_events) {
2538
		remove = 0;
2539 2540 2541
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2542

P
Peter Zijlstra 已提交
2543
	ctx = cpuctx->task_ctx;
2544
	if (ctx && ctx->nr_events) {
2545
		remove = 0;
2546 2547 2548
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2549

2550
	if (!rotate)
2551 2552
		goto done;

2553
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2554
	perf_pmu_disable(cpuctx->ctx.pmu);
2555

2556 2557 2558
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2559

2560 2561 2562
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2563

2564
	perf_event_sched_in(cpuctx, ctx, current);
2565

2566 2567
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2568
done:
2569 2570 2571 2572 2573 2574 2575 2576
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2577 2578
	struct perf_event_context *ctx;
	int throttled;
2579

2580 2581
	WARN_ON(!irqs_disabled());

2582 2583 2584
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2585
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2586 2587 2588 2589 2590 2591 2592
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2593 2594 2595 2596
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2609
	__perf_event_mark_enabled(event);
2610 2611 2612 2613

	return 1;
}

2614
/*
2615
 * Enable all of a task's events that have been marked enable-on-exec.
2616 2617
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2618
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2619
{
2620
	struct perf_event *event;
2621 2622
	unsigned long flags;
	int enabled = 0;
2623
	int ret;
2624 2625

	local_irq_save(flags);
2626
	if (!ctx || !ctx->nr_events)
2627 2628
		goto out;

2629 2630 2631 2632 2633 2634 2635
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2636
	perf_cgroup_sched_out(current, NULL);
2637

2638
	raw_spin_lock(&ctx->lock);
2639
	task_ctx_sched_out(ctx);
2640

2641
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2642 2643 2644
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2645 2646 2647
	}

	/*
2648
	 * Unclone this context if we enabled any event.
2649
	 */
2650 2651
	if (enabled)
		unclone_ctx(ctx);
2652

2653
	raw_spin_unlock(&ctx->lock);
2654

2655 2656 2657
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2658
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2659
out:
2660 2661 2662
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2663
/*
2664
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2665
 */
2666
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2667
{
2668 2669
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2670
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2671

2672 2673 2674 2675
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2676 2677
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2678 2679 2680 2681
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2682
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2683
	if (ctx->is_active) {
2684
		update_context_time(ctx);
S
Stephane Eranian 已提交
2685 2686
		update_cgrp_time_from_event(event);
	}
2687
	update_event_times(event);
2688 2689
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2690
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2691 2692
}

P
Peter Zijlstra 已提交
2693 2694
static inline u64 perf_event_count(struct perf_event *event)
{
2695
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2696 2697
}

2698
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2699 2700
{
	/*
2701 2702
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2703
	 */
2704 2705 2706 2707
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2708 2709 2710
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2711
		raw_spin_lock_irqsave(&ctx->lock, flags);
2712 2713 2714 2715 2716
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2717
		if (ctx->is_active) {
2718
			update_context_time(ctx);
S
Stephane Eranian 已提交
2719 2720
			update_cgrp_time_from_event(event);
		}
2721
		update_event_times(event);
2722
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2723 2724
	}

P
Peter Zijlstra 已提交
2725
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2726 2727
}

2728
/*
2729
 * Initialize the perf_event context in a task_struct:
2730
 */
2731
static void __perf_event_init_context(struct perf_event_context *ctx)
2732
{
2733
	raw_spin_lock_init(&ctx->lock);
2734
	mutex_init(&ctx->mutex);
2735 2736
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2737 2738
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2754
	}
2755 2756 2757
	ctx->pmu = pmu;

	return ctx;
2758 2759
}

2760 2761 2762 2763 2764
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2765 2766

	rcu_read_lock();
2767
	if (!vpid)
T
Thomas Gleixner 已提交
2768 2769
		task = current;
	else
2770
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2771 2772 2773 2774 2775 2776 2777 2778
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2779 2780 2781 2782
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2783 2784 2785 2786 2787 2788 2789
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2790 2791 2792
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2793
static struct perf_event_context *
M
Matt Helsley 已提交
2794
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2795
{
2796
	struct perf_event_context *ctx;
2797
	struct perf_cpu_context *cpuctx;
2798
	unsigned long flags;
P
Peter Zijlstra 已提交
2799
	int ctxn, err;
T
Thomas Gleixner 已提交
2800

2801
	if (!task) {
2802
		/* Must be root to operate on a CPU event: */
2803
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2804 2805 2806
			return ERR_PTR(-EACCES);

		/*
2807
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2808 2809 2810
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2811
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2812 2813
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2814
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2815
		ctx = &cpuctx->ctx;
2816
		get_ctx(ctx);
2817
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2818 2819 2820 2821

		return ctx;
	}

P
Peter Zijlstra 已提交
2822 2823 2824 2825 2826
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2827
retry:
P
Peter Zijlstra 已提交
2828
	ctx = perf_lock_task_context(task, ctxn, &flags);
2829
	if (ctx) {
2830
		unclone_ctx(ctx);
2831
		++ctx->pin_count;
2832
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2833
	} else {
2834
		ctx = alloc_perf_context(pmu, task);
2835 2836 2837
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2838

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2849
		else {
2850
			get_ctx(ctx);
2851
			++ctx->pin_count;
2852
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2853
		}
2854 2855 2856
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2857
			put_ctx(ctx);
2858 2859 2860 2861

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2862 2863 2864
		}
	}

T
Thomas Gleixner 已提交
2865
	return ctx;
2866

P
Peter Zijlstra 已提交
2867
errout:
2868
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2869 2870
}

L
Li Zefan 已提交
2871 2872
static void perf_event_free_filter(struct perf_event *event);

2873
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2874
{
2875
	struct perf_event *event;
P
Peter Zijlstra 已提交
2876

2877 2878 2879
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2880
	perf_event_free_filter(event);
2881
	kfree(event);
P
Peter Zijlstra 已提交
2882 2883
}

2884
static void ring_buffer_put(struct ring_buffer *rb);
2885

2886
static void free_event(struct perf_event *event)
2887
{
2888
	irq_work_sync(&event->pending);
2889

2890
	if (!event->parent) {
2891
		if (event->attach_state & PERF_ATTACH_TASK)
2892
			static_key_slow_dec_deferred(&perf_sched_events);
2893
		if (event->attr.mmap || event->attr.mmap_data)
2894 2895 2896 2897 2898
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2899 2900
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2901 2902
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2903
			static_key_slow_dec_deferred(&perf_sched_events);
2904
		}
2905 2906 2907 2908 2909 2910 2911 2912

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2913
	}
2914

2915 2916 2917
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2918 2919
	}

S
Stephane Eranian 已提交
2920 2921 2922
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2923 2924
	if (event->destroy)
		event->destroy(event);
2925

P
Peter Zijlstra 已提交
2926 2927 2928
	if (event->ctx)
		put_ctx(event->ctx);

2929
	call_rcu(&event->rcu_head, free_event_rcu);
2930 2931
}

2932
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2933
{
2934
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2935

2936
	WARN_ON_ONCE(ctx->parent_ctx);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2950
	raw_spin_lock_irq(&ctx->lock);
2951
	perf_group_detach(event);
2952
	raw_spin_unlock_irq(&ctx->lock);
2953
	perf_remove_from_context(event);
2954
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2955

2956
	free_event(event);
T
Thomas Gleixner 已提交
2957 2958 2959

	return 0;
}
2960
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2961

2962 2963 2964
/*
 * Called when the last reference to the file is gone.
 */
2965
static void put_event(struct perf_event *event)
2966
{
P
Peter Zijlstra 已提交
2967
	struct task_struct *owner;
2968

2969 2970
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
2971

P
Peter Zijlstra 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3005 3006 3007 3008 3009 3010 3011
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3012 3013
}

3014
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3015
{
3016
	struct perf_event *child;
3017 3018
	u64 total = 0;

3019 3020 3021
	*enabled = 0;
	*running = 0;

3022
	mutex_lock(&event->child_mutex);
3023
	total += perf_event_read(event);
3024 3025 3026 3027 3028 3029
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3030
		total += perf_event_read(child);
3031 3032 3033
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3034
	mutex_unlock(&event->child_mutex);
3035 3036 3037

	return total;
}
3038
EXPORT_SYMBOL_GPL(perf_event_read_value);
3039

3040
static int perf_event_read_group(struct perf_event *event,
3041 3042
				   u64 read_format, char __user *buf)
{
3043
	struct perf_event *leader = event->group_leader, *sub;
3044 3045
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3046
	u64 values[5];
3047
	u64 count, enabled, running;
3048

3049
	mutex_lock(&ctx->mutex);
3050
	count = perf_event_read_value(leader, &enabled, &running);
3051 3052

	values[n++] = 1 + leader->nr_siblings;
3053 3054 3055 3056
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3057 3058 3059
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3060 3061 3062 3063

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3064
		goto unlock;
3065

3066
	ret = size;
3067

3068
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3069
		n = 0;
3070

3071
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3072 3073 3074 3075 3076
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3077
		if (copy_to_user(buf + ret, values, size)) {
3078 3079 3080
			ret = -EFAULT;
			goto unlock;
		}
3081 3082

		ret += size;
3083
	}
3084 3085
unlock:
	mutex_unlock(&ctx->mutex);
3086

3087
	return ret;
3088 3089
}

3090
static int perf_event_read_one(struct perf_event *event,
3091 3092
				 u64 read_format, char __user *buf)
{
3093
	u64 enabled, running;
3094 3095 3096
	u64 values[4];
	int n = 0;

3097 3098 3099 3100 3101
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3102
	if (read_format & PERF_FORMAT_ID)
3103
		values[n++] = primary_event_id(event);
3104 3105 3106 3107 3108 3109 3110

