core.c 221.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
89
task_function_call(struct task_struct *p, remote_function_f func, void *info)
90 91
{
	struct remote_function_call data = {
92 93 94 95
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
113
static int cpu_function_call(int cpu, remote_function_f func, void *info)
114 115
{
	struct remote_function_call data = {
116 117 118 119
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
120 121 122 123 124 125 126
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

127 128 129 130 131 132 133 134
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
135
{
136 137 138 139 140 141 142 143 144 145 146 147 148
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

149 150 151 152
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
153
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214 215 216 217
		if (ctx->task != current) {
			ret = -EAGAIN;
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278 279
		return;
	}

again:
280 281 282
	if (task == TASK_TOMBSTONE)
		return;

283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291 292 293 294 295 296 297
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
	if (task != TASK_TOMBSTONE) {
		if (ctx->is_active) {
			raw_spin_unlock_irq(&ctx->lock);
			goto again;
		}
		func(event, NULL, ctx, data);
298 299 300 301
	}
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
302 303
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
304 305
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
306

307 308 309 310 311 312 313
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

314 315 316 317 318 319
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
320 321 322 323
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
324 325 326 327 328 329 330

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
331
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
332
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
333

334 335 336
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
337
static atomic_t nr_freq_events __read_mostly;
338
static atomic_t nr_switch_events __read_mostly;
339

P
Peter Zijlstra 已提交
340 341 342 343
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

344
/*
345
 * perf event paranoia level:
346 347
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
348
 *   1 - disallow cpu events for unpriv
349
 *   2 - disallow kernel profiling for unpriv
350
 */
351
int sysctl_perf_event_paranoid __read_mostly = 1;
352

353 354
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
355 356

/*
357
 * max perf event sample rate
358
 */
359 360 361 362 363 364 365 366 367
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
368 369
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
370

371
static void update_perf_cpu_limits(void)
372 373 374 375
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
376
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
377
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
378
}
P
Peter Zijlstra 已提交
379

380 381
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
382 383 384 385
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
386
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
387 388 389 390 391

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
410 411 412

	return 0;
}
413

414 415 416 417 418 419 420
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
421
static DEFINE_PER_CPU(u64, running_sample_length);
422

423
static void perf_duration_warn(struct irq_work *w)
424
{
425
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
426
	u64 avg_local_sample_len;
427
	u64 local_samples_len;
428

429
	local_samples_len = __this_cpu_read(running_sample_length);
430 431 432 433 434
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
435
			avg_local_sample_len, allowed_ns >> 1,
436 437 438 439 440 441 442
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
443
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
444 445
	u64 avg_local_sample_len;
	u64 local_samples_len;
446

P
Peter Zijlstra 已提交
447
	if (allowed_ns == 0)
448 449 450
		return;

	/* decay the counter by 1 average sample */
451
	local_samples_len = __this_cpu_read(running_sample_length);
452 453
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
454
	__this_cpu_write(running_sample_length, local_samples_len);
455 456 457 458 459 460 461 462

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
463
	if (avg_local_sample_len <= allowed_ns)
464 465 466 467 468 469 470 471 472 473
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
474

475 476 477 478 479 480
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
481 482
}

483
static atomic64_t perf_event_id;
484

485 486 487 488
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
489 490 491 492 493
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
494

495
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
496

497
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
498
{
499
	return "pmu";
T
Thomas Gleixner 已提交
500 501
}

502 503 504 505 506
static inline u64 perf_clock(void)
{
	return local_clock();
}

507 508 509 510 511
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
512 513 514 515 516 517 518 519
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
536 537 538 539
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
540
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
579 580
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
581
	/*
582 583
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
584
	 */
585
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
586 587
		return;

588
	cgrp = perf_cgroup_from_task(current, event->ctx);
589 590 591 592 593
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
594 595 596
}

static inline void
597 598
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
599 600 601 602
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

603 604 605 606 607 608
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
609 610
		return;

611
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
612
	info = this_cpu_ptr(cgrp->info);
613
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
614 615 616 617 618 619 620 621 622 623 624
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
625
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
645 646
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
647 648 649 650 651 652 653 654 655

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
656 657
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
658 659 660 661 662 663 664 665 666 667 668

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
669
				WARN_ON_ONCE(cpuctx->cgrp);
670 671 672 673
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
674 675
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
676
				 */
677
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
678 679
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
680 681
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
682 683 684 685 686 687
		}
	}

	local_irq_restore(flags);
}

688 689
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
690
{
691 692 693
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

694
	rcu_read_lock();
695 696
	/*
	 * we come here when we know perf_cgroup_events > 0
697 698
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
699
	 */
700
	cgrp1 = perf_cgroup_from_task(task, NULL);
701
	cgrp2 = perf_cgroup_from_task(next, NULL);
702 703 704 705 706 707 708 709

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
710 711

	rcu_read_unlock();
S
Stephane Eranian 已提交
712 713
}

714 715
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
716
{
717 718 719
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

720
	rcu_read_lock();
721 722
	/*
	 * we come here when we know perf_cgroup_events > 0
723 724
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
725
	 */
726 727
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
728 729 730 731 732 733 734 735

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
736 737

	rcu_read_unlock();
S
Stephane Eranian 已提交
738 739 740 741 742 743 744 745
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
746 747
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
748

749
	if (!f.file)
S
Stephane Eranian 已提交
750 751
		return -EBADF;

A
Al Viro 已提交
752
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
753
					 &perf_event_cgrp_subsys);
754 755 756 757
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
771
out:
772
	fdput(f);
S
Stephane Eranian 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

846 847
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
848 849 850
{
}

851 852
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
853 854 855 856 857 858 859 860 861 862 863
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
864 865
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

896 897 898 899 900 901 902 903
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
904
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
905 906 907 908 909 910 911 912 913
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
914 915
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
916
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
917 918 919
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
920

P
Peter Zijlstra 已提交
921
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
922 923
}

924
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
925
{
926
	struct hrtimer *timer = &cpuctx->hrtimer;
927
	struct pmu *pmu = cpuctx->ctx.pmu;
928
	u64 interval;
929 930 931 932 933

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

934 935 936 937
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
938 939 940
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
941

942
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
943

P
Peter Zijlstra 已提交
944 945
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
946
	timer->function = perf_mux_hrtimer_handler;
947 948
}

949
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
950
{
951
	struct hrtimer *timer = &cpuctx->hrtimer;
952
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
953
	unsigned long flags;
954 955 956

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
957
		return 0;
958

P
Peter Zijlstra 已提交
959 960 961 962 963 964 965
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
966

967
	return 0;
968 969
}

P
Peter Zijlstra 已提交
970
void perf_pmu_disable(struct pmu *pmu)
971
{
P
Peter Zijlstra 已提交
972 973 974
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
975 976
}

P
Peter Zijlstra 已提交
977
void perf_pmu_enable(struct pmu *pmu)
978
{
P
Peter Zijlstra 已提交
979 980 981
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
982 983
}

984
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
985 986

/*
987 988 989 990
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
991
 */
992
static void perf_event_ctx_activate(struct perf_event_context *ctx)
993
{
994
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
995

996
	WARN_ON(!irqs_disabled());
997

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1010 1011
}

1012
static void get_ctx(struct perf_event_context *ctx)
1013
{
1014
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1026
static void put_ctx(struct perf_event_context *ctx)
1027
{
1028 1029 1030
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1031
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1032
			put_task_struct(ctx->task);
1033
		call_rcu(&ctx->rcu_head, free_ctx);
1034
	}
1035 1036
}

P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1044 1045 1046 1047
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1048 1049
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1093
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1094 1095 1096
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1097 1098
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1111
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1121 1122 1123 1124 1125 1126
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1127 1128 1129 1130 1131 1132 1133
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1134 1135 1136 1137 1138 1139 1140
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1141
{
1142 1143 1144 1145 1146
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1147
		ctx->parent_ctx = NULL;
1148
	ctx->generation++;
1149 1150

	return parent_ctx;
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1175
/*
1176
 * If we inherit events we want to return the parent event id
1177 1178
 * to userspace.
 */
1179
static u64 primary_event_id(struct perf_event *event)
1180
{
1181
	u64 id = event->id;
1182

1183 1184
	if (event->parent)
		id = event->parent->id;
1185 1186 1187 1188

	return id;
}

1189
/*
1190
 * Get the perf_event_context for a task and lock it.
1191
 *
1192 1193 1194
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1195
static struct perf_event_context *
P
Peter Zijlstra 已提交
1196
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1197
{
1198
	struct perf_event_context *ctx;
1199

P
Peter Zijlstra 已提交
1200
retry:
1201 1202 1203
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1204
	 * part of the read side critical section was irqs-enabled -- see
1205 1206 1207
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1208
	 * side critical section has interrupts disabled.
1209
	 */
1210
	local_irq_save(*flags);
1211
	rcu_read_lock();
P
Peter Zijlstra 已提交
1212
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1213 1214 1215 1216
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1217
		 * perf_event_task_sched_out, though the
1218 1219 1220 1221 1222 1223
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1224
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1225
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1226
			raw_spin_unlock(&ctx->lock);
1227
			rcu_read_unlock();
1228
			local_irq_restore(*flags);
1229 1230
			goto retry;
		}
1231

1232 1233
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1234
			raw_spin_unlock(&ctx->lock);
1235
			ctx = NULL;
P
Peter Zijlstra 已提交
1236 1237
		} else {
			WARN_ON_ONCE(ctx->task != task);
1238
		}
1239 1240
	}
	rcu_read_unlock();
1241 1242
	if (!ctx)
		local_irq_restore(*flags);
1243 1244 1245 1246 1247 1248 1249 1250
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1251 1252
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1253
{
1254
	struct perf_event_context *ctx;
1255 1256
	unsigned long flags;

P
Peter Zijlstra 已提交
1257
	ctx = perf_lock_task_context(task, ctxn, &flags);
1258 1259
	if (ctx) {
		++ctx->pin_count;
1260
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1261 1262 1263 1264
	}
	return ctx;
}

1265
static void perf_unpin_context(struct perf_event_context *ctx)
1266 1267 1268
{
	unsigned long flags;

1269
	raw_spin_lock_irqsave(&ctx->lock, flags);
1270
	--ctx->pin_count;
1271
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1272 1273
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1285 1286 1287
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1288 1289 1290 1291

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1292 1293 1294
	return ctx ? ctx->time : 0;
}

1295 1296
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1297
 * The caller of this function needs to hold the ctx->lock.
1298 1299 1300 1301 1302 1303 1304 1305 1306
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1318
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1319 1320
	else if (ctx->is_active)
		run_end = ctx->time;
1321 1322 1323 1324
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1325 1326 1327 1328

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1329
		run_end = perf_event_time(event);
1330 1331

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1332

1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1347 1348 1349 1350 1351 1352 1353 1354 1355
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1356
/*
1357
 * Add a event from the lists for its context.
1358 1359
 * Must be called with ctx->mutex and ctx->lock held.
 */
1360
static void
1361
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1362
{
P
Peter Zijlstra 已提交
1363 1364
	lockdep_assert_held(&ctx->lock);

1365 1366
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1367 1368

	/*
1369 1370 1371
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1372
	 */
1373
	if (event->group_leader == event) {
1374 1375
		struct list_head *list;

1376 1377 1378
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1379 1380
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1381
	}
P
Peter Zijlstra 已提交
1382

1383
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1384 1385
		ctx->nr_cgroups++;

1386 1387 1388
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1389
		ctx->nr_stat++;
1390 1391

	ctx->generation++;
1392 1393
}

J
Jiri Olsa 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1403
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1419
		nr += nr_siblings;
1420 1421 1422 1423 1424 1425 1426
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1427
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1428 1429 1430 1431 1432 1433 1434
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1435 1436 1437 1438 1439 1440
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1441 1442 1443
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1444 1445 1446
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1447 1448 1449
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1450 1451 1452
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1453 1454 1455
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1467 1468 1469 1470 1471 1472
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1473 1474 1475 1476 1477 1478
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1479 1480 1481
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1491
	event->id_header_size = size;
1492 1493
}

P
Peter Zijlstra 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1515 1516
static void perf_group_attach(struct perf_event *event)
{
1517
	struct perf_event *group_leader = event->group_leader, *pos;
1518

P
Peter Zijlstra 已提交
1519 1520 1521 1522 1523 1524
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1525 1526 1527 1528 1529
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1530 1531
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1532 1533 1534 1535 1536 1537
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1538 1539 1540 1541 1542

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1543 1544
}

1545
/*
1546
 * Remove a event from the lists for its context.
1547
 * Must be called with ctx->mutex and ctx->lock held.
1548
 */
1549
static void
1550
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1551
{
1552
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1553 1554 1555 1556

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1557 1558 1559 1560
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1561
		return;
1562 1563 1564

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1565
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1566
		ctx->nr_cgroups--;
1567 1568 1569 1570
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1571 1572
		cpuctx = __get_cpu_context(ctx);
		/*
1573 1574
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1575 1576 1577 1578
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1579

1580 1581
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1582
		ctx->nr_stat--;
1583

1584
	list_del_rcu(&event->event_entry);
1585

1586 1587
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1588

1589
	update_group_times(event);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1600 1601

	ctx->generation++;
1602 1603
}

1604
static void perf_group_detach(struct perf_event *event)
1605 1606
{
	struct perf_event *sibling, *tmp;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1623
		goto out;
1624 1625 1626 1627
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1628

1629
	/*
1630 1631
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1632
	 * to whatever list we are on.
1633
	 */
1634
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1635 1636
		if (list)
			list_move_tail(&sibling->group_entry, list);
1637
		sibling->group_leader = sibling;
1638 1639 1640

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1641 1642

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1643
	}
1644 1645 1646 1647 1648 1649

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1650 1651
}

1652 1653
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1654
	return event->state == PERF_EVENT_STATE_DEAD;
1655 1656
}

1657 1658 1659 1660 1661 1662
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1663 1664 1665
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1666
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1667
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1668 1669
}

1670 1671
static void
event_sched_out(struct perf_event *event,
1672
		  struct perf_cpu_context *cpuctx,
1673
		  struct perf_event_context *ctx)
1674
{
1675
	u64 tstamp = perf_event_time(event);
1676
	u64 delta;
P
Peter Zijlstra 已提交
1677 1678 1679 1680

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1681 1682 1683 1684 1685 1686 1687 1688
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1689
		delta = tstamp - event->tstamp_stopped;
1690
		event->tstamp_running += delta;
1691
		event->tstamp_stopped = tstamp;
1692 1693
	}

1694
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1695
		return;
1696

1697 1698
	perf_pmu_disable(event->pmu);

1699 1700 1701 1702
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1703
	}
1704
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1705
	event->pmu->del(event, 0);
1706
	event->oncpu = -1;
1707

1708
	if (!is_software_event(event))
1709
		cpuctx->active_oncpu--;
1710 1711
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1712 1713
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1714
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1715
		cpuctx->exclusive = 0;
1716 1717

	perf_pmu_enable(event->pmu);
1718 1719
}

1720
static void
1721
group_sched_out(struct perf_event *group_event,
1722
		struct perf_cpu_context *cpuctx,
1723
		struct perf_event_context *ctx)
1724
{
1725
	struct perf_event *event;
1726
	int state = group_event->state;
1727

