core.c 220.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
89
task_function_call(struct task_struct *p, remote_function_f func, void *info)
90 91
{
	struct remote_function_call data = {
92 93 94 95
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
113
static int cpu_function_call(int cpu, remote_function_f func, void *info)
114 115
{
	struct remote_function_call data = {
116 117 118 119
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
120 121 122 123 124 125 126
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

127 128 129 130 131 132 133 134
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
135
{
136 137 138 139 140 141 142 143 144 145 146 147 148
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

149 150 151 152
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
153
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214 215 216 217
		if (ctx->task != current) {
			ret = -EAGAIN;
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278 279
		return;
	}

again:
280 281 282
	if (task == TASK_TOMBSTONE)
		return;

283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291 292 293 294 295 296 297
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
	if (task != TASK_TOMBSTONE) {
		if (ctx->is_active) {
			raw_spin_unlock_irq(&ctx->lock);
			goto again;
		}
		func(event, NULL, ctx, data);
298 299 300 301
	}
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
302 303
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
304 305
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
306

307 308 309 310 311 312 313
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

314 315 316 317 318 319
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
320 321 322 323
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
324
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
325
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
326
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
327

328 329 330
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
331
static atomic_t nr_freq_events __read_mostly;
332
static atomic_t nr_switch_events __read_mostly;
333

P
Peter Zijlstra 已提交
334 335 336 337
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

338
/*
339
 * perf event paranoia level:
340 341
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
342
 *   1 - disallow cpu events for unpriv
343
 *   2 - disallow kernel profiling for unpriv
344
 */
345
int sysctl_perf_event_paranoid __read_mostly = 1;
346

347 348
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
349 350

/*
351
 * max perf event sample rate
352
 */
353 354 355 356 357 358 359 360 361
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
362 363
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
364

365
static void update_perf_cpu_limits(void)
366 367 368 369
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
370
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
371
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
372
}
P
Peter Zijlstra 已提交
373

374 375
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
376 377 378 379
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
380
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
381 382 383 384 385

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
404 405 406

	return 0;
}
407

408 409 410 411 412 413 414
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
415
static DEFINE_PER_CPU(u64, running_sample_length);
416

417
static void perf_duration_warn(struct irq_work *w)
418
{
419
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
420
	u64 avg_local_sample_len;
421
	u64 local_samples_len;
422

423
	local_samples_len = __this_cpu_read(running_sample_length);
424 425 426 427 428
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
429
			avg_local_sample_len, allowed_ns >> 1,
430 431 432 433 434 435 436
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
437
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
438 439
	u64 avg_local_sample_len;
	u64 local_samples_len;
440

P
Peter Zijlstra 已提交
441
	if (allowed_ns == 0)
442 443 444
		return;

	/* decay the counter by 1 average sample */
445
	local_samples_len = __this_cpu_read(running_sample_length);
446 447
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
448
	__this_cpu_write(running_sample_length, local_samples_len);
449 450 451 452 453 454 455 456

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
457
	if (avg_local_sample_len <= allowed_ns)
458 459 460 461 462 463 464 465 466 467
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
468

469 470 471 472 473 474
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
475 476
}

477
static atomic64_t perf_event_id;
478

479 480 481 482
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
483 484 485 486 487
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
488

489
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
490

491
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
492
{
493
	return "pmu";
T
Thomas Gleixner 已提交
494 495
}

496 497 498 499 500
static inline u64 perf_clock(void)
{
	return local_clock();
}

501 502 503 504 505
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
506 507 508 509 510 511 512 513
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
530 531 532 533
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
534
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
573 574
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
575
	/*
576 577
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
578
	 */
579
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
580 581
		return;

582
	cgrp = perf_cgroup_from_task(current, event->ctx);
583 584 585 586 587
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
588 589 590
}

static inline void
591 592
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
593 594 595 596
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

597 598 599 600 601 602
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
603 604
		return;

605
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
606
	info = this_cpu_ptr(cgrp->info);
607
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
608 609 610 611 612 613 614 615 616 617 618
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
619
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 640
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
641 642 643 644 645 646 647 648 649

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
650 651
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
652 653 654 655 656 657 658 659 660 661 662

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
663
				WARN_ON_ONCE(cpuctx->cgrp);
664 665 666 667
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
668 669
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
670
				 */
671
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
672 673
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
674 675
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
676 677 678 679 680 681
		}
	}

	local_irq_restore(flags);
}

682 683
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
684
{
685 686 687
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

688
	rcu_read_lock();
689 690
	/*
	 * we come here when we know perf_cgroup_events > 0
691 692
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
693
	 */
694
	cgrp1 = perf_cgroup_from_task(task, NULL);
695
	cgrp2 = perf_cgroup_from_task(next, NULL);
696 697 698 699 700 701 702 703

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
704 705

	rcu_read_unlock();
S
Stephane Eranian 已提交
706 707
}

708 709
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
710
{
711 712 713
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

714
	rcu_read_lock();
715 716
	/*
	 * we come here when we know perf_cgroup_events > 0
717 718
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
719
	 */
720 721
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
722 723 724 725 726 727 728 729

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
730 731

	rcu_read_unlock();
S
Stephane Eranian 已提交
732 733 734 735 736 737 738 739
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
740 741
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
742

743
	if (!f.file)
S
Stephane Eranian 已提交
744 745
		return -EBADF;

A
Al Viro 已提交
746
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
747
					 &perf_event_cgrp_subsys);
748 749 750 751
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
765
out:
766
	fdput(f);
S
Stephane Eranian 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

840 841
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
842 843 844
{
}

845 846
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
847 848 849 850 851 852 853 854 855 856 857
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
858 859
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