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3111
/*
3112
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3113 3114
 */
static ssize_t
3115
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3116
{
3117
	u64 read_format = event->attr.read_format;
3118
	int ret;
T
Thomas Gleixner 已提交
3119

3120
	/*
3121
	 * Return end-of-file for a read on a event that is in
3122 3123 3124
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3125
	if (event->state == PERF_EVENT_STATE_ERROR)
3126 3127
		return 0;

3128
	if (count < event->read_size)
3129 3130
		return -ENOSPC;

3131
	WARN_ON_ONCE(event->ctx->parent_ctx);
3132
	if (read_format & PERF_FORMAT_GROUP)
3133
		ret = perf_event_read_group(event, read_format, buf);
3134
	else
3135
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3136

3137
	return ret;
T
Thomas Gleixner 已提交
3138 3139 3140 3141 3142
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3143
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3144

3145
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3146 3147 3148 3149
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3150
	struct perf_event *event = file->private_data;
3151
	struct ring_buffer *rb;
3152
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3171
	rcu_read_lock();
3172
	rb = rcu_dereference(event->rb);
3173 3174
	if (rb) {
		ring_buffer_attach(event, rb);
3175
		events = atomic_xchg(&rb->poll, 0);
3176
	}
P
Peter Zijlstra 已提交
3177
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3178

3179 3180
	mutex_unlock(&event->mmap_mutex);

3181
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3182 3183 3184 3185

	return events;
}

3186
static void perf_event_reset(struct perf_event *event)
3187
{
3188
	(void)perf_event_read(event);
3189
	local64_set(&event->count, 0);
3190
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3191 3192
}

3193
/*
3194 3195 3196 3197
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3198
 */
3199 3200
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3201
{
3202
	struct perf_event *child;
P
Peter Zijlstra 已提交
3203

3204 3205 3206 3207
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3208
		func(child);
3209
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3210 3211
}

3212 3213
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3214
{
3215 3216
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3217

3218 3219
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3220
	event = event->group_leader;
3221

3222 3223
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3224
		perf_event_for_each_child(sibling, func);
3225
	mutex_unlock(&ctx->mutex);
3226 3227
}

3228
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3229
{
3230
	struct perf_event_context *ctx = event->ctx;
3231 3232 3233
	int ret = 0;
	u64 value;

3234
	if (!is_sampling_event(event))
3235 3236
		return -EINVAL;

3237
	if (copy_from_user(&value, arg, sizeof(value)))
3238 3239 3240 3241 3242
		return -EFAULT;

	if (!value)
		return -EINVAL;

3243
	raw_spin_lock_irq(&ctx->lock);
3244 3245
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3246 3247 3248 3249
			ret = -EINVAL;
			goto unlock;
		}

3250
		event->attr.sample_freq = value;
3251
	} else {
3252 3253
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3254 3255
	}
unlock:
3256
	raw_spin_unlock_irq(&ctx->lock);
3257 3258 3259 3260

	return ret;
}

3261 3262
static const struct file_operations perf_fops;

3263
static inline int perf_fget_light(int fd, struct fd *p)
3264
{
3265 3266 3267
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3268

3269 3270 3271
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3272
	}
3273 3274
	*p = f;
	return 0;
3275 3276 3277 3278
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3279
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3280

3281 3282
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3283 3284
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3285
	u32 flags = arg;
3286 3287

	switch (cmd) {
3288 3289
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3290
		break;
3291 3292
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3293
		break;
3294 3295
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3296
		break;
P
Peter Zijlstra 已提交
3297

3298 3299
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3300

3301 3302
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3303

3304
	case PERF_EVENT_IOC_SET_OUTPUT:
3305 3306 3307
	{
		int ret;
		if (arg != -1) {
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3318 3319 3320
		}
		return ret;
	}
3321

L
Li Zefan 已提交
3322 3323 3324
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3325
	default:
P
Peter Zijlstra 已提交
3326
		return -ENOTTY;
3327
	}
P
Peter Zijlstra 已提交
3328 3329

	if (flags & PERF_IOC_FLAG_GROUP)
3330
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3331
	else
3332
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3333 3334

	return 0;
3335 3336
}

3337
int perf_event_task_enable(void)
3338
{
3339
	struct perf_event *event;
3340

3341 3342 3343 3344
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3345 3346 3347 3348

	return 0;
}

3349
int perf_event_task_disable(void)
3350
{
3351
	struct perf_event *event;
3352

3353 3354 3355 3356
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3357 3358 3359 3360

	return 0;
}

3361
static int perf_event_index(struct perf_event *event)
3362
{
P
Peter Zijlstra 已提交
3363 3364 3365
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3366
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3367 3368
		return 0;

3369
	return event->pmu->event_idx(event);
3370 3371
}

3372
static void calc_timer_values(struct perf_event *event,
3373
				u64 *now,
3374 3375
				u64 *enabled,
				u64 *running)
3376
{
3377
	u64 ctx_time;
3378

3379 3380
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3381 3382 3383 3384
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3385
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3386 3387 3388
{
}

3389 3390 3391 3392 3393
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3394
void perf_event_update_userpage(struct perf_event *event)
3395
{
3396
	struct perf_event_mmap_page *userpg;
3397
	struct ring_buffer *rb;
3398
	u64 enabled, running, now;
3399 3400

	rcu_read_lock();
3401 3402 3403 3404 3405 3406 3407 3408 3409
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3410
	calc_timer_values(event, &now, &enabled, &running);
3411 3412
	rb = rcu_dereference(event->rb);
	if (!rb)
3413 3414
		goto unlock;

3415
	userpg = rb->user_page;
3416

3417 3418 3419 3420 3421
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3422
	++userpg->lock;
3423
	barrier();
3424
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3425
	userpg->offset = perf_event_count(event);
3426
	if (userpg->index)
3427
		userpg->offset -= local64_read(&event->hw.prev_count);
3428

3429
	userpg->time_enabled = enabled +
3430
			atomic64_read(&event->child_total_time_enabled);
3431

3432
	userpg->time_running = running +
3433
			atomic64_read(&event->child_total_time_running);
3434

3435
	arch_perf_update_userpage(userpg, now);
3436

3437
	barrier();
3438
	++userpg->lock;
3439
	preempt_enable();
3440
unlock:
3441
	rcu_read_unlock();
3442 3443
}

3444 3445 3446
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3447
	struct ring_buffer *rb;
3448 3449 3450 3451 3452 3453 3454 3455 3456
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3457 3458
	rb = rcu_dereference(event->rb);
	if (!rb)
3459 3460 3461 3462 3463
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3464
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3516 3517 3518 3519
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3520
		wake_up_all(&event->waitq);
3521 3522

unlock:
3523 3524 3525
	rcu_read_unlock();
}

3526
static void rb_free_rcu(struct rcu_head *rcu_head)
3527
{
3528
	struct ring_buffer *rb;
3529

3530 3531
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3532 3533
}

3534
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3535
{
3536
	struct ring_buffer *rb;
3537

3538
	rcu_read_lock();
3539 3540 3541 3542
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3543 3544 3545
	}
	rcu_read_unlock();

3546
	return rb;
3547 3548
}

3549
static void ring_buffer_put(struct ring_buffer *rb)
3550
{
3551 3552 3553
	struct perf_event *event, *n;
	unsigned long flags;

3554
	if (!atomic_dec_and_test(&rb->refcount))
3555
		return;
3556

3557 3558 3559 3560 3561 3562 3563
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3564
	call_rcu(&rb->rcu_head, rb_free_rcu);
3565 3566 3567 3568
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3569
	struct perf_event *event = vma->vm_file->private_data;
3570

3571
	atomic_inc(&event->mmap_count);
3572 3573 3574 3575
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3576
	struct perf_event *event = vma->vm_file->private_data;
3577

3578
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3579
		unsigned long size = perf_data_size(event->rb);
3580
		struct user_struct *user = event->mmap_user;
3581
		struct ring_buffer *rb = event->rb;
3582

3583
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3584
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3585
		rcu_assign_pointer(event->rb, NULL);
3586
		ring_buffer_detach(event, rb);
3587
		mutex_unlock(&event->mmap_mutex);
3588

3589
		ring_buffer_put(rb);
3590
		free_uid(user);
3591
	}
3592 3593
}

3594
static const struct vm_operations_struct perf_mmap_vmops = {
3595 3596 3597 3598
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3599 3600 3601 3602
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3603
	struct perf_event *event = file->private_data;
3604
	unsigned long user_locked, user_lock_limit;
3605
	struct user_struct *user = current_user();
3606
	unsigned long locked, lock_limit;
3607
	struct ring_buffer *rb;
3608 3609
	unsigned long vma_size;
	unsigned long nr_pages;
3610
	long user_extra, extra;
3611
	int ret = 0, flags = 0;
3612

3613 3614 3615
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3616
	 * same rb.
3617 3618 3619 3620
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3621
	if (!(vma->vm_flags & VM_SHARED))
3622
		return -EINVAL;
3623 3624 3625 3626

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3627
	/*
3628
	 * If we have rb pages ensure they're a power-of-two number, so we
3629 3630 3631
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3632 3633
		return -EINVAL;

3634
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3635 3636
		return -EINVAL;

3637 3638
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3639

3640 3641
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3642 3643 3644
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3645
		else
3646 3647 3648 3649
			ret = -EINVAL;
		goto unlock;
	}

3650
	user_extra = nr_pages + 1;
3651
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3652 3653 3654 3655 3656 3657

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3658
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3659

3660 3661 3662
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3663

3664
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3665
	lock_limit >>= PAGE_SHIFT;
3666
	locked = vma->vm_mm->pinned_vm + extra;
3667

