core.c 181.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148

P
Peter Zijlstra 已提交
149 150 151 152
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

153
/*
154
 * perf event paranoia level:
155 156
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
157
 *   1 - disallow cpu events for unpriv
158
 *   2 - disallow kernel profiling for unpriv
159
 */
160
int sysctl_perf_event_paranoid __read_mostly = 1;
161

162 163
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 165

/*
166
 * max perf event sample rate
167
 */
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

static atomic_t perf_sample_allowed_ns __read_mostly =
	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
185
	do_div(tmp, 100);
186 187
	atomic_set(&perf_sample_allowed_ns, tmp);
}
P
Peter Zijlstra 已提交
188

189 190
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
191 192 193 194 195 196 197 198 199 200
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
219 220 221

	return 0;
}
222

223 224 225 226 227 228 229 230 231 232 233 234
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
DEFINE_PER_CPU(u64, running_sample_length);

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
235
	u64 local_samples_len;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	if (atomic_read(&perf_sample_allowed_ns) == 0)
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
			"perf samples too long (%lld > %d), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len,
			atomic_read(&perf_sample_allowed_ns),
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

273
static atomic64_t perf_event_id;
274

275 276 277 278
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
279 280 281 282 283
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
284

285
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
286

287
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
288
{
289
	return "pmu";
T
Thomas Gleixner 已提交
290 291
}

292 293 294 295 296
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
297 298 299 300 301 302
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
319 320
#ifdef CONFIG_CGROUP_PERF

321 322 323 324 325 326 327 328 329 330 331
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
332
	struct perf_cgroup_info	__percpu *info;
333 334
};

335 336 337 338 339
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
340 341 342
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
343 344
	return container_of(task_css(task, perf_subsys_id),
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
345 346 347 348 349 350 351 352
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
369 370
}

371
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
372
{
373
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
422 423
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
424
	/*
425 426
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
427
	 */
428
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
429 430
		return;

431 432 433 434 435 436
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
437 438 439
}

static inline void
440 441
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
442 443 444 445
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

446 447 448 449 450 451
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
452 453 454 455
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
456
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
489 490
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
491 492 493 494 495 496 497 498 499

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
500 501
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
502 503 504 505 506 507 508 509 510 511 512

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
513
				WARN_ON_ONCE(cpuctx->cgrp);
514 515 516 517
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
518 519 520 521
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
522 523
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
524 525 526 527 528 529 530 531
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

532 533
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
534
{
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
557 558
}

559 560
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
561
{
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
580 581 582 583 584 585 586 587
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
588 589
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
590

591
	if (!f.file)
S
Stephane Eranian 已提交
592 593
		return -EBADF;

594
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
595 596 597 598
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
599 600 601 602

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

603
	/* must be done before we fput() the file */
604 605 606 607 608
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
609

S
Stephane Eranian 已提交
610 611 612 613 614 615 616 617 618
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
619
out:
620
	fdput(f);
S
Stephane Eranian 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

694 695
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
696 697 698
{
}

699 700
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
701 702 703 704 705 706 707 708 709 710 711
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
712 713
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
807
	int timer;
808 809 810 811 812

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

813 814 815 816 817 818 819 820 821
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
844
void perf_pmu_disable(struct pmu *pmu)
845
{
P
Peter Zijlstra 已提交
846 847 848
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
849 850
}

P
Peter Zijlstra 已提交
851
void perf_pmu_enable(struct pmu *pmu)
852
{
P
Peter Zijlstra 已提交
853 854 855
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
856 857
}

858 859 860 861 862 863 864
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
865
static void perf_pmu_rotate_start(struct pmu *pmu)
866
{
P
Peter Zijlstra 已提交
867
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
868
	struct list_head *head = &__get_cpu_var(rotation_list);
869

870
	WARN_ON(!irqs_disabled());
871

872 873
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
874
		list_add(&cpuctx->rotation_list, head);
875 876 877
		if (was_empty)
			tick_nohz_full_kick();
	}
878 879
}

880
static void get_ctx(struct perf_event_context *ctx)
881
{
882
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 884
}

885
static void put_ctx(struct perf_event_context *ctx)
886
{
887 888 889
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
890 891
		if (ctx->task)
			put_task_struct(ctx->task);
892
		kfree_rcu(ctx, rcu_head);
893
	}
894 895
}

896
static void unclone_ctx(struct perf_event_context *ctx)
897 898 899 900 901 902 903
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

926
/*
927
 * If we inherit events we want to return the parent event id
928 929
 * to userspace.
 */
930
static u64 primary_event_id(struct perf_event *event)
931
{
932
	u64 id = event->id;
933

934 935
	if (event->parent)
		id = event->parent->id;
936 937 938 939

	return id;
}

940
/*
941
 * Get the perf_event_context for a task and lock it.
942 943 944
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
945
static struct perf_event_context *
P
Peter Zijlstra 已提交
946
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947
{
948
	struct perf_event_context *ctx;
949 950

	rcu_read_lock();
P
Peter Zijlstra 已提交
951
retry:
P
Peter Zijlstra 已提交
952
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
953 954 955 956
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
957
		 * perf_event_task_sched_out, though the
958 959 960 961 962 963
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
964
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
965
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
966
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
967 968
			goto retry;
		}
969 970

		if (!atomic_inc_not_zero(&ctx->refcount)) {
971
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
972 973
			ctx = NULL;
		}
974 975 976 977 978 979 980 981 982 983
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
984 985
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
986
{
987
	struct perf_event_context *ctx;
988 989
	unsigned long flags;

P
Peter Zijlstra 已提交
990
	ctx = perf_lock_task_context(task, ctxn, &flags);
991 992
	if (ctx) {
		++ctx->pin_count;
993
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
994 995 996 997
	}
	return ctx;
}

998
static void perf_unpin_context(struct perf_event_context *ctx)
999 1000 1001
{
	unsigned long flags;

1002
	raw_spin_lock_irqsave(&ctx->lock, flags);
1003
	--ctx->pin_count;
1004
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1005 1006
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1018 1019 1020
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1021 1022 1023 1024

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1025 1026 1027
	return ctx ? ctx->time : 0;
}

1028 1029
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1030
 * The caller of this function needs to hold the ctx->lock.
1031 1032 1033 1034 1035 1036 1037 1038 1039
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1051
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1052 1053
	else if (ctx->is_active)
		run_end = ctx->time;
1054 1055 1056 1057
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1058 1059 1060 1061

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1062
		run_end = perf_event_time(event);
1063 1064

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1065

1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1080 1081 1082 1083 1084 1085 1086 1087 1088
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1089
/*
1090
 * Add a event from the lists for its context.
1091 1092
 * Must be called with ctx->mutex and ctx->lock held.
 */
1093
static void
1094
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1095
{
1096 1097
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1098 1099

	/*
1100 1101 1102
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1103
	 */
1104
	if (event->group_leader == event) {
1105 1106
		struct list_head *list;

1107 1108 1109
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1110 1111
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1112
	}
P
Peter Zijlstra 已提交
1113

1114
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1115 1116
		ctx->nr_cgroups++;

1117 1118 1119
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1120
	list_add_rcu(&event->event_entry, &ctx->event_list);
1121
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1122
		perf_pmu_rotate_start(ctx->pmu);
1123 1124
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1125
		ctx->nr_stat++;
1126 1127
}

J
Jiri Olsa 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1176 1177 1178 1179 1180 1181
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1182 1183 1184
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1185 1186 1187
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1188 1189 1190
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1191 1192 1193 1194 1195 1196 1197 1198 1199
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1215
	event->id_header_size = size;
1216 1217
}

1218 1219
static void perf_group_attach(struct perf_event *event)
{
1220
	struct perf_event *group_leader = event->group_leader, *pos;
1221

P
Peter Zijlstra 已提交
1222 1223 1224 1225 1226 1227
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1239 1240 1241 1242 1243

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1244 1245
}

1246
/*
1247
 * Remove a event from the lists for its context.
1248
 * Must be called with ctx->mutex and ctx->lock held.
1249
 */
1250
static void
1251
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1252
{
1253
	struct perf_cpu_context *cpuctx;
1254 1255 1256 1257
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1258
		return;
1259 1260 1261

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1262
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1263
		ctx->nr_cgroups--;
1264 1265 1266 1267 1268 1269 1270 1271 1272
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1273

1274 1275 1276
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1277 1278
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1279
		ctx->nr_stat--;
1280

1281
	list_del_rcu(&event->event_entry);
1282

1283 1284
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1285

1286
	update_group_times(event);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1297 1298
}

1299
static void perf_group_detach(struct perf_event *event)
1300 1301
{
	struct perf_event *sibling, *tmp;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1318
		goto out;
1319 1320 1321 1322
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1323

1324
	/*
1325 1326
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1327
	 * to whatever list we are on.
1328
	 */
1329
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1330 1331
		if (list)
			list_move_tail(&sibling->group_entry, list);
1332
		sibling->group_leader = sibling;
1333 1334 1335

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1336
	}
1337 1338 1339 1340 1341 1342

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1343 1344
}

1345 1346 1347
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1348 1349
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1350 1351
}

1352 1353
static void
event_sched_out(struct perf_event *event,
1354
		  struct perf_cpu_context *cpuctx,
1355
		  struct perf_event_context *ctx)
1356
{
1357
	u64 tstamp = perf_event_time(event);
1358 1359 1360 1361 1362 1363 1364 1365 1366
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1367
		delta = tstamp - event->tstamp_stopped;
1368
		event->tstamp_running += delta;
1369
		event->tstamp_stopped = tstamp;
1370 1371
	}

1372
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1373
		return;
1374

1375 1376 1377 1378
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1379
	}
1380
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1381
	event->pmu->del(event, 0);
1382
	event->oncpu = -1;
1383

1384
	if (!is_software_event(event))
1385 1386
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1387 1388
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1389
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1390 1391 1392
		cpuctx->exclusive = 0;
}

1393
static void
1394
group_sched_out(struct perf_event *group_event,
1395
		struct perf_cpu_context *cpuctx,
1396
		struct perf_event_context *ctx)
1397
{
1398
	struct perf_event *event;
1399
	int state = group_event->state;
1400

1401
	event_sched_out(group_event, cpuctx, ctx);
1402 1403 1404 1405

	/*
	 * Schedule out siblings (if any):
	 */
1406 1407
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1408

1409
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1410 1411 1412
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1413
/*
1414
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1415
 *
1416
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1417 1418
 * remove it from the context list.
 */
1419
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1420
{
1421 1422
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1423
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1424

1425
	raw_spin_lock(&ctx->lock);
1426 1427
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1428 1429 1430 1431
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1432
	raw_spin_unlock(&ctx->lock);
1433 1434

	return 0;
T
Thomas Gleixner 已提交
1435 1436 1437 1438
}


/*
1439
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1440
 *
1441
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1442
 * call when the task is on a CPU.
1443
 *
1444 1445
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1446 1447
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1448
 * When called from perf_event_exit_task, it's OK because the
1449
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1450
 */
1451
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1452
{
1453
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1454 1455
	struct task_struct *task = ctx->task;

1456 1457
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1458 1459
	if (!task) {
		/*
1460
		 * Per cpu events are removed via an smp call and
1461
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1462
		 */
1463
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1464 1465 1466 1467
		return;
	}

retry:
1468 1469
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1470

1471
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1472
	/*
1473 1474
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1475
	 */
1476
	if (ctx->is_active) {
1477
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1478 1479 1480 1481
		goto retry;
	}

	/*
1482 1483
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1484
	 */
1485
	list_del_event(event, ctx);
1486
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1487 1488
}

1489
/*
1490
 * Cross CPU call to disable a performance event
1491
 */
1492
int __perf_event_disable(void *info)
1493
{
1494 1495
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1496
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1497 1498

	/*
1499 1500
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1501 1502 1503
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1504
	 */
1505
	if (ctx->task && cpuctx->task_ctx != ctx)
1506
		return -EINVAL;
1507

1508
	raw_spin_lock(&ctx->lock);
1509 1510

	/*
1511
	 * If the event is on, turn it off.
1512 1513
	 * If it is in error state, leave it in error state.
	 */
1514
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1515
		update_context_time(ctx);
S
Stephane Eranian 已提交
1516
		update_cgrp_time_from_event(event);
1517 1518 1519
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1520
		else
1521 1522
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1523 1524
	}

1525
	raw_spin_unlock(&ctx->lock);
1526 1527

	return 0;
1528 1529 1530
}

/*
1531
 * Disable a event.
1532
 *
1533 1534
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1535
 * remains valid.  This condition is satisifed when called through
1536 1537 1538 1539
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1540
 * is the current context on this CPU and preemption is disabled,
1541
 * hence we can't get into perf_event_task_sched_out for this context.
1542
 */
1543
void perf_event_disable(struct perf_event *event)
1544
{
1545
	struct perf_event_context *ctx = event->ctx;
1546 1547 1548 1549
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1550
		 * Disable the event on the cpu that it's on
1551
		 */
1552
		cpu_function_call(event->cpu, __perf_event_disable, event);
1553 1554 1555
		return;
	}

P
Peter Zijlstra 已提交
1556
retry:
1557 1558
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1559

1560
	raw_spin_lock_irq(&ctx->lock);
1561
	/*
1562
	 * If the event is still active, we need to retry the cross-call.
1563
	 */
1564
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1565
		raw_spin_unlock_irq(&ctx->lock);
1566 1567 1568 1569 1570
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1571 1572 1573 1574 1575 1576 1577
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1578 1579 1580
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1581
	}
1582
	raw_spin_unlock_irq(&ctx->lock);
1583
}
1584
EXPORT_SYMBOL_GPL(perf_event_disable);
1585