890 891 892 893 894 895 896 897
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
898
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
899 900 901 902 903 904 905 906 907
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
908 909
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
910
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
911 912 913
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
914

P
Peter Zijlstra 已提交
915
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
916 917
}

918
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
919
{
920
	struct hrtimer *timer = &cpuctx->hrtimer;
921
	struct pmu *pmu = cpuctx->ctx.pmu;
922
	u64 interval;
923 924 925 926 927

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

928 929 930 931
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
932 933 934
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
935

936
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
937

P
Peter Zijlstra 已提交
938 939
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
940
	timer->function = perf_mux_hrtimer_handler;
941 942
}

943
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
944
{
945
	struct hrtimer *timer = &cpuctx->hrtimer;
946
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
947
	unsigned long flags;
948 949 950

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
951
		return 0;
952

P
Peter Zijlstra 已提交
953 954 955 956 957 958 959
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
960

961
	return 0;
962 963
}

P
Peter Zijlstra 已提交
964
void perf_pmu_disable(struct pmu *pmu)
965
{
P
Peter Zijlstra 已提交
966 967 968
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
969 970
}

P
Peter Zijlstra 已提交
971
void perf_pmu_enable(struct pmu *pmu)
972
{
P
Peter Zijlstra 已提交
973 974 975
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
976 977
}

978
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
979 980

/*
981 982 983 984
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
985
 */
986
static void perf_event_ctx_activate(struct perf_event_context *ctx)
987
{
988
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
989

990
	WARN_ON(!irqs_disabled());
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1004 1005
}

1006
static void get_ctx(struct perf_event_context *ctx)
1007
{
1008
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1009 1010
}

1011 1012 1013 1014 1015 1016 1017 1018 1019
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1020
static void put_ctx(struct perf_event_context *ctx)
1021
{
1022 1023 1024
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1025
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1026
			put_task_struct(ctx->task);
1027
		call_rcu(&ctx->rcu_head, free_ctx);
1028
	}
1029 1030
}

P
Peter Zijlstra 已提交
1031 1032 1033 1034 1035 1036 1037
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1038 1039 1040 1041
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1042 1043
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1087
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1088 1089 1090
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1091 1092
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1105
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1115 1116 1117 1118 1119 1120
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1121 1122 1123 1124 1125 1126 1127
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1128 1129 1130 1131 1132 1133 1134
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1135
{
1136 1137 1138 1139 1140
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1141
		ctx->parent_ctx = NULL;
1142
	ctx->generation++;
1143 1144

	return parent_ctx;
1145 1146
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1169
/*
1170
 * If we inherit events we want to return the parent event id
1171 1172
 * to userspace.
 */
1173
static u64 primary_event_id(struct perf_event *event)
1174
{
1175
	u64 id = event->id;
1176

1177 1178
	if (event->parent)
		id = event->parent->id;
1179 1180 1181 1182

	return id;
}

1183
/*
1184
 * Get the perf_event_context for a task and lock it.
1185
 *
1186 1187 1188
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1189
static struct perf_event_context *
P
Peter Zijlstra 已提交
1190
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1191
{
1192
	struct perf_event_context *ctx;
1193

P
Peter Zijlstra 已提交
1194
retry:
1195 1196 1197
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1198
	 * part of the read side critical section was irqs-enabled -- see
1199 1200 1201
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1202
	 * side critical section has interrupts disabled.
1203
	 */
1204
	local_irq_save(*flags);
1205
	rcu_read_lock();
P
Peter Zijlstra 已提交
1206
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1207 1208 1209 1210
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1211
		 * perf_event_task_sched_out, though the
1212 1213 1214 1215 1216 1217
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1218
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1219
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1220
			raw_spin_unlock(&ctx->lock);
1221
			rcu_read_unlock();
1222
			local_irq_restore(*flags);
1223 1224
			goto retry;
		}
1225

1226 1227
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1228
			raw_spin_unlock(&ctx->lock);
1229
			ctx = NULL;
P
Peter Zijlstra 已提交
1230 1231
		} else {
			WARN_ON_ONCE(ctx->task != task);
1232
		}
1233 1234
	}
	rcu_read_unlock();
1235 1236
	if (!ctx)
		local_irq_restore(*flags);
1237 1238 1239 1240 1241 1242 1243 1244
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1245 1246
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1247
{
1248
	struct perf_event_context *ctx;
1249 1250
	unsigned long flags;

P
Peter Zijlstra 已提交
1251
	ctx = perf_lock_task_context(task, ctxn, &flags);
1252 1253
	if (ctx) {
		++ctx->pin_count;
1254
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1255 1256 1257 1258
	}
	return ctx;
}

1259
static void perf_unpin_context(struct perf_event_context *ctx)
1260 1261 1262
{
	unsigned long flags;

1263
	raw_spin_lock_irqsave(&ctx->lock, flags);
1264
	--ctx->pin_count;
1265
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1279 1280 1281
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1282 1283 1284 1285

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1286 1287 1288
	return ctx ? ctx->time : 0;
}

1289 1290
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1291
 * The caller of this function needs to hold the ctx->lock.
1292 1293 1294 1295 1296 1297 1298 1299 1300
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1312
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1313 1314
	else if (ctx->is_active)
		run_end = ctx->time;
1315 1316 1317 1318
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1319 1320 1321 1322

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1323
		run_end = perf_event_time(event);
1324 1325

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1326

1327 1328
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1341 1342 1343 1344 1345 1346 1347 1348 1349
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1350
/*
1351
 * Add a event from the lists for its context.
1352 1353
 * Must be called with ctx->mutex and ctx->lock held.
 */
1354
static void
1355
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1356
{
P
Peter Zijlstra 已提交
1357 1358
	lockdep_assert_held(&ctx->lock);