3668 3669
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3670 3671 3672
		ret = -EPERM;
		goto unlock;
	}
3673

3674
	WARN_ON(event->rb);
3675

3676
	if (vma->vm_flags & VM_WRITE)
3677
		flags |= RING_BUFFER_WRITABLE;
3678

3679 3680 3681 3682
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3683
	if (!rb) {
3684
		ret = -ENOMEM;
3685
		goto unlock;
3686
	}
3687
	rcu_assign_pointer(event->rb, rb);
3688

3689 3690 3691
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3692
	vma->vm_mm->pinned_vm += event->mmap_locked;
3693

3694 3695
	perf_event_update_userpage(event);

3696
unlock:
3697 3698
	if (!ret)
		atomic_inc(&event->mmap_count);
3699
	mutex_unlock(&event->mmap_mutex);
3700

3701
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3702
	vma->vm_ops = &perf_mmap_vmops;
3703 3704

	return ret;
3705 3706
}

P
Peter Zijlstra 已提交
3707 3708
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3709
	struct inode *inode = file_inode(filp);
3710
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3711 3712 3713
	int retval;

	mutex_lock(&inode->i_mutex);
3714
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3715 3716 3717 3718 3719 3720 3721 3722
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3723
static const struct file_operations perf_fops = {
3724
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3725 3726 3727
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3728 3729
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3730
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3731
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3732 3733
};

3734
/*
3735
 * Perf event wakeup
3736 3737 3738 3739 3740
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3741
void perf_event_wakeup(struct perf_event *event)
3742
{
3743
	ring_buffer_wakeup(event);
3744

3745 3746 3747
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3748
	}
3749 3750
}

3751
static void perf_pending_event(struct irq_work *entry)
3752
{
3753 3754
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3755

3756 3757 3758
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3759 3760
	}

3761 3762 3763
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3764 3765 3766
	}
}

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3914 3915 3916
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3944 3945 3946
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3973 3974 3975
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3976 3977 3978 3979 3980
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3981
static void perf_output_read_one(struct perf_output_handle *handle,
3982 3983
				 struct perf_event *event,
				 u64 enabled, u64 running)
3984
{
3985
	u64 read_format = event->attr.read_format;
3986 3987 3988
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3989
	values[n++] = perf_event_count(event);
3990
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3991
		values[n++] = enabled +
3992
			atomic64_read(&event->child_total_time_enabled);
3993 3994
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3995
		values[n++] = running +
3996
			atomic64_read(&event->child_total_time_running);
3997 3998
	}
	if (read_format & PERF_FORMAT_ID)
3999
		values[n++] = primary_event_id(event);
4000

4001
	__output_copy(handle, values, n * sizeof(u64));
4002 4003 4004
}

/*
4005
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4006 4007
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4008 4009
			    struct perf_event *event,
			    u64 enabled, u64 running)
4010
{
4011 4012
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4013 4014 4015 4016 4017 4018
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4019
		values[n++] = enabled;
4020 4021

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4022
		values[n++] = running;
4023

4024
	if (leader != event)
4025 4026
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4027
	values[n++] = perf_event_count(leader);
4028
	if (read_format & PERF_FORMAT_ID)
4029
		values[n++] = primary_event_id(leader);
4030

4031
	__output_copy(handle, values, n * sizeof(u64));
4032

4033
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4034 4035
		n = 0;

4036
		if (sub != event)
4037 4038
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4039
		values[n++] = perf_event_count(sub);
4040
		if (read_format & PERF_FORMAT_ID)
4041
			values[n++] = primary_event_id(sub);
4042

4043
		__output_copy(handle, values, n * sizeof(u64));
4044 4045 4046
	}
}

4047 4048 4049
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4050
static void perf_output_read(struct perf_output_handle *handle,
4051
			     struct perf_event *event)
4052
{
4053
	u64 enabled = 0, running = 0, now;
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4065
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4066
		calc_timer_values(event, &now, &enabled, &running);
4067

4068
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4069
		perf_output_read_group(handle, event, enabled, running);
4070
	else
4071
		perf_output_read_one(handle, event, enabled, running);
4072 4073
}

4074 4075 4076
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4077
			struct perf_event *event)
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4108
		perf_output_read(handle, event);
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4119
			__output_copy(handle, data->callchain, size);
4120 4121 4122 4123 4124 4125 4126 4127 4128
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4129 4130
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4191 4192 4193 4194 4195

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4196 4197 4198 4199
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4200
			 struct perf_event *event,
4201
			 struct pt_regs *regs)
4202
{
4203
	u64 sample_type = event->attr.sample_type;
4204

4205
	header->type = PERF_RECORD_SAMPLE;
4206
	header->size = sizeof(*header) + event->header_size;
4207 4208 4209

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4210

4211
	__perf_event_header__init_id(header, data, event);
4212

4213
	if (sample_type & PERF_SAMPLE_IP)
4214 4215
		data->ip = perf_instruction_pointer(regs);

4216
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4217
		int size = 1;
4218

4219
		data->callchain = perf_callchain(event, regs);
4220 4221 4222 4223 4224

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4225 4226
	}

4227
	if (sample_type & PERF_SAMPLE_RAW) {
4228 4229 4230 4231 4232 4233 4234 4235
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4236
		header->size += size;
4237
	}
4238 4239 4240 4241 4242 4243 4244 4245 4246

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4290
}
4291

4292
static void perf_event_output(struct perf_event *event,
4293 4294 4295 4296 4297
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4298

4299 4300 4301
	/* protect the callchain buffers */
	rcu_read_lock();

4302
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4303

4304
	if (perf_output_begin(&handle, event, header.size))
4305
		goto exit;
4306

4307
	perf_output_sample(&handle, &header, data, event);
4308

4309
	perf_output_end(&handle);
4310 4311 4312

exit:
	rcu_read_unlock();
4313 4314
}

4315
/*
4316
 * read event_id
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4327
perf_event_read_event(struct perf_event *event,
4328 4329 4330
			struct task_struct *task)
{
	struct perf_output_handle handle;
4331
	struct perf_sample_data sample;
4332
	struct perf_read_event read_event = {
4333
		.header = {
4334
			.type = PERF_RECORD_READ,
4335
			.misc = 0,
4336
			.size = sizeof(read_event) + event->read_size,
4337
		},
4338 4339
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4340
	};
4341
	int ret;
4342

4343
	perf_event_header__init_id(&read_event.header, &sample, event);
4344
	ret = perf_output_begin(&handle, event, read_event.header.size);
4345 4346 4347
	if (ret)
		return;

4348
	perf_output_put(&handle, read_event);
4349
	perf_output_read(&handle, event);
4350
	perf_event__output_id_sample(event, &handle, &sample);
4351

4352 4353 4354
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4355
/*
P
Peter Zijlstra 已提交
4356 4357
 * task tracking -- fork/exit
 *
4358
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4359 4360
 */

P
Peter Zijlstra 已提交
4361
struct perf_task_event {
4362
	struct task_struct		*task;
4363
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4364 4365 4366 4367 4368 4369

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4370 4371
		u32				tid;
		u32				ptid;
4372
		u64				time;
4373
	} event_id;
P
Peter Zijlstra 已提交
4374 4375
};

4376
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4377
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4378 4379
{
	struct perf_output_handle handle;
4380
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4381
	struct task_struct *task = task_event->task;
4382
	int ret, size = task_event->event_id.header.size;
4383

4384
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4385

4386
	ret = perf_output_begin(&handle, event,
4387
				task_event->event_id.header.size);
4388
	if (ret)
4389
		goto out;
P
Peter Zijlstra 已提交
4390

4391 4392
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4393

4394 4395
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4396

4397
	perf_output_put(&handle, task_event->event_id);
4398

4399 4400
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4401
	perf_output_end(&handle);
4402 4403
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4404 4405
}

4406
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4407
{
P
Peter Zijlstra 已提交
4408
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4409 4410
		return 0;

4411
	if (!event_filter_match(event))
4412 4413
		return 0;

4414 4415
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4416 4417 4418 4419 4420
		return 1;

	return 0;
}

4421
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4422
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4423
{
4424
	struct perf_event *event;
P
Peter Zijlstra 已提交
4425

4426 4427 4428
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4429 4430 4431
	}
}

4432
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4433 4434
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4435
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4436
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4437
	int ctxn;
P
Peter Zijlstra 已提交
4438

4439
	rcu_read_lock();
P
Peter Zijlstra 已提交
4440
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4441
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4442
		if (cpuctx->unique_pmu != pmu)
4443
			goto next;
P
Peter Zijlstra 已提交
4444
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4445 4446 4447 4448 4449

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4450
				goto next;
P
Peter Zijlstra 已提交
4451
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4452 4453
			if (ctx)
				perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
4454
		}
4455 4456
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4457
	}
4458 4459 4460
	if (task_event->task_ctx)
		perf_event_task_ctx(task_event->task_ctx, task_event);

P
Peter Zijlstra 已提交
4461 4462 4463
	rcu_read_unlock();
}

4464 4465
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4466
			      int new)
P
Peter Zijlstra 已提交
4467
{
P
Peter Zijlstra 已提交
4468
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4469

4470 4471 4472
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4473 4474
		return;

P
Peter Zijlstra 已提交
4475
	task_event = (struct perf_task_event){
4476 4477
		.task	  = task,
		.task_ctx = task_ctx,
4478
		.event_id    = {
P
Peter Zijlstra 已提交
4479
			.header = {
4480
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4481
				.misc = 0,
4482
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4483
			},
4484 4485
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4486 4487
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4488
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4489 4490 4491
		},
	};