1728
	event_sched_out(group_event, cpuctx, ctx);
1729 1730 1731 1732

	/*
	 * Schedule out siblings (if any):
	 */
1733 1734
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1735

1736
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1737 1738 1739
		cpuctx->exclusive = 0;
}

1740
#define DETACH_GROUP	0x01UL
1741

T
Thomas Gleixner 已提交
1742
/*
1743
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1744
 *
1745
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1746 1747
 * remove it from the context list.
 */
1748 1749 1750 1751 1752
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1753
{
1754
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1755

1756
	event_sched_out(event, cpuctx, ctx);
1757
	if (flags & DETACH_GROUP)
1758
		perf_group_detach(event);
1759
	list_del_event(event, ctx);
1760 1761

	if (!ctx->nr_events && ctx->is_active) {
1762
		ctx->is_active = 0;
1763 1764 1765 1766
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1767
	}
T
Thomas Gleixner 已提交
1768 1769 1770
}

/*
1771
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1772
 *
1773 1774
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1775 1776
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1777
 * When called from perf_event_exit_task, it's OK because the
1778
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1779
 */
1780
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1781
{
1782
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1783

1784
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1785 1786
}

1787
/*
1788
 * Cross CPU call to disable a performance event
1789
 */
1790 1791 1792 1793
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1794
{
1795 1796
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1797

1798 1799 1800 1801 1802 1803 1804 1805
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1806 1807
}

1808
/*
1809
 * Disable a event.
1810
 *
1811 1812
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1813
 * remains valid.  This condition is satisifed when called through
1814 1815
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1816 1817
 * goes to exit will block in perf_event_exit_event().
 *
1818
 * When called from perf_pending_event it's OK because event->ctx
1819
 * is the current context on this CPU and preemption is disabled,
1820
 * hence we can't get into perf_event_task_sched_out for this context.
1821
 */
P
Peter Zijlstra 已提交
1822
static void _perf_event_disable(struct perf_event *event)
1823
{
1824
	struct perf_event_context *ctx = event->ctx;
1825

1826
	raw_spin_lock_irq(&ctx->lock);
1827
	if (event->state <= PERF_EVENT_STATE_OFF) {
1828
		raw_spin_unlock_irq(&ctx->lock);
1829
		return;
1830
	}
1831
	raw_spin_unlock_irq(&ctx->lock);
1832

1833 1834 1835 1836 1837 1838
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1839
}
P
Peter Zijlstra 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1853
EXPORT_SYMBOL_GPL(perf_event_disable);
1854

S
Stephane Eranian 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1890 1891 1892
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1893
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1894

1895
static int
1896
event_sched_in(struct perf_event *event,
1897
		 struct perf_cpu_context *cpuctx,
1898
		 struct perf_event_context *ctx)
1899
{
1900
	u64 tstamp = perf_event_time(event);
1901
	int ret = 0;
1902

1903 1904
	lockdep_assert_held(&ctx->lock);

1905
	if (event->state <= PERF_EVENT_STATE_OFF)
1906 1907
		return 0;

1908
	event->state = PERF_EVENT_STATE_ACTIVE;
1909
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1921 1922 1923 1924 1925
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1926 1927
	perf_pmu_disable(event->pmu);

1928 1929
	perf_set_shadow_time(event, ctx, tstamp);

1930 1931
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1932
	if (event->pmu->add(event, PERF_EF_START)) {
1933 1934
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1935 1936
		ret = -EAGAIN;
		goto out;
1937 1938
	}

1939 1940
	event->tstamp_running += tstamp - event->tstamp_stopped;

1941
	if (!is_software_event(event))
1942
		cpuctx->active_oncpu++;
1943 1944
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1945 1946
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1947

1948
	if (event->attr.exclusive)
1949 1950
		cpuctx->exclusive = 1;

1951 1952 1953 1954
out:
	perf_pmu_enable(event->pmu);

	return ret;
1955 1956
}

1957
static int
1958
group_sched_in(struct perf_event *group_event,
1959
	       struct perf_cpu_context *cpuctx,
1960
	       struct perf_event_context *ctx)
1961
{
1962
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1963
	struct pmu *pmu = ctx->pmu;
1964 1965
	u64 now = ctx->time;
	bool simulate = false;
1966

1967
	if (group_event->state == PERF_EVENT_STATE_OFF)
1968 1969
		return 0;

1970
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1971

1972
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1973
		pmu->cancel_txn(pmu);
1974
		perf_mux_hrtimer_restart(cpuctx);
1975
		return -EAGAIN;
1976
	}
1977 1978 1979 1980

	/*
	 * Schedule in siblings as one group (if any):
	 */
1981
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1982
		if (event_sched_in(event, cpuctx, ctx)) {
1983
			partial_group = event;
1984 1985 1986 1987
			goto group_error;
		}
	}

1988
	if (!pmu->commit_txn(pmu))
1989
		return 0;
1990

1991 1992 1993 1994
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2005
	 */
2006 2007
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2008 2009 2010 2011 2012 2013 2014 2015
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2016
	}
2017
	event_sched_out(group_event, cpuctx, ctx);
2018

P
Peter Zijlstra 已提交
2019
	pmu->cancel_txn(pmu);
2020

2021
	perf_mux_hrtimer_restart(cpuctx);
2022

2023 2024 2025
	return -EAGAIN;
}

2026
/*
2027
 * Work out whether we can put this event group on the CPU now.
2028
 */
2029
static int group_can_go_on(struct perf_event *event,
2030 2031 2032 2033
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2034
	 * Groups consisting entirely of software events can always go on.
2035
	 */
2036
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2037 2038 2039
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2040
	 * events can go on.
2041 2042 2043 2044 2045
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2046
	 * events on the CPU, it can't go on.
2047
	 */
2048
	if (event->attr.exclusive && cpuctx->active_oncpu)
2049 2050 2051 2052 2053 2054 2055 2056
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2057 2058
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2059
{
2060 2061
	u64 tstamp = perf_event_time(event);

2062
	list_add_event(event, ctx);
2063
	perf_group_attach(event);
2064 2065 2066
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2067 2068
}

2069 2070
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2071 2072 2073 2074 2075
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2089 2090
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2091
{
2092 2093 2094 2095 2096 2097
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2098 2099
}

T
Thomas Gleixner 已提交
2100
/*
2101
 * Cross CPU call to install and enable a performance event
2102 2103
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2104
 */
2105
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2106
{
2107
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2108
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2109
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
T
Thomas Gleixner 已提交
2110

2111
	raw_spin_lock(&cpuctx->ctx.lock);
2112
	if (ctx->task) {
2113
		raw_spin_lock(&ctx->lock);
2114 2115 2116 2117
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
2118
		task_ctx = ctx;
2119
		if (ctx->task != current)
2120
			goto unlock;
2121

2122 2123 2124 2125
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2126 2127
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2128
	}
2129

2130
	ctx_resched(cpuctx, task_ctx);
2131
unlock:
2132
	perf_ctx_unlock(cpuctx, task_ctx);
2133 2134

	return 0;
T
Thomas Gleixner 已提交
2135 2136 2137
}

/*
2138
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2139 2140
 */
static void
2141 2142
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2143 2144
			int cpu)
{
2145 2146
	struct task_struct *task = NULL;

2147 2148
	lockdep_assert_held(&ctx->mutex);

2149
	event->ctx = ctx;
2150 2151
	if (event->cpu != -1)
		event->cpu = cpu;
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
2163
	task = ctx->task;
2164

2165
	/*
2166 2167 2168 2169 2170
	 * If between ctx = find_get_context() and mutex_lock(&ctx->mutex) the
	 * ctx gets destroyed, we must not install an event into it.
	 *
	 * This is normally tested for after we acquire the mutex, so this is
	 * a sanity check.
2171
	 */
2172
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2173 2174 2175
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2176 2177 2178 2179 2180 2181

	if (ctx->is_active) {
		update_context_time(ctx);
		update_cgrp_time_from_event(event);
	}

2182 2183 2184 2185 2186 2187 2188
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2189 2190
}

2191
/*
2192
 * Put a event into inactive state and update time fields.
2193 2194 2195 2196 2197 2198
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2199
static void __perf_event_mark_enabled(struct perf_event *event)
2200
{
2201
	struct perf_event *sub;
2202
	u64 tstamp = perf_event_time(event);
2203

2204
	event->state = PERF_EVENT_STATE_INACTIVE;
2205
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2206
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2207 2208
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2209
	}
2210 2211
}

2212
/*
2213
 * Cross CPU call to enable a performance event
2214
 */
2215 2216 2217 2218
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2219
{
2220
	struct perf_event *leader = event->group_leader;
2221
	struct perf_event_context *task_ctx;
2222

P
Peter Zijlstra 已提交
2223 2224
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2225
		return;
2226

2227
	update_context_time(ctx);
2228
	__perf_event_mark_enabled(event);
2229

2230 2231 2232
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2233
	if (!event_filter_match(event)) {
2234 2235
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2236
			perf_cgroup_defer_enabled(event);
2237 2238
		}
		return;
S
Stephane Eranian 已提交
2239
	}
2240

2241
	/*
2242
	 * If the event is in a group and isn't the group leader,
2243
	 * then don't put it on unless the group is on.
2244
	 */
2245
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2246
		return;
2247

2248 2249 2250
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2251

2252
	ctx_resched(cpuctx, task_ctx);
2253 2254
}

2255
/*
2256
 * Enable a event.
2257
 *
2258 2259
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2260
 * remains valid.  This condition is satisfied when called through
2261 2262
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2263
 */
P
Peter Zijlstra 已提交
2264
static void _perf_event_enable(struct perf_event *event)
2265
{
2266
	struct perf_event_context *ctx = event->ctx;
2267

2268
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2269 2270
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2271
		raw_spin_unlock_irq(&ctx->lock);
2272 2273 2274 2275
		return;
	}

	/*
2276
	 * If the event is in error state, clear that first.
2277 2278 2279 2280
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2281
	 */
2282 2283
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2284
	raw_spin_unlock_irq(&ctx->lock);
2285

2286
	event_function_call(event, __perf_event_enable, NULL);
2287
}
P
Peter Zijlstra 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2300
EXPORT_SYMBOL_GPL(perf_event_enable);
2301

P
Peter Zijlstra 已提交
2302
static int _perf_event_refresh(struct perf_event *event, int refresh)
2303
{
2304
	/*
2305
	 * not supported on inherited events
2306
	 */
2307
	if (event->attr.inherit || !is_sampling_event(event))
2308 2309
		return -EINVAL;

2310
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2311
	_perf_event_enable(event);
2312 2313

	return 0;
2314
}
P
Peter Zijlstra 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2330
EXPORT_SYMBOL_GPL(perf_event_refresh);
2331

2332 2333 2334
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2335
{
2336
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2337
	struct perf_event *event;
2338

P
Peter Zijlstra 已提交
2339
	lockdep_assert_held(&ctx->lock);
2340

2341 2342 2343 2344 2345 2346 2347
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2348
		return;
2349 2350
	}

2351
	ctx->is_active &= ~event_type;
2352 2353 2354 2355 2356
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2357

2358
	update_context_time(ctx);
S
Stephane Eranian 已提交
2359
	update_cgrp_time_from_cpuctx(cpuctx);
2360
	if (!ctx->nr_active)
2361
		return;
2362

P
Peter Zijlstra 已提交
2363
	perf_pmu_disable(ctx->pmu);
2364
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2365 2366
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2367
	}
2368

2369
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2370
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2371
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2372
	}
P
Peter Zijlstra 已提交
2373
	perf_pmu_enable(ctx->pmu);
2374 2375
}

2376
/*
2377 2378 2379 2380 2381 2382
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2383
 */
2384 2385
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2386
{
2387 2388 2389
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2412 2413
}

2414 2415
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2416 2417 2418
{
	u64 value;

2419
	if (!event->attr.inherit_stat)
2420 2421 2422
		return;

	/*
2423
	 * Update the event value, we cannot use perf_event_read()
2424 2425
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2426
	 * we know the event must be on the current CPU, therefore we
2427 2428
	 * don't need to use it.
	 */
2429 2430
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2431 2432
		event->pmu->read(event);
		/* fall-through */
2433

2434 2435
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2436 2437 2438 2439 2440 2441 2442
		break;

	default:
		break;
	}

	/*
2443
	 * In order to keep per-task stats reliable we need to flip the event
2444 2445
	 * values when we flip the contexts.
	 */
2446 2447 2448
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2449

2450 2451
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2452

2453
	/*
2454
	 * Since we swizzled the values, update the user visible data too.
2455
	 */
2456 2457
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2458 2459
}

2460 2461
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2462
{
2463
	struct perf_event *event, *next_event;
2464 2465 2466 2467

	if (!ctx->nr_stat)
		return;

2468 2469
	update_context_time(ctx);

2470 2471
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2472

2473 2474
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2475

2476 2477
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2478

2479
		__perf_event_sync_stat(event, next_event);
2480

2481 2482
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2483 2484 2485
	}
}

2486 2487
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2488
{
P
Peter Zijlstra 已提交
2489
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2490
	struct perf_event_context *next_ctx;
2491
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2492
	struct perf_cpu_context *cpuctx;
2493
	int do_switch = 1;
T
Thomas Gleixner 已提交
2494

P
Peter Zijlstra 已提交
2495 2496
	if (likely(!ctx))
		return;
2497

P
Peter Zijlstra 已提交
2498 2499
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2500 2501
		return;

2502
	rcu_read_lock();
P
Peter Zijlstra 已提交
2503
	next_ctx = next->perf_event_ctxp[ctxn];
2504 2505 2506 2507 2508 2509 2510
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2511
	if (!parent && !next_parent)
2512 2513 2514
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2515 2516 2517 2518 2519 2520 2521 2522 2523
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2524 2525
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2526
		if (context_equiv(ctx, next_ctx)) {
2527 2528
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2529 2530 2531

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2542
			do_switch = 0;
2543

2544
			perf_event_sync_stat(ctx, next_ctx);
2545
		}
2546 2547
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2548
	}
2549
unlock:
2550
	rcu_read_unlock();
2551

2552
	if (do_switch) {
2553
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2554
		task_ctx_sched_out(cpuctx, ctx);
2555
		raw_spin_unlock(&ctx->lock);
2556
	}
T
Thomas Gleixner 已提交
2557 2558
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2609 2610 2611
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2626 2627
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2628 2629 2630
{
	int ctxn;

2631 2632 2633
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2634 2635 2636
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2637 2638
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2639 2640 2641 2642 2643 2644

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2645
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2646
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2647 2648
}

2649 2650
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2651
{
2652 2653
	if (!cpuctx->task_ctx)
		return;
2654 2655 2656 2657

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2658
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2659 2660
}

2661 2662 2663 2664 2665 2666 2667
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2668 2669
}