1359 1360
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1361 1362

	/*
1363 1364 1365
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1366
	 */
1367
	if (event->group_leader == event) {
1368 1369
		struct list_head *list;

1370 1371 1372
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1373 1374
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1375
	}
P
Peter Zijlstra 已提交
1376

1377
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1378 1379
		ctx->nr_cgroups++;

1380 1381 1382
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1383
		ctx->nr_stat++;
1384 1385

	ctx->generation++;
1386 1387
}

J
Jiri Olsa 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1397
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1413
		nr += nr_siblings;
1414 1415 1416 1417 1418 1419 1420
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1421
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1422 1423 1424 1425 1426 1427 1428
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1429 1430 1431 1432 1433 1434
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1435 1436 1437
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1438 1439 1440
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1441 1442 1443
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1444 1445 1446
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1447 1448 1449
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1461 1462 1463 1464 1465 1466
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1467 1468 1469 1470 1471 1472
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1473 1474 1475
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1476 1477 1478 1479 1480 1481 1482 1483 1484
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1485
	event->id_header_size = size;
1486 1487
}

P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1509 1510
static void perf_group_attach(struct perf_event *event)
{
1511
	struct perf_event *group_leader = event->group_leader, *pos;
1512

P
Peter Zijlstra 已提交
1513 1514 1515 1516 1517 1518
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1519 1520 1521 1522 1523
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1524 1525
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1526 1527 1528 1529 1530 1531
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1532 1533 1534 1535 1536

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1537 1538
}

1539
/*
1540
 * Remove a event from the lists for its context.
1541
 * Must be called with ctx->mutex and ctx->lock held.
1542
 */
1543
static void
1544
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1545
{
1546
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1547 1548 1549 1550

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1551 1552 1553 1554
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1555
		return;
1556 1557 1558

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1559
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1560
		ctx->nr_cgroups--;
1561 1562 1563 1564
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1565 1566
		cpuctx = __get_cpu_context(ctx);
		/*
1567 1568
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1569 1570 1571 1572
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1573

1574 1575
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1576
		ctx->nr_stat--;
1577

1578
	list_del_rcu(&event->event_entry);
1579

1580 1581
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1582

1583
	update_group_times(event);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1594 1595

	ctx->generation++;
1596 1597
}

1598
static void perf_group_detach(struct perf_event *event)
1599 1600
{
	struct perf_event *sibling, *tmp;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1617
		goto out;
1618 1619 1620 1621
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1622

1623
	/*
1624 1625
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1626
	 * to whatever list we are on.
1627
	 */
1628
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1629 1630
		if (list)
			list_move_tail(&sibling->group_entry, list);
1631
		sibling->group_leader = sibling;
1632 1633 1634

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1635 1636

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1637
	}
1638 1639 1640 1641 1642 1643

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1644 1645
}

1646 1647
static bool is_orphaned_event(struct perf_event *event)
{
1648
	return event->state == PERF_EVENT_STATE_EXIT;
1649 1650
}

1651 1652 1653 1654 1655 1656
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1657 1658 1659
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1660
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1661
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1662 1663
}

1664 1665
static void
event_sched_out(struct perf_event *event,
1666
		  struct perf_cpu_context *cpuctx,
1667
		  struct perf_event_context *ctx)
1668
{
1669
	u64 tstamp = perf_event_time(event);
1670
	u64 delta;
P
Peter Zijlstra 已提交
1671 1672 1673 1674

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1683
		delta = tstamp - event->tstamp_stopped;
1684
		event->tstamp_running += delta;
1685
		event->tstamp_stopped = tstamp;
1686 1687
	}

1688
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1689
		return;
1690

1691 1692
	perf_pmu_disable(event->pmu);

1693 1694 1695 1696
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1697
	}
1698
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1699
	event->pmu->del(event, 0);
1700
	event->oncpu = -1;
1701

1702
	if (!is_software_event(event))
1703
		cpuctx->active_oncpu--;
1704 1705
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1706 1707
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1708
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1709
		cpuctx->exclusive = 0;
1710 1711

	perf_pmu_enable(event->pmu);
1712 1713
}

1714
static void
1715
group_sched_out(struct perf_event *group_event,
1716
		struct perf_cpu_context *cpuctx,
1717
		struct perf_event_context *ctx)
1718
{
1719
	struct perf_event *event;
1720
	int state = group_event->state;
1721

1722
	event_sched_out(group_event, cpuctx, ctx);
1723 1724 1725 1726

	/*
	 * Schedule out siblings (if any):
	 */
1727 1728
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1729

1730
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1731 1732 1733
		cpuctx->exclusive = 0;
}

1734
#define DETACH_GROUP	0x01UL
1735
#define DETACH_STATE	0x02UL
1736

T
Thomas Gleixner 已提交
1737
/*
1738
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1739
 *
1740
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1741 1742
 * remove it from the context list.
 */
1743 1744 1745 1746 1747
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1748
{
1749
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1750

1751
	event_sched_out(event, cpuctx, ctx);
1752
	if (flags & DETACH_GROUP)
1753
		perf_group_detach(event);
1754
	list_del_event(event, ctx);
1755 1756
	if (flags & DETACH_STATE)
		event->state = PERF_EVENT_STATE_EXIT;
1757 1758

	if (!ctx->nr_events && ctx->is_active) {
1759
		ctx->is_active = 0;
1760 1761 1762 1763
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1764
	}
T
Thomas Gleixner 已提交
1765 1766 1767
}

/*
1768
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1769
 *
1770 1771
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1772 1773
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1774
 * When called from perf_event_exit_task, it's OK because the
1775
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1776
 */
1777
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1778
{
1779
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1780

1781
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1782 1783
}

1784
/*
1785
 * Cross CPU call to disable a performance event
1786
 */
1787 1788 1789 1790
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1791
{
1792 1793
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1794