S
Stephane Eranian 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1621 1622 1623 1624
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1625
static int
1626
event_sched_in(struct perf_event *event,
1627
		 struct perf_cpu_context *cpuctx,
1628
		 struct perf_event_context *ctx)
1629
{
1630 1631
	u64 tstamp = perf_event_time(event);

1632
	if (event->state <= PERF_EVENT_STATE_OFF)
1633 1634
		return 0;

1635
	event->state = PERF_EVENT_STATE_ACTIVE;
1636
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1648 1649 1650 1651 1652
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1653
	if (event->pmu->add(event, PERF_EF_START)) {
1654 1655
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1656 1657 1658
		return -EAGAIN;
	}

1659
	event->tstamp_running += tstamp - event->tstamp_stopped;
1660

S
Stephane Eranian 已提交
1661
	perf_set_shadow_time(event, ctx, tstamp);
1662

1663
	if (!is_software_event(event))
1664
		cpuctx->active_oncpu++;
1665
	ctx->nr_active++;
1666 1667
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1668

1669
	if (event->attr.exclusive)
1670 1671
		cpuctx->exclusive = 1;

1672 1673 1674
	return 0;
}

1675
static int
1676
group_sched_in(struct perf_event *group_event,
1677
	       struct perf_cpu_context *cpuctx,
1678
	       struct perf_event_context *ctx)
1679
{
1680
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1681
	struct pmu *pmu = group_event->pmu;
1682 1683
	u64 now = ctx->time;
	bool simulate = false;
1684

1685
	if (group_event->state == PERF_EVENT_STATE_OFF)
1686 1687
		return 0;

P
Peter Zijlstra 已提交
1688
	pmu->start_txn(pmu);
1689

1690
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1691
		pmu->cancel_txn(pmu);
1692
		perf_cpu_hrtimer_restart(cpuctx);
1693
		return -EAGAIN;
1694
	}
1695 1696 1697 1698

	/*
	 * Schedule in siblings as one group (if any):
	 */
1699
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1700
		if (event_sched_in(event, cpuctx, ctx)) {
1701
			partial_group = event;
1702 1703 1704 1705
			goto group_error;
		}
	}

1706
	if (!pmu->commit_txn(pmu))
1707
		return 0;
1708

1709 1710 1711 1712
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1723
	 */
1724 1725
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1726 1727 1728 1729 1730 1731 1732 1733
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1734
	}
1735
	event_sched_out(group_event, cpuctx, ctx);
1736

P
Peter Zijlstra 已提交
1737
	pmu->cancel_txn(pmu);
1738

1739 1740
	perf_cpu_hrtimer_restart(cpuctx);

1741 1742 1743
	return -EAGAIN;
}

1744
/*
1745
 * Work out whether we can put this event group on the CPU now.
1746
 */
1747
static int group_can_go_on(struct perf_event *event,
1748 1749 1750 1751
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1752
	 * Groups consisting entirely of software events can always go on.
1753
	 */
1754
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1755 1756 1757
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1758
	 * events can go on.
1759 1760 1761 1762 1763
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1764
	 * events on the CPU, it can't go on.
1765
	 */
1766
	if (event->attr.exclusive && cpuctx->active_oncpu)
1767 1768 1769 1770 1771 1772 1773 1774
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1775 1776
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1777
{
1778 1779
	u64 tstamp = perf_event_time(event);

1780
	list_add_event(event, ctx);
1781
	perf_group_attach(event);
1782 1783 1784
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1785 1786
}

1787 1788 1789 1790 1791 1792
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1806
/*
1807
 * Cross CPU call to install and enable a performance event
1808 1809
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1810
 */
1811
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1812
{
1813 1814
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1815
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1816 1817 1818
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1819
	perf_ctx_lock(cpuctx, task_ctx);
1820
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1821 1822

	/*
1823
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1824
	 */
1825
	if (task_ctx)
1826
		task_ctx_sched_out(task_ctx);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1841 1842
		task = task_ctx->task;
	}
1843

1844
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1845

1846
	update_context_time(ctx);
S
Stephane Eranian 已提交
1847 1848 1849 1850 1851 1852
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1853

1854
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1855

1856
	/*
1857
	 * Schedule everything back in
1858
	 */
1859
	perf_event_sched_in(cpuctx, task_ctx, task);
1860 1861 1862

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1863 1864

	return 0;
T
Thomas Gleixner 已提交
1865 1866 1867
}

/*
1868
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1869
 *
1870 1871
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1872
 *
1873
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1874 1875 1876 1877
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1878 1879
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1880 1881 1882 1883
			int cpu)
{
	struct task_struct *task = ctx->task;

1884 1885
	lockdep_assert_held(&ctx->mutex);

1886
	event->ctx = ctx;
1887 1888
	if (event->cpu != -1)
		event->cpu = cpu;
1889

T
Thomas Gleixner 已提交
1890 1891
	if (!task) {
		/*
1892
		 * Per cpu events are installed via an smp call and
1893
		 * the install is always successful.
T
Thomas Gleixner 已提交
1894
		 */
1895
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1896 1897 1898 1899
		return;
	}

retry:
1900 1901
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1902

1903
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1904
	/*
1905 1906
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1907
	 */
1908
	if (ctx->is_active) {
1909
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1910 1911 1912 1913
		goto retry;
	}

	/*
1914 1915
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1916
	 */
1917
	add_event_to_ctx(event, ctx);
1918
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1919 1920
}

1921
/*
1922
 * Put a event into inactive state and update time fields.
1923 1924 1925 1926 1927 1928
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1929
static void __perf_event_mark_enabled(struct perf_event *event)
1930
{
1931
	struct perf_event *sub;
1932
	u64 tstamp = perf_event_time(event);
1933

1934
	event->state = PERF_EVENT_STATE_INACTIVE;
1935
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1936
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1937 1938
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1939
	}
1940 1941
}

1942
/*
1943
 * Cross CPU call to enable a performance event
1944
 */
1945
static int __perf_event_enable(void *info)
1946
{
1947 1948 1949
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1950
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1951
	int err;
1952

1953 1954
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1955

1956
	raw_spin_lock(&ctx->lock);
1957
	update_context_time(ctx);
1958

1959
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1960
		goto unlock;
S
Stephane Eranian 已提交
1961 1962 1963 1964

	/*
	 * set current task's cgroup time reference point
	 */
1965
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1966

1967
	__perf_event_mark_enabled(event);
1968

S
Stephane Eranian 已提交
1969 1970 1971
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1972
		goto unlock;
S
Stephane Eranian 已提交
1973
	}
1974

1975
	/*
1976
	 * If the event is in a group and isn't the group leader,
1977
	 * then don't put it on unless the group is on.
1978
	 */
1979
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1980
		goto unlock;
1981

1982
	if (!group_can_go_on(event, cpuctx, 1)) {
1983
		err = -EEXIST;
1984
	} else {
1985
		if (event == leader)
1986
			err = group_sched_in(event, cpuctx, ctx);
1987
		else
1988
			err = event_sched_in(event, cpuctx, ctx);
1989
	}
1990 1991 1992

	if (err) {
		/*
1993
		 * If this event can't go on and it's part of a
1994 1995
		 * group, then the whole group has to come off.
		 */
1996
		if (leader != event) {
1997
			group_sched_out(leader, cpuctx, ctx);
1998 1999
			perf_cpu_hrtimer_restart(cpuctx);
		}
2000
		if (leader->attr.pinned) {
2001
			update_group_times(leader);
2002
			leader->state = PERF_EVENT_STATE_ERROR;
2003
		}
2004 2005
	}

P
Peter Zijlstra 已提交
2006
unlock:
2007
	raw_spin_unlock(&ctx->lock);
2008 2009

	return 0;
2010 2011 2012
}

/*
2013
 * Enable a event.
2014
 *
2015 2016
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2017
 * remains valid.  This condition is satisfied when called through
2018 2019
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2020
 */
2021
void perf_event_enable(struct perf_event *event)
2022
{
2023
	struct perf_event_context *ctx = event->ctx;
2024 2025 2026 2027
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2028
		 * Enable the event on the cpu that it's on
2029
		 */
2030
		cpu_function_call(event->cpu, __perf_event_enable, event);
2031 2032 2033
		return;
	}

2034
	raw_spin_lock_irq(&ctx->lock);
2035
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2036 2037 2038
		goto out;

	/*
2039 2040
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2041 2042 2043 2044
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2045 2046
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2047

P
Peter Zijlstra 已提交
2048
retry:
2049
	if (!ctx->is_active) {
2050
		__perf_event_mark_enabled(event);
2051 2052 2053
		goto out;
	}

2054
	raw_spin_unlock_irq(&ctx->lock);
2055 2056 2057

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2058

2059
	raw_spin_lock_irq(&ctx->lock);
2060 2061

	/*
2062
	 * If the context is active and the event is still off,
2063 2064
	 * we need to retry the cross-call.
	 */
2065 2066 2067 2068 2069 2070
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2071
		goto retry;
2072
	}
2073

P
Peter Zijlstra 已提交
2074
out:
2075
	raw_spin_unlock_irq(&ctx->lock);
2076
}
2077
EXPORT_SYMBOL_GPL(perf_event_enable);
2078

2079
int perf_event_refresh(struct perf_event *event, int refresh)
2080
{
2081
	/*
2082
	 * not supported on inherited events
2083
	 */
2084
	if (event->attr.inherit || !is_sampling_event(event))
2085 2086
		return -EINVAL;

2087 2088
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2089 2090

	return 0;
2091
}
2092
EXPORT_SYMBOL_GPL(perf_event_refresh);
2093

2094 2095 2096
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2097
{
2098
	struct perf_event *event;
2099
	int is_active = ctx->is_active;
2100

2101
	ctx->is_active &= ~event_type;
2102
	if (likely(!ctx->nr_events))
2103 2104
		return;

2105
	update_context_time(ctx);
S
Stephane Eranian 已提交
2106
	update_cgrp_time_from_cpuctx(cpuctx);
2107
	if (!ctx->nr_active)
2108
		return;
2109

P
Peter Zijlstra 已提交
2110
	perf_pmu_disable(ctx->pmu);
2111
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2112 2113
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2114
	}
2115

2116
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2117
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2118
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2119
	}
P
Peter Zijlstra 已提交
2120
	perf_pmu_enable(ctx->pmu);
2121 2122
}

2123 2124 2125
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2126 2127 2128 2129
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2130
 * in them directly with an fd; we can only enable/disable all
2131
 * events via prctl, or enable/disable all events in a family
2132 2133
 * via ioctl, which will have the same effect on both contexts.
 */
2134 2135
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2136 2137
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2138
		&& ctx1->parent_gen == ctx2->parent_gen
2139
		&& !ctx1->pin_count && !ctx2->pin_count;
2140 2141
}

2142 2143
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2144 2145 2146
{
	u64 value;

2147
	if (!event->attr.inherit_stat)
2148 2149 2150
		return;

	/*
2151
	 * Update the event value, we cannot use perf_event_read()
2152 2153
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2154
	 * we know the event must be on the current CPU, therefore we
2155 2156
	 * don't need to use it.
	 */
2157 2158
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2159 2160
		event->pmu->read(event);
		/* fall-through */
2161

2162 2163
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2164 2165 2166 2167 2168 2169 2170
		break;

	default:
		break;
	}

	/*
2171
	 * In order to keep per-task stats reliable we need to flip the event
2172 2173
	 * values when we flip the contexts.
	 */
2174 2175 2176
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2177

2178 2179
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2180

2181
	/*
2182
	 * Since we swizzled the values, update the user visible data too.
2183
	 */
2184 2185
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2186 2187 2188 2189 2190
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2191 2192
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2193
{
2194
	struct perf_event *event, *next_event;
2195 2196 2197 2198

	if (!ctx->nr_stat)
		return;

2199 2200
	update_context_time(ctx);

2201 2202
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2203

2204 2205
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2206

2207 2208
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2209

2210
		__perf_event_sync_stat(event, next_event);
2211

2212 2213
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2214 2215 2216
	}
}

2217 2218
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2219
{
P
Peter Zijlstra 已提交
2220
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2221 2222
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2223
	struct perf_cpu_context *cpuctx;
2224
	int do_switch = 1;
T
Thomas Gleixner 已提交
2225

P
Peter Zijlstra 已提交
2226 2227
	if (likely(!ctx))
		return;
2228

P
Peter Zijlstra 已提交
2229 2230
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2231 2232
		return;

2233 2234
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2235
	next_ctx = next->perf_event_ctxp[ctxn];
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2247 2248
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2249
		if (context_equiv(ctx, next_ctx)) {
2250 2251
			/*
			 * XXX do we need a memory barrier of sorts
2252
			 * wrt to rcu_dereference() of perf_event_ctxp
2253
			 */
P
Peter Zijlstra 已提交
2254 2255
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2256 2257 2258
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2259

2260
			perf_event_sync_stat(ctx, next_ctx);
2261
		}
2262 2263
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2264
	}
2265
	rcu_read_unlock();
2266

2267
	if (do_switch) {
2268
		raw_spin_lock(&ctx->lock);
2269
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2270
		cpuctx->task_ctx = NULL;
2271
		raw_spin_unlock(&ctx->lock);
2272
	}
T
Thomas Gleixner 已提交
2273 2274
}

P
Peter Zijlstra 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2289 2290
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2291 2292 2293 2294 2295
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2296 2297 2298 2299 2300 2301 2302