2670
static void
2671
ctx_pinned_sched_in(struct perf_event_context *ctx,
2672
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2673
{
2674
	struct perf_event *event;
T
Thomas Gleixner 已提交
2675

2676 2677
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2678
			continue;
2679
		if (!event_filter_match(event))
2680 2681
			continue;

S
Stephane Eranian 已提交
2682 2683 2684 2685
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2686
		if (group_can_go_on(event, cpuctx, 1))
2687
			group_sched_in(event, cpuctx, ctx);
2688 2689 2690 2691 2692

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2693 2694 2695
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2696
		}
2697
	}
2698 2699 2700 2701
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2702
		      struct perf_cpu_context *cpuctx)
2703 2704 2705
{
	struct perf_event *event;
	int can_add_hw = 1;
2706

2707 2708 2709
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2710
			continue;
2711 2712
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2713
		 * of events:
2714
		 */
2715
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2716 2717
			continue;

S
Stephane Eranian 已提交
2718 2719 2720 2721
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2722
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2723
			if (group_sched_in(event, cpuctx, ctx))
2724
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2725
		}
T
Thomas Gleixner 已提交
2726
	}
2727 2728 2729 2730 2731
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2732 2733
	     enum event_type_t event_type,
	     struct task_struct *task)
2734
{
2735
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2736 2737 2738
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2739

2740
	if (likely(!ctx->nr_events))
2741
		return;
2742

2743
	ctx->is_active |= event_type;
2744 2745 2746 2747 2748 2749 2750
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2751 2752
	now = perf_clock();
	ctx->timestamp = now;
2753
	perf_cgroup_set_timestamp(task, ctx);
2754 2755 2756 2757
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2758
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2759
		ctx_pinned_sched_in(ctx, cpuctx);
2760 2761

	/* Then walk through the lower prio flexible groups */
2762
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2763
		ctx_flexible_sched_in(ctx, cpuctx);
2764 2765
}

2766
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2767 2768
			     enum event_type_t event_type,
			     struct task_struct *task)
2769 2770 2771
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2772
	ctx_sched_in(ctx, cpuctx, event_type, task);
2773 2774
}

S
Stephane Eranian 已提交
2775 2776
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2777
{
P
Peter Zijlstra 已提交
2778
	struct perf_cpu_context *cpuctx;
2779

P
Peter Zijlstra 已提交
2780
	cpuctx = __get_cpu_context(ctx);
2781 2782 2783
	if (cpuctx->task_ctx == ctx)
		return;

2784
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2785
	perf_pmu_disable(ctx->pmu);
2786 2787 2788 2789 2790 2791
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2792
	perf_event_sched_in(cpuctx, ctx, task);
2793 2794
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2795 2796
}

P
Peter Zijlstra 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2808 2809
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2810 2811 2812 2813
{
	struct perf_event_context *ctx;
	int ctxn;

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2824 2825 2826 2827 2828
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2829
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2830
	}
2831

2832 2833 2834
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2835 2836
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2837 2838
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2866
#define REDUCE_FLS(a, b)		\
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2906 2907 2908
	if (!divisor)
		return dividend;

2909 2910 2911
	return div64_u64(dividend, divisor);
}

2912 2913 2914
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2915
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2916
{
2917
	struct hw_perf_event *hwc = &event->hw;
2918
	s64 period, sample_period;
2919 2920
	s64 delta;

2921
	period = perf_calculate_period(event, nsec, count);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2932

2933
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2934 2935 2936
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2937
		local64_set(&hwc->period_left, 0);
2938 2939 2940

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2941
	}
2942 2943
}

2944 2945 2946 2947 2948 2949 2950
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2951
{
2952 2953
	struct perf_event *event;
	struct hw_perf_event *hwc;
2954
	u64 now, period = TICK_NSEC;
2955
	s64 delta;
2956

2957 2958 2959 2960 2961 2962
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2963 2964
		return;

2965
	raw_spin_lock(&ctx->lock);
2966
	perf_pmu_disable(ctx->pmu);
2967

2968
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2969
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2970 2971
			continue;

2972
		if (!event_filter_match(event))
2973 2974
			continue;

2975 2976
		perf_pmu_disable(event->pmu);

2977
		hwc = &event->hw;
2978

2979
		if (hwc->interrupts == MAX_INTERRUPTS) {
2980
			hwc->interrupts = 0;
2981
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2982
			event->pmu->start(event, 0);
2983 2984
		}

2985
		if (!event->attr.freq || !event->attr.sample_freq)
2986
			goto next;
2987

2988 2989 2990 2991 2992
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2993
		now = local64_read(&event->count);
2994 2995
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2996

2997 2998 2999
		/*
		 * restart the event
		 * reload only if value has changed
3000 3001 3002
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3003
		 */
3004
		if (delta > 0)
3005
			perf_adjust_period(event, period, delta, false);
3006 3007

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3008 3009
	next:
		perf_pmu_enable(event->pmu);
3010
	}
3011

3012
	perf_pmu_enable(ctx->pmu);
3013
	raw_spin_unlock(&ctx->lock);
3014 3015
}

3016
/*
3017
 * Round-robin a context's events:
3018
 */
3019
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3020
{
3021 3022 3023 3024 3025 3026
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3027 3028
}

3029
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3030
{
P
Peter Zijlstra 已提交
3031
	struct perf_event_context *ctx = NULL;
3032
	int rotate = 0;
3033

3034 3035 3036 3037
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3038

P
Peter Zijlstra 已提交
3039
	ctx = cpuctx->task_ctx;
3040 3041 3042 3043
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3044

3045
	if (!rotate)
3046 3047
		goto done;

3048
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3049
	perf_pmu_disable(cpuctx->ctx.pmu);
3050

3051 3052 3053
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3054

3055 3056 3057
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3058

3059
	perf_event_sched_in(cpuctx, ctx, current);
3060

3061 3062
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3063
done:
3064 3065

	return rotate;
3066 3067
}

3068 3069 3070
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3071
	if (atomic_read(&nr_freq_events) ||
3072
	    __this_cpu_read(perf_throttled_count))
3073
		return false;
3074 3075
	else
		return true;
3076 3077 3078
}
#endif

3079 3080
void perf_event_task_tick(void)
{
3081 3082
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3083
	int throttled;
3084

3085 3086
	WARN_ON(!irqs_disabled());

3087 3088 3089
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3090
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3091
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3092 3093
}

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3104
	__perf_event_mark_enabled(event);
3105 3106 3107 3108

	return 1;
}

3109
/*
3110
 * Enable all of a task's events that have been marked enable-on-exec.
3111 3112
 * This expects task == current.
 */
3113
static void perf_event_enable_on_exec(int ctxn)
3114
{
3115
	struct perf_event_context *ctx, *clone_ctx = NULL;
3116
	struct perf_cpu_context *cpuctx;
3117
	struct perf_event *event;
3118 3119 3120 3121
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3122
	ctx = current->perf_event_ctxp[ctxn];
3123
	if (!ctx || !ctx->nr_events)
3124 3125
		goto out;

3126 3127 3128 3129
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3130 3131

	/*
3132
	 * Unclone and reschedule this context if we enabled any event.
3133
	 */
3134
	if (enabled) {
3135
		clone_ctx = unclone_ctx(ctx);
3136 3137 3138
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3139

P
Peter Zijlstra 已提交
3140
out:
3141
	local_irq_restore(flags);
3142 3143 3144

	if (clone_ctx)
		put_ctx(clone_ctx);
3145 3146
}

3147 3148 3149 3150 3151
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3152 3153
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3154 3155 3156
	rcu_read_unlock();
}

3157 3158 3159
struct perf_read_data {
	struct perf_event *event;
	bool group;
3160
	int ret;
3161 3162
};

T
Thomas Gleixner 已提交
3163
/*
3164
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3165
 */
3166
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3167
{
3168 3169
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3170
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3171
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3172
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3173

3174 3175 3176 3177
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3178 3179
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3180 3181 3182 3183
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3184
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3185
	if (ctx->is_active) {
3186
		update_context_time(ctx);
S
Stephane Eranian 已提交
3187 3188
		update_cgrp_time_from_event(event);
	}
3189

3190
	update_event_times(event);
3191 3192
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3193

3194 3195 3196
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3197
		goto unlock;
3198 3199 3200 3201 3202
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3203 3204 3205

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3206 3207 3208 3209 3210
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3211
			sub->pmu->read(sub);
3212
		}
3213
	}
3214 3215

	data->ret = pmu->commit_txn(pmu);
3216 3217

unlock:
3218
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3219 3220
}

P
Peter Zijlstra 已提交
3221 3222
static inline u64 perf_event_count(struct perf_event *event)
{
3223 3224 3225 3226
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3227 3228
}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3282
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3283
{
3284 3285
	int ret = 0;

T
Thomas Gleixner 已提交
3286
	/*
3287 3288
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3289
	 */
3290
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3291 3292 3293
		struct perf_read_data data = {
			.event = event,
			.group = group,
3294
			.ret = 0,
3295
		};
3296
		smp_call_function_single(event->oncpu,
3297
					 __perf_event_read, &data, 1);
3298
		ret = data.ret;
3299
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3300 3301 3302
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3303
		raw_spin_lock_irqsave(&ctx->lock, flags);
3304 3305 3306 3307 3308
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3309
		if (ctx->is_active) {
3310
			update_context_time(ctx);
S
Stephane Eranian 已提交
3311 3312
			update_cgrp_time_from_event(event);
		}
3313 3314 3315 3316
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3317
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3318
	}
3319 3320

	return ret;
T
Thomas Gleixner 已提交
3321 3322
}

3323
/*
3324
 * Initialize the perf_event context in a task_struct:
3325
 */
3326
static void __perf_event_init_context(struct perf_event_context *ctx)
3327
{
3328
	raw_spin_lock_init(&ctx->lock);
3329
	mutex_init(&ctx->mutex);
3330
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3331 3332
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3333 3334
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3350
	}
3351 3352 3353
	ctx->pmu = pmu;

	return ctx;
3354 3355
}

3356 3357 3358 3359 3360
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3361 3362

	rcu_read_lock();
3363
	if (!vpid)
T
Thomas Gleixner 已提交
3364 3365
		task = current;
	else
3366
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3367 3368 3369 3370 3371 3372 3373 3374
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3375
	err = -EACCES;
3376
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3377 3378
		goto errout;

3379 3380 3381 3382 3383 3384 3385
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3386 3387 3388
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3389
static struct perf_event_context *
3390 3391
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3392
{
3393
	struct perf_event_context *ctx, *clone_ctx = NULL;
3394
	struct perf_cpu_context *cpuctx;
3395
	void *task_ctx_data = NULL;
3396
	unsigned long flags;
P
Peter Zijlstra 已提交
3397
	int ctxn, err;
3398
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3399

3400
	if (!task) {
3401
		/* Must be root to operate on a CPU event: */
3402
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3403 3404 3405
			return ERR_PTR(-EACCES);

		/*
3406
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3407 3408 3409
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3410
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3411 3412
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3413
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3414
		ctx = &cpuctx->ctx;
3415
		get_ctx(ctx);
3416
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3417 3418 3419 3420

		return ctx;
	}

P
Peter Zijlstra 已提交
3421 3422 3423 3424 3425
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3426 3427 3428 3429 3430 3431 3432 3433
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3434
retry:
P
Peter Zijlstra 已提交
3435
	ctx = perf_lock_task_context(task, ctxn, &flags);
3436
	if (ctx) {
3437
		clone_ctx = unclone_ctx(ctx);
3438
		++ctx->pin_count;
3439 3440 3441 3442 3443

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3444
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3445 3446 3447

		if (clone_ctx)
			put_ctx(clone_ctx);
3448
	} else {
3449
		ctx = alloc_perf_context(pmu, task);
3450 3451 3452
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3453

3454 3455 3456 3457 3458
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3469
		else {
3470
			get_ctx(ctx);
3471
			++ctx->pin_count;
3472
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3473
		}
3474 3475 3476
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3477
			put_ctx(ctx);
3478 3479 3480 3481

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3482 3483 3484
		}
	}

3485
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3486
	return ctx;
3487

P
Peter Zijlstra 已提交
3488
errout:
3489
	kfree(task_ctx_data);
3490
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3491 3492
}

L
Li Zefan 已提交
3493
static void perf_event_free_filter(struct perf_event *event);
3494
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3495

3496
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3497
{
3498
	struct perf_event *event;
P
Peter Zijlstra 已提交
3499

3500 3501 3502
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3503
	perf_event_free_filter(event);
3504
	kfree(event);
P
Peter Zijlstra 已提交
3505 3506
}

3507 3508
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3509

3510
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3511
{
3512 3513 3514 3515 3516 3517
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3518

3519 3520
static void unaccount_event(struct perf_event *event)
{
3521 3522
	bool dec = false;

3523 3524 3525 3526
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3527
		dec = true;
3528 3529 3530 3531 3532 3533
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3534 3535
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3536
	if (event->attr.context_switch) {
3537
		dec = true;
3538 3539
		atomic_dec(&nr_switch_events);
	}
3540
	if (is_cgroup_event(event))
3541
		dec = true;
3542
	if (has_branch_stack(event))
3543 3544
		dec = true;

3545 3546 3547 3548
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3549 3550 3551

	unaccount_event_cpu(event, event->cpu);
}
3552

3553 3554 3555 3556 3557 3558 3559 3560
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3571
 * _free_event()), the latter -- before the first perf_install_in_context().
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3646
static void _free_event(struct perf_event *event)
3647
{
3648
	irq_work_sync(&event->pending);
3649

3650
	unaccount_event(event);
3651

3652
	if (event->rb) {
3653 3654 3655 3656 3657 3658 3659
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3660
		ring_buffer_attach(event, NULL);
3661
		mutex_unlock(&event->mmap_mutex);
3662 3663
	}

S
Stephane Eranian 已提交
3664 3665 3666
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3686 3687
}

P
Peter Zijlstra 已提交
3688 3689 3690 3691 3692
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3693
{
P
Peter Zijlstra 已提交
3694 3695 3696 3697 3698 3699
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3700

P
Peter Zijlstra 已提交
3701
	_free_event(event);
T
Thomas Gleixner 已提交
3702 3703
}

3704
/*
3705
 * Remove user event from the owner task.
3706
 */
3707
static void perf_remove_from_owner(struct perf_event *event)
3708
{
P
Peter Zijlstra 已提交
3709
	struct task_struct *owner;
3710

P
Peter Zijlstra 已提交
3711 3712
	rcu_read_lock();
	/*
3713 3714 3715
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3716 3717
	 * owner->perf_event_mutex.
	 */
3718
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3740 3741 3742 3743 3744 3745
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3746
		if (event->owner) {
P
Peter Zijlstra 已提交
3747
			list_del_init(&event->owner_entry);
3748 3749
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3750 3751 3752
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3753 3754 3755 3756 3757 3758 3759
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
3770
	struct perf_event_context *ctx = event->ctx;
3771 3772
	struct perf_event *child, *tmp;

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

3783 3784
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3785

3786
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3787
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3788
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
3789