1795 1796 1797 1798 1799 1800 1801 1802
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1803 1804
}

1805
/*
1806
 * Disable a event.
1807
 *
1808 1809
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1810
 * remains valid.  This condition is satisifed when called through
1811 1812
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1813 1814
 * goes to exit will block in perf_event_exit_event().
 *
1815
 * When called from perf_pending_event it's OK because event->ctx
1816
 * is the current context on this CPU and preemption is disabled,
1817
 * hence we can't get into perf_event_task_sched_out for this context.
1818
 */
P
Peter Zijlstra 已提交
1819
static void _perf_event_disable(struct perf_event *event)
1820
{
1821
	struct perf_event_context *ctx = event->ctx;
1822

1823
	raw_spin_lock_irq(&ctx->lock);
1824
	if (event->state <= PERF_EVENT_STATE_OFF) {
1825
		raw_spin_unlock_irq(&ctx->lock);
1826
		return;
1827
	}
1828
	raw_spin_unlock_irq(&ctx->lock);
1829

1830 1831 1832 1833 1834 1835
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1836
}
P
Peter Zijlstra 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1850
EXPORT_SYMBOL_GPL(perf_event_disable);
1851

S
Stephane Eranian 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1887 1888 1889
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1890
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1891

1892
static int
1893
event_sched_in(struct perf_event *event,
1894
		 struct perf_cpu_context *cpuctx,
1895
		 struct perf_event_context *ctx)
1896
{
1897
	u64 tstamp = perf_event_time(event);
1898
	int ret = 0;
1899

1900 1901
	lockdep_assert_held(&ctx->lock);

1902
	if (event->state <= PERF_EVENT_STATE_OFF)
1903 1904
		return 0;

1905
	event->state = PERF_EVENT_STATE_ACTIVE;
1906
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1918 1919 1920 1921 1922
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1923 1924
	perf_pmu_disable(event->pmu);

1925 1926
	perf_set_shadow_time(event, ctx, tstamp);

1927 1928
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1929
	if (event->pmu->add(event, PERF_EF_START)) {
1930 1931
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1932 1933
		ret = -EAGAIN;
		goto out;
1934 1935
	}

1936 1937
	event->tstamp_running += tstamp - event->tstamp_stopped;

1938
	if (!is_software_event(event))
1939
		cpuctx->active_oncpu++;
1940 1941
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1942 1943
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1944

1945
	if (event->attr.exclusive)
1946 1947
		cpuctx->exclusive = 1;

1948 1949 1950 1951
out:
	perf_pmu_enable(event->pmu);

	return ret;
1952 1953
}

1954
static int
1955
group_sched_in(struct perf_event *group_event,
1956
	       struct perf_cpu_context *cpuctx,
1957
	       struct perf_event_context *ctx)
1958
{
1959
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1960
	struct pmu *pmu = ctx->pmu;
1961 1962
	u64 now = ctx->time;
	bool simulate = false;
1963

1964
	if (group_event->state == PERF_EVENT_STATE_OFF)
1965 1966
		return 0;

1967
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1968

1969
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1970
		pmu->cancel_txn(pmu);
1971
		perf_mux_hrtimer_restart(cpuctx);
1972
		return -EAGAIN;
1973
	}
1974 1975 1976 1977

	/*
	 * Schedule in siblings as one group (if any):
	 */
1978
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979
		if (event_sched_in(event, cpuctx, ctx)) {
1980
			partial_group = event;
1981 1982 1983 1984
			goto group_error;
		}
	}

1985
	if (!pmu->commit_txn(pmu))
1986
		return 0;
1987

1988 1989 1990 1991
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2002
	 */
2003 2004
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2005 2006 2007 2008 2009 2010 2011 2012
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2013
	}
2014
	event_sched_out(group_event, cpuctx, ctx);
2015

P
Peter Zijlstra 已提交
2016
	pmu->cancel_txn(pmu);
2017

2018
	perf_mux_hrtimer_restart(cpuctx);
2019

2020 2021 2022
	return -EAGAIN;
}

2023
/*
2024
 * Work out whether we can put this event group on the CPU now.
2025
 */
2026
static int group_can_go_on(struct perf_event *event,
2027 2028 2029 2030
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2031
	 * Groups consisting entirely of software events can always go on.
2032
	 */
2033
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2034 2035 2036
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2037
	 * events can go on.
2038 2039 2040 2041 2042
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2043
	 * events on the CPU, it can't go on.
2044
	 */
2045
	if (event->attr.exclusive && cpuctx->active_oncpu)
2046 2047 2048 2049 2050 2051 2052 2053
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2054 2055
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2056
{
2057 2058
	u64 tstamp = perf_event_time(event);

2059
	list_add_event(event, ctx);
2060
	perf_group_attach(event);
2061 2062 2063
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2064 2065
}

2066 2067
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2068 2069 2070 2071 2072
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2086 2087
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2088
{
2089 2090 2091 2092 2093 2094
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2095 2096
}

T
Thomas Gleixner 已提交
2097
/*
2098
 * Cross CPU call to install and enable a performance event
2099 2100
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2101
 */
2102
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2103
{
2104
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2105
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2106
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
T
Thomas Gleixner 已提交
2107

2108
	raw_spin_lock(&cpuctx->ctx.lock);
2109
	if (ctx->task) {
2110
		raw_spin_lock(&ctx->lock);
2111 2112 2113 2114
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
2115
		task_ctx = ctx;
2116
		if (ctx->task != current)
2117
			goto unlock;
2118

2119 2120 2121 2122
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2123 2124
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2125
	}
2126