4492
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4493 4494
}

4495
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4496
{
4497
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4498 4499
}

4500 4501 4502 4503 4504
/*
 * comm tracking
 */

struct perf_comm_event {
4505 4506
	struct task_struct	*task;
	char			*comm;
4507 4508 4509 4510 4511 4512 4513
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4514
	} event_id;
4515 4516
};

4517
static void perf_event_comm_output(struct perf_event *event,
4518 4519 4520
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4521
	struct perf_sample_data sample;
4522
	int size = comm_event->event_id.header.size;
4523 4524 4525 4526
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4527
				comm_event->event_id.header.size);
4528 4529

	if (ret)
4530
		goto out;
4531

4532 4533
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4534

4535
	perf_output_put(&handle, comm_event->event_id);
4536
	__output_copy(&handle, comm_event->comm,
4537
				   comm_event->comm_size);
4538 4539 4540

	perf_event__output_id_sample(event, &handle, &sample);

4541
	perf_output_end(&handle);
4542 4543
out:
	comm_event->event_id.header.size = size;
4544 4545
}

4546
static int perf_event_comm_match(struct perf_event *event)
4547
{
P
Peter Zijlstra 已提交
4548
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4549 4550
		return 0;

4551
	if (!event_filter_match(event))
4552 4553
		return 0;

4554
	if (event->attr.comm)
4555 4556 4557 4558 4559
		return 1;

	return 0;
}

4560
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4561 4562
				  struct perf_comm_event *comm_event)
{
4563
	struct perf_event *event;
4564

4565 4566 4567
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4568 4569 4570
	}
}

4571
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4572 4573
{
	struct perf_cpu_context *cpuctx;
4574
	struct perf_event_context *ctx;
4575
	char comm[TASK_COMM_LEN];
4576
	unsigned int size;
P
Peter Zijlstra 已提交
4577
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4578
	int ctxn;
4579

4580
	memset(comm, 0, sizeof(comm));
4581
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4582
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4583 4584 4585 4586

	comm_event->comm = comm;
	comm_event->comm_size = size;

4587
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4588
	rcu_read_lock();
P
Peter Zijlstra 已提交
4589
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4590
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4591
		if (cpuctx->unique_pmu != pmu)
4592
			goto next;
P
Peter Zijlstra 已提交
4593
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4594 4595 4596

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4597
			goto next;
P
Peter Zijlstra 已提交
4598 4599 4600 4601

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4602 4603
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4604
	}
4605
	rcu_read_unlock();
4606 4607
}

4608
void perf_event_comm(struct task_struct *task)
4609
{
4610
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4611 4612
	struct perf_event_context *ctx;
	int ctxn;
4613

P
Peter Zijlstra 已提交
4614 4615 4616 4617
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4618

P
Peter Zijlstra 已提交
4619 4620
		perf_event_enable_on_exec(ctx);
	}
4621

4622
	if (!atomic_read(&nr_comm_events))
4623
		return;
4624

4625
	comm_event = (struct perf_comm_event){
4626
		.task	= task,
4627 4628
		/* .comm      */
		/* .comm_size */
4629
		.event_id  = {
4630
			.header = {
4631
				.type = PERF_RECORD_COMM,
4632 4633 4634 4635 4636
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4637 4638 4639
		},
	};

4640
	perf_event_comm_event(&comm_event);
4641 4642
}

4643 4644 4645 4646 4647
/*
 * mmap tracking
 */

struct perf_mmap_event {
4648 4649 4650 4651
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4652 4653 4654 4655 4656 4657 4658 4659 4660

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4661
	} event_id;
4662 4663
};

4664
static void perf_event_mmap_output(struct perf_event *event,
4665 4666 4667
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4668
	struct perf_sample_data sample;
4669
	int size = mmap_event->event_id.header.size;
4670
	int ret;
4671

4672 4673
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4674
				mmap_event->event_id.header.size);
4675
	if (ret)
4676
		goto out;
4677

4678 4679
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4680

4681
	perf_output_put(&handle, mmap_event->event_id);
4682
	__output_copy(&handle, mmap_event->file_name,
4683
				   mmap_event->file_size);
4684 4685 4686

	perf_event__output_id_sample(event, &handle, &sample);

4687
	perf_output_end(&handle);
4688 4689
out:
	mmap_event->event_id.header.size = size;
4690 4691
}

4692
static int perf_event_mmap_match(struct perf_event *event,
4693 4694
				   struct perf_mmap_event *mmap_event,
				   int executable)
4695
{
P
Peter Zijlstra 已提交
4696
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4697 4698
		return 0;

4699
	if (!event_filter_match(event))
4700 4701
		return 0;

4702 4703
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4704 4705 4706 4707 4708
		return 1;

	return 0;
}

4709
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4710 4711
				  struct perf_mmap_event *mmap_event,
				  int executable)
4712
{
4713
	struct perf_event *event;
4714

4715
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4716
		if (perf_event_mmap_match(event, mmap_event, executable))
4717
			perf_event_mmap_output(event, mmap_event);
4718 4719 4720
	}
}

4721
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4722 4723
{
	struct perf_cpu_context *cpuctx;
4724
	struct perf_event_context *ctx;
4725 4726
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4727 4728 4729
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4730
	const char *name;
P
Peter Zijlstra 已提交
4731
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4732
	int ctxn;
4733

4734 4735
	memset(tmp, 0, sizeof(tmp));

4736
	if (file) {
4737
		/*
4738
		 * d_path works from the end of the rb backwards, so we
4739 4740 4741 4742
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4743 4744 4745 4746
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4747
		name = d_path(&file->f_path, buf, PATH_MAX);
4748 4749 4750 4751 4752
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4753 4754 4755
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4756
			goto got_name;
4757
		}
4758 4759 4760 4761

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4762 4763 4764 4765 4766 4767 4768 4769
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4770 4771
		}

4772 4773 4774 4775 4776
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4777
	size = ALIGN(strlen(name)+1, sizeof(u64));
4778 4779 4780 4781

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4782
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4783

4784
	rcu_read_lock();
P
Peter Zijlstra 已提交
4785
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4786
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4787
		if (cpuctx->unique_pmu != pmu)
4788
			goto next;
P
Peter Zijlstra 已提交
4789 4790
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4791 4792 4793

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4794
			goto next;
P
Peter Zijlstra 已提交
4795 4796 4797 4798 4799 4800

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4801 4802
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4803
	}
4804 4805
	rcu_read_unlock();

4806 4807 4808
	kfree(buf);
}

4809
void perf_event_mmap(struct vm_area_struct *vma)
4810
{
4811 4812
	struct perf_mmap_event mmap_event;

4813
	if (!atomic_read(&nr_mmap_events))
4814 4815 4816
		return;

	mmap_event = (struct perf_mmap_event){
4817
		.vma	= vma,
4818 4819
		/* .file_name */
		/* .file_size */
4820
		.event_id  = {
4821
			.header = {
4822
				.type = PERF_RECORD_MMAP,
4823
				.misc = PERF_RECORD_MISC_USER,
4824 4825 4826 4827
				/* .size */
			},
			/* .pid */
			/* .tid */
4828 4829
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4830
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4831 4832 4833
		},
	};

4834
	perf_event_mmap_event(&mmap_event);
4835 4836
}

4837 4838 4839 4840
/*
 * IRQ throttle logging
 */

4841
static void perf_log_throttle(struct perf_event *event, int enable)
4842 4843
{
	struct perf_output_handle handle;
4844
	struct perf_sample_data sample;
4845 4846 4847 4848 4849
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4850
		u64				id;
4851
		u64				stream_id;
4852 4853
	} throttle_event = {
		.header = {
4854
			.type = PERF_RECORD_THROTTLE,
4855 4856 4857
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4858
		.time		= perf_clock(),
4859 4860
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4861 4862
	};

4863
	if (enable)
4864
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4865

4866 4867 4868
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4869
				throttle_event.header.size);
4870 4871 4872 4873
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4874
	perf_event__output_id_sample(event, &handle, &sample);
4875 4876 4877
	perf_output_end(&handle);
}

4878
/*
4879
 * Generic event overflow handling, sampling.
4880 4881
 */

4882
static int __perf_event_overflow(struct perf_event *event,
4883 4884
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4885
{
4886 4887
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4888
	u64 seq;
4889 4890
	int ret = 0;

4891 4892 4893 4894 4895 4896 4897
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4898 4899 4900 4901 4902 4903 4904 4905 4906
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4907 4908
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4909 4910
			ret = 1;
		}
4911
	}
4912

4913
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4914
		u64 now = perf_clock();
4915
		s64 delta = now - hwc->freq_time_stamp;
4916

4917
		hwc->freq_time_stamp = now;
4918

4919
		if (delta > 0 && delta < 2*TICK_NSEC)
4920
			perf_adjust_period(event, delta, hwc->last_period, true);
4921 4922
	}

4923 4924
	/*
	 * XXX event_limit might not quite work as expected on inherited
4925
	 * events
4926 4927
	 */

4928 4929
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4930
		ret = 1;
4931
		event->pending_kill = POLL_HUP;
4932 4933
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4934 4935
	}

4936
	if (event->overflow_handler)
4937
		event->overflow_handler(event, data, regs);
4938
	else
4939
		perf_event_output(event, data, regs);
4940

P
Peter Zijlstra 已提交
4941
	if (event->fasync && event->pending_kill) {
4942 4943
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4944 4945
	}

4946
	return ret;
4947 4948
}

4949
int perf_event_overflow(struct perf_event *event,
4950 4951
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4952
{
4953
	return __perf_event_overflow(event, 1, data, regs);
4954 4955
}