P
Peter Zijlstra 已提交
3790
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
3791
	/*
P
Peter Zijlstra 已提交
3792 3793
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
3794
	 *
P
Peter Zijlstra 已提交
3795 3796 3797
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
3798
	 *
3799 3800
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3801
	 */
P
Peter Zijlstra 已提交
3802 3803 3804 3805
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3806

3807 3808 3809
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

3860 3861
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
3862 3863 3864 3865
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3866 3867 3868
/*
 * Called when the last reference to the file is gone.
 */
3869 3870
static int perf_release(struct inode *inode, struct file *file)
{
3871
	perf_event_release_kernel(file->private_data);
3872
	return 0;
3873 3874
}

3875
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3876
{
3877
	struct perf_event *child;
3878 3879
	u64 total = 0;

3880 3881 3882
	*enabled = 0;
	*running = 0;

3883
	mutex_lock(&event->child_mutex);
3884

3885
	(void)perf_event_read(event, false);
3886 3887
	total += perf_event_count(event);

3888 3889 3890 3891 3892 3893
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3894
		(void)perf_event_read(child, false);
3895
		total += perf_event_count(child);
3896 3897 3898
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3899
	mutex_unlock(&event->child_mutex);
3900 3901 3902

	return total;
}
3903
EXPORT_SYMBOL_GPL(perf_event_read_value);
3904

3905
static int __perf_read_group_add(struct perf_event *leader,
3906
					u64 read_format, u64 *values)
3907
{
3908 3909
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3910
	int ret;
P
Peter Zijlstra 已提交
3911

3912 3913 3914
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3915

3916 3917 3918 3919 3920 3921 3922 3923 3924
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3925

3926 3927 3928 3929 3930 3931 3932 3933 3934
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3935 3936
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3937

3938 3939 3940 3941 3942
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3943 3944

	return 0;
3945
}
3946

3947 3948 3949 3950 3951
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3952
	int ret;
3953
	u64 *values;
3954

3955
	lockdep_assert_held(&ctx->mutex);
3956

3957 3958 3959
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3960

3961 3962 3963 3964 3965 3966 3967
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3968

3969 3970 3971 3972 3973 3974 3975 3976 3977
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3978

3979
	mutex_unlock(&leader->child_mutex);
3980

3981
	ret = event->read_size;
3982 3983
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3984
	goto out;
3985

3986 3987 3988
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3989
	kfree(values);
3990
	return ret;
3991 3992
}

3993
static int perf_read_one(struct perf_event *event,
3994 3995
				 u64 read_format, char __user *buf)
{
3996
	u64 enabled, running;
3997 3998 3999
	u64 values[4];
	int n = 0;

4000 4001 4002 4003 4004
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4005
	if (read_format & PERF_FORMAT_ID)
4006
		values[n++] = primary_event_id(event);
4007 4008 4009 4010 4011 4012 4013

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4014 4015 4016 4017
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4018
	if (event->state > PERF_EVENT_STATE_EXIT)
4019 4020 4021 4022 4023 4024 4025 4026
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4027
/*
4028
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4029 4030
 */
static ssize_t
4031
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4032
{
4033
	u64 read_format = event->attr.read_format;
4034
	int ret;
T
Thomas Gleixner 已提交
4035

4036
	/*
4037
	 * Return end-of-file for a read on a event that is in
4038 4039 4040
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4041
	if (event->state == PERF_EVENT_STATE_ERROR)
4042 4043
		return 0;

4044
	if (count < event->read_size)
4045 4046
		return -ENOSPC;

4047
	WARN_ON_ONCE(event->ctx->parent_ctx);
4048
	if (read_format & PERF_FORMAT_GROUP)
4049
		ret = perf_read_group(event, read_format, buf);
4050
	else
4051
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4052

4053
	return ret;
T
Thomas Gleixner 已提交
4054 4055 4056 4057 4058
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4059
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4060 4061
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4062

P
Peter Zijlstra 已提交
4063
	ctx = perf_event_ctx_lock(event);
4064
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4065 4066 4067
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4068 4069 4070 4071
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4072
	struct perf_event *event = file->private_data;
4073
	struct ring_buffer *rb;
4074
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4075

4076
	poll_wait(file, &event->waitq, wait);
4077

4078
	if (is_event_hup(event))
4079
		return events;
P
Peter Zijlstra 已提交
4080

4081
	/*
4082 4083
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4084 4085
	 */
	mutex_lock(&event->mmap_mutex);
4086 4087
	rb = event->rb;
	if (rb)
4088
		events = atomic_xchg(&rb->poll, 0);
4089
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4090 4091 4092
	return events;
}

P
Peter Zijlstra 已提交
4093
static void _perf_event_reset(struct perf_event *event)
4094
{
4095
	(void)perf_event_read(event, false);
4096
	local64_set(&event->count, 0);
4097
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4098 4099
}

4100
/*
4101 4102
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4103
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4104
 * task existence requirements of perf_event_enable/disable.
4105
 */
4106 4107
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4108
{
4109
	struct perf_event *child;
P
Peter Zijlstra 已提交
4110

4111
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4112

4113 4114 4115
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4116
		func(child);
4117
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4118 4119
}

4120 4121
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4122
{
4123 4124
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4125

P
Peter Zijlstra 已提交
4126 4127
	lockdep_assert_held(&ctx->mutex);

4128
	event = event->group_leader;
4129

4130 4131
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4132
		perf_event_for_each_child(sibling, func);
4133 4134
}

4135 4136 4137 4138
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4139
{
4140
	u64 value = *((u64 *)info);
4141
	bool active;
4142

4143 4144
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4145
	} else {
4146 4147
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4148
	}
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4180
	event_function_call(event, __perf_event_period, &value);
4181

4182
	return 0;
4183 4184
}

4185 4186
static const struct file_operations perf_fops;

4187
static inline int perf_fget_light(int fd, struct fd *p)
4188
{
4189 4190 4191
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4192

4193 4194 4195
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4196
	}
4197 4198
	*p = f;
	return 0;
4199 4200 4201 4202
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4203
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4204
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4205

P
Peter Zijlstra 已提交
4206
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4207
{
4208
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4209
	u32 flags = arg;
4210 4211

	switch (cmd) {
4212
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4213
		func = _perf_event_enable;
4214
		break;
4215
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4216
		func = _perf_event_disable;
4217
		break;
4218
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4219
		func = _perf_event_reset;
4220
		break;
P
Peter Zijlstra 已提交
4221

4222
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4223
		return _perf_event_refresh(event, arg);
4224

4225 4226
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4227

4228 4229 4230 4231 4232 4233 4234 4235 4236
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4237
	case PERF_EVENT_IOC_SET_OUTPUT:
4238 4239 4240
	{
		int ret;
		if (arg != -1) {
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4251 4252 4253
		}
		return ret;
	}
4254

L
Li Zefan 已提交
4255 4256 4257
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4258 4259 4260
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4261
	default:
P
Peter Zijlstra 已提交
4262
		return -ENOTTY;
4263
	}
P
Peter Zijlstra 已提交
4264 4265

	if (flags & PERF_IOC_FLAG_GROUP)
4266
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4267
	else
4268
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4269 4270

	return 0;
4271 4272
}

P
Peter Zijlstra 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4306
int perf_event_task_enable(void)
4307
{
P
Peter Zijlstra 已提交
4308
	struct perf_event_context *ctx;
4309
	struct perf_event *event;
4310

4311
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4312 4313 4314 4315 4316
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4317
	mutex_unlock(&current->perf_event_mutex);
4318 4319 4320 4321

	return 0;
}

4322
int perf_event_task_disable(void)
4323
{
P
Peter Zijlstra 已提交
4324
	struct perf_event_context *ctx;
4325
	struct perf_event *event;
4326

4327
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4328 4329 4330 4331 4332
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4333
	mutex_unlock(&current->perf_event_mutex);
4334 4335 4336 4337

	return 0;
}

4338
static int perf_event_index(struct perf_event *event)
4339
{
P
Peter Zijlstra 已提交
4340 4341 4342
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4343
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4344 4345
		return 0;

4346
	return event->pmu->event_idx(event);
4347 4348
}

4349
static void calc_timer_values(struct perf_event *event,
4350
				u64 *now,
4351 4352
				u64 *enabled,
				u64 *running)
4353
{
4354
	u64 ctx_time;
4355

4356 4357
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4358 4359 4360 4361
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4377 4378
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4379 4380 4381 4382 4383

unlock:
	rcu_read_unlock();
}

4384 4385
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4386 4387 4388
{
}

4389 4390 4391 4392 4393
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4394
void perf_event_update_userpage(struct perf_event *event)
4395
{
4396
	struct perf_event_mmap_page *userpg;
4397
	struct ring_buffer *rb;
4398
	u64 enabled, running, now;
4399 4400

	rcu_read_lock();
4401 4402 4403 4404
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4405 4406 4407 4408 4409 4410 4411 4412 4413
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4414
	calc_timer_values(event, &now, &enabled, &running);
4415

4416
	userpg = rb->user_page;
4417 4418 4419 4420 4421
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4422
	++userpg->lock;
4423
	barrier();
4424
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4425
	userpg->offset = perf_event_count(event);
4426
	if (userpg->index)
4427
		userpg->offset -= local64_read(&event->hw.prev_count);
4428

4429
	userpg->time_enabled = enabled +
4430
			atomic64_read(&event->child_total_time_enabled);
4431

4432
	userpg->time_running = running +
4433
			atomic64_read(&event->child_total_time_running);
4434

4435
	arch_perf_update_userpage(event, userpg, now);
4436

4437
	barrier();
4438
	++userpg->lock;
4439
	preempt_enable();
4440
unlock:
4441
	rcu_read_unlock();
4442 4443
}

4444 4445 4446
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4447
	struct ring_buffer *rb;
4448 4449 4450 4451 4452 4453 4454 4455 4456
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4457 4458
	rb = rcu_dereference(event->rb);
	if (!rb)
4459 4460 4461 4462 4463
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4464
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4479 4480 4481
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4482
	struct ring_buffer *old_rb = NULL;
4483 4484
	unsigned long flags;

4485 4486 4487 4488 4489 4490
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4491

4492 4493 4494 4495
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4496

4497 4498
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4499
	}
4500

4501
	if (rb) {
4502 4503 4504 4505 4506
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4523 4524 4525 4526 4527 4528 4529 4530
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4531 4532 4533 4534
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4535 4536 4537
	rcu_read_unlock();
}

4538
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4539
{
4540
	struct ring_buffer *rb;
4541

4542
	rcu_read_lock();
4543 4544 4545 4546
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4547 4548 4549
	}
	rcu_read_unlock();

4550
	return rb;
4551 4552
}

4553
void ring_buffer_put(struct ring_buffer *rb)
4554
{
4555
	if (!atomic_dec_and_test(&rb->refcount))
4556
		return;
4557

4558
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4559

4560
	call_rcu(&rb->rcu_head, rb_free_rcu);
4561 4562 4563 4564
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4565
	struct perf_event *event = vma->vm_file->private_data;
4566

4567
	atomic_inc(&event->mmap_count);
4568
	atomic_inc(&event->rb->mmap_count);
4569

4570 4571 4572
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4573 4574
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4575 4576
}

4577 4578 4579 4580 4581 4582 4583 4584
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4585 4586
static void perf_mmap_close(struct vm_area_struct *vma)
{
4587
	struct perf_event *event = vma->vm_file->private_data;
4588

4589
	struct ring_buffer *rb = ring_buffer_get(event);
4590 4591 4592
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4593

4594 4595 4596
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4611 4612 4613
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4614
		goto out_put;
4615

4616
	ring_buffer_attach(event, NULL);
4617 4618 4619
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4620 4621
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4622

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4639

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4651 4652 4653
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4654
		mutex_unlock(&event->mmap_mutex);
4655
		put_event(event);
4656

4657 4658 4659 4660 4661
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4662
	}
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4678
out_put:
4679
	ring_buffer_put(rb); /* could be last */
4680 4681
}

4682
static const struct vm_operations_struct perf_mmap_vmops = {
4683
	.open		= perf_mmap_open,
4684
	.close		= perf_mmap_close, /* non mergable */
4685 4686
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4687 4688 4689 4690
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4691
	struct perf_event *event = file->private_data;
4692
	unsigned long user_locked, user_lock_limit;
4693
	struct user_struct *user = current_user();
4694
	unsigned long locked, lock_limit;
4695
	struct ring_buffer *rb = NULL;
4696 4697
	unsigned long vma_size;
	unsigned long nr_pages;
4698
	long user_extra = 0, extra = 0;
4699
	int ret = 0, flags = 0;
4700

4701 4702 4703
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4704
	 * same rb.
4705 4706 4707 4708
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4709
	if (!(vma->vm_flags & VM_SHARED))
4710
		return -EINVAL;
4711 4712

	vma_size = vma->vm_end - vma->vm_start;
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4773

4774
	/*
4775
	 * If we have rb pages ensure they're a power-of-two number, so we
4776 4777
	 * can do bitmasks instead of modulo.
	 */
4778
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4779 4780
		return -EINVAL;

4781
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4782 4783
		return -EINVAL;

4784
	WARN_ON_ONCE(event->ctx->parent_ctx);
4785
again:
4786
	mutex_lock(&event->mmap_mutex);
4787
	if (event->rb) {
4788
		if (event->rb->nr_pages != nr_pages) {
4789
			ret = -EINVAL;
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4803 4804 4805
		goto unlock;
	}

4806
	user_extra = nr_pages + 1;
4807 4808

accounting:
4809
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4810 4811 4812 4813 4814 4815

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4816
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4817

4818 4819
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4820

4821
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4822
	lock_limit >>= PAGE_SHIFT;
4823
	locked = vma->vm_mm->pinned_vm + extra;
4824

4825 4826
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4827 4828 4829
		ret = -EPERM;
		goto unlock;
	}
4830

4831
	WARN_ON(!rb && event->rb);
4832

4833
	if (vma->vm_flags & VM_WRITE)
4834
		flags |= RING_BUFFER_WRITABLE;
4835

4836
	if (!rb) {
4837 4838 4839
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4840

4841 4842 4843 4844
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4845

4846 4847 4848
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4849

4850
		ring_buffer_attach(event, rb);
4851

4852 4853 4854
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4855 4856
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4857 4858 4859
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4860

4861
unlock:
4862 4863 4864 4865
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4866
		atomic_inc(&event->mmap_count);
4867 4868 4869 4870
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4871
	mutex_unlock(&event->mmap_mutex);
4872

4873 4874 4875 4876
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4877
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4878
	vma->vm_ops = &perf_mmap_vmops;
4879

4880 4881 4882
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4883
	return ret;
4884 4885
}

P
Peter Zijlstra 已提交
4886 4887
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4888
	struct inode *inode = file_inode(filp);
4889
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4890 4891
	int retval;

A
Al Viro 已提交
4892
	inode_lock(inode);
4893
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
4894
	inode_unlock(inode);
P
Peter Zijlstra 已提交
4895 4896 4897 4898 4899 4900 4901