2127
	ctx_resched(cpuctx, task_ctx);
2128
unlock:
2129
	perf_ctx_unlock(cpuctx, task_ctx);
2130 2131

	return 0;
T
Thomas Gleixner 已提交
2132 2133 2134
}

/*
2135
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2136 2137
 */
static void
2138 2139
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2140 2141
			int cpu)
{
2142 2143
	struct task_struct *task = NULL;

2144 2145
	lockdep_assert_held(&ctx->mutex);

2146
	event->ctx = ctx;
2147 2148
	if (event->cpu != -1)
		event->cpu = cpu;
2149

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	task = ctx->task;
	/*
	 * Worse, we cannot even rely on the ctx actually existing anymore. If
	 * between find_get_context() and perf_install_in_context() the task
	 * went through perf_event_exit_task() its dead and we should not be
	 * adding new events.
	 */
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	update_context_time(ctx);
	/*
	 * Update cgrp time only if current cgrp matches event->cgrp.
	 * Must be done before calling add_event_to_ctx().
	 */
	update_cgrp_time_from_event(event);
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2184 2185
}

2186
/*
2187
 * Put a event into inactive state and update time fields.
2188 2189 2190 2191 2192 2193
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2194
static void __perf_event_mark_enabled(struct perf_event *event)
2195
{
2196
	struct perf_event *sub;
2197
	u64 tstamp = perf_event_time(event);
2198

2199
	event->state = PERF_EVENT_STATE_INACTIVE;
2200
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2201
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2202 2203
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2204
	}
2205 2206
}

2207
/*
2208
 * Cross CPU call to enable a performance event
2209
 */
2210 2211 2212 2213
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2214
{
2215
	struct perf_event *leader = event->group_leader;
2216
	struct perf_event_context *task_ctx;
2217

P
Peter Zijlstra 已提交
2218 2219
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2220
		return;
2221

2222
	update_context_time(ctx);
2223
	__perf_event_mark_enabled(event);
2224

2225 2226 2227
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2228
	if (!event_filter_match(event)) {
2229 2230
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2231
			perf_cgroup_defer_enabled(event);
2232 2233
		}
		return;
S
Stephane Eranian 已提交
2234
	}
2235

2236
	/*
2237
	 * If the event is in a group and isn't the group leader,
2238
	 * then don't put it on unless the group is on.
2239
	 */
2240
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2241
		return;
2242

2243 2244 2245
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2246

2247
	ctx_resched(cpuctx, task_ctx);
2248 2249
}

2250
/*
2251
 * Enable a event.
2252
 *
2253 2254
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2255
 * remains valid.  This condition is satisfied when called through
2256 2257
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2258
 */
P
Peter Zijlstra 已提交
2259
static void _perf_event_enable(struct perf_event *event)
2260
{
2261
	struct perf_event_context *ctx = event->ctx;
2262

2263
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2264 2265
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2266
		raw_spin_unlock_irq(&ctx->lock);
2267 2268 2269 2270
		return;
	}

	/*
2271
	 * If the event is in error state, clear that first.
2272 2273 2274 2275
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2276
	 */
2277 2278
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2279
	raw_spin_unlock_irq(&ctx->lock);
2280

2281
	event_function_call(event, __perf_event_enable, NULL);
2282
}
P
Peter Zijlstra 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2295
EXPORT_SYMBOL_GPL(perf_event_enable);
2296

P
Peter Zijlstra 已提交
2297
static int _perf_event_refresh(struct perf_event *event, int refresh)
2298
{
2299
	/*
2300
	 * not supported on inherited events
2301
	 */
2302
	if (event->attr.inherit || !is_sampling_event(event))
2303 2304
		return -EINVAL;

2305
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2306
	_perf_event_enable(event);
2307 2308

	return 0;
2309
}
P
Peter Zijlstra 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2325
EXPORT_SYMBOL_GPL(perf_event_refresh);
2326

2327 2328 2329
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2330
{
2331
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2332
	struct perf_event *event;
2333

P
Peter Zijlstra 已提交
2334
	lockdep_assert_held(&ctx->lock);
2335

2336 2337 2338 2339 2340 2341 2342
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2343
		return;
2344 2345
	}

2346
	ctx->is_active &= ~event_type;
2347 2348 2349 2350 2351
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2352

2353
	update_context_time(ctx);
S
Stephane Eranian 已提交
2354
	update_cgrp_time_from_cpuctx(cpuctx);
2355
	if (!ctx->nr_active)
2356
		return;
2357

P
Peter Zijlstra 已提交
2358
	perf_pmu_disable(ctx->pmu);
2359
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2360 2361
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2362
	}
2363

2364
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2365
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2366
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2367
	}
P
Peter Zijlstra 已提交
2368
	perf_pmu_enable(ctx->pmu);
2369 2370
}

2371
/*
2372 2373 2374 2375 2376 2377
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2378
 */
2379 2380
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2381
{
2382 2383 2384
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2407 2408
}

2409 2410
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2411 2412 2413
{
	u64 value;

2414
	if (!event->attr.inherit_stat)
2415 2416 2417
		return;

	/*
2418
	 * Update the event value, we cannot use perf_event_read()
2419 2420
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2421
	 * we know the event must be on the current CPU, therefore we
2422 2423
	 * don't need to use it.
	 */
2424 2425
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2426 2427
		event->pmu->read(event);
		/* fall-through */
2428

2429 2430
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2431 2432 2433 2434 2435 2436 2437
		break;

	default:
		break;
	}

	/*
2438
	 * In order to keep per-task stats reliable we need to flip the event
2439 2440
	 * values when we flip the contexts.
	 */
2441 2442 2443
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2444

2445 2446
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2447

2448
	/*
2449
	 * Since we swizzled the values, update the user visible data too.
2450
	 */
2451 2452
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2453 2454
}