4956
/*
4957
 * Generic software event infrastructure
4958 4959
 */

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4971
/*
4972 4973
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4974 4975 4976 4977
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4978
static u64 perf_swevent_set_period(struct perf_event *event)
4979
{
4980
	struct hw_perf_event *hwc = &event->hw;
4981 4982 4983 4984 4985
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4986 4987

again:
4988
	old = val = local64_read(&hwc->period_left);
4989 4990
	if (val < 0)
		return 0;
4991

4992 4993 4994
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4995
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4996
		goto again;
4997

4998
	return nr;
4999 5000
}

5001
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5002
				    struct perf_sample_data *data,
5003
				    struct pt_regs *regs)
5004
{
5005
	struct hw_perf_event *hwc = &event->hw;
5006
	int throttle = 0;
5007

5008 5009
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5010

5011 5012
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5013

5014
	for (; overflow; overflow--) {
5015
		if (__perf_event_overflow(event, throttle,
5016
					    data, regs)) {
5017 5018 5019 5020 5021 5022
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5023
		throttle = 1;
5024
	}
5025 5026
}

P
Peter Zijlstra 已提交
5027
static void perf_swevent_event(struct perf_event *event, u64 nr,
5028
			       struct perf_sample_data *data,
5029
			       struct pt_regs *regs)
5030
{
5031
	struct hw_perf_event *hwc = &event->hw;
5032

5033
	local64_add(nr, &event->count);
5034

5035 5036 5037
	if (!regs)
		return;

5038
	if (!is_sampling_event(event))
5039
		return;
5040

5041 5042 5043 5044 5045 5046
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5047
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5048
		return perf_swevent_overflow(event, 1, data, regs);
5049

5050
	if (local64_add_negative(nr, &hwc->period_left))
5051
		return;
5052

5053
	perf_swevent_overflow(event, 0, data, regs);
5054 5055
}

5056 5057 5058
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5059
	if (event->hw.state & PERF_HES_STOPPED)
5060
		return 1;
P
Peter Zijlstra 已提交
5061

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5073
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5074
				enum perf_type_id type,
L
Li Zefan 已提交
5075 5076 5077
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5078
{
5079
	if (event->attr.type != type)
5080
		return 0;
5081

5082
	if (event->attr.config != event_id)
5083 5084
		return 0;

5085 5086
	if (perf_exclude_event(event, regs))
		return 0;
5087 5088 5089 5090

	return 1;
}

5091 5092 5093 5094 5095 5096 5097
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5098 5099
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5100
{
5101 5102 5103 5104
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5105

5106 5107
/* For the read side: events when they trigger */
static inline struct hlist_head *
5108
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5109 5110
{
	struct swevent_hlist *hlist;
5111

5112
	hlist = rcu_dereference(swhash->swevent_hlist);
5113 5114 5115
	if (!hlist)
		return NULL;

5116 5117 5118 5119 5120
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5121
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5132
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5133 5134 5135 5136 5137
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5138 5139 5140
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5141
				    u64 nr,
5142 5143
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5144
{
5145
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5146
	struct perf_event *event;
5147
	struct hlist_head *head;
5148

5149
	rcu_read_lock();
5150
	head = find_swevent_head_rcu(swhash, type, event_id);
5151 5152 5153
	if (!head)
		goto end;

5154
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5155
		if (perf_swevent_match(event, type, event_id, data, regs))
5156
			perf_swevent_event(event, nr, data, regs);
5157
	}
5158 5159
end:
	rcu_read_unlock();
5160 5161
}

5162
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5163
{
5164
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5165

5166
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5167
}
I
Ingo Molnar 已提交
5168
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5169

5170
inline void perf_swevent_put_recursion_context(int rctx)
5171
{
5172
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5173

5174
	put_recursion_context(swhash->recursion, rctx);
5175
}
5176

5177
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5178
{
5179
	struct perf_sample_data data;
5180 5181
	int rctx;

5182
	preempt_disable_notrace();
5183 5184 5185
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5186

5187
	perf_sample_data_init(&data, addr, 0);
5188

5189
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5190 5191

	perf_swevent_put_recursion_context(rctx);
5192
	preempt_enable_notrace();
5193 5194
}

5195
static void perf_swevent_read(struct perf_event *event)
5196 5197 5198
{
}

P
Peter Zijlstra 已提交
5199
static int perf_swevent_add(struct perf_event *event, int flags)
5200
{
5201
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5202
	struct hw_perf_event *hwc = &event->hw;
5203 5204
	struct hlist_head *head;

5205
	if (is_sampling_event(event)) {
5206
		hwc->last_period = hwc->sample_period;
5207
		perf_swevent_set_period(event);
5208
	}
5209

P
Peter Zijlstra 已提交
5210 5211
	hwc->state = !(flags & PERF_EF_START);

5212
	head = find_swevent_head(swhash, event);
5213 5214 5215 5216 5217
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5218 5219 5220
	return 0;
}

P
Peter Zijlstra 已提交
5221
static void perf_swevent_del(struct perf_event *event, int flags)
5222
{
5223
	hlist_del_rcu(&event->hlist_entry);
5224 5225
}

P
Peter Zijlstra 已提交
5226
static void perf_swevent_start(struct perf_event *event, int flags)
5227
{
P
Peter Zijlstra 已提交
5228
	event->hw.state = 0;
5229
}
I
Ingo Molnar 已提交
5230

P
Peter Zijlstra 已提交
5231
static void perf_swevent_stop(struct perf_event *event, int flags)
5232
{
P
Peter Zijlstra 已提交
5233
	event->hw.state = PERF_HES_STOPPED;
5234 5235
}

5236 5237
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5238
swevent_hlist_deref(struct swevent_htable *swhash)
5239
{
5240 5241
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5242 5243
}

5244
static void swevent_hlist_release(struct swevent_htable *swhash)
5245
{
5246
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5247

5248
	if (!hlist)
5249 5250
		return;

5251
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5252
	kfree_rcu(hlist, rcu_head);
5253 5254 5255 5256
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5257
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5258

5259
	mutex_lock(&swhash->hlist_mutex);
5260

5261 5262
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5263

5264
	mutex_unlock(&swhash->hlist_mutex);
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5282
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5283 5284
	int err = 0;

5285
	mutex_lock(&swhash->hlist_mutex);
5286

5287
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5288 5289 5290 5291 5292 5293 5294
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5295
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5296
	}
5297
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5298
exit:
5299
	mutex_unlock(&swhash->hlist_mutex);
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5323
fail:
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5334
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5335

5336 5337 5338
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5339

5340 5341
	WARN_ON(event->parent);

5342
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5353 5354 5355 5356 5357 5358
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5359 5360 5361 5362 5363 5364 5365 5366 5367
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5368
	if (event_id >= PERF_COUNT_SW_MAX)
5369 5370 5371 5372 5373 5374 5375 5376 5377
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5378
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5379 5380 5381 5382 5383 5384
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5385 5386 5387 5388 5389
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5390
static struct pmu perf_swevent = {
5391
	.task_ctx_nr	= perf_sw_context,
5392

5393
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5394 5395 5396 5397
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5398
	.read		= perf_swevent_read,
5399 5400

	.event_idx	= perf_swevent_event_idx,
5401 5402
};

5403 5404
#ifdef CONFIG_EVENT_TRACING

5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5419 5420
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5421 5422 5423 5424
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5425 5426 5427 5428 5429 5430 5431 5432 5433
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5434 5435
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5436 5437
{
	struct perf_sample_data data;
5438 5439
	struct perf_event *event;

5440 5441 5442 5443 5444
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5445
	perf_sample_data_init(&data, addr, 0);
5446 5447
	data.raw = &raw;

5448
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5449
		if (perf_tp_event_match(event, &data, regs))
5450
			perf_swevent_event(event, count, &data, regs);
5451
	}
5452

5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5478
	perf_swevent_put_recursion_context(rctx);
5479 5480 5481
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5482
static void tp_perf_event_destroy(struct perf_event *event)
5483
{
5484
	perf_trace_destroy(event);
5485 5486
}

5487
static int perf_tp_event_init(struct perf_event *event)
5488
{
5489 5490
	int err;

5491 5492 5493
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5494 5495 5496 5497 5498 5499
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5500 5501
	err = perf_trace_init(event);
	if (err)
5502
		return err;
5503

5504
	event->destroy = tp_perf_event_destroy;
5505

5506 5507 5508 5509
	return 0;
}

static struct pmu perf_tracepoint = {
5510 5511
	.task_ctx_nr	= perf_sw_context,

5512
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5513 5514 5515 5516
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5517
	.read		= perf_swevent_read,
5518 5519

	.event_idx	= perf_swevent_event_idx,
5520 5521 5522 5523
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5524
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5525
}
L
Li Zefan 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5550
#else
L
Li Zefan 已提交
5551

5552
static inline void perf_tp_register(void)
5553 5554
{
}
L
Li Zefan 已提交
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5565
#endif /* CONFIG_EVENT_TRACING */
5566

5567
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5568
void perf_bp_event(struct perf_event *bp, void *data)
5569
{
5570 5571 5572
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5573
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5574

P
Peter Zijlstra 已提交
5575
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5576
		perf_swevent_event(bp, 1, &sample, regs);
5577 5578 5579
}
#endif

5580 5581 5582
/*
 * hrtimer based swevent callback
 */
5583

5584
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5585
{
5586 5587 5588 5589 5590
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5591

5592
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5593 5594 5595 5596

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5597
	event->pmu->read(event);
5598

5599
	perf_sample_data_init(&data, 0, event->hw.last_period);
5600 5601 5602
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5603
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5604
			if (__perf_event_overflow(event, 1, &data, regs))
5605 5606
				ret = HRTIMER_NORESTART;
	}
5607