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2303
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2304 2305
}

2306
static void task_ctx_sched_out(struct perf_event_context *ctx)
2307
{
P
Peter Zijlstra 已提交
2308
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2309

2310 2311
	if (!cpuctx->task_ctx)
		return;
2312 2313 2314 2315

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2316
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2317 2318 2319
	cpuctx->task_ctx = NULL;
}

2320 2321 2322 2323 2324 2325 2326
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2327 2328
}

2329
static void
2330
ctx_pinned_sched_in(struct perf_event_context *ctx,
2331
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2332
{
2333
	struct perf_event *event;
T
Thomas Gleixner 已提交
2334

2335 2336
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2337
			continue;
2338
		if (!event_filter_match(event))
2339 2340
			continue;

S
Stephane Eranian 已提交
2341 2342 2343 2344
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2345
		if (group_can_go_on(event, cpuctx, 1))
2346
			group_sched_in(event, cpuctx, ctx);
2347 2348 2349 2350 2351

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2352 2353 2354
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2355
		}
2356
	}
2357 2358 2359 2360
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2361
		      struct perf_cpu_context *cpuctx)
2362 2363 2364
{
	struct perf_event *event;
	int can_add_hw = 1;
2365

2366 2367 2368
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2369
			continue;
2370 2371
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2372
		 * of events:
2373
		 */
2374
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2375 2376
			continue;

S
Stephane Eranian 已提交
2377 2378 2379 2380
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2381
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2382
			if (group_sched_in(event, cpuctx, ctx))
2383
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2384
		}
T
Thomas Gleixner 已提交
2385
	}
2386 2387 2388 2389 2390
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2391 2392
	     enum event_type_t event_type,
	     struct task_struct *task)
2393
{
S
Stephane Eranian 已提交
2394
	u64 now;
2395
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2396

2397
	ctx->is_active |= event_type;
2398
	if (likely(!ctx->nr_events))
2399
		return;
2400

S
Stephane Eranian 已提交
2401 2402
	now = perf_clock();
	ctx->timestamp = now;
2403
	perf_cgroup_set_timestamp(task, ctx);
2404 2405 2406 2407
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2408
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2409
		ctx_pinned_sched_in(ctx, cpuctx);
2410 2411

	/* Then walk through the lower prio flexible groups */
2412
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2413
		ctx_flexible_sched_in(ctx, cpuctx);
2414 2415
}

2416
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2417 2418
			     enum event_type_t event_type,
			     struct task_struct *task)
2419 2420 2421
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2422
	ctx_sched_in(ctx, cpuctx, event_type, task);
2423 2424
}

S
Stephane Eranian 已提交
2425 2426
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2427
{
P
Peter Zijlstra 已提交
2428
	struct perf_cpu_context *cpuctx;
2429

P
Peter Zijlstra 已提交
2430
	cpuctx = __get_cpu_context(ctx);
2431 2432 2433
	if (cpuctx->task_ctx == ctx)
		return;

2434
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2435
	perf_pmu_disable(ctx->pmu);
2436 2437 2438 2439 2440 2441 2442
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2443 2444
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2445

2446 2447
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2448 2449 2450
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2451 2452 2453 2454
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2455
	perf_pmu_rotate_start(ctx->pmu);
2456 2457
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2529 2530
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2540
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2541
	}
S
Stephane Eranian 已提交
2542 2543 2544 2545 2546 2547
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2548
		perf_cgroup_sched_in(prev, task);
2549 2550 2551 2552

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2553 2554
}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2582
#define REDUCE_FLS(a, b)		\
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2622 2623 2624
	if (!divisor)
		return dividend;

2625 2626 2627
	return div64_u64(dividend, divisor);
}

2628 2629 2630
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2631
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2632
{
2633
	struct hw_perf_event *hwc = &event->hw;
2634
	s64 period, sample_period;
2635 2636
	s64 delta;

2637
	period = perf_calculate_period(event, nsec, count);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2648

2649
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2650 2651 2652
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2653
		local64_set(&hwc->period_left, 0);
2654 2655 2656

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2657
	}
2658 2659
}

2660 2661 2662 2663 2664 2665 2666
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2667
{
2668 2669
	struct perf_event *event;
	struct hw_perf_event *hwc;
2670
	u64 now, period = TICK_NSEC;
2671
	s64 delta;
2672

2673 2674 2675 2676 2677 2678
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2679 2680
		return;

2681
	raw_spin_lock(&ctx->lock);
2682
	perf_pmu_disable(ctx->pmu);
2683

2684
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2685
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2686 2687
			continue;

2688
		if (!event_filter_match(event))
2689 2690
			continue;

2691
		hwc = &event->hw;
2692

2693 2694
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2695
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2696
			event->pmu->start(event, 0);
2697 2698
		}

2699
		if (!event->attr.freq || !event->attr.sample_freq)
2700 2701
			continue;

2702 2703 2704 2705 2706
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2707
		now = local64_read(&event->count);
2708 2709
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2710

2711 2712 2713
		/*
		 * restart the event
		 * reload only if value has changed
2714 2715 2716
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2717
		 */
2718
		if (delta > 0)
2719
			perf_adjust_period(event, period, delta, false);
2720 2721

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2722
	}
2723

2724
	perf_pmu_enable(ctx->pmu);
2725
	raw_spin_unlock(&ctx->lock);
2726 2727
}

2728
/*
2729
 * Round-robin a context's events:
2730
 */
2731
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2732
{
2733 2734 2735 2736 2737 2738
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2739 2740
}

2741
/*
2742 2743 2744
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2745
 */
2746
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2747
{
P
Peter Zijlstra 已提交
2748
	struct perf_event_context *ctx = NULL;
2749
	int rotate = 0, remove = 1;
2750

2751
	if (cpuctx->ctx.nr_events) {
2752
		remove = 0;
2753 2754 2755
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2756

P
Peter Zijlstra 已提交
2757
	ctx = cpuctx->task_ctx;
2758
	if (ctx && ctx->nr_events) {
2759
		remove = 0;
2760 2761 2762
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2763

2764
	if (!rotate)
2765 2766
		goto done;

2767
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2768
	perf_pmu_disable(cpuctx->ctx.pmu);
2769

2770 2771 2772
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2773

2774 2775 2776
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2777

2778
	perf_event_sched_in(cpuctx, ctx, current);
2779

2780 2781
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2782
done:
2783 2784
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2785 2786

	return rotate;
2787 2788
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
	if (list_empty(&__get_cpu_var(rotation_list)))
		return true;
	else
		return false;
}
#endif

2799 2800 2801 2802
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2803 2804
	struct perf_event_context *ctx;
	int throttled;
2805

2806 2807
	WARN_ON(!irqs_disabled());

2808 2809 2810
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2811
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2812 2813 2814 2815 2816 2817
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2818
	}
T
Thomas Gleixner 已提交
2819 2820
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2831
	__perf_event_mark_enabled(event);
2832 2833 2834 2835

	return 1;
}

2836
/*
2837
 * Enable all of a task's events that have been marked enable-on-exec.
2838 2839
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2840
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2841
{
2842
	struct perf_event *event;
2843 2844
	unsigned long flags;
	int enabled = 0;
2845
	int ret;
2846 2847

	local_irq_save(flags);
2848
	if (!ctx || !ctx->nr_events)
2849 2850
		goto out;

2851 2852 2853 2854 2855 2856 2857
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2858
	perf_cgroup_sched_out(current, NULL);
2859

2860
	raw_spin_lock(&ctx->lock);
2861
	task_ctx_sched_out(ctx);
2862

2863
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2864 2865 2866
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2867 2868 2869
	}

	/*
2870
	 * Unclone this context if we enabled any event.
2871
	 */
2872 2873
	if (enabled)
		unclone_ctx(ctx);
2874

2875
	raw_spin_unlock(&ctx->lock);
2876

2877 2878 2879
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2880
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2881
out:
2882 2883 2884
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2885
/*
2886
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2887
 */
2888
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2889
{
2890 2891
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2892
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2893

2894 2895 2896 2897
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2898 2899
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2900 2901 2902 2903
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2904
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2905
	if (ctx->is_active) {
2906
		update_context_time(ctx);
S
Stephane Eranian 已提交
2907 2908
		update_cgrp_time_from_event(event);
	}
2909
	update_event_times(event);
2910 2911
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2912
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2913 2914
}

P
Peter Zijlstra 已提交
2915 2916
static inline u64 perf_event_count(struct perf_event *event)
{
2917
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2918 2919
}

2920
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2921 2922
{
	/*
2923 2924
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2925
	 */
2926 2927 2928 2929
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2930 2931 2932
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2933
		raw_spin_lock_irqsave(&ctx->lock, flags);
2934 2935 2936 2937 2938
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2939
		if (ctx->is_active) {
2940
			update_context_time(ctx);
S
Stephane Eranian 已提交
2941 2942
			update_cgrp_time_from_event(event);
		}
2943
		update_event_times(event);
2944
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2945 2946
	}

P
Peter Zijlstra 已提交
2947
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2948 2949
}

2950
/*
2951
 * Initialize the perf_event context in a task_struct:
2952
 */
2953
static void __perf_event_init_context(struct perf_event_context *ctx)
2954
{
2955
	raw_spin_lock_init(&ctx->lock);
2956
	mutex_init(&ctx->mutex);
2957 2958
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2959 2960
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2976
	}
2977 2978 2979
	ctx->pmu = pmu;

	return ctx;
2980 2981
}

2982 2983 2984 2985 2986
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2987 2988

	rcu_read_lock();
2989
	if (!vpid)
T
Thomas Gleixner 已提交
2990 2991
		task = current;
	else
2992
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2993 2994 2995 2996 2997 2998 2999 3000
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3001 3002 3003 3004
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3005 3006 3007 3008 3009 3010 3011
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3012 3013 3014
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3015
static struct perf_event_context *
M
Matt Helsley 已提交
3016
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3017
{
3018
	struct perf_event_context *ctx;
3019
	struct perf_cpu_context *cpuctx;
3020
	unsigned long flags;
P
Peter Zijlstra 已提交
3021
	int ctxn, err;
T
Thomas Gleixner 已提交
3022

3023
	if (!task) {
3024
		/* Must be root to operate on a CPU event: */
3025
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3026 3027 3028
			return ERR_PTR(-EACCES);

		/*
3029
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3030 3031 3032
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3033
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3034 3035
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3036
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3037
		ctx = &cpuctx->ctx;
3038
		get_ctx(ctx);
3039
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3040 3041 3042 3043

		return ctx;
	}

P
Peter Zijlstra 已提交
3044 3045 3046 3047 3048
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3049
retry:
P
Peter Zijlstra 已提交
3050
	ctx = perf_lock_task_context(task, ctxn, &flags);
3051
	if (ctx) {
3052
		unclone_ctx(ctx);
3053
		++ctx->pin_count;
3054
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3055
	} else {
3056
		ctx = alloc_perf_context(pmu, task);
3057 3058 3059
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3060

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3071
		else {
3072
			get_ctx(ctx);
3073
			++ctx->pin_count;
3074
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3075
		}
3076 3077 3078
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3079
			put_ctx(ctx);
3080 3081 3082 3083

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3084 3085 3086
		}
	}

T
Thomas Gleixner 已提交
3087
	return ctx;
3088

P
Peter Zijlstra 已提交
3089
errout:
3090
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3091 3092
}

L
Li Zefan 已提交
3093 3094
static void perf_event_free_filter(struct perf_event *event);

3095
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3096
{
3097
	struct perf_event *event;
P
Peter Zijlstra 已提交
3098

3099 3100 3101
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3102
	perf_event_free_filter(event);
3103
	kfree(event);
P
Peter Zijlstra 已提交
3104 3105
}

3106
static void ring_buffer_put(struct ring_buffer *rb);
3107
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3108

3109
static void free_event(struct perf_event *event)
3110
{
3111
	irq_work_sync(&event->pending);
3112

3113
	if (!event->parent) {
3114
		if (event->attach_state & PERF_ATTACH_TASK)
3115
			static_key_slow_dec_deferred(&perf_sched_events);
3116
		if (event->attr.mmap || event->attr.mmap_data)
3117 3118 3119 3120 3121
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
3122 3123
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3124 3125
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3126
			static_key_slow_dec_deferred(&perf_sched_events);
3127
		}
3128 3129 3130 3131

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
3132
			if (!(event->attach_state & PERF_ATTACH_TASK)) {
3133 3134
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
3135
			}
3136
		}
3137
	}
3138

3139
	if (event->rb) {
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3156 3157
	}

S
Stephane Eranian 已提交
3158 3159 3160
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3161 3162
	if (event->destroy)
		event->destroy(event);
3163

P
Peter Zijlstra 已提交
3164 3165 3166
	if (event->ctx)
		put_ctx(event->ctx);

3167
	call_rcu(&event->rcu_head, free_event_rcu);
3168 3169
}

3170
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3171
{
3172
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3173

3174
	WARN_ON_ONCE(ctx->parent_ctx);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3188
	raw_spin_lock_irq(&ctx->lock);
3189
	perf_group_detach(event);
3190
	raw_spin_unlock_irq(&ctx->lock);
3191
	perf_remove_from_context(event);
3192
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3193

3194
	free_event(event);
T
Thomas Gleixner 已提交
3195 3196 3197

	return 0;
}
3198
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3199

3200 3201 3202
/*
 * Called when the last reference to the file is gone.
 */
3203
static void put_event(struct perf_event *event)
3204
{
P
Peter Zijlstra 已提交
3205
	struct task_struct *owner;
3206