2455 2456
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2457
{
2458
	struct perf_event *event, *next_event;
2459 2460 2461 2462

	if (!ctx->nr_stat)
		return;

2463 2464
	update_context_time(ctx);

2465 2466
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2467

2468 2469
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2470

2471 2472
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2473

2474
		__perf_event_sync_stat(event, next_event);
2475

2476 2477
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2478 2479 2480
	}
}

2481 2482
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2483
{
P
Peter Zijlstra 已提交
2484
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2485
	struct perf_event_context *next_ctx;
2486
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2487
	struct perf_cpu_context *cpuctx;
2488
	int do_switch = 1;
T
Thomas Gleixner 已提交
2489

P
Peter Zijlstra 已提交
2490 2491
	if (likely(!ctx))
		return;
2492

P
Peter Zijlstra 已提交
2493 2494
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2495 2496
		return;

2497
	rcu_read_lock();
P
Peter Zijlstra 已提交
2498
	next_ctx = next->perf_event_ctxp[ctxn];
2499 2500 2501 2502 2503 2504 2505
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2506
	if (!parent && !next_parent)
2507 2508 2509
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2510 2511 2512 2513 2514 2515 2516 2517 2518
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2519 2520
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2521
		if (context_equiv(ctx, next_ctx)) {
2522 2523
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2524 2525 2526

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2537
			do_switch = 0;
2538

2539
			perf_event_sync_stat(ctx, next_ctx);
2540
		}
2541 2542
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2543
	}
2544
unlock:
2545
	rcu_read_unlock();
2546

2547
	if (do_switch) {
2548
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2549
		task_ctx_sched_out(cpuctx, ctx);
2550
		raw_spin_unlock(&ctx->lock);
2551
	}
T
Thomas Gleixner 已提交
2552 2553
}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2604 2605 2606
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2621 2622
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2623 2624 2625
{
	int ctxn;

2626 2627 2628
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2629 2630 2631
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2632 2633
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2634 2635 2636 2637 2638 2639

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2640
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2641
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2642 2643
}

2644 2645
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2646
{
2647 2648
	if (!cpuctx->task_ctx)
		return;
2649 2650 2651 2652

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2653
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2654 2655
}

2656 2657 2658 2659 2660 2661 2662
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2663 2664
}

2665
static void
2666
ctx_pinned_sched_in(struct perf_event_context *ctx,
2667
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2668
{
2669
	struct perf_event *event;
T
Thomas Gleixner 已提交
2670

2671 2672
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2673
			continue;
2674
		if (!event_filter_match(event))
2675 2676
			continue;

S
Stephane Eranian 已提交
2677 2678 2679 2680
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2681
		if (group_can_go_on(event, cpuctx, 1))
2682
			group_sched_in(event, cpuctx, ctx);
2683 2684 2685 2686 2687

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2688 2689 2690
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2691
		}
2692
	}
2693 2694 2695 2696
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2697
		      struct perf_cpu_context *cpuctx)
2698 2699 2700
{
	struct perf_event *event;
	int can_add_hw = 1;
2701

2702 2703 2704
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2705
			continue;
2706 2707
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2708
		 * of events:
2709
		 */
2710
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2711 2712
			continue;

S
Stephane Eranian 已提交
2713 2714 2715 2716
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2717
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2718
			if (group_sched_in(event, cpuctx, ctx))
2719
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2720
		}
T
Thomas Gleixner 已提交
2721
	}
2722 2723 2724 2725 2726
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2727 2728
	     enum event_type_t event_type,
	     struct task_struct *task)
2729
{
2730
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2731 2732 2733
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2734

2735
	if (likely(!ctx->nr_events))
2736
		return;
2737

2738
	ctx->is_active |= event_type;
2739 2740 2741 2742 2743 2744 2745
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2746 2747
	now = perf_clock();
	ctx->timestamp = now;
2748
	perf_cgroup_set_timestamp(task, ctx);
2749 2750 2751 2752
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2753
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2754
		ctx_pinned_sched_in(ctx, cpuctx);
2755 2756

	/* Then walk through the lower prio flexible groups */
2757
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2758
		ctx_flexible_sched_in(ctx, cpuctx);
2759 2760
}

2761
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2762 2763
			     enum event_type_t event_type,
			     struct task_struct *task)
2764 2765 2766
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2767
	ctx_sched_in(ctx, cpuctx, event_type, task);
2768 2769
}

S
Stephane Eranian 已提交
2770 2771
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2772
{
P
Peter Zijlstra 已提交
2773
	struct perf_cpu_context *cpuctx;
2774

P
Peter Zijlstra 已提交
2775
	cpuctx = __get_cpu_context(ctx);
2776 2777 2778
	if (cpuctx->task_ctx == ctx)
		return;

2779
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2780
	perf_pmu_disable(ctx->pmu);
2781 2782 2783 2784 2785 2786
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2787
	perf_event_sched_in(cpuctx, ctx, task);
2788 2789
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2790 2791
}

P
Peter Zijlstra 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2803 2804
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2805 2806 2807 2808
{
	struct perf_event_context *ctx;
	int ctxn;

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2819 2820 2821 2822 2823
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2824
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2825
	}
2826

2827 2828 2829
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2830 2831
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2832 2833
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2861
#define REDUCE_FLS(a, b)		\
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2901 2902 2903
	if (!divisor)
		return dividend;

2904 2905 2906
	return div64_u64(dividend, divisor);
}

2907 2908 2909
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2910
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2911
{
2912
	struct hw_perf_event *hwc = &event->hw;
2913
	s64 period, sample_period;
2914 2915
	s64 delta;

2916
	period = perf_calculate_period(event, nsec, count);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2927