5608 5609
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5610

5611
	return ret;
5612 5613
}

5614
static void perf_swevent_start_hrtimer(struct perf_event *event)
5615
{
5616
	struct hw_perf_event *hwc = &event->hw;
5617 5618 5619 5620
	s64 period;

	if (!is_sampling_event(event))
		return;
5621

5622 5623 5624 5625
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5626

5627 5628 5629 5630 5631
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5632
				ns_to_ktime(period), 0,
5633
				HRTIMER_MODE_REL_PINNED, 0);
5634
}
5635 5636

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5637
{
5638 5639
	struct hw_perf_event *hwc = &event->hw;

5640
	if (is_sampling_event(event)) {
5641
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5642
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5643 5644 5645

		hrtimer_cancel(&hwc->hrtimer);
	}
5646 5647
}

P
Peter Zijlstra 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5668
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5669 5670 5671 5672
		event->attr.freq = 0;
	}
}

5673 5674 5675 5676 5677
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5678
{
5679 5680 5681
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5682
	now = local_clock();
5683 5684
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5685 5686
}

P
Peter Zijlstra 已提交
5687
static void cpu_clock_event_start(struct perf_event *event, int flags)
5688
{
P
Peter Zijlstra 已提交
5689
	local64_set(&event->hw.prev_count, local_clock());
5690 5691 5692
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5693
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5694
{
5695 5696 5697
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5698

P
Peter Zijlstra 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5712 5713 5714 5715
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5716

5717 5718 5719 5720 5721 5722 5723 5724
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5725 5726 5727 5728 5729 5730
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5731 5732
	perf_swevent_init_hrtimer(event);

5733
	return 0;
5734 5735
}

5736
static struct pmu perf_cpu_clock = {
5737 5738
	.task_ctx_nr	= perf_sw_context,

5739
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5740 5741 5742 5743
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5744
	.read		= cpu_clock_event_read,
5745 5746

	.event_idx	= perf_swevent_event_idx,
5747 5748 5749 5750 5751 5752 5753
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5754
{
5755 5756
	u64 prev;
	s64 delta;
5757

5758 5759 5760 5761
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5762

P
Peter Zijlstra 已提交
5763
static void task_clock_event_start(struct perf_event *event, int flags)
5764
{
P
Peter Zijlstra 已提交
5765
	local64_set(&event->hw.prev_count, event->ctx->time);
5766 5767 5768
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5769
static void task_clock_event_stop(struct perf_event *event, int flags)
5770 5771 5772
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5773 5774 5775 5776 5777 5778
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5779

P
Peter Zijlstra 已提交
5780 5781 5782 5783 5784 5785
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5786 5787 5788 5789
}

static void task_clock_event_read(struct perf_event *event)
{
5790 5791 5792
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5793 5794 5795 5796 5797

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5798
{
5799 5800 5801 5802 5803 5804
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5805 5806 5807 5808 5809 5810
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5811 5812
	perf_swevent_init_hrtimer(event);

5813
	return 0;
L
Li Zefan 已提交
5814 5815
}

5816
static struct pmu perf_task_clock = {
5817 5818
	.task_ctx_nr	= perf_sw_context,

5819
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5820 5821 5822 5823
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5824
	.read		= task_clock_event_read,
5825 5826

	.event_idx	= perf_swevent_event_idx,
5827
};
L
Li Zefan 已提交
5828

P
Peter Zijlstra 已提交
5829
static void perf_pmu_nop_void(struct pmu *pmu)
5830 5831
{
}
L
Li Zefan 已提交
5832

P
Peter Zijlstra 已提交
5833
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5834
{
P
Peter Zijlstra 已提交
5835
	return 0;
L
Li Zefan 已提交
5836 5837
}

P
Peter Zijlstra 已提交
5838
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5839
{
P
Peter Zijlstra 已提交
5840
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5841 5842
}

P
Peter Zijlstra 已提交
5843 5844 5845 5846 5847
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5848

P
Peter Zijlstra 已提交
5849
static void perf_pmu_cancel_txn(struct pmu *pmu)
5850
{
P
Peter Zijlstra 已提交
5851
	perf_pmu_enable(pmu);
5852 5853
}

5854 5855 5856 5857 5858
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5859 5860 5861 5862 5863
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5864
{
P
Peter Zijlstra 已提交
5865
	struct pmu *pmu;
5866

P
Peter Zijlstra 已提交
5867 5868
	if (ctxn < 0)
		return NULL;
5869

P
Peter Zijlstra 已提交
5870 5871 5872 5873
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5874

P
Peter Zijlstra 已提交
5875
	return NULL;
5876 5877
}

5878
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5879
{
5880 5881 5882 5883 5884 5885 5886
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5887 5888
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5889 5890 5891 5892 5893 5894
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5895

P
Peter Zijlstra 已提交
5896
	mutex_lock(&pmus_lock);
5897
	/*
P
Peter Zijlstra 已提交
5898
	 * Like a real lame refcount.
5899
	 */
5900 5901 5902
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5903
			goto out;
5904
		}
P
Peter Zijlstra 已提交
5905
	}
5906

5907
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5908 5909
out:
	mutex_unlock(&pmus_lock);
5910
}
P
Peter Zijlstra 已提交
5911
static struct idr pmu_idr;
5912

P
Peter Zijlstra 已提交
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5945
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5966
static struct lock_class_key cpuctx_mutex;
5967
static struct lock_class_key cpuctx_lock;
5968

P
Peter Zijlstra 已提交
5969
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5970
{
P
Peter Zijlstra 已提交
5971
	int cpu, ret;
5972

5973
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5974 5975 5976 5977
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5978

P
Peter Zijlstra 已提交
5979 5980 5981 5982 5983 5984
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
5985 5986 5987
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
5988 5989 5990 5991 5992
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5993 5994 5995 5996 5997 5998
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5999
skip_type:
P
Peter Zijlstra 已提交
6000 6001 6002
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6003

P
Peter Zijlstra 已提交
6004 6005
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6006
		goto free_dev;
6007

P
Peter Zijlstra 已提交
6008 6009 6010 6011
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6012
		__perf_event_init_context(&cpuctx->ctx);
6013
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6014
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6015
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6016
		cpuctx->ctx.pmu = pmu;
6017 6018
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6019
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6020
	}
6021

P
Peter Zijlstra 已提交
6022
got_cpu_context:
P
Peter Zijlstra 已提交
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6037
		}
6038
	}
6039

P
Peter Zijlstra 已提交
6040 6041 6042 6043 6044
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6045 6046 6047
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6048
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6049 6050
	ret = 0;
unlock:
6051 6052
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6053
	return ret;
P
Peter Zijlstra 已提交
6054

P
Peter Zijlstra 已提交
6055 6056 6057 6058
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6059 6060 6061 6062
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6063 6064 6065
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6066 6067
}

6068
void perf_pmu_unregister(struct pmu *pmu)
6069
{
6070 6071 6072
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6073

6074
	/*
P
Peter Zijlstra 已提交
6075 6076
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6077
	 */
6078
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6079
	synchronize_rcu();
6080

P
Peter Zijlstra 已提交
6081
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6082 6083
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6084 6085
	device_del(pmu->dev);
	put_device(pmu->dev);
6086
	free_pmu_context(pmu);
6087
}
6088

6089 6090 6091 6092
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6093
	int ret;
6094 6095

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6096 6097 6098 6099

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6100
	if (pmu) {
6101
		event->pmu = pmu;
6102 6103 6104
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6105
		goto unlock;
6106
	}
P
Peter Zijlstra 已提交
6107

6108
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6109
		event->pmu = pmu;
6110
		ret = pmu->event_init(event);
6111
		if (!ret)
P
Peter Zijlstra 已提交
6112
			goto unlock;
6113

6114 6115
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6116
			goto unlock;
6117
		}
6118
	}
P
Peter Zijlstra 已提交
6119 6120
	pmu = ERR_PTR(-ENOENT);
unlock:
6121
	srcu_read_unlock(&pmus_srcu, idx);
6122

6123
	return pmu;
6124 6125
}

T
Thomas Gleixner 已提交
6126
/*
6127
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6128
 */
6129
static struct perf_event *
6130
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6131 6132 6133
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6134 6135
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6136
{
P
Peter Zijlstra 已提交
6137
	struct pmu *pmu;
6138 6139
	struct perf_event *event;
	struct hw_perf_event *hwc;
6140
	long err;
T
Thomas Gleixner 已提交
6141

6142 6143 6144 6145 6146
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6147
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6148
	if (!event)
6149
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6150

6151
	/*
6152
	 * Single events are their own group leaders, with an
6153 6154 6155
	 * empty sibling list:
	 */
	if (!group_leader)
6156
		group_leader = event;
6157

6158 6159
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6160

6161 6162 6163
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6164 6165
	INIT_LIST_HEAD(&event->rb_entry);

6166
	init_waitqueue_head(&event->waitq);
6167
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6168

6169
	mutex_init(&event->mmap_mutex);
6170

6171
	atomic_long_set(&event->refcount, 1);
6172 6173 6174 6175 6176
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6177

6178
	event->parent		= parent_event;
6179

6180
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6181
	event->id		= atomic64_inc_return(&perf_event_id);
6182

6183
	event->state		= PERF_EVENT_STATE_INACTIVE;
6184

6185 6186
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6187 6188 6189

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6190 6191 6192 6193
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6194
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6195 6196 6197 6198
			event->hw.bp_target = task;
#endif
	}

6199
	if (!overflow_handler && parent_event) {
6200
		overflow_handler = parent_event->overflow_handler;
6201 6202
		context = parent_event->overflow_handler_context;
	}
6203