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4902
static const struct file_operations perf_fops = {
4903
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4904 4905 4906
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4907
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4908
	.compat_ioctl		= perf_compat_ioctl,
4909
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4910
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4911 4912
};

4913
/*
4914
 * Perf event wakeup
4915 4916 4917 4918 4919
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4920 4921 4922 4923 4924 4925 4926 4927
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4928
void perf_event_wakeup(struct perf_event *event)
4929
{
4930
	ring_buffer_wakeup(event);
4931

4932
	if (event->pending_kill) {
4933
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4934
		event->pending_kill = 0;
4935
	}
4936 4937
}

4938
static void perf_pending_event(struct irq_work *entry)
4939
{
4940 4941
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4942 4943 4944 4945 4946 4947 4948
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4949

4950 4951
	if (event->pending_disable) {
		event->pending_disable = 0;
4952
		perf_event_disable_local(event);
4953 4954
	}

4955 4956 4957
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4958
	}
4959 4960 4961

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4962 4963
}

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5000
static void perf_sample_regs_user(struct perf_regs *regs_user,
5001 5002
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5003
{
5004 5005
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5006
		regs_user->regs = regs;
5007 5008
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5009 5010 5011
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5012 5013 5014
	}
}

5015 5016 5017 5018 5019 5020 5021 5022
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5118 5119 5120
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5134
		data->time = perf_event_clock(event);
5135

5136
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5148 5149 5150
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5175 5176 5177

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5178 5179
}

5180 5181 5182
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5183 5184 5185 5186 5187
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5188
static void perf_output_read_one(struct perf_output_handle *handle,
5189 5190
				 struct perf_event *event,
				 u64 enabled, u64 running)
5191
{
5192
	u64 read_format = event->attr.read_format;
5193 5194 5195
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5196
	values[n++] = perf_event_count(event);
5197
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5198
		values[n++] = enabled +
5199
			atomic64_read(&event->child_total_time_enabled);
5200 5201
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5202
		values[n++] = running +
5203
			atomic64_read(&event->child_total_time_running);
5204 5205
	}
	if (read_format & PERF_FORMAT_ID)
5206
		values[n++] = primary_event_id(event);
5207

5208
	__output_copy(handle, values, n * sizeof(u64));
5209 5210 5211
}

/*
5212
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5213 5214
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5215 5216
			    struct perf_event *event,
			    u64 enabled, u64 running)
5217
{
5218 5219
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5220 5221 5222 5223 5224 5225
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5226
		values[n++] = enabled;
5227 5228

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5229
		values[n++] = running;
5230

5231
	if (leader != event)
5232 5233
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5234
	values[n++] = perf_event_count(leader);
5235
	if (read_format & PERF_FORMAT_ID)
5236
		values[n++] = primary_event_id(leader);
5237

5238
	__output_copy(handle, values, n * sizeof(u64));
5239

5240
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5241 5242
		n = 0;

5243 5244
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5245 5246
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5247
		values[n++] = perf_event_count(sub);
5248
		if (read_format & PERF_FORMAT_ID)
5249
			values[n++] = primary_event_id(sub);
5250

5251
		__output_copy(handle, values, n * sizeof(u64));
5252 5253 5254
	}
}

5255 5256 5257
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5258
static void perf_output_read(struct perf_output_handle *handle,
5259
			     struct perf_event *event)
5260
{
5261
	u64 enabled = 0, running = 0, now;
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5273
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5274
		calc_timer_values(event, &now, &enabled, &running);
5275

5276
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5277
		perf_output_read_group(handle, event, enabled, running);
5278
	else
5279
		perf_output_read_one(handle, event, enabled, running);
5280 5281
}

5282 5283 5284
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5285
			struct perf_event *event)
5286 5287 5288 5289 5290
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5291 5292 5293
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5319
		perf_output_read(handle, event);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5330
			__output_copy(handle, data->callchain, size);
5331 5332 5333 5334 5335 5336 5337 5338
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5339 5340 5341 5342 5343 5344 5345 5346 5347
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5359

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5394

5395
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5396 5397 5398
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5399
	}
A
Andi Kleen 已提交
5400 5401 5402

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5403 5404 5405

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5406

A
Andi Kleen 已提交
5407 5408 5409
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5440 5441 5442 5443
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5444
			 struct perf_event *event,
5445
			 struct pt_regs *regs)
5446
{
5447
	u64 sample_type = event->attr.sample_type;
5448

5449
	header->type = PERF_RECORD_SAMPLE;
5450
	header->size = sizeof(*header) + event->header_size;
5451 5452 5453

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5454

5455
	__perf_event_header__init_id(header, data, event);
5456

5457
	if (sample_type & PERF_SAMPLE_IP)
5458 5459
		data->ip = perf_instruction_pointer(regs);

5460
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5461
		int size = 1;
5462

5463
		data->callchain = perf_callchain(event, regs);
5464 5465 5466 5467 5468

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5469 5470
	}

5471
	if (sample_type & PERF_SAMPLE_RAW) {
5472 5473 5474 5475 5476 5477 5478
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5479
		header->size += round_up(size, sizeof(u64));
5480
	}
5481 5482 5483 5484 5485 5486 5487 5488 5489

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5490

5491
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5492 5493
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5494

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5518
						     data->regs_user.regs);
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5546
}
5547

5548 5549 5550
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5551 5552 5553
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5554

5555 5556 5557
	/* protect the callchain buffers */
	rcu_read_lock();

5558
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5559

5560
	if (perf_output_begin(&handle, event, header.size))
5561
		goto exit;
5562

5563
	perf_output_sample(&handle, &header, data, event);
5564

5565
	perf_output_end(&handle);
5566 5567 5568

exit:
	rcu_read_unlock();
5569 5570
}

5571
/*
5572
 * read event_id
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5583
perf_event_read_event(struct perf_event *event,
5584 5585 5586
			struct task_struct *task)
{
	struct perf_output_handle handle;
5587
	struct perf_sample_data sample;
5588
	struct perf_read_event read_event = {
5589
		.header = {
5590
			.type = PERF_RECORD_READ,
5591
			.misc = 0,
5592
			.size = sizeof(read_event) + event->read_size,
5593
		},
5594 5595
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5596
	};
5597
	int ret;
5598

5599
	perf_event_header__init_id(&read_event.header, &sample, event);
5600
	ret = perf_output_begin(&handle, event, read_event.header.size);
5601 5602 5603
	if (ret)
		return;

5604
	perf_output_put(&handle, read_event);
5605
	perf_output_read(&handle, event);
5606
	perf_event__output_id_sample(event, &handle, &sample);
5607

5608 5609 5610
	perf_output_end(&handle);
}

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5625
		output(event, data);
5626 5627 5628
	}
}

J
Jiri Olsa 已提交
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5640
static void
5641
perf_event_aux(perf_event_aux_output_cb output, void *data,
5642 5643 5644 5645 5646 5647 5648
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5660 5661 5662 5663 5664
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5665
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5666 5667 5668 5669 5670
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5671
			perf_event_aux_ctx(ctx, output, data);
5672 5673 5674 5675 5676 5677
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5678
/*
P
Peter Zijlstra 已提交
5679 5680
 * task tracking -- fork/exit
 *
5681
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5682 5683
 */

P
Peter Zijlstra 已提交
5684
struct perf_task_event {
5685
	struct task_struct		*task;
5686
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5687 5688 5689 5690 5691 5692

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5693 5694
		u32				tid;
		u32				ptid;
5695
		u64				time;
5696
	} event_id;
P
Peter Zijlstra 已提交
5697 5698
};

5699 5700
static int perf_event_task_match(struct perf_event *event)
{
5701 5702 5703
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5704 5705
}

5706
static void perf_event_task_output(struct perf_event *event,
5707
				   void *data)
P
Peter Zijlstra 已提交
5708
{
5709
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5710
	struct perf_output_handle handle;
5711
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5712
	struct task_struct *task = task_event->task;
5713
	int ret, size = task_event->event_id.header.size;
5714

5715 5716 5717
	if (!perf_event_task_match(event))
		return;

5718
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5719

5720
	ret = perf_output_begin(&handle, event,
5721
				task_event->event_id.header.size);
5722
	if (ret)
5723
		goto out;
P
Peter Zijlstra 已提交
5724

5725 5726
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5727

5728 5729
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5730

5731 5732
	task_event->event_id.time = perf_event_clock(event);

5733
	perf_output_put(&handle, task_event->event_id);
5734

5735 5736
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5737
	perf_output_end(&handle);
5738 5739
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5740 5741
}

5742 5743
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5744
			      int new)
P
Peter Zijlstra 已提交
5745
{
P
Peter Zijlstra 已提交
5746
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5747

5748 5749 5750
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5751 5752
		return;

P
Peter Zijlstra 已提交
5753
	task_event = (struct perf_task_event){
5754 5755
		.task	  = task,
		.task_ctx = task_ctx,
5756
		.event_id    = {
P
Peter Zijlstra 已提交
5757
			.header = {
5758
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5759
				.misc = 0,
5760
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5761
			},
5762 5763
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5764 5765
			/* .tid  */
			/* .ptid */
5766
			/* .time */
P
Peter Zijlstra 已提交
5767 5768 5769
		},
	};

5770
	perf_event_aux(perf_event_task_output,
5771 5772
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5773 5774
}

5775
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5776
{
5777
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5778 5779
}

5780 5781 5782 5783 5784
/*
 * comm tracking
 */

struct perf_comm_event {
5785 5786
	struct task_struct	*task;
	char			*comm;
5787 5788 5789 5790 5791 5792 5793
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5794
	} event_id;
5795 5796
};

5797 5798 5799 5800 5801
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5802
static void perf_event_comm_output(struct perf_event *event,
5803
				   void *data)
5804
{
5805
	struct perf_comm_event *comm_event = data;
5806
	struct perf_output_handle handle;
5807
	struct perf_sample_data sample;
5808
	int size = comm_event->event_id.header.size;
5809 5810
	int ret;

5811 5812 5813
	if (!perf_event_comm_match(event))
		return;

5814 5815
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5816
				comm_event->event_id.header.size);
5817 5818

	if (ret)
5819
		goto out;
5820

5821 5822
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5823

5824
	perf_output_put(&handle, comm_event->event_id);
5825
	__output_copy(&handle, comm_event->comm,
5826
				   comm_event->comm_size);
5827 5828 5829

	perf_event__output_id_sample(event, &handle, &sample);

5830
	perf_output_end(&handle);
5831 5832
out:
	comm_event->event_id.header.size = size;
5833 5834
}

5835
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5836
{
5837
	char comm[TASK_COMM_LEN];
5838 5839
	unsigned int size;

5840
	memset(comm, 0, sizeof(comm));
5841
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5842
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5843 5844 5845 5846

	comm_event->comm = comm;
	comm_event->comm_size = size;

5847
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5848

5849
	perf_event_aux(perf_event_comm_output,
5850 5851
		       comm_event,
		       NULL);
5852 5853
}

5854
void perf_event_comm(struct task_struct *task, bool exec)
5855
{
5856 5857
	struct perf_comm_event comm_event;

5858
	if (!atomic_read(&nr_comm_events))
5859
		return;
5860

5861
	comm_event = (struct perf_comm_event){
5862
		.task	= task,
5863 5864
		/* .comm      */
		/* .comm_size */
5865
		.event_id  = {
5866
			.header = {
5867
				.type = PERF_RECORD_COMM,
5868
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5869 5870 5871 5872
				/* .size */
			},
			/* .pid */
			/* .tid */
5873 5874 5875
		},
	};

5876
	perf_event_comm_event(&comm_event);
5877 5878
}

5879 5880 5881 5882 5883
/*
 * mmap tracking
 */

struct perf_mmap_event {
5884 5885 5886 5887
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5888 5889 5890
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5891
	u32			prot, flags;
5892 5893 5894 5895 5896 5897 5898 5899 5900

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5901
	} event_id;
5902 5903
};

5904 5905 5906 5907 5908 5909 5910 5911
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5912
	       (executable && (event->attr.mmap || event->attr.mmap2));
5913 5914
}

5915
static void perf_event_mmap_output(struct perf_event *event,
5916
				   void *data)
5917
{
5918
	struct perf_mmap_event *mmap_event = data;
5919
	struct perf_output_handle handle;
5920
	struct perf_sample_data sample;
5921
	int size = mmap_event->event_id.header.size;
5922
	int ret;
5923

5924 5925 5926
	if (!perf_event_mmap_match(event, data))
		return;

5927 5928 5929 5930 5931
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5932
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5933 5934
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5935 5936
	}

5937 5938
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5939
				mmap_event->event_id.header.size);
5940
	if (ret)
5941
		goto out;
5942

5943 5944
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5945

5946
	perf_output_put(&handle, mmap_event->event_id);
5947 5948 5949 5950 5951 5952

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5953 5954
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5955 5956
	}

5957
	__output_copy(&handle, mmap_event->file_name,
5958
				   mmap_event->file_size);
5959 5960 5961

	perf_event__output_id_sample(event, &handle, &sample);

5962
	perf_output_end(&handle);
5963 5964
out:
	mmap_event->event_id.header.size = size;
5965 5966
}

5967
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5968
{
5969 5970
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5971 5972
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5973
	u32 prot = 0, flags = 0;
5974 5975 5976
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5977
	char *name;
5978

5979
	if (file) {
5980 5981
		struct inode *inode;
		dev_t dev;
5982

5983
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5984
		if (!buf) {
5985 5986
			name = "//enomem";
			goto cpy_name;
5987
		}
5988
		/*
5989
		 * d_path() works from the end of the rb backwards, so we
5990 5991 5992
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5993
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5994
		if (IS_ERR(name)) {
5995 5996
			name = "//toolong";
			goto cpy_name;
5997
		}
5998 5999 6000 6001 6002 6003
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6026
		goto got_name;
6027
	} else {
6028 6029 6030 6031 6032 6033
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6034
		name = (char *)arch_vma_name(vma);
6035 6036
		if (name)
			goto cpy_name;
6037

6038
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6039
				vma->vm_end >= vma->vm_mm->brk) {
6040 6041
			name = "[heap]";
			goto cpy_name;
6042 6043
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6044
				vma->vm_end >= vma->vm_mm->start_stack) {
6045 6046
			name = "[stack]";
			goto cpy_name;
6047 6048
		}

6049 6050
		name = "//anon";
		goto cpy_name;
6051 6052
	}

6053 6054 6055
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6056
got_name:
6057 6058 6059 6060 6061 6062 6063 6064
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6065 6066 6067

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6068 6069 6070 6071
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6072 6073
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6074

6075 6076 6077
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6078
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6079

6080
	perf_event_aux(perf_event_mmap_output,
6081 6082
		       mmap_event,
		       NULL);
6083

6084 6085 6086
	kfree(buf);
}

6087
void perf_event_mmap(struct vm_area_struct *vma)
6088
{
6089 6090
	struct perf_mmap_event mmap_event;