2928
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2929 2930 2931
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2932
		local64_set(&hwc->period_left, 0);
2933 2934 2935

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2936
	}
2937 2938
}

2939 2940 2941 2942 2943 2944 2945
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2946
{
2947 2948
	struct perf_event *event;
	struct hw_perf_event *hwc;
2949
	u64 now, period = TICK_NSEC;
2950
	s64 delta;
2951

2952 2953 2954 2955 2956 2957
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2958 2959
		return;

2960
	raw_spin_lock(&ctx->lock);
2961
	perf_pmu_disable(ctx->pmu);
2962

2963
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2964
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2965 2966
			continue;

2967
		if (!event_filter_match(event))
2968 2969
			continue;

2970 2971
		perf_pmu_disable(event->pmu);

2972
		hwc = &event->hw;
2973

2974
		if (hwc->interrupts == MAX_INTERRUPTS) {
2975
			hwc->interrupts = 0;
2976
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2977
			event->pmu->start(event, 0);
2978 2979
		}

2980
		if (!event->attr.freq || !event->attr.sample_freq)
2981
			goto next;
2982

2983 2984 2985 2986 2987
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2988
		now = local64_read(&event->count);
2989 2990
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2991

2992 2993 2994
		/*
		 * restart the event
		 * reload only if value has changed
2995 2996 2997
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2998
		 */
2999
		if (delta > 0)
3000
			perf_adjust_period(event, period, delta, false);
3001 3002

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3003 3004
	next:
		perf_pmu_enable(event->pmu);
3005
	}
3006

3007
	perf_pmu_enable(ctx->pmu);
3008
	raw_spin_unlock(&ctx->lock);
3009 3010
}

3011
/*
3012
 * Round-robin a context's events:
3013
 */
3014
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3015
{
3016 3017 3018 3019 3020 3021
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3022 3023
}

3024
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3025
{
P
Peter Zijlstra 已提交
3026
	struct perf_event_context *ctx = NULL;
3027
	int rotate = 0;
3028

3029 3030 3031 3032
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3033

P
Peter Zijlstra 已提交
3034
	ctx = cpuctx->task_ctx;
3035 3036 3037 3038
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3039

3040
	if (!rotate)
3041 3042
		goto done;

3043
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3044
	perf_pmu_disable(cpuctx->ctx.pmu);
3045

3046 3047 3048
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3049

3050 3051 3052
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3053

3054
	perf_event_sched_in(cpuctx, ctx, current);
3055

3056 3057
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3058
done:
3059 3060

	return rotate;
3061 3062
}

3063 3064 3065
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3066
	if (atomic_read(&nr_freq_events) ||
3067
	    __this_cpu_read(perf_throttled_count))
3068
		return false;
3069 3070
	else
		return true;
3071 3072 3073
}
#endif

3074 3075
void perf_event_task_tick(void)
{
3076 3077
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3078
	int throttled;
3079

3080 3081
	WARN_ON(!irqs_disabled());

3082 3083 3084
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3085
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3086
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3087 3088
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3099
	__perf_event_mark_enabled(event);
3100 3101 3102 3103

	return 1;
}

3104
/*
3105
 * Enable all of a task's events that have been marked enable-on-exec.
3106 3107
 * This expects task == current.
 */
3108
static void perf_event_enable_on_exec(int ctxn)
3109
{
3110
	struct perf_event_context *ctx, *clone_ctx = NULL;
3111
	struct perf_cpu_context *cpuctx;
3112
	struct perf_event *event;
3113 3114 3115 3116
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3117
	ctx = current->perf_event_ctxp[ctxn];
3118
	if (!ctx || !ctx->nr_events)
3119 3120
		goto out;

3121 3122 3123 3124
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3125 3126

	/*
3127
	 * Unclone and reschedule this context if we enabled any event.
3128
	 */
3129
	if (enabled) {
3130
		clone_ctx = unclone_ctx(ctx);
3131 3132 3133
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3134

P
Peter Zijlstra 已提交
3135
out:
3136
	local_irq_restore(flags);
3137 3138 3139

	if (clone_ctx)
		put_ctx(clone_ctx);
3140 3141
}

3142 3143 3144 3145 3146
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3147 3148
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3149 3150 3151
	rcu_read_unlock();
}

3152 3153 3154
struct perf_read_data {
	struct perf_event *event;
	bool group;
3155
	int ret;
3156 3157
};

T
Thomas Gleixner 已提交
3158
/*
3159
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3160
 */
3161
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3162
{
3163 3164
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3165
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3166
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3167
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3168

3169 3170 3171 3172
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3173 3174
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3175 3176 3177 3178
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3179
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3180
	if (ctx->is_active) {
3181
		update_context_time(ctx);
S
Stephane Eranian 已提交
3182 3183
		update_cgrp_time_from_event(event);
	}
3184

3185
	update_event_times(event);
3186 3187
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3188

3189 3190 3191
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3192
		goto unlock;
3193 3194 3195 3196 3197
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3198 3199 3200

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3201 3202 3203 3204 3205
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3206
			sub->pmu->read(sub);
3207
		}
3208
	}
3209 3210

	data->ret = pmu->commit_txn(pmu);
3211 3212

unlock:
3213
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3214 3215
}

P
Peter Zijlstra 已提交
3216 3217
static inline u64 perf_event_count(struct perf_event *event)
{
3218 3219 3220 3221
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3222 3223
}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3277
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3278
{
3279 3280
	int ret = 0;