6204
	event->overflow_handler	= overflow_handler;
6205
	event->overflow_handler_context = context;
6206

J
Jiri Olsa 已提交
6207
	perf_event__state_init(event);
6208

6209
	pmu = NULL;
6210

6211
	hwc = &event->hw;
6212
	hwc->sample_period = attr->sample_period;
6213
	if (attr->freq && attr->sample_freq)
6214
		hwc->sample_period = 1;
6215
	hwc->last_period = hwc->sample_period;
6216

6217
	local64_set(&hwc->period_left, hwc->sample_period);
6218

6219
	/*
6220
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6221
	 */
6222
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6223 6224
		goto done;

6225
	pmu = perf_init_event(event);
6226

6227 6228
done:
	err = 0;
6229
	if (!pmu)
6230
		err = -EINVAL;
6231 6232
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6233

6234
	if (err) {
6235 6236 6237
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6238
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6239
	}
6240

6241
	if (!event->parent) {
6242
		if (event->attach_state & PERF_ATTACH_TASK)
6243
			static_key_slow_inc(&perf_sched_events.key);
6244
		if (event->attr.mmap || event->attr.mmap_data)
6245 6246 6247 6248 6249
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6250 6251 6252 6253 6254 6255 6256
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6257 6258 6259 6260 6261 6262
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6263
	}
6264

6265
	return event;
T
Thomas Gleixner 已提交
6266 6267
}

6268 6269
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6270 6271
{
	u32 size;
6272
	int ret;
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6297 6298 6299
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6300 6301
	 */
	if (size > sizeof(*attr)) {
6302 6303 6304
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6305

6306 6307
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6308

6309
		for (; addr < end; addr++) {
6310 6311 6312 6313 6314 6315
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6316
		size = sizeof(*attr);
6317 6318 6319 6320 6321 6322
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6323
	if (attr->__reserved_1)
6324 6325 6326 6327 6328 6329 6330 6331
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6366

6367
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6368
		ret = perf_reg_validate(attr->sample_regs_user);
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6387

6388 6389 6390 6391 6392 6393 6394 6395 6396
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6397 6398
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6399
{
6400
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6401 6402
	int ret = -EINVAL;

6403
	if (!output_event)
6404 6405
		goto set;

6406 6407
	/* don't allow circular references */
	if (event == output_event)
6408 6409
		goto out;

6410 6411 6412 6413 6414 6415 6416
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6417
	 * If its not a per-cpu rb, it must be the same task.
6418 6419 6420 6421
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6422
set:
6423
	mutex_lock(&event->mmap_mutex);
6424 6425 6426
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6427

6428
	if (output_event) {
6429 6430 6431
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6432
			goto unlock;
6433 6434
	}

6435 6436
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6437 6438
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6439
	ret = 0;
6440 6441 6442
unlock:
	mutex_unlock(&event->mmap_mutex);

6443 6444
	if (old_rb)
		ring_buffer_put(old_rb);
6445 6446 6447 6448
out:
	return ret;
}

T
Thomas Gleixner 已提交
6449
/**
6450
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6451
 *
6452
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6453
 * @pid:		target pid
I
Ingo Molnar 已提交
6454
 * @cpu:		target cpu
6455
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6456
 */
6457 6458
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6459
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6460
{
6461 6462
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6463 6464 6465
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6466
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6467
	struct task_struct *task = NULL;
6468
	struct pmu *pmu;
6469
	int event_fd;
6470
	int move_group = 0;
6471
	int err;
T
Thomas Gleixner 已提交
6472

6473
	/* for future expandability... */
S
Stephane Eranian 已提交
6474
	if (flags & ~PERF_FLAG_ALL)
6475 6476
		return -EINVAL;

6477 6478 6479
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6480

6481 6482 6483 6484 6485
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6486
	if (attr.freq) {
6487
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6488 6489 6490
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6491 6492 6493 6494 6495 6496 6497 6498 6499
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6500
	event_fd = get_unused_fd();
6501 6502 6503
	if (event_fd < 0)
		return event_fd;

6504
	if (group_fd != -1) {
6505 6506
		err = perf_fget_light(group_fd, &group);
		if (err)
6507
			goto err_fd;
6508
		group_leader = group.file->private_data;
6509 6510 6511 6512 6513 6514
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6515
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6516 6517 6518 6519 6520 6521 6522
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6523 6524
	get_online_cpus();

6525 6526
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6527 6528
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6529
		goto err_task;
6530 6531
	}

S
Stephane Eranian 已提交
6532 6533 6534 6535
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6536 6537 6538 6539 6540 6541
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6542
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6543 6544
	}

6545 6546 6547 6548 6549
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6573 6574 6575 6576

	/*
	 * Get the target context (task or percpu):
	 */
6577
	ctx = find_get_context(pmu, task, event->cpu);
6578 6579
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6580
		goto err_alloc;
6581 6582
	}

6583 6584 6585 6586 6587
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6588
	/*
6589
	 * Look up the group leader (we will attach this event to it):
6590
	 */
6591
	if (group_leader) {
6592
		err = -EINVAL;
6593 6594

		/*
I
Ingo Molnar 已提交
6595 6596 6597 6598
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6599
			goto err_context;
I
Ingo Molnar 已提交
6600 6601 6602
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6603
		 */
6604 6605 6606 6607 6608 6609 6610 6611
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6612 6613 6614
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6615
		if (attr.exclusive || attr.pinned)
6616
			goto err_context;
6617 6618 6619 6620 6621
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6622
			goto err_context;
6623
	}
T
Thomas Gleixner 已提交
6624

6625 6626 6627
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6628
		goto err_context;
6629
	}
6630

6631 6632 6633 6634
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6635
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6636 6637 6638 6639 6640 6641 6642

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6643 6644
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6645
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6646
			perf_event__state_init(sibling);
6647 6648 6649 6650
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6651
	}
6652

6653
	WARN_ON_ONCE(ctx->parent_ctx);
6654
	mutex_lock(&ctx->mutex);
6655 6656

	if (move_group) {
6657
		synchronize_rcu();
6658
		perf_install_in_context(ctx, group_leader, event->cpu);
6659 6660 6661
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6662
			perf_install_in_context(ctx, sibling, event->cpu);
6663 6664 6665 6666
			get_ctx(ctx);
		}
	}

6667
	perf_install_in_context(ctx, event, event->cpu);
6668
	++ctx->generation;
6669
	perf_unpin_context(ctx);
6670
	mutex_unlock(&ctx->mutex);
6671

6672 6673
	put_online_cpus();

6674
	event->owner = current;
P
Peter Zijlstra 已提交
6675

6676 6677 6678
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6679

6680 6681 6682 6683
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6684
	perf_event__id_header_size(event);
6685

6686 6687 6688 6689 6690 6691
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6692
	fdput(group);
6693 6694
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6695

6696
err_context:
6697
	perf_unpin_context(ctx);
6698
	put_ctx(ctx);
6699
err_alloc:
6700
	free_event(event);
P
Peter Zijlstra 已提交
6701
err_task:
6702
	put_online_cpus();
P
Peter Zijlstra 已提交
6703 6704
	if (task)
		put_task_struct(task);
6705
err_group_fd:
6706
	fdput(group);
6707 6708
err_fd:
	put_unused_fd(event_fd);
6709
	return err;
T
Thomas Gleixner 已提交
6710 6711
}

6712 6713 6714 6715 6716
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6717
 * @task: task to profile (NULL for percpu)
6718 6719 6720
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6721
				 struct task_struct *task,
6722 6723
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6724 6725
{
	struct perf_event_context *ctx;
6726
	struct perf_event *event;
6727
	int err;
6728

6729 6730 6731
	/*
	 * Get the target context (task or percpu):
	 */
6732

6733 6734
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6735 6736 6737 6738
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6739

M
Matt Helsley 已提交
6740
	ctx = find_get_context(event->pmu, task, cpu);
6741 6742
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6743
		goto err_free;
6744
	}
6745 6746 6747 6748 6749

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6750
	perf_unpin_context(ctx);
6751 6752 6753 6754
	mutex_unlock(&ctx->mutex);

	return event;

6755 6756 6757
err_free:
	free_event(event);
err:
6758
	return ERR_PTR(err);
6759
}
6760
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6761

6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6795
static void sync_child_event(struct perf_event *child_event,
6796
			       struct task_struct *child)
6797
{
6798
	struct perf_event *parent_event = child_event->parent;
6799
	u64 child_val;
6800

6801 6802
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6803

P
Peter Zijlstra 已提交
6804
	child_val = perf_event_count(child_event);
6805 6806 6807 6808

	/*
	 * Add back the child's count to the parent's count:
	 */
6809
	atomic64_add(child_val, &parent_event->child_count);
6810 6811 6812 6813
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6814 6815

	/*
6816
	 * Remove this event from the parent's list
6817
	 */
6818 6819 6820 6821
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6822 6823

	/*
6824
	 * Release the parent event, if this was the last
6825 6826
	 * reference to it.
	 */
6827
	put_event(parent_event);
6828 6829
}

6830
static void
6831 6832
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6833
			 struct task_struct *child)
6834
{
6835 6836 6837 6838 6839
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6840

6841
	perf_remove_from_context(child_event);
6842

6843
	/*
6844
	 * It can happen that the parent exits first, and has events
6845
	 * that are still around due to the child reference. These
6846
	 * events need to be zapped.
6847
	 */
6848
	if (child_event->parent) {
6849 6850
		sync_child_event(child_event, child);
		free_event(child_event);
6851
	}
6852 6853
}