3207 3208
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3209

P
Peter Zijlstra 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3243 3244 3245 3246 3247 3248 3249
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3250 3251
}

3252
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3253
{
3254
	struct perf_event *child;
3255 3256
	u64 total = 0;

3257 3258 3259
	*enabled = 0;
	*running = 0;

3260
	mutex_lock(&event->child_mutex);
3261
	total += perf_event_read(event);
3262 3263 3264 3265 3266 3267
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3268
		total += perf_event_read(child);
3269 3270 3271
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3272
	mutex_unlock(&event->child_mutex);
3273 3274 3275

	return total;
}
3276
EXPORT_SYMBOL_GPL(perf_event_read_value);
3277

3278
static int perf_event_read_group(struct perf_event *event,
3279 3280
				   u64 read_format, char __user *buf)
{
3281
	struct perf_event *leader = event->group_leader, *sub;
3282 3283
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3284
	u64 values[5];
3285
	u64 count, enabled, running;
3286

3287
	mutex_lock(&ctx->mutex);
3288
	count = perf_event_read_value(leader, &enabled, &running);
3289 3290

	values[n++] = 1 + leader->nr_siblings;
3291 3292 3293 3294
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3295 3296 3297
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3298 3299 3300 3301

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3302
		goto unlock;
3303

3304
	ret = size;
3305

3306
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3307
		n = 0;
3308

3309
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3310 3311 3312 3313 3314
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3315
		if (copy_to_user(buf + ret, values, size)) {
3316 3317 3318
			ret = -EFAULT;
			goto unlock;
		}
3319 3320

		ret += size;
3321
	}
3322 3323
unlock:
	mutex_unlock(&ctx->mutex);
3324

3325
	return ret;
3326 3327
}

3328
static int perf_event_read_one(struct perf_event *event,
3329 3330
				 u64 read_format, char __user *buf)
{
3331
	u64 enabled, running;
3332 3333 3334
	u64 values[4];
	int n = 0;

3335 3336 3337 3338 3339
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3340
	if (read_format & PERF_FORMAT_ID)
3341
		values[n++] = primary_event_id(event);
3342 3343 3344 3345 3346 3347 3348

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3349
/*
3350
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3351 3352
 */
static ssize_t
3353
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3354
{
3355
	u64 read_format = event->attr.read_format;
3356
	int ret;
T
Thomas Gleixner 已提交
3357

3358
	/*
3359
	 * Return end-of-file for a read on a event that is in
3360 3361 3362
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3363
	if (event->state == PERF_EVENT_STATE_ERROR)
3364 3365
		return 0;

3366
	if (count < event->read_size)
3367 3368
		return -ENOSPC;

3369
	WARN_ON_ONCE(event->ctx->parent_ctx);
3370
	if (read_format & PERF_FORMAT_GROUP)
3371
		ret = perf_event_read_group(event, read_format, buf);
3372
	else
3373
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3374

3375
	return ret;
T
Thomas Gleixner 已提交
3376 3377 3378 3379 3380
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3381
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3382

3383
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3384 3385 3386 3387
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3388
	struct perf_event *event = file->private_data;
3389
	struct ring_buffer *rb;
3390
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3391

3392
	/*
3393 3394
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3395 3396
	 */
	mutex_lock(&event->mmap_mutex);
3397 3398
	rb = event->rb;
	if (rb)
3399
		events = atomic_xchg(&rb->poll, 0);
3400 3401
	mutex_unlock(&event->mmap_mutex);

3402
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3403 3404 3405 3406

	return events;
}

3407
static void perf_event_reset(struct perf_event *event)
3408
{
3409
	(void)perf_event_read(event);
3410
	local64_set(&event->count, 0);
3411
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3412 3413
}

3414
/*
3415 3416 3417 3418
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3419
 */
3420 3421
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3422
{
3423
	struct perf_event *child;
P
Peter Zijlstra 已提交
3424

3425 3426 3427 3428
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3429
		func(child);
3430
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3431 3432
}

3433 3434
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3435
{
3436 3437
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3438

3439 3440
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3441
	event = event->group_leader;
3442

3443 3444
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3445
		perf_event_for_each_child(sibling, func);
3446
	mutex_unlock(&ctx->mutex);
3447 3448
}

3449
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3450
{
3451
	struct perf_event_context *ctx = event->ctx;
3452 3453 3454
	int ret = 0;
	u64 value;

3455
	if (!is_sampling_event(event))
3456 3457
		return -EINVAL;

3458
	if (copy_from_user(&value, arg, sizeof(value)))
3459 3460 3461 3462 3463
		return -EFAULT;

	if (!value)
		return -EINVAL;

3464
	raw_spin_lock_irq(&ctx->lock);
3465 3466
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3467 3468 3469 3470
			ret = -EINVAL;
			goto unlock;
		}

3471
		event->attr.sample_freq = value;
3472
	} else {
3473 3474
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3475 3476
	}
unlock:
3477
	raw_spin_unlock_irq(&ctx->lock);
3478 3479 3480 3481

	return ret;
}

3482 3483
static const struct file_operations perf_fops;

3484
static inline int perf_fget_light(int fd, struct fd *p)
3485
{
3486 3487 3488
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3489

3490 3491 3492
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3493
	}
3494 3495
	*p = f;
	return 0;
3496 3497 3498 3499
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3500
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3501

3502 3503
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3504 3505
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3506
	u32 flags = arg;
3507 3508

	switch (cmd) {
3509 3510
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3511
		break;
3512 3513
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3514
		break;
3515 3516
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3517
		break;
P
Peter Zijlstra 已提交
3518

3519 3520
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3521

3522 3523
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3524

3525
	case PERF_EVENT_IOC_SET_OUTPUT:
3526 3527 3528
	{
		int ret;
		if (arg != -1) {
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3539 3540 3541
		}
		return ret;
	}
3542

L
Li Zefan 已提交
3543 3544 3545
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3546
	default:
P
Peter Zijlstra 已提交
3547
		return -ENOTTY;
3548
	}
P
Peter Zijlstra 已提交
3549 3550

	if (flags & PERF_IOC_FLAG_GROUP)
3551
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3552
	else
3553
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3554 3555

	return 0;
3556 3557
}

3558
int perf_event_task_enable(void)
3559
{
3560
	struct perf_event *event;
3561

3562 3563 3564 3565
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3566 3567 3568 3569

	return 0;
}

3570
int perf_event_task_disable(void)
3571
{
3572
	struct perf_event *event;
3573

3574 3575 3576 3577
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3578 3579 3580 3581

	return 0;
}

3582
static int perf_event_index(struct perf_event *event)
3583
{
P
Peter Zijlstra 已提交
3584 3585 3586
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3587
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3588 3589
		return 0;

3590
	return event->pmu->event_idx(event);
3591 3592
}

3593
static void calc_timer_values(struct perf_event *event,
3594
				u64 *now,
3595 3596
				u64 *enabled,
				u64 *running)
3597
{
3598
	u64 ctx_time;
3599

3600 3601
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3602 3603 3604 3605
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3606
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3607 3608 3609
{
}

3610 3611 3612 3613 3614
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3615
void perf_event_update_userpage(struct perf_event *event)
3616
{
3617
	struct perf_event_mmap_page *userpg;
3618
	struct ring_buffer *rb;
3619
	u64 enabled, running, now;
3620 3621

	rcu_read_lock();
3622 3623 3624 3625 3626 3627 3628 3629 3630
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3631
	calc_timer_values(event, &now, &enabled, &running);
3632 3633
	rb = rcu_dereference(event->rb);
	if (!rb)
3634 3635
		goto unlock;

3636
	userpg = rb->user_page;
3637

3638 3639 3640 3641 3642
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3643
	++userpg->lock;
3644
	barrier();
3645
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3646
	userpg->offset = perf_event_count(event);
3647
	if (userpg->index)
3648
		userpg->offset -= local64_read(&event->hw.prev_count);
3649

3650
	userpg->time_enabled = enabled +
3651
			atomic64_read(&event->child_total_time_enabled);
3652

3653
	userpg->time_running = running +
3654
			atomic64_read(&event->child_total_time_running);
3655

3656
	arch_perf_update_userpage(userpg, now);
3657

3658
	barrier();
3659
	++userpg->lock;
3660
	preempt_enable();
3661
unlock:
3662
	rcu_read_unlock();
3663 3664
}

3665 3666 3667
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3668
	struct ring_buffer *rb;
3669 3670 3671 3672 3673 3674 3675 3676 3677
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3678 3679
	rb = rcu_dereference(event->rb);
	if (!rb)
3680 3681 3682 3683 3684
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3685
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3700 3701 3702 3703 3704 3705 3706 3707 3708
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3709 3710
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3711 3712 3713
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3714
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3733 3734 3735 3736
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3737 3738 3739
	rcu_read_unlock();
}

3740
static void rb_free_rcu(struct rcu_head *rcu_head)
3741
{
3742
	struct ring_buffer *rb;
3743

3744 3745
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3746 3747
}

3748
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3749
{
3750
	struct ring_buffer *rb;
3751

3752
	rcu_read_lock();
3753 3754 3755 3756
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3757 3758 3759
	}
	rcu_read_unlock();

3760
	return rb;
3761 3762
}

3763
static void ring_buffer_put(struct ring_buffer *rb)
3764
{
3765
	if (!atomic_dec_and_test(&rb->refcount))
3766
		return;
3767

3768
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3769

3770
	call_rcu(&rb->rcu_head, rb_free_rcu);
3771 3772 3773 3774
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3775
	struct perf_event *event = vma->vm_file->private_data;
3776

3777
	atomic_inc(&event->mmap_count);
3778
	atomic_inc(&event->rb->mmap_count);
3779 3780
}

3781 3782 3783 3784 3785 3786 3787 3788
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3789 3790
static void perf_mmap_close(struct vm_area_struct *vma)
{
3791
	struct perf_event *event = vma->vm_file->private_data;
3792

3793 3794 3795 3796
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3797

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3813

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3830

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3846
		}
3847
		mutex_unlock(&event->mmap_mutex);
3848
		put_event(event);
3849

3850 3851 3852 3853 3854
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3855
	}
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3872 3873
}

3874
static const struct vm_operations_struct perf_mmap_vmops = {
3875 3876 3877 3878
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3879 3880 3881 3882
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3883
	struct perf_event *event = file->private_data;
3884
	unsigned long user_locked, user_lock_limit;
3885
	struct user_struct *user = current_user();
3886
	unsigned long locked, lock_limit;
3887
	struct ring_buffer *rb;
3888 3889
	unsigned long vma_size;
	unsigned long nr_pages;
3890
	long user_extra, extra;
3891
	int ret = 0, flags = 0;
3892

3893 3894 3895
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3896
	 * same rb.
3897 3898 3899 3900
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3901
	if (!(vma->vm_flags & VM_SHARED))
3902
		return -EINVAL;
3903 3904 3905 3906

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3907
	/*
3908
	 * If we have rb pages ensure they're a power-of-two number, so we
3909 3910 3911
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3912 3913
		return -EINVAL;

3914
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3915 3916
		return -EINVAL;

3917 3918
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3919

3920
	WARN_ON_ONCE(event->ctx->parent_ctx);
3921
again:
3922
	mutex_lock(&event->mmap_mutex);
3923
	if (event->rb) {
3924
		if (event->rb->nr_pages != nr_pages) {
3925
			ret = -EINVAL;
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

3939 3940 3941
		goto unlock;
	}

3942
	user_extra = nr_pages + 1;
3943
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3944 3945 3946 3947 3948 3949

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3950
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3951

3952 3953 3954
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3955

3956
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3957
	lock_limit >>= PAGE_SHIFT;
3958
	locked = vma->vm_mm->pinned_vm + extra;
3959

3960 3961
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3962 3963 3964
		ret = -EPERM;
		goto unlock;
	}
3965

3966
	WARN_ON(event->rb);
3967

3968
	if (vma->vm_flags & VM_WRITE)
3969
		flags |= RING_BUFFER_WRITABLE;
3970

3971 3972 3973 3974
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3975
	if (!rb) {
3976
		ret = -ENOMEM;
3977
		goto unlock;
3978
	}
P
Peter Zijlstra 已提交
3979

3980
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
3981 3982
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
3983

3984
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
3985 3986
	vma->vm_mm->pinned_vm += extra;

3987
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
3988
	rcu_assign_pointer(event->rb, rb);
3989

3990 3991
	perf_event_update_userpage(event);

3992
unlock:
3993 3994
	if (!ret)
		atomic_inc(&event->mmap_count);
3995
	mutex_unlock(&event->mmap_mutex);
3996

3997 3998 3999 4000
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4001
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4002
	vma->vm_ops = &perf_mmap_vmops;
4003 4004

	return ret;
4005 4006
}

P
Peter Zijlstra 已提交
4007 4008
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4009
	struct inode *inode = file_inode(filp);
4010
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4011 4012 4013
	int retval;

	mutex_lock(&inode->i_mutex);
4014
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4015 4016 4017 4018 4019 4020 4021 4022
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4023
static const struct file_operations perf_fops = {
4024
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4025 4026 4027
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4028 4029
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4030
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4031
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4032 4033
};

4034
/*
4035
 * Perf event wakeup
4036 4037 4038 4039 4040
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4041
void perf_event_wakeup(struct perf_event *event)
4042
{
4043
	ring_buffer_wakeup(event);
4044

4045 4046 4047
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4048
	}
4049 4050
}

4051
static void perf_pending_event(struct irq_work *entry)
4052
{
4053 4054
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4055