6091
	if (!atomic_read(&nr_mmap_events))
6092 6093 6094
		return;

	mmap_event = (struct perf_mmap_event){
6095
		.vma	= vma,
6096 6097
		/* .file_name */
		/* .file_size */
6098
		.event_id  = {
6099
			.header = {
6100
				.type = PERF_RECORD_MMAP,
6101
				.misc = PERF_RECORD_MISC_USER,
6102 6103 6104 6105
				/* .size */
			},
			/* .pid */
			/* .tid */
6106 6107
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6108
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6109
		},
6110 6111 6112 6113
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6114 6115
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6116 6117
	};

6118
	perf_event_mmap_event(&mmap_event);
6119 6120
}

A
Alexander Shishkin 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6273 6274 6275 6276
/*
 * IRQ throttle logging
 */

6277
static void perf_log_throttle(struct perf_event *event, int enable)
6278 6279
{
	struct perf_output_handle handle;
6280
	struct perf_sample_data sample;
6281 6282 6283 6284 6285
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6286
		u64				id;
6287
		u64				stream_id;
6288 6289
	} throttle_event = {
		.header = {
6290
			.type = PERF_RECORD_THROTTLE,
6291 6292 6293
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6294
		.time		= perf_event_clock(event),
6295 6296
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6297 6298
	};

6299
	if (enable)
6300
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6301

6302 6303 6304
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6305
				throttle_event.header.size);
6306 6307 6308 6309
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6310
	perf_event__output_id_sample(event, &handle, &sample);
6311 6312 6313
	perf_output_end(&handle);
}

6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6350
/*
6351
 * Generic event overflow handling, sampling.
6352 6353
 */

6354
static int __perf_event_overflow(struct perf_event *event,
6355 6356
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6357
{
6358 6359
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6360
	u64 seq;
6361 6362
	int ret = 0;

6363 6364 6365 6366 6367 6368 6369
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6370 6371 6372 6373 6374 6375 6376 6377 6378
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6379 6380
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6381
			tick_nohz_full_kick();
6382 6383
			ret = 1;
		}
6384
	}
6385

6386
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6387
		u64 now = perf_clock();
6388
		s64 delta = now - hwc->freq_time_stamp;
6389

6390
		hwc->freq_time_stamp = now;
6391

6392
		if (delta > 0 && delta < 2*TICK_NSEC)
6393
			perf_adjust_period(event, delta, hwc->last_period, true);
6394 6395
	}

6396 6397
	/*
	 * XXX event_limit might not quite work as expected on inherited
6398
	 * events
6399 6400
	 */

6401 6402
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6403
		ret = 1;
6404
		event->pending_kill = POLL_HUP;
6405 6406
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6407 6408
	}

6409
	if (event->overflow_handler)
6410
		event->overflow_handler(event, data, regs);
6411
	else
6412
		perf_event_output(event, data, regs);
6413

6414
	if (*perf_event_fasync(event) && event->pending_kill) {
6415 6416
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6417 6418
	}

6419
	return ret;
6420 6421
}

6422
int perf_event_overflow(struct perf_event *event,
6423 6424
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6425
{
6426
	return __perf_event_overflow(event, 1, data, regs);
6427 6428
}

6429
/*
6430
 * Generic software event infrastructure
6431 6432
 */

6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6444
/*
6445 6446
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6447 6448 6449 6450
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6451
u64 perf_swevent_set_period(struct perf_event *event)
6452
{
6453
	struct hw_perf_event *hwc = &event->hw;
6454 6455 6456 6457 6458
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6459 6460

again:
6461
	old = val = local64_read(&hwc->period_left);
6462 6463
	if (val < 0)
		return 0;
6464

6465 6466 6467
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6468
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6469
		goto again;
6470

6471
	return nr;
6472 6473
}

6474
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6475
				    struct perf_sample_data *data,
6476
				    struct pt_regs *regs)
6477
{
6478
	struct hw_perf_event *hwc = &event->hw;
6479
	int throttle = 0;
6480

6481 6482
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6483

6484 6485
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6486

6487
	for (; overflow; overflow--) {
6488
		if (__perf_event_overflow(event, throttle,
6489
					    data, regs)) {
6490 6491 6492 6493 6494 6495
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6496
		throttle = 1;
6497
	}
6498 6499
}

P
Peter Zijlstra 已提交
6500
static void perf_swevent_event(struct perf_event *event, u64 nr,
6501
			       struct perf_sample_data *data,
6502
			       struct pt_regs *regs)
6503
{
6504
	struct hw_perf_event *hwc = &event->hw;
6505

6506
	local64_add(nr, &event->count);
6507

6508 6509 6510
	if (!regs)
		return;

6511
	if (!is_sampling_event(event))
6512
		return;
6513

6514 6515 6516 6517 6518 6519
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6520
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6521
		return perf_swevent_overflow(event, 1, data, regs);
6522

6523
	if (local64_add_negative(nr, &hwc->period_left))
6524
		return;
6525

6526
	perf_swevent_overflow(event, 0, data, regs);
6527 6528
}

6529 6530 6531
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6532
	if (event->hw.state & PERF_HES_STOPPED)
6533
		return 1;
P
Peter Zijlstra 已提交
6534

6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6546
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6547
				enum perf_type_id type,
L
Li Zefan 已提交
6548 6549 6550
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6551
{
6552
	if (event->attr.type != type)
6553
		return 0;
6554

6555
	if (event->attr.config != event_id)
6556 6557
		return 0;

6558 6559
	if (perf_exclude_event(event, regs))
		return 0;
6560 6561 6562 6563

	return 1;
}

6564 6565 6566 6567 6568 6569 6570
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6571 6572
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6573
{
6574 6575 6576 6577
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6578

6579 6580
/* For the read side: events when they trigger */
static inline struct hlist_head *
6581
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6582 6583
{
	struct swevent_hlist *hlist;
6584

6585
	hlist = rcu_dereference(swhash->swevent_hlist);
6586 6587 6588
	if (!hlist)
		return NULL;

6589 6590 6591 6592 6593
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6594
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6605
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6606 6607 6608 6609 6610
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6611 6612 6613
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6614
				    u64 nr,
6615 6616
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6617
{
6618
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6619
	struct perf_event *event;
6620
	struct hlist_head *head;
6621

6622
	rcu_read_lock();
6623
	head = find_swevent_head_rcu(swhash, type, event_id);
6624 6625 6626
	if (!head)
		goto end;

6627
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6628
		if (perf_swevent_match(event, type, event_id, data, regs))
6629
			perf_swevent_event(event, nr, data, regs);
6630
	}
6631 6632
end:
	rcu_read_unlock();
6633 6634
}

6635 6636
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6637
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6638
{
6639
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6640

6641
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6642
}
I
Ingo Molnar 已提交
6643
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6644

6645
inline void perf_swevent_put_recursion_context(int rctx)
6646
{
6647
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6648

6649
	put_recursion_context(swhash->recursion, rctx);
6650
}
6651

6652
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6653
{
6654
	struct perf_sample_data data;
6655

6656
	if (WARN_ON_ONCE(!regs))
6657
		return;
6658

6659
	perf_sample_data_init(&data, addr, 0);
6660
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6673 6674

	perf_swevent_put_recursion_context(rctx);
6675
fail:
6676
	preempt_enable_notrace();
6677 6678
}

6679
static void perf_swevent_read(struct perf_event *event)
6680 6681 6682
{
}

P
Peter Zijlstra 已提交
6683
static int perf_swevent_add(struct perf_event *event, int flags)
6684
{
6685
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6686
	struct hw_perf_event *hwc = &event->hw;
6687 6688
	struct hlist_head *head;

6689
	if (is_sampling_event(event)) {
6690
		hwc->last_period = hwc->sample_period;
6691
		perf_swevent_set_period(event);
6692
	}
6693

P
Peter Zijlstra 已提交
6694 6695
	hwc->state = !(flags & PERF_EF_START);

6696
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6697
	if (WARN_ON_ONCE(!head))
6698 6699 6700
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6701
	perf_event_update_userpage(event);
6702

6703 6704 6705
	return 0;
}

P
Peter Zijlstra 已提交
6706
static void perf_swevent_del(struct perf_event *event, int flags)
6707
{
6708
	hlist_del_rcu(&event->hlist_entry);
6709 6710
}

P
Peter Zijlstra 已提交
6711
static void perf_swevent_start(struct perf_event *event, int flags)
6712
{
P
Peter Zijlstra 已提交
6713
	event->hw.state = 0;
6714
}
I
Ingo Molnar 已提交
6715

P
Peter Zijlstra 已提交
6716
static void perf_swevent_stop(struct perf_event *event, int flags)
6717
{
P
Peter Zijlstra 已提交
6718
	event->hw.state = PERF_HES_STOPPED;
6719 6720
}

6721 6722
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6723
swevent_hlist_deref(struct swevent_htable *swhash)
6724
{
6725 6726
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6727 6728
}

6729
static void swevent_hlist_release(struct swevent_htable *swhash)
6730
{
6731
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6732

6733
	if (!hlist)
6734 6735
		return;

6736
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6737
	kfree_rcu(hlist, rcu_head);
6738 6739 6740 6741
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6742
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6743

6744
	mutex_lock(&swhash->hlist_mutex);
6745

6746 6747
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6748

6749
	mutex_unlock(&swhash->hlist_mutex);
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6762
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6763 6764
	int err = 0;

6765 6766
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6767 6768 6769 6770 6771 6772 6773
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6774
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6775
	}
6776
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6777
exit:
6778
	mutex_unlock(&swhash->hlist_mutex);
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6799
fail:
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6810
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6811

6812 6813 6814
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6815

6816 6817
	WARN_ON(event->parent);

6818
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6819 6820 6821 6822 6823
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6824
	u64 event_id = event->attr.config;
6825 6826 6827 6828

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6829 6830 6831 6832 6833 6834
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6835 6836 6837 6838 6839 6840 6841 6842 6843
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6844
	if (event_id >= PERF_COUNT_SW_MAX)
6845 6846 6847 6848 6849 6850 6851 6852 6853
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6854
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6855 6856 6857 6858 6859 6860 6861
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6862
	.task_ctx_nr	= perf_sw_context,
6863

6864 6865
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6866
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6867 6868 6869 6870
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6871 6872 6873
	.read		= perf_swevent_read,
};

6874 6875
#ifdef CONFIG_EVENT_TRACING

6876 6877 6878 6879 6880
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6881 6882 6883 6884
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6885 6886 6887 6888 6889 6890 6891 6892 6893
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6894 6895
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6896 6897 6898 6899
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6900 6901 6902 6903 6904 6905 6906 6907 6908
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6909 6910
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6911 6912
{
	struct perf_sample_data data;
6913 6914
	struct perf_event *event;

6915 6916 6917 6918 6919
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6920
	perf_sample_data_init(&data, addr, 0);
6921 6922
	data.raw = &raw;

6923
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6924
		if (perf_tp_event_match(event, &data, regs))
6925
			perf_swevent_event(event, count, &data, regs);
6926
	}
6927

6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6953
	perf_swevent_put_recursion_context(rctx);
6954 6955 6956
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6957
static void tp_perf_event_destroy(struct perf_event *event)
6958
{
6959
	perf_trace_destroy(event);
6960 6961
}

6962
static int perf_tp_event_init(struct perf_event *event)
6963
{
6964 6965
	int err;

6966 6967 6968
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6969 6970 6971 6972 6973 6974
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6975 6976
	err = perf_trace_init(event);
	if (err)
6977
		return err;
6978

6979
	event->destroy = tp_perf_event_destroy;
6980

6981 6982 6983 6984
	return 0;
}

static struct pmu perf_tracepoint = {
6985 6986
	.task_ctx_nr	= perf_sw_context,

6987
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6988 6989 6990 6991
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6992 6993 6994 6995 6996
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6997
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6998
}
L
Li Zefan 已提交
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7033 7034
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7035 7036 7037 7038 7039 7040
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7041
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7066
#else
L
Li Zefan 已提交
7067

7068
static inline void perf_tp_register(void)
7069 7070
{
}
L
Li Zefan 已提交
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7081 7082 7083 7084 7085 7086 7087 7088
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7089
#endif /* CONFIG_EVENT_TRACING */
7090

7091
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7092
void perf_bp_event(struct perf_event *bp, void *data)
7093
{
7094 7095 7096
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7097
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7098

P
Peter Zijlstra 已提交
7099
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7100
		perf_swevent_event(bp, 1, &sample, regs);
7101 7102 7103
}
#endif

7104 7105 7106
/*
 * hrtimer based swevent callback
 */
7107

7108
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7109
{
7110 7111 7112 7113 7114
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7115

7116
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7117 7118 7119 7120

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7121
	event->pmu->read(event);
7122

7123
	perf_sample_data_init(&data, 0, event->hw.last_period);
7124 7125 7126
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7127
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7128
			if (__perf_event_overflow(event, 1, &data, regs))
7129 7130
				ret = HRTIMER_NORESTART;
	}
7131

7132 7133
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7134

7135
	return ret;
7136 7137
}

7138
static void perf_swevent_start_hrtimer(struct perf_event *event)
7139
{
7140
	struct hw_perf_event *hwc = &event->hw;
7141 7142 7143 7144
	s64 period;

	if (!is_sampling_event(event))
		return;
7145

7146 7147 7148 7149
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7150

7151 7152 7153 7154
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7155 7156
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7157
}
7158 7159

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7160
{
7161 7162
	struct hw_perf_event *hwc = &event->hw;

7163
	if (is_sampling_event(event)) {
7164
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7165
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7166 7167 7168

		hrtimer_cancel(&hwc->hrtimer);
	}
7169 7170
}

P
Peter Zijlstra 已提交
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7191
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7192 7193 7194 7195
		event->attr.freq = 0;
	}
}

7196 7197 7198 7199 7200
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7201
{
7202 7203 7204
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7205
	now = local_clock();
7206 7207
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7208 7209
}

P
Peter Zijlstra 已提交
7210
static void cpu_clock_event_start(struct perf_event *event, int flags)
7211
{
P
Peter Zijlstra 已提交
7212
	local64_set(&event->hw.prev_count, local_clock());
7213 7214 7215
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7216
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7217
{
7218 7219 7220
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7221

P
Peter Zijlstra 已提交
7222 7223 7224 7225
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7226
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7227 7228 7229 7230 7231 7232 7233 7234 7235

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7236 7237 7238 7239
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7240

7241 7242 7243 7244 7245 7246 7247 7248
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7249 7250 7251 7252 7253 7254
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7255 7256
	perf_swevent_init_hrtimer(event);

7257
	return 0;
7258 7259
}

7260
static struct pmu perf_cpu_clock = {
7261 7262
	.task_ctx_nr	= perf_sw_context,

7263 7264
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7265
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7266 7267 7268 7269
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7270 7271 7272 7273 7274 7275 7276 7277
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7278
{
7279 7280
	u64 prev;
	s64 delta;
7281

7282 7283 7284 7285
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7286

P
Peter Zijlstra 已提交
7287
static void task_clock_event_start(struct perf_event *event, int flags)
7288
{
P
Peter Zijlstra 已提交
7289
	local64_set(&event->hw.prev_count, event->ctx->time);
7290 7291 7292
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7293
static void task_clock_event_stop(struct perf_event *event, int flags)
7294 7295 7296
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7297 7298 7299 7300 7301 7302
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7303
	perf_event_update_userpage(event);
7304