P
Peter Zijlstra 已提交
6854
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6855
{
6856 6857
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6858
	unsigned long flags;
6859

P
Peter Zijlstra 已提交
6860
	if (likely(!child->perf_event_ctxp[ctxn])) {
6861
		perf_event_task(child, NULL, 0);
6862
		return;
P
Peter Zijlstra 已提交
6863
	}
6864

6865
	local_irq_save(flags);
6866 6867 6868 6869 6870 6871
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6872
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6873 6874 6875

	/*
	 * Take the context lock here so that if find_get_context is
6876
	 * reading child->perf_event_ctxp, we wait until it has
6877 6878
	 * incremented the context's refcount before we do put_ctx below.
	 */
6879
	raw_spin_lock(&child_ctx->lock);
6880
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6881
	child->perf_event_ctxp[ctxn] = NULL;
6882 6883 6884
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6885
	 * the events from it.
6886 6887
	 */
	unclone_ctx(child_ctx);
6888
	update_context_time(child_ctx);
6889
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6890 6891

	/*
6892 6893 6894
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6895
	 */
6896
	perf_event_task(child, child_ctx, 0);
6897

6898 6899 6900
	/*
	 * We can recurse on the same lock type through:
	 *
6901 6902
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6903 6904
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6905 6906 6907
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6908
	mutex_lock(&child_ctx->mutex);
6909

6910
again:
6911 6912 6913 6914 6915
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6916
				 group_entry)
6917
		__perf_event_exit_task(child_event, child_ctx, child);
6918 6919

	/*
6920
	 * If the last event was a group event, it will have appended all
6921 6922 6923
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6924 6925
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6926
		goto again;
6927 6928 6929 6930

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6931 6932
}

P
Peter Zijlstra 已提交
6933 6934 6935 6936 6937
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6938
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6939 6940
	int ctxn;

P
Peter Zijlstra 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6956 6957 6958 6959
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6972
	put_event(parent);
6973

6974
	perf_group_detach(event);
6975 6976 6977 6978
	list_del_event(event, ctx);
	free_event(event);
}

6979 6980
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6981
 * perf_event_init_task below, used by fork() in case of fail.
6982
 */
6983
void perf_event_free_task(struct task_struct *task)
6984
{
P
Peter Zijlstra 已提交
6985
	struct perf_event_context *ctx;
6986
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6987
	int ctxn;
6988

P
Peter Zijlstra 已提交
6989 6990 6991 6992
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6993

P
Peter Zijlstra 已提交
6994
		mutex_lock(&ctx->mutex);
6995
again:
P
Peter Zijlstra 已提交
6996 6997 6998
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6999

P
Peter Zijlstra 已提交
7000 7001 7002
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7003

P
Peter Zijlstra 已提交
7004 7005 7006
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7007

P
Peter Zijlstra 已提交
7008
		mutex_unlock(&ctx->mutex);
7009

P
Peter Zijlstra 已提交
7010 7011
		put_ctx(ctx);
	}
7012 7013
}

7014 7015 7016 7017 7018 7019 7020 7021
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7034
	unsigned long flags;
P
Peter Zijlstra 已提交
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7047
					   child,
P
Peter Zijlstra 已提交
7048
					   group_leader, parent_event,
7049
				           NULL, NULL);
P
Peter Zijlstra 已提交
7050 7051
	if (IS_ERR(child_event))
		return child_event;
7052 7053 7054 7055 7056 7057

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7082 7083
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7084

7085 7086 7087 7088
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7089
	perf_event__id_header_size(child_event);
7090

P
Peter Zijlstra 已提交
7091 7092 7093
	/*
	 * Link it up in the child's context:
	 */
7094
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7095
	add_event_to_ctx(child_event, child_ctx);
7096
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7130 7131 7132 7133 7134
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7135
		   struct task_struct *child, int ctxn,
7136 7137 7138
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7139
	struct perf_event_context *child_ctx;
7140 7141 7142 7143

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7144 7145
	}

7146
	child_ctx = child->perf_event_ctxp[ctxn];
7147 7148 7149 7150 7151 7152 7153
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7154

7155
		child_ctx = alloc_perf_context(event->pmu, child);
7156 7157
		if (!child_ctx)
			return -ENOMEM;
7158

P
Peter Zijlstra 已提交
7159
		child->perf_event_ctxp[ctxn] = child_ctx;
7160 7161 7162 7163 7164 7165 7166 7167 7168
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7169 7170
}

7171
/*
7172
 * Initialize the perf_event context in task_struct
7173
 */
P
Peter Zijlstra 已提交
7174
int perf_event_init_context(struct task_struct *child, int ctxn)
7175
{
7176
	struct perf_event_context *child_ctx, *parent_ctx;
7177 7178
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7179
	struct task_struct *parent = current;
7180
	int inherited_all = 1;
7181
	unsigned long flags;
7182
	int ret = 0;
7183

P
Peter Zijlstra 已提交
7184
	if (likely(!parent->perf_event_ctxp[ctxn]))
7185 7186
		return 0;

7187
	/*
7188 7189
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7190
	 */
P
Peter Zijlstra 已提交
7191
	parent_ctx = perf_pin_task_context(parent, ctxn);
7192

7193 7194 7195 7196 7197 7198 7199
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7200 7201 7202 7203
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7204
	mutex_lock(&parent_ctx->mutex);
7205 7206 7207 7208 7209

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7210
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7211 7212
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7213 7214 7215
		if (ret)
			break;
	}
7216

7217 7218 7219 7220 7221 7222 7223 7224 7225
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7226
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7227 7228
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7229
		if (ret)
7230
			break;
7231 7232
	}

7233 7234 7235
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7236
	child_ctx = child->perf_event_ctxp[ctxn];
7237

7238
	if (child_ctx && inherited_all) {
7239 7240 7241
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7242 7243 7244
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7245
		 */
P
Peter Zijlstra 已提交
7246
		cloned_ctx = parent_ctx->parent_ctx;
7247 7248
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7249
			child_ctx->parent_gen = parent_ctx->parent_gen;
7250 7251 7252 7253 7254
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7255 7256
	}

P
Peter Zijlstra 已提交
7257
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7258
	mutex_unlock(&parent_ctx->mutex);
7259

7260
	perf_unpin_context(parent_ctx);
7261
	put_ctx(parent_ctx);
7262

7263
	return ret;
7264 7265
}

P
Peter Zijlstra 已提交
7266 7267 7268 7269 7270 7271 7272
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7273 7274 7275 7276
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7277 7278 7279 7280 7281 7282 7283 7284 7285
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7286 7287
static void __init perf_event_init_all_cpus(void)
{
7288
	struct swevent_htable *swhash;
7289 7290 7291
	int cpu;

	for_each_possible_cpu(cpu) {
7292 7293
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7294
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7295 7296 7297
	}
}

7298
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7299
{
P
Peter Zijlstra 已提交
7300
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7301

7302
	mutex_lock(&swhash->hlist_mutex);
7303
	if (swhash->hlist_refcount > 0) {
7304 7305
		struct swevent_hlist *hlist;

7306 7307 7308
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7309
	}
7310
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7311 7312
}

P
Peter Zijlstra 已提交
7313
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7314
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7315
{
7316 7317 7318 7319 7320 7321 7322
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7323
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7324
{
P
Peter Zijlstra 已提交
7325
	struct perf_event_context *ctx = __info;
7326
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7327

P
Peter Zijlstra 已提交
7328
	perf_pmu_rotate_stop(ctx->pmu);
7329

7330
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7331
		__perf_remove_from_context(event);
7332
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7333
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7334
}
P
Peter Zijlstra 已提交
7335 7336 7337 7338 7339 7340 7341 7342 7343

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7344
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7345 7346 7347 7348 7349 7350 7351 7352

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7353
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7354
{
7355
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7356

7357 7358 7359
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7360

P
Peter Zijlstra 已提交
7361
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7362 7363
}
#else
7364
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7365 7366
#endif

P
Peter Zijlstra 已提交
7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7387 7388 7389 7390 7391
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7392
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7393 7394

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7395
	case CPU_DOWN_FAILED:
7396
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7397 7398
		break;

P
Peter Zijlstra 已提交
7399
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7400
	case CPU_DOWN_PREPARE:
7401
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7402 7403 7404 7405 7406 7407 7408 7409 7410
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7411
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7412
{
7413 7414
	int ret;

P
Peter Zijlstra 已提交
7415 7416
	idr_init(&pmu_idr);

7417
	perf_event_init_all_cpus();
7418
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7419 7420 7421
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7422 7423
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7424
	register_reboot_notifier(&perf_reboot_notifier);
7425 7426 7427

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7428 7429 7430

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7431 7432 7433 7434 7435 7436 7437

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7438
}
P
Peter Zijlstra 已提交
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7467 7468

#ifdef CONFIG_CGROUP_PERF
7469
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7470 7471 7472
{
	struct perf_cgroup *jc;

7473
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7486
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7502
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7503
{
7504 7505 7506 7507
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7508 7509
}

7510 7511
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7512 7513 7514 7515 7516 7517 7518 7519 7520
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7521
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7522 7523 7524
}

struct cgroup_subsys perf_subsys = {
7525 7526
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7527 7528
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7529
	.exit		= perf_cgroup_exit,
7530
	.attach		= perf_cgroup_attach,
7531 7532 7533 7534 7535 7536 7537

	/*
	 * perf_event cgroup doesn't handle nesting correctly.
	 * ctx->nr_cgroups adjustments should be propagated through the
	 * cgroup hierarchy.  Fix it and remove the following.
	 */
	.broken_hierarchy = true,
S
Stephane Eranian 已提交
7538 7539
};
#endif /* CONFIG_CGROUP_PERF */