4056 4057 4058
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4059 4060
	}

4061 4062 4063
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4064 4065 4066
	}
}

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4214 4215 4216
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4244 4245 4246
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4273 4274 4275
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4276 4277 4278 4279 4280
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4281
static void perf_output_read_one(struct perf_output_handle *handle,
4282 4283
				 struct perf_event *event,
				 u64 enabled, u64 running)
4284
{
4285
	u64 read_format = event->attr.read_format;
4286 4287 4288
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4289
	values[n++] = perf_event_count(event);
4290
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4291
		values[n++] = enabled +
4292
			atomic64_read(&event->child_total_time_enabled);
4293 4294
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4295
		values[n++] = running +
4296
			atomic64_read(&event->child_total_time_running);
4297 4298
	}
	if (read_format & PERF_FORMAT_ID)
4299
		values[n++] = primary_event_id(event);
4300

4301
	__output_copy(handle, values, n * sizeof(u64));
4302 4303 4304
}

/*
4305
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4306 4307
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4308 4309
			    struct perf_event *event,
			    u64 enabled, u64 running)
4310
{
4311 4312
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4313 4314 4315 4316 4317 4318
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4319
		values[n++] = enabled;
4320 4321

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4322
		values[n++] = running;
4323

4324
	if (leader != event)
4325 4326
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4327
	values[n++] = perf_event_count(leader);
4328
	if (read_format & PERF_FORMAT_ID)
4329
		values[n++] = primary_event_id(leader);
4330

4331
	__output_copy(handle, values, n * sizeof(u64));
4332

4333
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4334 4335
		n = 0;

4336
		if (sub != event)
4337 4338
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4339
		values[n++] = perf_event_count(sub);
4340
		if (read_format & PERF_FORMAT_ID)
4341
			values[n++] = primary_event_id(sub);
4342

4343
		__output_copy(handle, values, n * sizeof(u64));
4344 4345 4346
	}
}

4347 4348 4349
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4350
static void perf_output_read(struct perf_output_handle *handle,
4351
			     struct perf_event *event)
4352
{
4353
	u64 enabled = 0, running = 0, now;
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4365
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4366
		calc_timer_values(event, &now, &enabled, &running);
4367

4368
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4369
		perf_output_read_group(handle, event, enabled, running);
4370
	else
4371
		perf_output_read_one(handle, event, enabled, running);
4372 4373
}

4374 4375 4376
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4377
			struct perf_event *event)
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4408
		perf_output_read(handle, event);
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4419
			__output_copy(handle, data->callchain, size);
4420 4421 4422 4423 4424 4425 4426 4427 4428
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4429 4430
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4491 4492 4493 4494 4495

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
A
Andi Kleen 已提交
4496 4497 4498

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4499 4500 4501

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4502 4503 4504 4505
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4506
			 struct perf_event *event,
4507
			 struct pt_regs *regs)
4508
{
4509
	u64 sample_type = event->attr.sample_type;
4510

4511
	header->type = PERF_RECORD_SAMPLE;
4512
	header->size = sizeof(*header) + event->header_size;
4513 4514 4515

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4516

4517
	__perf_event_header__init_id(header, data, event);
4518

4519
	if (sample_type & PERF_SAMPLE_IP)
4520 4521
		data->ip = perf_instruction_pointer(regs);

4522
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4523
		int size = 1;
4524

4525
		data->callchain = perf_callchain(event, regs);
4526 4527 4528 4529 4530

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4531 4532
	}

4533
	if (sample_type & PERF_SAMPLE_RAW) {
4534 4535 4536 4537 4538 4539 4540 4541
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4542
		header->size += size;
4543
	}
4544 4545 4546 4547 4548 4549 4550 4551 4552

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4596
}
4597

4598
static void perf_event_output(struct perf_event *event,
4599 4600 4601 4602 4603
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4604

4605 4606 4607
	/* protect the callchain buffers */
	rcu_read_lock();

4608
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4609

4610
	if (perf_output_begin(&handle, event, header.size))
4611
		goto exit;
4612

4613
	perf_output_sample(&handle, &header, data, event);
4614

4615
	perf_output_end(&handle);
4616 4617 4618

exit:
	rcu_read_unlock();
4619 4620
}

4621
/*
4622
 * read event_id
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4633
perf_event_read_event(struct perf_event *event,
4634 4635 4636
			struct task_struct *task)
{
	struct perf_output_handle handle;
4637
	struct perf_sample_data sample;
4638
	struct perf_read_event read_event = {
4639
		.header = {
4640
			.type = PERF_RECORD_READ,
4641
			.misc = 0,
4642
			.size = sizeof(read_event) + event->read_size,
4643
		},
4644 4645
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4646
	};
4647
	int ret;
4648

4649
	perf_event_header__init_id(&read_event.header, &sample, event);
4650
	ret = perf_output_begin(&handle, event, read_event.header.size);
4651 4652 4653
	if (ret)
		return;

4654
	perf_output_put(&handle, read_event);
4655
	perf_output_read(&handle, event);
4656
	perf_event__output_id_sample(event, &handle, &sample);
4657

4658 4659 4660
	perf_output_end(&handle);
}

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_match_cb match,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		if (match(event, data))
			output(event, data);
	}
}

static void
perf_event_aux(perf_event_aux_match_cb match,
	       perf_event_aux_output_cb output,
	       void *data,
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_aux_ctx(ctx, match, output, data);
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
		perf_event_aux_ctx(task_ctx, match, output, data);
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4719
/*
P
Peter Zijlstra 已提交
4720 4721
 * task tracking -- fork/exit
 *
4722
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4723 4724
 */

P
Peter Zijlstra 已提交
4725
struct perf_task_event {
4726
	struct task_struct		*task;
4727
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4728 4729 4730 4731 4732 4733

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4734 4735
		u32				tid;
		u32				ptid;
4736
		u64				time;
4737
	} event_id;
P
Peter Zijlstra 已提交
4738 4739
};

4740
static void perf_event_task_output(struct perf_event *event,
4741
				   void *data)
P
Peter Zijlstra 已提交
4742
{
4743
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4744
	struct perf_output_handle handle;
4745
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4746
	struct task_struct *task = task_event->task;
4747
	int ret, size = task_event->event_id.header.size;
4748

4749
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4750

4751
	ret = perf_output_begin(&handle, event,
4752
				task_event->event_id.header.size);
4753
	if (ret)
4754
		goto out;
P
Peter Zijlstra 已提交
4755

4756 4757
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4758

4759 4760
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4761

4762
	perf_output_put(&handle, task_event->event_id);
4763

4764 4765
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4766
	perf_output_end(&handle);
4767 4768
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4769 4770
}

4771 4772
static int perf_event_task_match(struct perf_event *event,
				 void *data __maybe_unused)
P
Peter Zijlstra 已提交
4773
{
4774 4775
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
P
Peter Zijlstra 已提交
4776 4777
}

4778 4779
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4780
			      int new)
P
Peter Zijlstra 已提交
4781
{
P
Peter Zijlstra 已提交
4782
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4783

4784 4785 4786
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4787 4788
		return;

P
Peter Zijlstra 已提交
4789
	task_event = (struct perf_task_event){
4790 4791
		.task	  = task,
		.task_ctx = task_ctx,
4792
		.event_id    = {
P
Peter Zijlstra 已提交
4793
			.header = {
4794
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4795
				.misc = 0,
4796
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4797
			},
4798 4799
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4800 4801
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4802
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4803 4804 4805
		},
	};

4806 4807 4808 4809
	perf_event_aux(perf_event_task_match,
		       perf_event_task_output,
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4810 4811
}

4812
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4813
{
4814
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4815 4816
}

4817 4818 4819 4820 4821
/*
 * comm tracking
 */

struct perf_comm_event {
4822 4823
	struct task_struct	*task;
	char			*comm;
4824 4825 4826 4827 4828 4829 4830
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4831
	} event_id;
4832 4833
};

4834
static void perf_event_comm_output(struct perf_event *event,
4835
				   void *data)
4836
{
4837
	struct perf_comm_event *comm_event = data;
4838
	struct perf_output_handle handle;
4839
	struct perf_sample_data sample;
4840
	int size = comm_event->event_id.header.size;
4841 4842 4843 4844
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4845
				comm_event->event_id.header.size);
4846 4847

	if (ret)
4848
		goto out;
4849

4850 4851
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4852

4853
	perf_output_put(&handle, comm_event->event_id);
4854
	__output_copy(&handle, comm_event->comm,
4855
				   comm_event->comm_size);
4856 4857 4858

	perf_event__output_id_sample(event, &handle, &sample);

4859
	perf_output_end(&handle);
4860 4861
out:
	comm_event->event_id.header.size = size;
4862 4863
}

4864 4865
static int perf_event_comm_match(struct perf_event *event,
				 void *data __maybe_unused)
4866
{
4867
	return event->attr.comm;
4868 4869
}

4870
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4871
{
4872
	char comm[TASK_COMM_LEN];
4873 4874
	unsigned int size;

4875
	memset(comm, 0, sizeof(comm));
4876
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4877
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4878 4879 4880 4881

	comm_event->comm = comm;
	comm_event->comm_size = size;

4882
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4883

4884 4885 4886 4887
	perf_event_aux(perf_event_comm_match,
		       perf_event_comm_output,
		       comm_event,
		       NULL);
4888 4889
}

4890
void perf_event_comm(struct task_struct *task)
4891
{
4892
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4893 4894
	struct perf_event_context *ctx;
	int ctxn;
4895

4896
	rcu_read_lock();
P
Peter Zijlstra 已提交
4897 4898 4899 4900
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4901

P
Peter Zijlstra 已提交
4902 4903
		perf_event_enable_on_exec(ctx);
	}
4904
	rcu_read_unlock();
4905

4906
	if (!atomic_read(&nr_comm_events))
4907
		return;
4908

4909
	comm_event = (struct perf_comm_event){
4910
		.task	= task,
4911 4912
		/* .comm      */
		/* .comm_size */
4913
		.event_id  = {
4914
			.header = {
4915
				.type = PERF_RECORD_COMM,
4916 4917 4918 4919 4920
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4921 4922 4923
		},
	};

4924
	perf_event_comm_event(&comm_event);
4925 4926
}

4927 4928 4929 4930 4931
/*
 * mmap tracking
 */

struct perf_mmap_event {
4932 4933 4934 4935
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4936 4937 4938 4939 4940 4941 4942 4943 4944

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4945
	} event_id;
4946 4947
};

4948
static void perf_event_mmap_output(struct perf_event *event,
4949
				   void *data)
4950
{
4951
	struct perf_mmap_event *mmap_event = data;
4952
	struct perf_output_handle handle;
4953
	struct perf_sample_data sample;
4954
	int size = mmap_event->event_id.header.size;
4955
	int ret;
4956

4957 4958
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4959
				mmap_event->event_id.header.size);
4960
	if (ret)
4961
		goto out;
4962

4963 4964
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4965

4966
	perf_output_put(&handle, mmap_event->event_id);
4967
	__output_copy(&handle, mmap_event->file_name,
4968
				   mmap_event->file_size);
4969 4970 4971

	perf_event__output_id_sample(event, &handle, &sample);

4972
	perf_output_end(&handle);
4973 4974
out:
	mmap_event->event_id.header.size = size;
4975 4976
}

4977
static int perf_event_mmap_match(struct perf_event *event,
4978
				 void *data)
4979
{
4980 4981 4982
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;
4983

4984 4985
	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
4986 4987
}

4988
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4989
{
4990 4991
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4992 4993 4994
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4995
	const char *name;
4996

4997 4998
	memset(tmp, 0, sizeof(tmp));

4999
	if (file) {
5000
		/*
5001
		 * d_path works from the end of the rb backwards, so we
5002 5003 5004 5005
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5006 5007 5008 5009
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
5010
		name = d_path(&file->f_path, buf, PATH_MAX);
5011 5012 5013 5014 5015
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
5016 5017
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5018 5019
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
5020
			goto got_name;
5021
		}
5022 5023 5024 5025

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
5026 5027 5028 5029 5030 5031 5032 5033
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
5034 5035
		}

5036 5037 5038 5039 5040
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
5041
	size = ALIGN(strlen(name)+1, sizeof(u64));
5042 5043 5044 5045

	mmap_event->file_name = name;
	mmap_event->file_size = size;

5046 5047 5048
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5049
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5050

5051 5052 5053 5054
	perf_event_aux(perf_event_mmap_match,
		       perf_event_mmap_output,
		       mmap_event,
		       NULL);
5055

5056 5057 5058
	kfree(buf);
}

5059
void perf_event_mmap(struct vm_area_struct *vma)
5060
{
5061 5062
	struct perf_mmap_event mmap_event;

5063
	if (!atomic_read(&nr_mmap_events))
5064 5065 5066
		return;

	mmap_event = (struct perf_mmap_event){
5067
		.vma	= vma,
5068 5069
		/* .file_name */
		/* .file_size */
5070
		.event_id  = {
5071
			.header = {
5072
				.type = PERF_RECORD_MMAP,
5073
				.misc = PERF_RECORD_MISC_USER,
5074 5075 5076 5077
				/* .size */
			},
			/* .pid */
			/* .tid */
5078 5079
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5080
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5081 5082 5083
		},
	};