P
Peter Zijlstra 已提交
7305 7306 7307 7308 7309 7310
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7311 7312 7313 7314
}

static void task_clock_event_read(struct perf_event *event)
{
7315 7316 7317
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7318 7319 7320 7321 7322

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7323
{
7324 7325 7326 7327 7328 7329
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7330 7331 7332 7333 7334 7335
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7336 7337
	perf_swevent_init_hrtimer(event);

7338
	return 0;
L
Li Zefan 已提交
7339 7340
}

7341
static struct pmu perf_task_clock = {
7342 7343
	.task_ctx_nr	= perf_sw_context,

7344 7345
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7346
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7347 7348 7349 7350
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7351 7352
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7353

P
Peter Zijlstra 已提交
7354
static void perf_pmu_nop_void(struct pmu *pmu)
7355 7356
{
}
L
Li Zefan 已提交
7357

7358 7359 7360 7361
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7362
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7363
{
P
Peter Zijlstra 已提交
7364
	return 0;
L
Li Zefan 已提交
7365 7366
}

7367
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7368 7369

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7370
{
7371 7372 7373 7374 7375
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7376
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7377 7378
}

P
Peter Zijlstra 已提交
7379 7380
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7381 7382 7383 7384 7385 7386 7387
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7388 7389 7390
	perf_pmu_enable(pmu);
	return 0;
}
7391

P
Peter Zijlstra 已提交
7392
static void perf_pmu_cancel_txn(struct pmu *pmu)
7393
{
7394 7395 7396 7397 7398 7399 7400
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7401
	perf_pmu_enable(pmu);
7402 7403
}

7404 7405
static int perf_event_idx_default(struct perf_event *event)
{
7406
	return 0;
7407 7408
}

P
Peter Zijlstra 已提交
7409 7410 7411 7412
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7413
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7414
{
P
Peter Zijlstra 已提交
7415
	struct pmu *pmu;
7416

P
Peter Zijlstra 已提交
7417 7418
	if (ctxn < 0)
		return NULL;
7419

P
Peter Zijlstra 已提交
7420 7421 7422 7423
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7424

P
Peter Zijlstra 已提交
7425
	return NULL;
7426 7427
}

7428
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7429
{
7430 7431 7432 7433 7434 7435 7436
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7437 7438
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7439 7440 7441 7442 7443 7444
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7445

P
Peter Zijlstra 已提交
7446
	mutex_lock(&pmus_lock);
7447
	/*
P
Peter Zijlstra 已提交
7448
	 * Like a real lame refcount.
7449
	 */
7450 7451 7452
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7453
			goto out;
7454
		}
P
Peter Zijlstra 已提交
7455
	}
7456

7457
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7458 7459
out:
	mutex_unlock(&pmus_lock);
7460
}
P
Peter Zijlstra 已提交
7461
static struct idr pmu_idr;
7462

P
Peter Zijlstra 已提交
7463 7464 7465 7466 7467 7468 7469
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7470
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7471

7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7482 7483
static DEFINE_MUTEX(mux_interval_mutex);

7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7503
	mutex_lock(&mux_interval_mutex);
7504 7505 7506
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7507 7508
	get_online_cpus();
	for_each_online_cpu(cpu) {
7509 7510 7511 7512
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7513 7514
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7515
	}
7516 7517
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7518 7519 7520

	return count;
}
7521
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7522

7523 7524 7525 7526
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7527
};
7528
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7529 7530 7531 7532

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7533
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7549
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7570
static struct lock_class_key cpuctx_mutex;
7571
static struct lock_class_key cpuctx_lock;
7572

7573
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7574
{
P
Peter Zijlstra 已提交
7575
	int cpu, ret;
7576

7577
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7578 7579 7580 7581
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7582

P
Peter Zijlstra 已提交
7583 7584 7585 7586 7587 7588
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7589 7590 7591
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7592 7593 7594 7595 7596
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7597 7598 7599 7600 7601 7602
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7603
skip_type:
P
Peter Zijlstra 已提交
7604 7605 7606
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7607

W
Wei Yongjun 已提交
7608
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7609 7610
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7611
		goto free_dev;
7612

P
Peter Zijlstra 已提交
7613 7614 7615 7616
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7617
		__perf_event_init_context(&cpuctx->ctx);
7618
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7619
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7620
		cpuctx->ctx.pmu = pmu;
7621

7622
		__perf_mux_hrtimer_init(cpuctx, cpu);
7623

7624
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7625
	}
7626

P
Peter Zijlstra 已提交
7627
got_cpu_context:
P
Peter Zijlstra 已提交
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7639
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7640 7641
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7642
		}
7643
	}
7644

P
Peter Zijlstra 已提交
7645 7646 7647 7648 7649
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7650 7651 7652
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7653
	list_add_rcu(&pmu->entry, &pmus);
7654
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7655 7656
	ret = 0;
unlock:
7657 7658
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7659
	return ret;
P
Peter Zijlstra 已提交
7660

P
Peter Zijlstra 已提交
7661 7662 7663 7664
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7665 7666 7667 7668
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7669 7670 7671
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7672
}
7673
EXPORT_SYMBOL_GPL(perf_pmu_register);
7674

7675
void perf_pmu_unregister(struct pmu *pmu)
7676
{
7677 7678 7679
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7680

7681
	/*
P
Peter Zijlstra 已提交
7682 7683
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7684
	 */
7685
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7686
	synchronize_rcu();
7687

P
Peter Zijlstra 已提交
7688
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7689 7690
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7691 7692
	device_del(pmu->dev);
	put_device(pmu->dev);
7693
	free_pmu_context(pmu);
7694
}
7695
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7696

7697 7698
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7699
	struct perf_event_context *ctx = NULL;
7700 7701 7702 7703
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7704 7705

	if (event->group_leader != event) {
7706 7707 7708 7709 7710 7711
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7712 7713 7714
		BUG_ON(!ctx);
	}

7715 7716
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7717 7718 7719 7720

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7721 7722 7723 7724 7725 7726
	if (ret)
		module_put(pmu->module);

	return ret;
}

7727
static struct pmu *perf_init_event(struct perf_event *event)
7728 7729 7730
{
	struct pmu *pmu = NULL;
	int idx;
7731
	int ret;
7732 7733

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7734 7735 7736 7737

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7738
	if (pmu) {
7739
		ret = perf_try_init_event(pmu, event);
7740 7741
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7742
		goto unlock;
7743
	}
P
Peter Zijlstra 已提交
7744

7745
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7746
		ret = perf_try_init_event(pmu, event);
7747
		if (!ret)
P
Peter Zijlstra 已提交
7748
			goto unlock;
7749

7750 7751
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7752
			goto unlock;
7753
		}
7754
	}
P
Peter Zijlstra 已提交
7755 7756
	pmu = ERR_PTR(-ENOENT);
unlock:
7757
	srcu_read_unlock(&pmus_srcu, idx);
7758

7759
	return pmu;
7760 7761
}

7762 7763 7764 7765 7766 7767 7768 7769 7770
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7771 7772
static void account_event(struct perf_event *event)
{
7773 7774
	bool inc = false;

7775 7776 7777
	if (event->parent)
		return;

7778
	if (event->attach_state & PERF_ATTACH_TASK)
7779
		inc = true;
7780 7781 7782 7783 7784 7785
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7786 7787 7788 7789
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7790 7791
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7792
		inc = true;
7793
	}
7794
	if (has_branch_stack(event))
7795
		inc = true;
7796
	if (is_cgroup_event(event))
7797 7798
		inc = true;

7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
7821 7822

	account_event_cpu(event, event->cpu);
7823 7824
}

T
Thomas Gleixner 已提交
7825
/*
7826
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7827
 */
7828
static struct perf_event *
7829
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7830 7831 7832
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7833
		 perf_overflow_handler_t overflow_handler,
7834
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7835
{
P
Peter Zijlstra 已提交
7836
	struct pmu *pmu;
7837 7838
	struct perf_event *event;
	struct hw_perf_event *hwc;
7839
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7840

7841 7842 7843 7844 7845
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7846
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7847
	if (!event)
7848
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7849

7850
	/*
7851
	 * Single events are their own group leaders, with an
7852 7853 7854
	 * empty sibling list:
	 */
	if (!group_leader)
7855
		group_leader = event;
7856

7857 7858
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7859

7860 7861 7862
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7863
	INIT_LIST_HEAD(&event->rb_entry);
7864
	INIT_LIST_HEAD(&event->active_entry);
7865 7866
	INIT_HLIST_NODE(&event->hlist_entry);

7867

7868
	init_waitqueue_head(&event->waitq);
7869
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7870

7871
	mutex_init(&event->mmap_mutex);
7872

7873
	atomic_long_set(&event->refcount, 1);
7874 7875 7876 7877 7878
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7879

7880
	event->parent		= parent_event;
7881

7882
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7883
	event->id		= atomic64_inc_return(&perf_event_id);
7884

7885
	event->state		= PERF_EVENT_STATE_INACTIVE;
7886

7887 7888 7889
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7890 7891 7892
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7893
		 */
7894
		event->hw.target = task;
7895 7896
	}

7897 7898 7899 7900
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7901
	if (!overflow_handler && parent_event) {
7902
		overflow_handler = parent_event->overflow_handler;
7903 7904
		context = parent_event->overflow_handler_context;
	}
7905

7906
	event->overflow_handler	= overflow_handler;
7907
	event->overflow_handler_context = context;
7908

J
Jiri Olsa 已提交
7909
	perf_event__state_init(event);
7910

7911
	pmu = NULL;
7912

7913
	hwc = &event->hw;
7914
	hwc->sample_period = attr->sample_period;
7915
	if (attr->freq && attr->sample_freq)
7916
		hwc->sample_period = 1;
7917
	hwc->last_period = hwc->sample_period;
7918

7919
	local64_set(&hwc->period_left, hwc->sample_period);
7920

7921
	/*
7922
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7923
	 */
7924
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7925
		goto err_ns;
7926 7927 7928

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7929

7930 7931 7932 7933 7934 7935
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7936
	pmu = perf_init_event(event);
7937
	if (!pmu)
7938 7939
		goto err_ns;
	else if (IS_ERR(pmu)) {
7940
		err = PTR_ERR(pmu);
7941
		goto err_ns;
I
Ingo Molnar 已提交
7942
	}
7943

7944 7945 7946 7947
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7948
	if (!event->parent) {
7949 7950
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7951
			if (err)
7952
				goto err_per_task;
7953
		}
7954
	}
7955

7956
	return event;
7957

7958 7959 7960
err_per_task:
	exclusive_event_destroy(event);

7961 7962 7963
err_pmu:
	if (event->destroy)
		event->destroy(event);
7964
	module_put(pmu->module);
7965
err_ns:
7966 7967
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7968 7969 7970 7971 7972
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7973 7974
}

7975 7976
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7977 7978
{
	u32 size;
7979
	int ret;
7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8004 8005 8006
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8007 8008
	 */
	if (size > sizeof(*attr)) {
8009 8010 8011
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8012

8013 8014
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8015

8016
		for (; addr < end; addr++) {
8017 8018 8019 8020 8021 8022
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8023
		size = sizeof(*attr);
8024 8025 8026 8027 8028 8029
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8030
	if (attr->__reserved_1)
8031 8032 8033 8034 8035 8036 8037 8038
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8067 8068
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8069 8070
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8071
	}
8072

8073
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8074
		ret = perf_reg_validate(attr->sample_regs_user);
8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8093

8094 8095
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8096 8097 8098 8099 8100 8101 8102 8103 8104
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8105 8106
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8107
{
8108
	struct ring_buffer *rb = NULL;
8109 8110
	int ret = -EINVAL;

8111
	if (!output_event)
8112 8113
		goto set;

8114 8115
	/* don't allow circular references */
	if (event == output_event)
8116 8117
		goto out;

8118 8119 8120 8121 8122 8123 8124
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8125
	 * If its not a per-cpu rb, it must be the same task.
8126 8127 8128 8129
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8130 8131 8132 8133 8134 8135
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8136 8137 8138 8139 8140 8141 8142
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8143
set:
8144
	mutex_lock(&event->mmap_mutex);
8145 8146 8147
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8148

8149
	if (output_event) {
8150 8151 8152
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8153
			goto unlock;
8154 8155
	}

8156
	ring_buffer_attach(event, rb);
8157

8158
	ret = 0;
8159 8160 8161
unlock:
	mutex_unlock(&event->mmap_mutex);

8162 8163 8164 8165
out:
	return ret;
}

P
Peter Zijlstra 已提交
8166 8167 8168 8169 8170 8171 8172 8173 8174
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8212
/**
8213
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8214
 *
8215
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8216
 * @pid:		target pid
I
Ingo Molnar 已提交
8217
 * @cpu:		target cpu
8218
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8219
 */
8220 8221
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8222
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8223
{
8224 8225
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8226
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8227
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8228
	struct file *event_file = NULL;
8229
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8230
	struct task_struct *task = NULL;
8231
	struct pmu *pmu;
8232
	int event_fd;
8233
	int move_group = 0;
8234
	int err;
8235
	int f_flags = O_RDWR;
8236
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8237

8238
	/* for future expandability... */
S
Stephane Eranian 已提交
8239
	if (flags & ~PERF_FLAG_ALL)
8240 8241
		return -EINVAL;

8242 8243 8244
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8245

8246 8247 8248 8249 8250
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8251
	if (attr.freq) {
8252
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8253
			return -EINVAL;
8254 8255 8256
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8257 8258
	}

S
Stephane Eranian 已提交
8259 8260 8261 8262 8263 8264 8265 8266 8267
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8268 8269 8270 8271
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8272 8273 8274
	if (event_fd < 0)
		return event_fd;

8275
	if (group_fd != -1) {
8276 8277
		err = perf_fget_light(group_fd, &group);
		if (err)
8278
			goto err_fd;
8279
		group_leader = group.file->private_data;
8280 8281 8282 8283 8284 8285
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8286
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8287 8288 8289 8290 8291 8292 8293
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8294 8295 8296 8297 8298 8299
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8300 8301
	get_online_cpus();

8302 8303 8304
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8305
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8306
				 NULL, NULL, cgroup_fd);
8307 8308
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8309
		goto err_cpus;
8310 8311
	}

8312 8313 8314 8315 8316 8317 8318
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8319 8320
	account_event(event);

8321 8322 8323 8324 8325
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8326

8327 8328 8329 8330 8331 8332
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8355 8356 8357 8358

	/*
	 * Get the target context (task or percpu):
	 */
8359
	ctx = find_get_context(pmu, task, event);
8360 8361
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8362
		goto err_alloc;
8363 8364
	}

8365 8366 8367 8368 8369
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8370 8371 8372 8373 8374
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8375
	/*
8376
	 * Look up the group leader (we will attach this event to it):
8377
	 */
8378
	if (group_leader) {
8379
		err = -EINVAL;
8380 8381