5084
	perf_event_mmap_event(&mmap_event);
5085 5086
}

5087 5088 5089 5090
/*
 * IRQ throttle logging
 */

5091
static void perf_log_throttle(struct perf_event *event, int enable)
5092 5093
{
	struct perf_output_handle handle;
5094
	struct perf_sample_data sample;
5095 5096 5097 5098 5099
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5100
		u64				id;
5101
		u64				stream_id;
5102 5103
	} throttle_event = {
		.header = {
5104
			.type = PERF_RECORD_THROTTLE,
5105 5106 5107
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5108
		.time		= perf_clock(),
5109 5110
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5111 5112
	};

5113
	if (enable)
5114
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5115

5116 5117 5118
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5119
				throttle_event.header.size);
5120 5121 5122 5123
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5124
	perf_event__output_id_sample(event, &handle, &sample);
5125 5126 5127
	perf_output_end(&handle);
}

5128
/*
5129
 * Generic event overflow handling, sampling.
5130 5131
 */

5132
static int __perf_event_overflow(struct perf_event *event,
5133 5134
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5135
{
5136 5137
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5138
	u64 seq;
5139 5140
	int ret = 0;

5141 5142 5143 5144 5145 5146 5147
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5148 5149 5150 5151 5152 5153 5154 5155 5156
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5157 5158
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5159 5160
			ret = 1;
		}
5161
	}
5162

5163
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5164
		u64 now = perf_clock();
5165
		s64 delta = now - hwc->freq_time_stamp;
5166

5167
		hwc->freq_time_stamp = now;
5168

5169
		if (delta > 0 && delta < 2*TICK_NSEC)
5170
			perf_adjust_period(event, delta, hwc->last_period, true);
5171 5172
	}

5173 5174
	/*
	 * XXX event_limit might not quite work as expected on inherited
5175
	 * events
5176 5177
	 */

5178 5179
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5180
		ret = 1;
5181
		event->pending_kill = POLL_HUP;
5182 5183
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5184 5185
	}

5186
	if (event->overflow_handler)
5187
		event->overflow_handler(event, data, regs);
5188
	else
5189
		perf_event_output(event, data, regs);
5190

P
Peter Zijlstra 已提交
5191
	if (event->fasync && event->pending_kill) {
5192 5193
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5194 5195
	}

5196
	return ret;
5197 5198
}

5199
int perf_event_overflow(struct perf_event *event,
5200 5201
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5202
{
5203
	return __perf_event_overflow(event, 1, data, regs);
5204 5205
}

5206
/*
5207
 * Generic software event infrastructure
5208 5209
 */

5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5221
/*
5222 5223
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5224 5225 5226 5227
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5228
u64 perf_swevent_set_period(struct perf_event *event)
5229
{
5230
	struct hw_perf_event *hwc = &event->hw;
5231 5232 5233 5234 5235
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5236 5237

again:
5238
	old = val = local64_read(&hwc->period_left);
5239 5240
	if (val < 0)
		return 0;
5241

5242 5243 5244
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5245
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5246
		goto again;
5247

5248
	return nr;
5249 5250
}

5251
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5252
				    struct perf_sample_data *data,
5253
				    struct pt_regs *regs)
5254
{
5255
	struct hw_perf_event *hwc = &event->hw;
5256
	int throttle = 0;
5257

5258 5259
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5260

5261 5262
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5263

5264
	for (; overflow; overflow--) {
5265
		if (__perf_event_overflow(event, throttle,
5266
					    data, regs)) {
5267 5268 5269 5270 5271 5272
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5273
		throttle = 1;
5274
	}
5275 5276
}

P
Peter Zijlstra 已提交
5277
static void perf_swevent_event(struct perf_event *event, u64 nr,
5278
			       struct perf_sample_data *data,
5279
			       struct pt_regs *regs)
5280
{
5281
	struct hw_perf_event *hwc = &event->hw;
5282

5283
	local64_add(nr, &event->count);
5284

5285 5286 5287
	if (!regs)
		return;

5288
	if (!is_sampling_event(event))
5289
		return;
5290

5291 5292 5293 5294 5295 5296
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5297
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5298
		return perf_swevent_overflow(event, 1, data, regs);
5299

5300
	if (local64_add_negative(nr, &hwc->period_left))
5301
		return;
5302

5303
	perf_swevent_overflow(event, 0, data, regs);
5304 5305
}

5306 5307 5308
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5309
	if (event->hw.state & PERF_HES_STOPPED)
5310
		return 1;
P
Peter Zijlstra 已提交
5311

5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5323
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5324
				enum perf_type_id type,
L
Li Zefan 已提交
5325 5326 5327
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5328
{
5329
	if (event->attr.type != type)
5330
		return 0;
5331

5332
	if (event->attr.config != event_id)
5333 5334
		return 0;

5335 5336
	if (perf_exclude_event(event, regs))
		return 0;
5337 5338 5339 5340

	return 1;
}

5341 5342 5343 5344 5345 5346 5347
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5348 5349
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5350
{
5351 5352 5353 5354
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5355

5356 5357
/* For the read side: events when they trigger */
static inline struct hlist_head *
5358
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5359 5360
{
	struct swevent_hlist *hlist;
5361

5362
	hlist = rcu_dereference(swhash->swevent_hlist);
5363 5364 5365
	if (!hlist)
		return NULL;

5366 5367 5368 5369 5370
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5371
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5382
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5383 5384 5385 5386 5387
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5388 5389 5390
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5391
				    u64 nr,
5392 5393
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5394
{
5395
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5396
	struct perf_event *event;
5397
	struct hlist_head *head;
5398

5399
	rcu_read_lock();
5400
	head = find_swevent_head_rcu(swhash, type, event_id);
5401 5402 5403
	if (!head)
		goto end;

5404
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5405
		if (perf_swevent_match(event, type, event_id, data, regs))
5406
			perf_swevent_event(event, nr, data, regs);
5407
	}
5408 5409
end:
	rcu_read_unlock();
5410 5411
}

5412
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5413
{
5414
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5415

5416
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5417
}
I
Ingo Molnar 已提交
5418
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5419

5420
inline void perf_swevent_put_recursion_context(int rctx)
5421
{
5422
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5423

5424
	put_recursion_context(swhash->recursion, rctx);
5425
}
5426

5427
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5428
{
5429
	struct perf_sample_data data;
5430 5431
	int rctx;

5432
	preempt_disable_notrace();
5433 5434 5435
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5436

5437
	perf_sample_data_init(&data, addr, 0);
5438

5439
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5440 5441

	perf_swevent_put_recursion_context(rctx);
5442
	preempt_enable_notrace();
5443 5444
}

5445
static void perf_swevent_read(struct perf_event *event)
5446 5447 5448
{
}

P
Peter Zijlstra 已提交
5449
static int perf_swevent_add(struct perf_event *event, int flags)
5450
{
5451
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5452
	struct hw_perf_event *hwc = &event->hw;
5453 5454
	struct hlist_head *head;

5455
	if (is_sampling_event(event)) {
5456
		hwc->last_period = hwc->sample_period;
5457
		perf_swevent_set_period(event);
5458
	}
5459

P
Peter Zijlstra 已提交
5460 5461
	hwc->state = !(flags & PERF_EF_START);

5462
	head = find_swevent_head(swhash, event);
5463 5464 5465 5466 5467
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5468 5469 5470
	return 0;
}

P
Peter Zijlstra 已提交
5471
static void perf_swevent_del(struct perf_event *event, int flags)
5472
{
5473
	hlist_del_rcu(&event->hlist_entry);
5474 5475
}

P
Peter Zijlstra 已提交
5476
static void perf_swevent_start(struct perf_event *event, int flags)
5477
{
P
Peter Zijlstra 已提交
5478
	event->hw.state = 0;
5479
}
I
Ingo Molnar 已提交
5480

P
Peter Zijlstra 已提交
5481
static void perf_swevent_stop(struct perf_event *event, int flags)
5482
{
P
Peter Zijlstra 已提交
5483
	event->hw.state = PERF_HES_STOPPED;
5484 5485
}

5486 5487
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5488
swevent_hlist_deref(struct swevent_htable *swhash)
5489
{
5490 5491
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5492 5493
}

5494
static void swevent_hlist_release(struct swevent_htable *swhash)
5495
{
5496
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5497

5498
	if (!hlist)
5499 5500
		return;

5501
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5502
	kfree_rcu(hlist, rcu_head);
5503 5504 5505 5506
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5507
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5508

5509
	mutex_lock(&swhash->hlist_mutex);
5510

5511 5512
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5513

5514
	mutex_unlock(&swhash->hlist_mutex);
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5532
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5533 5534
	int err = 0;

5535
	mutex_lock(&swhash->hlist_mutex);
5536

5537
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5538 5539 5540 5541 5542 5543 5544
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5545
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5546
	}
5547
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5548
exit:
5549
	mutex_unlock(&swhash->hlist_mutex);
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5573
fail:
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5584
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5585

5586 5587 5588
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5589

5590 5591
	WARN_ON(event->parent);

5592
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5593 5594 5595 5596 5597
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5598
	u64 event_id = event->attr.config;
5599 5600 5601 5602

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5603 5604 5605 5606 5607 5608
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5609 5610 5611 5612 5613 5614 5615 5616 5617
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5618
	if (event_id >= PERF_COUNT_SW_MAX)
5619 5620 5621 5622 5623 5624 5625 5626 5627
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5628
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5629 5630 5631 5632 5633 5634
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5635 5636 5637 5638 5639
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5640
static struct pmu perf_swevent = {
5641
	.task_ctx_nr	= perf_sw_context,
5642

5643
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5644 5645 5646 5647
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5648
	.read		= perf_swevent_read,
5649 5650

	.event_idx	= perf_swevent_event_idx,
5651 5652
};

5653 5654
#ifdef CONFIG_EVENT_TRACING

5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5669 5670
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5671 5672 5673 5674
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5675 5676 5677 5678 5679 5680 5681 5682 5683
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5684 5685
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5686 5687
{
	struct perf_sample_data data;
5688 5689
	struct perf_event *event;

5690 5691 5692 5693 5694
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5695
	perf_sample_data_init(&data, addr, 0);
5696 5697
	data.raw = &raw;

5698
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5699
		if (perf_tp_event_match(event, &data, regs))
5700
			perf_swevent_event(event, count, &data, regs);
5701
	}
5702

5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5728
	perf_swevent_put_recursion_context(rctx);
5729 5730 5731
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5732
static void tp_perf_event_destroy(struct perf_event *event)
5733
{
5734
	perf_trace_destroy(event);
5735 5736
}

5737
static int perf_tp_event_init(struct perf_event *event)
5738
{
5739 5740
	int err;

5741 5742 5743
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5744 5745 5746 5747 5748 5749
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5750 5751
	err = perf_trace_init(event);
	if (err)
5752
		return err;
5753

5754
	event->destroy = tp_perf_event_destroy;
5755

5756 5757 5758 5759
	return 0;
}

static struct pmu perf_tracepoint = {
5760 5761
	.task_ctx_nr	= perf_sw_context,

5762
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5763 5764 5765 5766
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5767
	.read		= perf_swevent_read,
5768 5769

	.event_idx	= perf_swevent_event_idx,
5770 5771 5772 5773
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5774
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5775
}
L
Li Zefan 已提交
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5800
#else
L
Li Zefan 已提交
5801

5802
static inline void perf_tp_register(void)
5803 5804
{
}
L
Li Zefan 已提交
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5815
#endif /* CONFIG_EVENT_TRACING */
5816

5817
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5818
void perf_bp_event(struct perf_event *bp, void *data)
5819
{
5820 5821 5822
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5823
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5824

P
Peter Zijlstra 已提交
5825
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5826
		perf_swevent_event(bp, 1, &sample, regs);
5827 5828 5829
}
#endif

5830 5831 5832
/*
 * hrtimer based swevent callback
 */
5833

5834
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5835
{
5836 5837 5838 5839 5840
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5841

5842
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5843 5844 5845 5846

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5847
	event->pmu->read(event);
5848

5849
	perf_sample_data_init(&data, 0, event->hw.last_period);
5850 5851 5852
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5853
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5854
			if (__perf_event_overflow(event, 1, &data, regs))
5855 5856
				ret = HRTIMER_NORESTART;
	}
5857

5858 5859
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5860

5861
	return ret;
5862 5863
}

5864
static void perf_swevent_start_hrtimer(struct perf_event *event)
5865
{
5866
	struct hw_perf_event *hwc = &event->hw;
5867 5868 5869 5870
	s64 period;

	if (!is_sampling_event(event))
		return;
5871

5872 5873 5874 5875
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5876

5877 5878 5879 5880 5881
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5882
				ns_to_ktime(period), 0,
5883
				HRTIMER_MODE_REL_PINNED, 0);
5884
}
5885 5886

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5887
{
5888 5889
	struct hw_perf_event *hwc = &event->hw;

5890
	if (is_sampling_event(event)) {
5891
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5892
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5893 5894 5895

		hrtimer_cancel(&hwc->hrtimer);
	}
5896 5897
}

P
Peter Zijlstra 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5918
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5919 5920 5921 5922
		event->attr.freq = 0;
	}
}

5923 5924 5925 5926 5927
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5928
{
5929 5930 5931
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5932
	now = local_clock();
5933 5934
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5935 5936
}

P
Peter Zijlstra 已提交
5937
static void cpu_clock_event_start(struct perf_event *event, int flags)
5938
{
P
Peter Zijlstra 已提交
5939
	local64_set(&event->hw.prev_count, local_clock());
5940 5941 5942
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5943
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5944
{
5945 5946 5947
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5948

P
Peter Zijlstra 已提交
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5962 5963 5964 5965
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5966

5967 5968 5969 5970 5971 5972 5973 5974
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5975 5976 5977 5978 5979 5980
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5981 5982
	perf_swevent_init_hrtimer(event);