		/*
I
Ingo Molnar 已提交
8382 8383 8384 8385
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8386
			goto err_context;
8387 8388 8389 8390 8391

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8392 8393 8394
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8395
		 */
8396
		if (move_group) {
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8410 8411 8412 8413 8414 8415
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8416 8417 8418
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8419
		if (attr.exclusive || attr.pinned)
8420
			goto err_context;
8421 8422 8423 8424 8425
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8426
			goto err_context;
8427
	}
T
Thomas Gleixner 已提交
8428

8429 8430
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8431 8432
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8433
		goto err_context;
8434
	}
8435

8436
	if (move_group) {
P
Peter Zijlstra 已提交
8437
		gctx = group_leader->ctx;
8438
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8439 8440 8441 8442
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
8443 8444 8445 8446
	} else {
		mutex_lock(&ctx->mutex);
	}

8447 8448 8449 8450 8451
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
8452 8453 8454 8455 8456
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8457 8458 8459 8460 8461 8462 8463
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8464

8465 8466 8467
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8468

8469 8470 8471
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8472 8473 8474 8475
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8476
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8477

8478 8479
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8480
			perf_remove_from_context(sibling, 0);
8481 8482 8483
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8484 8485 8486 8487
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8488
		synchronize_rcu();
P
Peter Zijlstra 已提交
8489

8490 8491 8492 8493 8494 8495 8496 8497 8498 8499
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8500 8501
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8502
			perf_event__state_init(sibling);
8503
			perf_install_in_context(ctx, sibling, sibling->cpu);
8504 8505
			get_ctx(ctx);
		}
8506 8507 8508 8509 8510 8511 8512 8513 8514

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8515

8516 8517 8518 8519 8520 8521
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8522 8523
	}

8524 8525 8526 8527 8528 8529 8530 8531 8532
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8533 8534
	event->owner = current;

8535
	perf_install_in_context(ctx, event, event->cpu);
8536
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8537

8538
	if (move_group)
P
Peter Zijlstra 已提交
8539
		mutex_unlock(&gctx->mutex);
8540
	mutex_unlock(&ctx->mutex);
8541

8542 8543
	put_online_cpus();

8544 8545 8546
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8547

8548 8549 8550 8551 8552 8553
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8554
	fdput(group);
8555 8556
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8557

8558 8559 8560 8561 8562 8563
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8564
err_context:
8565
	perf_unpin_context(ctx);
8566
	put_ctx(ctx);
8567
err_alloc:
P
Peter Zijlstra 已提交
8568 8569 8570 8571 8572 8573
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
8574
err_cpus:
8575
	put_online_cpus();
8576
err_task:
P
Peter Zijlstra 已提交
8577 8578
	if (task)
		put_task_struct(task);
8579
err_group_fd:
8580
	fdput(group);
8581 8582
err_fd:
	put_unused_fd(event_fd);
8583
	return err;
T
Thomas Gleixner 已提交
8584 8585
}

8586 8587 8588 8589 8590
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8591
 * @task: task to profile (NULL for percpu)
8592 8593 8594
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8595
				 struct task_struct *task,
8596 8597
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8598 8599
{
	struct perf_event_context *ctx;
8600
	struct perf_event *event;
8601
	int err;
8602

8603 8604 8605
	/*
	 * Get the target context (task or percpu):
	 */
8606

8607
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8608
				 overflow_handler, context, -1);
8609 8610 8611 8612
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8613

8614
	/* Mark owner so we could distinguish it from user events. */
8615
	event->owner = TASK_TOMBSTONE;
8616

8617 8618
	account_event(event);

8619
	ctx = find_get_context(event->pmu, task, event);
8620 8621
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8622
		goto err_free;
8623
	}
8624 8625 8626

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8627 8628 8629 8630 8631
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

8632 8633
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
8634
		goto err_unlock;
8635 8636
	}

8637
	perf_install_in_context(ctx, event, cpu);
8638
	perf_unpin_context(ctx);
8639 8640 8641 8642
	mutex_unlock(&ctx->mutex);

	return event;

8643 8644 8645 8646
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
8647 8648 8649
err_free:
	free_event(event);
err:
8650
	return ERR_PTR(err);
8651
}
8652
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8653

8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8664 8665 8666 8667 8668
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8669 8670
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8671
		perf_remove_from_context(event, 0);
8672
		unaccount_event_cpu(event, src_cpu);
8673
		put_ctx(src_ctx);
8674
		list_add(&event->migrate_entry, &events);
8675 8676
	}

8677 8678 8679
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8680 8681
	synchronize_rcu();

8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8706 8707
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8708 8709
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8710
		account_event_cpu(event, dst_cpu);
8711 8712 8713 8714
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8715
	mutex_unlock(&src_ctx->mutex);
8716 8717 8718
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8719
static void sync_child_event(struct perf_event *child_event,
8720
			       struct task_struct *child)
8721
{
8722
	struct perf_event *parent_event = child_event->parent;
8723
	u64 child_val;
8724

8725 8726
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8727

P
Peter Zijlstra 已提交
8728
	child_val = perf_event_count(child_event);
8729 8730 8731 8732

	/*
	 * Add back the child's count to the parent's count:
	 */
8733
	atomic64_add(child_val, &parent_event->child_count);
8734 8735 8736 8737
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8738 8739
}

8740
static void
8741 8742 8743
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8744
{
8745 8746
	struct perf_event *parent_event = child_event->parent;

8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8759 8760 8761
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8762
	if (parent_event)
8763 8764
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
8765
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8766
	raw_spin_unlock_irq(&child_ctx->lock);
8767

8768
	/*
8769
	 * Parent events are governed by their filedesc, retain them.
8770
	 */
8771
	if (!parent_event) {
8772
		perf_event_wakeup(child_event);
8773
		return;
8774
	}
8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8795 8796
}

P
Peter Zijlstra 已提交
8797
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8798
{
8799
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8800 8801 8802
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8803

8804
	child_ctx = perf_pin_task_context(child, ctxn);
8805
	if (!child_ctx)
8806 8807
		return;

8808
	/*
8809 8810 8811 8812 8813 8814 8815 8816
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
8817
	 */
8818
	mutex_lock(&child_ctx->mutex);
8819 8820

	/*
8821 8822 8823
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
8824
	 */
8825
	raw_spin_lock_irq(&child_ctx->lock);
8826
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8827

8828
	/*
8829 8830
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8831
	 */
8832 8833 8834 8835
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8836

8837
	clone_ctx = unclone_ctx(child_ctx);
8838
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8839

8840 8841
	if (clone_ctx)
		put_ctx(clone_ctx);
8842

P
Peter Zijlstra 已提交
8843
	/*
8844 8845 8846
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8847
	 */
8848
	perf_event_task(child, child_ctx, 0);
8849

8850
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8851
		perf_event_exit_event(child_event, child_ctx, child);
8852

8853 8854 8855
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8856 8857
}

P
Peter Zijlstra 已提交
8858 8859 8860 8861 8862
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8863
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8864 8865
	int ctxn;

P
Peter Zijlstra 已提交
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8876
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8877 8878 8879
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8880 8881
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8882 8883 8884 8885 8886 8887 8888 8889

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8890 8891
}

8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8904
	put_event(parent);
8905

P
Peter Zijlstra 已提交
8906
	raw_spin_lock_irq(&ctx->lock);
8907
	perf_group_detach(event);
8908
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8909
	raw_spin_unlock_irq(&ctx->lock);
8910 8911 8912
	free_event(event);
}

8913
/*
P
Peter Zijlstra 已提交
8914
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8915
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8916 8917 8918
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8919
 */
8920
void perf_event_free_task(struct task_struct *task)
8921
{
P
Peter Zijlstra 已提交
8922
	struct perf_event_context *ctx;
8923
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8924
	int ctxn;
8925

P
Peter Zijlstra 已提交
8926 8927 8928 8929
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8930

P
Peter Zijlstra 已提交
8931
		mutex_lock(&ctx->mutex);
8932
again:
P
Peter Zijlstra 已提交
8933 8934 8935
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8936

P
Peter Zijlstra 已提交
8937 8938 8939
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8940

P
Peter Zijlstra 已提交
8941 8942 8943
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8944

P
Peter Zijlstra 已提交
8945
		mutex_unlock(&ctx->mutex);
8946

P
Peter Zijlstra 已提交
8947 8948
		put_ctx(ctx);
	}
8949 8950
}

8951 8952 8953 8954 8955 8956 8957 8958
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8959
struct file *perf_event_get(unsigned int fd)
8960
{
8961
	struct file *file;
8962

8963 8964 8965
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
8966

8967 8968 8969 8970
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
8971

8972
	return file;
8973 8974 8975 8976 8977 8978 8979 8980 8981 8982
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8994
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8995
	struct perf_event *child_event;
8996
	unsigned long flags;
P
Peter Zijlstra 已提交
8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9009
					   child,
P
Peter Zijlstra 已提交
9010
					   group_leader, parent_event,
9011
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9012 9013
	if (IS_ERR(child_event))
		return child_event;
9014

9015 9016 9017 9018 9019 9020 9021
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
9022 9023
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9024
		mutex_unlock(&parent_event->child_mutex);
9025 9026 9027 9028
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9029 9030 9031 9032 9033 9034 9035
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9036
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9053 9054
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9055

9056 9057 9058 9059
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9060
	perf_event__id_header_size(child_event);
9061

P
Peter Zijlstra 已提交
9062 9063 9064
	/*
	 * Link it up in the child's context:
	 */
9065
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9066
	add_event_to_ctx(child_event, child_ctx);
9067
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9099 9100 9101 9102 9103
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9104
		   struct task_struct *child, int ctxn,
9105 9106 9107
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9108
	struct perf_event_context *child_ctx;
9109 9110 9111 9112

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9113 9114
	}

9115
	child_ctx = child->perf_event_ctxp[ctxn];
9116 9117 9118 9119 9120 9121 9122
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9123

9124
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9125 9126
		if (!child_ctx)
			return -ENOMEM;
9127

P
Peter Zijlstra 已提交
9128
		child->perf_event_ctxp[ctxn] = child_ctx;
9129 9130 9131 9132 9133 9134 9135 9136 9137
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9138 9139
}

9140
/*
9141
 * Initialize the perf_event context in task_struct
9142
 */
9143
static int perf_event_init_context(struct task_struct *child, int ctxn)
9144
{
9145
	struct perf_event_context *child_ctx, *parent_ctx;
9146 9147
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9148
	struct task_struct *parent = current;
9149
	int inherited_all = 1;
9150
	unsigned long flags;
9151
	int ret = 0;
9152

P
Peter Zijlstra 已提交
9153
	if (likely(!parent->perf_event_ctxp[ctxn]))
9154 9155
		return 0;

9156
	/*
9157 9158
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9159
	 */
P
Peter Zijlstra 已提交
9160
	parent_ctx = perf_pin_task_context(parent, ctxn);
9161 9162
	if (!parent_ctx)
		return 0;
9163

9164 9165 9166 9167 9168 9169 9170
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9171 9172 9173 9174
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9175
	mutex_lock(&parent_ctx->mutex);
9176 9177 9178 9179 9180

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9181
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9182 9183
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9184 9185 9186
		if (ret)
			break;
	}
9187

9188 9189 9190 9191 9192 9193 9194 9195 9196
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9197
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9198 9199
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9200
		if (ret)
9201
			break;
9202 9203
	}

9204 9205 9206
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9207
	child_ctx = child->perf_event_ctxp[ctxn];
9208

9209
	if (child_ctx && inherited_all) {
9210 9211 9212
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9213 9214 9215
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9216
		 */
P
Peter Zijlstra 已提交
9217
		cloned_ctx = parent_ctx->parent_ctx;
9218 9219
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9220
			child_ctx->parent_gen = parent_ctx->parent_gen;
9221 9222 9223 9224 9225
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9226 9227
	}

P
Peter Zijlstra 已提交
9228
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9229
	mutex_unlock(&parent_ctx->mutex);
9230

9231
	perf_unpin_context(parent_ctx);
9232
	put_ctx(parent_ctx);
9233

9234
	return ret;
9235 9236
}

P
Peter Zijlstra 已提交
9237 9238 9239 9240 9241 9242 9243
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9244 9245 9246 9247
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9248 9249
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9250 9251
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9252
			return ret;
P
Peter Zijlstra 已提交
9253
		}
P
Peter Zijlstra 已提交
9254 9255 9256 9257 9258
	}

	return 0;
}

9259 9260
static void __init perf_event_init_all_cpus(void)
{
9261
	struct swevent_htable *swhash;
9262 9263 9264
	int cpu;

	for_each_possible_cpu(cpu) {
9265 9266
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9267
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9268 9269 9270
	}
}

9271
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9272
{
P
Peter Zijlstra 已提交
9273
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9274

9275
	mutex_lock(&swhash->hlist_mutex);
9276
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9277 9278
		struct swevent_hlist *hlist;

9279 9280 9281
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9282
	}
9283
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9284 9285
}

9286
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9287
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9288
{
P
Peter Zijlstra 已提交
9289
	struct perf_event_context *ctx = __info;
9290 9291
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9292

9293 9294
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9295
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9296
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9297
}
P
Peter Zijlstra 已提交
9298 9299 9300 9301 9302 9303 9304 9305 9306

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9307
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9308 9309 9310 9311 9312 9313 9314 9315

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9316
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9317
{
P
Peter Zijlstra 已提交
9318
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9319 9320
}
#else
9321
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9322 9323
#endif

P
Peter Zijlstra 已提交
9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9344
static int
T
Thomas Gleixner 已提交
9345 9346 9347 9348
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9349
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9350 9351

	case CPU_UP_PREPARE:
9352
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9353 9354 9355
		break;

	case CPU_DOWN_PREPARE:
9356
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9357 9358 9359 9360 9361 9362 9363 9364
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9365
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9366
{
9367 9368
	int ret;

P
Peter Zijlstra 已提交
9369 9370
	idr_init(&pmu_idr);

9371
	perf_event_init_all_cpus();
9372
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9373 9374 9375
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9376 9377
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9378
	register_reboot_notifier(&perf_reboot_notifier);
9379 9380 9381

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9382

9383 9384 9385 9386 9387 9388
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9389
}
P
Peter Zijlstra 已提交
9390

9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9430 9431

#ifdef CONFIG_CGROUP_PERF
9432 9433
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9434 9435 9436
{
	struct perf_cgroup *jc;

9437
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9450
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9451
{
9452 9453
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9454 9455 9456 9457 9458 9459 9460
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9461
	rcu_read_lock();
S
Stephane Eranian 已提交
9462
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9463
	rcu_read_unlock();
S
Stephane Eranian 已提交
9464 9465 9466
	return 0;
}

9467
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9468
{
9469
	struct task_struct *task;
9470
	struct cgroup_subsys_state *css;
9471

9472
	cgroup_taskset_for_each(task, css, tset)
9473
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9474 9475
}

9476
struct cgroup_subsys perf_event_cgrp_subsys = {
9477 9478
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9479
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9480 9481
};
#endif /* CONFIG_CGROUP_PERF */