5983
	return 0;
5984 5985
}

5986
static struct pmu perf_cpu_clock = {
5987 5988
	.task_ctx_nr	= perf_sw_context,

5989
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5990 5991 5992 5993
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5994
	.read		= cpu_clock_event_read,
5995 5996

	.event_idx	= perf_swevent_event_idx,
5997 5998 5999 6000 6001 6002 6003
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6004
{
6005 6006
	u64 prev;
	s64 delta;
6007

6008 6009 6010 6011
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6012

P
Peter Zijlstra 已提交
6013
static void task_clock_event_start(struct perf_event *event, int flags)
6014
{
P
Peter Zijlstra 已提交
6015
	local64_set(&event->hw.prev_count, event->ctx->time);
6016 6017 6018
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6019
static void task_clock_event_stop(struct perf_event *event, int flags)
6020 6021 6022
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6023 6024 6025 6026 6027 6028
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6029

P
Peter Zijlstra 已提交
6030 6031 6032 6033 6034 6035
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6036 6037 6038 6039
}

static void task_clock_event_read(struct perf_event *event)
{
6040 6041 6042
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6043 6044 6045 6046 6047

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6048
{
6049 6050 6051 6052 6053 6054
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6055 6056 6057 6058 6059 6060
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6061 6062
	perf_swevent_init_hrtimer(event);

6063
	return 0;
L
Li Zefan 已提交
6064 6065
}

6066
static struct pmu perf_task_clock = {
6067 6068
	.task_ctx_nr	= perf_sw_context,

6069
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6070 6071 6072 6073
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6074
	.read		= task_clock_event_read,
6075 6076

	.event_idx	= perf_swevent_event_idx,
6077
};
L
Li Zefan 已提交
6078

P
Peter Zijlstra 已提交
6079
static void perf_pmu_nop_void(struct pmu *pmu)
6080 6081
{
}
L
Li Zefan 已提交
6082

P
Peter Zijlstra 已提交
6083
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6084
{
P
Peter Zijlstra 已提交
6085
	return 0;
L
Li Zefan 已提交
6086 6087
}

P
Peter Zijlstra 已提交
6088
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6089
{
P
Peter Zijlstra 已提交
6090
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6091 6092
}

P
Peter Zijlstra 已提交
6093 6094 6095 6096 6097
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6098

P
Peter Zijlstra 已提交
6099
static void perf_pmu_cancel_txn(struct pmu *pmu)
6100
{
P
Peter Zijlstra 已提交
6101
	perf_pmu_enable(pmu);
6102 6103
}

6104 6105 6106 6107 6108
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6109 6110 6111 6112 6113
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6114
{
P
Peter Zijlstra 已提交
6115
	struct pmu *pmu;
6116

P
Peter Zijlstra 已提交
6117 6118
	if (ctxn < 0)
		return NULL;
6119

P
Peter Zijlstra 已提交
6120 6121 6122 6123
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6124

P
Peter Zijlstra 已提交
6125
	return NULL;
6126 6127
}

6128
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6129
{
6130 6131 6132 6133 6134 6135 6136
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6137 6138
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6139 6140 6141 6142 6143 6144
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6145

P
Peter Zijlstra 已提交
6146
	mutex_lock(&pmus_lock);
6147
	/*
P
Peter Zijlstra 已提交
6148
	 * Like a real lame refcount.
6149
	 */
6150 6151 6152
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6153
			goto out;
6154
		}
P
Peter Zijlstra 已提交
6155
	}
6156

6157
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6158 6159
out:
	mutex_unlock(&pmus_lock);
6160
}
P
Peter Zijlstra 已提交
6161
static struct idr pmu_idr;
6162

P
Peter Zijlstra 已提交
6163 6164 6165 6166 6167 6168 6169 6170
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

#define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store)

P
Peter Zijlstra 已提交
6217
static struct device_attribute pmu_dev_attrs[] = {
6218 6219 6220
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6242
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6263
static struct lock_class_key cpuctx_mutex;
6264
static struct lock_class_key cpuctx_lock;
6265

6266
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6267
{
P
Peter Zijlstra 已提交
6268
	int cpu, ret;
6269

6270
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6271 6272 6273 6274
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6275

P
Peter Zijlstra 已提交
6276 6277 6278 6279 6280 6281
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6282 6283 6284
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6285 6286 6287 6288 6289
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6290 6291 6292 6293 6294 6295
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6296
skip_type:
P
Peter Zijlstra 已提交
6297 6298 6299
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6300

W
Wei Yongjun 已提交
6301
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6302 6303
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6304
		goto free_dev;
6305

P
Peter Zijlstra 已提交
6306 6307 6308 6309
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6310
		__perf_event_init_context(&cpuctx->ctx);
6311
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6312
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6313
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6314
		cpuctx->ctx.pmu = pmu;
6315 6316 6317

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6318
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6319
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6320
	}
6321

P
Peter Zijlstra 已提交
6322
got_cpu_context:
P
Peter Zijlstra 已提交
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6337
		}
6338
	}
6339

P
Peter Zijlstra 已提交
6340 6341 6342 6343 6344
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6345 6346 6347
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6348
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6349 6350
	ret = 0;
unlock:
6351 6352
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6353
	return ret;
P
Peter Zijlstra 已提交
6354

P
Peter Zijlstra 已提交
6355 6356 6357 6358
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6359 6360 6361 6362
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6363 6364 6365
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6366 6367
}

6368
void perf_pmu_unregister(struct pmu *pmu)
6369
{
6370 6371 6372
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6373

6374
	/*
P
Peter Zijlstra 已提交
6375 6376
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6377
	 */
6378
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6379
	synchronize_rcu();
6380

P
Peter Zijlstra 已提交
6381
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6382 6383
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6384 6385
	device_del(pmu->dev);
	put_device(pmu->dev);
6386
	free_pmu_context(pmu);
6387
}
6388

6389 6390 6391 6392
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6393
	int ret;
6394 6395

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6396 6397 6398 6399

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6400
	if (pmu) {
6401
		event->pmu = pmu;
6402 6403 6404
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6405
		goto unlock;
6406
	}
P
Peter Zijlstra 已提交
6407

6408
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6409
		event->pmu = pmu;
6410
		ret = pmu->event_init(event);
6411
		if (!ret)
P
Peter Zijlstra 已提交
6412
			goto unlock;
6413

6414 6415
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6416
			goto unlock;
6417
		}
6418
	}
P
Peter Zijlstra 已提交
6419 6420
	pmu = ERR_PTR(-ENOENT);
unlock:
6421
	srcu_read_unlock(&pmus_srcu, idx);
6422

6423
	return pmu;
6424 6425
}

T
Thomas Gleixner 已提交
6426
/*
6427
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6428
 */
6429
static struct perf_event *
6430
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6431 6432 6433
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6434 6435
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6436
{
P
Peter Zijlstra 已提交
6437
	struct pmu *pmu;
6438 6439
	struct perf_event *event;
	struct hw_perf_event *hwc;
6440
	long err;
T
Thomas Gleixner 已提交
6441

6442 6443 6444 6445 6446
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6447
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6448
	if (!event)
6449
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6450

6451
	/*
6452
	 * Single events are their own group leaders, with an
6453 6454 6455
	 * empty sibling list:
	 */
	if (!group_leader)
6456
		group_leader = event;
6457

6458 6459
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6460

6461 6462 6463
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6464 6465
	INIT_LIST_HEAD(&event->rb_entry);

6466
	init_waitqueue_head(&event->waitq);
6467
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6468

6469
	mutex_init(&event->mmap_mutex);
6470

6471
	atomic_long_set(&event->refcount, 1);
6472 6473 6474 6475 6476
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6477

6478
	event->parent		= parent_event;
6479

6480
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6481
	event->id		= atomic64_inc_return(&perf_event_id);
6482

6483
	event->state		= PERF_EVENT_STATE_INACTIVE;
6484

6485 6486
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6487 6488 6489

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6490 6491 6492 6493
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6494
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6495 6496 6497 6498
			event->hw.bp_target = task;
#endif
	}

6499
	if (!overflow_handler && parent_event) {
6500
		overflow_handler = parent_event->overflow_handler;
6501 6502
		context = parent_event->overflow_handler_context;
	}
6503

6504
	event->overflow_handler	= overflow_handler;
6505
	event->overflow_handler_context = context;
6506

J
Jiri Olsa 已提交
6507
	perf_event__state_init(event);
6508

6509
	pmu = NULL;
6510

6511
	hwc = &event->hw;
6512
	hwc->sample_period = attr->sample_period;
6513
	if (attr->freq && attr->sample_freq)
6514
		hwc->sample_period = 1;
6515
	hwc->last_period = hwc->sample_period;
6516

6517
	local64_set(&hwc->period_left, hwc->sample_period);
6518

6519
	/*
6520
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6521
	 */
6522
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6523 6524
		goto done;

6525
	pmu = perf_init_event(event);
6526

6527 6528
done:
	err = 0;
6529
	if (!pmu)
6530
		err = -EINVAL;
6531 6532
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6533

6534
	if (err) {
6535 6536 6537
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6538
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6539
	}
6540

6541
	if (!event->parent) {
6542
		if (event->attach_state & PERF_ATTACH_TASK)
6543
			static_key_slow_inc(&perf_sched_events.key);
6544
		if (event->attr.mmap || event->attr.mmap_data)
6545 6546 6547 6548 6549
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6550 6551 6552 6553 6554 6555 6556
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6557 6558 6559 6560 6561 6562
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6563
	}
6564

6565
	return event;
T
Thomas Gleixner 已提交
6566 6567
}

6568 6569
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6570 6571
{
	u32 size;
6572
	int ret;
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6597 6598 6599
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6600 6601
	 */
	if (size > sizeof(*attr)) {
6602 6603 6604
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6605

6606 6607
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6608

6609
		for (; addr < end; addr++) {
6610 6611 6612 6613 6614 6615
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6616
		size = sizeof(*attr);
6617 6618 6619 6620 6621 6622
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6623
	if (attr->__reserved_1)
6624 6625 6626 6627 6628 6629 6630 6631
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6660 6661
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6662 6663
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6664
	}
6665

6666
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6667
		ret = perf_reg_validate(attr->sample_regs_user);
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6686

6687 6688 6689 6690 6691 6692 6693 6694 6695
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6696 6697
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6698
{
6699
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6700 6701
	int ret = -EINVAL;

6702
	if (!output_event)
6703 6704
		goto set;

6705 6706
	/* don't allow circular references */
	if (event == output_event)
6707 6708
		goto out;

6709 6710 6711 6712 6713 6714 6715
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6716
	 * If its not a per-cpu rb, it must be the same task.
6717 6718 6719 6720
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6721
set:
6722
	mutex_lock(&event->mmap_mutex);
6723 6724 6725
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6726

6727 6728
	old_rb = event->rb;

6729
	if (output_event) {
6730 6731 6732
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6733
			goto unlock;
6734 6735
	}

6736 6737
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6754
	ret = 0;
6755 6756 6757
unlock:
	mutex_unlock(&event->mmap_mutex);

6758 6759 6760 6761
out:
	return ret;
}

T
Thomas Gleixner 已提交
6762
/**
6763
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6764
 *
6765
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6766
 * @pid:		target pid
I
Ingo Molnar 已提交
6767
 * @cpu:		target cpu
6768
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6769
 */
6770 6771
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6772
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6773
{
6774 6775
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6776 6777 6778
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6779
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6780
	struct task_struct *task = NULL;
6781
	struct pmu *pmu;
6782
	int event_fd;
6783
	int move_group = 0;
6784
	int err;
T
Thomas Gleixner 已提交
6785

6786
	/* for future expandability... */
S
Stephane Eranian 已提交
6787
	if (flags & ~PERF_FLAG_ALL)
6788 6789
		return -EINVAL;

6790 6791 6792
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6793

6794 6795 6796 6797 6798
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6799
	if (attr.freq) {
6800
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6801 6802 6803
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6813
	event_fd = get_unused_fd();
6814 6815 6816
	if (event_fd < 0)
		return event_fd;

6817
	if (group_fd != -1) {
6818 6819
		err = perf_fget_light(group_fd, &group);
		if (err)
6820
			goto err_fd;
6821
		group_leader = group.file->private_data;
6822 6823 6824 6825 6826 6827
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6828
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6829 6830 6831 6832 6833 6834 6835
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6836 6837
	get_online_cpus();

6838 6839
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6840 6841
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6842
		goto err_task;
6843 6844
	}

S
Stephane Eranian 已提交
6845 6846 6847 6848
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6849 6850 6851 6852 6853 6854
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6855
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6856 6857
	}

6858 6859 6860 6861 6862
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6886 6887 6888 6889

	/*
	 * Get the target context (task or percpu):
	 */
6890
	ctx = find_get_context(pmu, task, event->cpu);
6891 6892
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6893
		goto err_alloc;
6894 6895
	}

6896 6897 6898 6899 6900
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6901
	/*
6902
	 * Look up the group leader (we will attach this event to it):
6903
	 */
6904
	if (group_leader) {
6905
		err = -EINVAL;
6906 6907

		/*
I
Ingo Molnar 已提交
6908 6909 6910 6911
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6912
			goto err_context;
I
Ingo Molnar 已提交
6913 6914 6915
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6916
		 */
6917 6918 6919 6920 6921 6922 6923 6924
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6925 6926 6927
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6928
		if (attr.exclusive || attr.pinned)
6929
			goto err_context;
6930 6931 6932 6933 6934
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6935
			goto err_context;
6936
	}
T
Thomas Gleixner 已提交
6937

6938 6939 6940
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6941
		goto err_context;
6942
	}
6943

6944 6945 6946 6947
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6948
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6949 6950 6951 6952 6953 6954 6955

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6956 6957
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6958
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6959
			perf_event__state_init(sibling);
6960 6961 6962 6963
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6964
	}
6965

6966
	WARN_ON_ONCE(ctx->parent_ctx);
6967
	mutex_lock(&ctx->mutex);
6968 6969

	if (move_group) {
6970
		synchronize_rcu();
6971
		perf_install_in_context(ctx, group_leader, event->cpu);
6972 6973 6974
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6975
			perf_install_in_context(ctx, sibling, event->cpu);
6976 6977 6978 6979
			get_ctx(ctx);
		}
	}

6980
	perf_install_in_context(ctx, event, event->cpu);
6981
	++ctx->generation;
6982
	perf_unpin_context(ctx);
6983
	mutex_unlock(&ctx->mutex);
6984

6985 6986
	put_online_cpus();

6987
	event->owner = current;
P
Peter Zijlstra 已提交
6988

6989 6990 6991
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6992

6993 6994 6995 6996
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6997
	perf_event__id_header_size(event);
6998

6999 7000 7001 7002 7003 7004
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7005
	fdput(group);
7006 7007
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7008

7009
err_context:
7010
	perf_unpin_context(ctx);
7011
	put_ctx(ctx);
7012
err_alloc:
7013
	free_event(event);
P
Peter Zijlstra 已提交
7014
err_task:
7015
	put_online_cpus();
P
Peter Zijlstra 已提交
7016 7017
	if (task)
		put_task_struct(task);
7018
err_group_fd:
7019
	fdput(group);
7020 7021
err_fd:
	put_unused_fd(event_fd);
7022
	return err;
T
Thomas Gleixner 已提交
7023 7024
}

7025 7026 7027 7028 7029
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7030
 * @task: task to profile (NULL for percpu)
7031 7032 7033
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7034
				 struct task_struct *task,
7035 7036
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7037 7038
{
	struct perf_event_context *ctx;
7039
	struct perf_event *event;
7040
	int err;
7041

7042 7043 7044
	/*
	 * Get the target context (task or percpu):
	 */
7045

7046 7047
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7048 7049 7050 7051
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7052

M
Matt Helsley 已提交
7053
	ctx = find_get_context(event->pmu, task, cpu);
7054 7055
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7056
		goto err_free;
7057
	}
7058 7059 7060 7061 7062

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
7063
	perf_unpin_context(ctx);
7064 7065 7066 7067
	mutex_unlock(&ctx->mutex);

	return event;

7068 7069 7070
err_free:
	free_event(event);
err:
7071
	return ERR_PTR(err);
7072
}
7073
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7074

7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7108
static void sync_child_event(struct perf_event *child_event,
7109
			       struct task_struct *child)
7110
{
7111
	struct perf_event *parent_event = child_event->parent;
7112
	u64 child_val;
7113

7114 7115
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7116

P
Peter Zijlstra 已提交
7117
	child_val = perf_event_count(child_event);
7118 7119 7120 7121

	/*
	 * Add back the child's count to the parent's count:
	 */
7122
	atomic64_add(child_val, &parent_event->child_count);
7123 7124 7125 7126
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7127 7128

	/*
7129
	 * Remove this event from the parent's list
7130
	 */
7131 7132 7133 7134
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7135 7136

	/*
7137
	 * Release the parent event, if this was the last
7138 7139
	 * reference to it.
	 */
7140
	put_event(parent_event);
7141 7142
}

7143
static void
7144 7145
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7146
			 struct task_struct *child)
7147
{
7148 7149 7150 7151 7152
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7153

7154
	perf_remove_from_context(child_event);
7155

7156
	/*
7157
	 * It can happen that the parent exits first, and has events
7158
	 * that are still around due to the child reference. These
7159
	 * events need to be zapped.
7160
	 */
7161
	if (child_event->parent) {
7162 7163
		sync_child_event(child_event, child);
		free_event(child_event);
7164
	}
7165 7166
}

P
Peter Zijlstra 已提交
7167
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7168
{
7169 7170
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7171
	unsigned long flags;
7172

P
Peter Zijlstra 已提交
7173
	if (likely(!child->perf_event_ctxp[ctxn])) {
7174
		perf_event_task(child, NULL, 0);
7175
		return;
P
Peter Zijlstra 已提交
7176
	}
7177

7178
	local_irq_save(flags);
7179 7180 7181 7182 7183 7184
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7185
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7186 7187 7188

	/*
	 * Take the context lock here so that if find_get_context is
7189
	 * reading child->perf_event_ctxp, we wait until it has
7190 7191
	 * incremented the context's refcount before we do put_ctx below.
	 */
7192
	raw_spin_lock(&child_ctx->lock);
7193
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7194
	child->perf_event_ctxp[ctxn] = NULL;
7195 7196 7197
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7198
	 * the events from it.
7199 7200
	 */
	unclone_ctx(child_ctx);
7201
	update_context_time(child_ctx);
7202
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7203 7204

	/*
7205 7206 7207
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7208
	 */
7209
	perf_event_task(child, child_ctx, 0);
7210

7211 7212 7213
	/*
	 * We can recurse on the same lock type through:
	 *
7214 7215
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7216 7217
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7218 7219 7220
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7221
	mutex_lock(&child_ctx->mutex);
7222

7223
again:
7224 7225 7226 7227 7228
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7229
				 group_entry)
7230
		__perf_event_exit_task(child_event, child_ctx, child);
7231 7232

	/*
7233
	 * If the last event was a group event, it will have appended all
7234 7235 7236
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7237 7238
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7239
		goto again;
7240 7241 7242 7243

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7244 7245
}

P
Peter Zijlstra 已提交
7246 7247 7248 7249 7250
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7251
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7252 7253
	int ctxn;

P
Peter Zijlstra 已提交
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7269 7270 7271 7272
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7285
	put_event(parent);
7286

7287
	perf_group_detach(event);
7288 7289 7290 7291
	list_del_event(event, ctx);
	free_event(event);
}

7292 7293
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7294
 * perf_event_init_task below, used by fork() in case of fail.
7295
 */
7296
void perf_event_free_task(struct task_struct *task)
7297
{
P
Peter Zijlstra 已提交
7298
	struct perf_event_context *ctx;
7299
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7300
	int ctxn;
7301

P
Peter Zijlstra 已提交
7302 7303 7304 7305
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7306

P
Peter Zijlstra 已提交
7307
		mutex_lock(&ctx->mutex);
7308
again:
P
Peter Zijlstra 已提交
7309 7310 7311
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7312

P
Peter Zijlstra 已提交
7313 7314 7315
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7316

P
Peter Zijlstra 已提交
7317 7318 7319
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7320

P
Peter Zijlstra 已提交
7321
		mutex_unlock(&ctx->mutex);
7322

P
Peter Zijlstra 已提交
7323 7324
		put_ctx(ctx);
	}
7325 7326
}

7327 7328 7329 7330 7331 7332 7333 7334
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7347
	unsigned long flags;
P
Peter Zijlstra 已提交
7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7360
					   child,
P
Peter Zijlstra 已提交
7361
					   group_leader, parent_event,
7362
				           NULL, NULL);
P
Peter Zijlstra 已提交
7363 7364
	if (IS_ERR(child_event))
		return child_event;
7365 7366 7367 7368 7369 7370

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7395 7396
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7397

7398 7399 7400 7401
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7402
	perf_event__id_header_size(child_event);
7403

P
Peter Zijlstra 已提交
7404 7405 7406
	/*
	 * Link it up in the child's context:
	 */
7407
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7408
	add_event_to_ctx(child_event, child_ctx);
7409
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7443 7444 7445 7446 7447
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7448
		   struct task_struct *child, int ctxn,
7449 7450 7451
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7452
	struct perf_event_context *child_ctx;
7453 7454 7455 7456

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7457 7458
	}

7459
	child_ctx = child->perf_event_ctxp[ctxn];
7460 7461 7462 7463 7464 7465 7466
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7467

7468
		child_ctx = alloc_perf_context(event->pmu, child);
7469 7470
		if (!child_ctx)
			return -ENOMEM;
7471

P
Peter Zijlstra 已提交
7472
		child->perf_event_ctxp[ctxn] = child_ctx;
7473 7474 7475 7476 7477 7478 7479 7480 7481
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7482 7483
}

7484
/*
7485
 * Initialize the perf_event context in task_struct
7486
 */
P
Peter Zijlstra 已提交
7487
int perf_event_init_context(struct task_struct *child, int ctxn)
7488
{
7489
	struct perf_event_context *child_ctx, *parent_ctx;
7490 7491
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7492
	struct task_struct *parent = current;
7493
	int inherited_all = 1;
7494
	unsigned long flags;
7495
	int ret = 0;
7496

P
Peter Zijlstra 已提交
7497
	if (likely(!parent->perf_event_ctxp[ctxn]))
7498 7499
		return 0;

7500
	/*
7501 7502
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7503
	 */
P
Peter Zijlstra 已提交
7504
	parent_ctx = perf_pin_task_context(parent, ctxn);
7505

7506 7507 7508 7509 7510 7511 7512
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7513 7514 7515 7516
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7517
	mutex_lock(&parent_ctx->mutex);
7518 7519 7520 7521 7522

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7523
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7524 7525
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7526 7527 7528
		if (ret)
			break;
	}
7529

7530 7531 7532 7533 7534 7535 7536 7537 7538
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7539
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7540 7541
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7542
		if (ret)
7543
			break;
7544 7545
	}

7546 7547 7548
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7549
	child_ctx = child->perf_event_ctxp[ctxn];
7550

7551
	if (child_ctx && inherited_all) {
7552 7553 7554
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7555 7556 7557
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7558
		 */
P
Peter Zijlstra 已提交
7559
		cloned_ctx = parent_ctx->parent_ctx;
7560 7561
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7562
			child_ctx->parent_gen = parent_ctx->parent_gen;
7563 7564 7565 7566 7567
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7568 7569
	}

P
Peter Zijlstra 已提交
7570
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7571
	mutex_unlock(&parent_ctx->mutex);
7572

7573
	perf_unpin_context(parent_ctx);
7574
	put_ctx(parent_ctx);
7575

7576
	return ret;
7577 7578
}

P
Peter Zijlstra 已提交
7579 7580 7581 7582 7583 7584 7585
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7586 7587 7588 7589
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7590 7591 7592 7593 7594 7595 7596 7597 7598
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7599 7600
static void __init perf_event_init_all_cpus(void)
{
7601
	struct swevent_htable *swhash;
7602 7603 7604
	int cpu;

	for_each_possible_cpu(cpu) {
7605 7606
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7607
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7608 7609 7610
	}
}

7611
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7612
{
P
Peter Zijlstra 已提交
7613
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7614

7615
	mutex_lock(&swhash->hlist_mutex);
7616
	if (swhash->hlist_refcount > 0) {
7617 7618
		struct swevent_hlist *hlist;

7619 7620 7621
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7622
	}
7623
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7624 7625
}

P
Peter Zijlstra 已提交
7626
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7627
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7628
{
7629 7630 7631 7632 7633 7634 7635
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7636
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7637
{
P
Peter Zijlstra 已提交
7638
	struct perf_event_context *ctx = __info;
7639
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7640

P
Peter Zijlstra 已提交
7641
	perf_pmu_rotate_stop(ctx->pmu);
7642

7643
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7644
		__perf_remove_from_context(event);
7645
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7646
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7647
}
P
Peter Zijlstra 已提交
7648 7649 7650 7651 7652 7653 7654 7655 7656

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7657
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7658 7659 7660 7661 7662 7663 7664 7665

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7666
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7667
{
7668
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7669

7670 7671 7672
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7673

P
Peter Zijlstra 已提交
7674
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7675 7676
}
#else
7677
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7678 7679
#endif

P
Peter Zijlstra 已提交
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7700 7701 7702 7703 7704
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7705
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7706 7707

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7708
	case CPU_DOWN_FAILED:
7709
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7710 7711
		break;

P
Peter Zijlstra 已提交
7712
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7713
	case CPU_DOWN_PREPARE:
7714
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7715 7716 7717 7718 7719 7720 7721 7722
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7723
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7724
{
7725 7726
	int ret;

P
Peter Zijlstra 已提交
7727 7728
	idr_init(&pmu_idr);

7729
	perf_event_init_all_cpus();
7730
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7731 7732 7733
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7734 7735
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7736
	register_reboot_notifier(&perf_reboot_notifier);
7737 7738 7739

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7740 7741 7742

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7743 7744 7745 7746 7747 7748 7749

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7750
}
P
Peter Zijlstra 已提交
7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7779 7780

#ifdef CONFIG_CGROUP_PERF
7781
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7782 7783 7784
{
	struct perf_cgroup *jc;

7785
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7798
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7799 7800
{
	struct perf_cgroup *jc;
7801
	jc = container_of(cgroup_css(cont, perf_subsys_id),
S
Stephane Eranian 已提交
7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7814
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7815
{
7816 7817 7818 7819
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7820 7821
}

7822 7823
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7824 7825 7826 7827 7828 7829 7830 7831 7832
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7833
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7834 7835 7836
}

struct cgroup_subsys perf_subsys = {
7837 7838
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7839 7840
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7841
	.exit		= perf_cgroup_exit,
7842
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7843 7844
};
#endif /* CONFIG_CGROUP_PERF */