T
Thomas Gleixner 已提交
3281
	/*
3282 3283
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3284
	 */
3285
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3286 3287 3288
		struct perf_read_data data = {
			.event = event,
			.group = group,
3289
			.ret = 0,
3290
		};
3291
		smp_call_function_single(event->oncpu,
3292
					 __perf_event_read, &data, 1);
3293
		ret = data.ret;
3294
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3295 3296 3297
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3298
		raw_spin_lock_irqsave(&ctx->lock, flags);
3299 3300 3301 3302 3303
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3304
		if (ctx->is_active) {
3305
			update_context_time(ctx);
S
Stephane Eranian 已提交
3306 3307
			update_cgrp_time_from_event(event);
		}
3308 3309 3310 3311
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3312
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3313
	}
3314 3315

	return ret;
T
Thomas Gleixner 已提交
3316 3317
}

3318
/*
3319
 * Initialize the perf_event context in a task_struct:
3320
 */
3321
static void __perf_event_init_context(struct perf_event_context *ctx)
3322
{
3323
	raw_spin_lock_init(&ctx->lock);
3324
	mutex_init(&ctx->mutex);
3325
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3326 3327
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3328 3329
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3345
	}
3346 3347 3348
	ctx->pmu = pmu;

	return ctx;
3349 3350
}

3351 3352 3353 3354 3355
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3356 3357

	rcu_read_lock();
3358
	if (!vpid)
T
Thomas Gleixner 已提交
3359 3360
		task = current;
	else
3361
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3362 3363 3364 3365 3366 3367 3368 3369
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3370
	err = -EACCES;
3371
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3372 3373
		goto errout;

3374 3375 3376 3377 3378 3379 3380
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3381 3382 3383
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3384
static struct perf_event_context *
3385 3386
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3387
{
3388
	struct perf_event_context *ctx, *clone_ctx = NULL;
3389
	struct perf_cpu_context *cpuctx;
3390
	void *task_ctx_data = NULL;
3391
	unsigned long flags;
P
Peter Zijlstra 已提交
3392
	int ctxn, err;
3393
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3394

3395
	if (!task) {
3396
		/* Must be root to operate on a CPU event: */
3397
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3398 3399 3400
			return ERR_PTR(-EACCES);

		/*
3401
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3402 3403 3404
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3405
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3406 3407
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3408
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3409
		ctx = &cpuctx->ctx;
3410
		get_ctx(ctx);
3411
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3412 3413 3414 3415

		return ctx;
	}

P
Peter Zijlstra 已提交
3416 3417 3418 3419 3420
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3421 3422 3423 3424 3425 3426 3427 3428
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3429
retry:
P
Peter Zijlstra 已提交
3430
	ctx = perf_lock_task_context(task, ctxn, &flags);
3431
	if (ctx) {
3432
		clone_ctx = unclone_ctx(ctx);
3433
		++ctx->pin_count;
3434 3435 3436 3437 3438

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3439
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3440 3441 3442

		if (clone_ctx)
			put_ctx(clone_ctx);
3443
	} else {
3444
		ctx = alloc_perf_context(pmu, task);
3445 3446 3447
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3448

3449 3450 3451 3452 3453
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3464
		else {
3465
			get_ctx(ctx);
3466
			++ctx->pin_count;
3467
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3468
		}
3469 3470 3471
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3472
			put_ctx(ctx);
3473 3474 3475 3476

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3477 3478 3479
		}
	}

3480
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3481
	return ctx;
3482

P
Peter Zijlstra 已提交
3483
errout:
3484
	kfree(task_ctx_data);
3485
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3486 3487
}

L
Li Zefan 已提交
3488
static void perf_event_free_filter(struct perf_event *event);
3489
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3490

3491
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3492
{
3493
	struct perf_event *event;
P
Peter Zijlstra 已提交
3494

3495 3496 3497
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3498
	perf_event_free_filter(event);
3499
	kfree(event);
P
Peter Zijlstra 已提交
3500 3501
}

3502 3503
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3504

3505
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3506
{
3507 3508 3509 3510 3511 3512
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3513

3514 3515
static void unaccount_event(struct perf_event *event)
{
3516 3517
	bool dec = false;

3518 3519 3520 3521
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3522
		dec = true;
3523 3524 3525 3526 3527 3528
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3529 3530
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3531
	if (event->attr.context_switch) {
3532
		dec = true;
3533 3534
		atomic_dec(&nr_switch_events);
	}
3535
	if (is_cgroup_event(event))
3536
		dec = true;
3537
	if (has_branch_stack(event))
3538 3539 3540
		dec = true;

	if (dec)
3541 3542 3543 3544
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3545

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3556
 * _free_event()), the latter -- before the first perf_install_in_context().
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3631
static void _free_event(struct perf_event *event)
3632
{
3633
	irq_work_sync(&event->pending);
3634

3635
	unaccount_event(event);
3636

3637
	if (event->rb) {
3638 3639 3640 3641 3642 3643 3644
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3645
		ring_buffer_attach(event, NULL);
3646
		mutex_unlock(&event->mmap_mutex);
3647 3648
	}

S
Stephane Eranian 已提交
3649 3650 3651
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3671 3672
}

P
Peter Zijlstra 已提交
3673 3674 3675 3676 3677
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3678
{
P
Peter Zijlstra 已提交
3679 3680 3681 3682 3683 3684
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3685

P
Peter Zijlstra 已提交
3686
	_free_event(event);
T
Thomas Gleixner 已提交
3687 3688
}

3689
/*
3690
 * Remove user event from the owner task.
3691
 */
3692
static void perf_remove_from_owner(struct perf_event *event)
3693
{
P
Peter Zijlstra 已提交
3694
	struct task_struct *owner;
3695

P
Peter Zijlstra 已提交
3696 3697
	rcu_read_lock();
	/*
3698 3699 3700
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3701 3702
	 * owner->perf_event_mutex.
	 */
3703
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3725 3726 3727 3728 3729 3730
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3731
		if (event->owner) {
P
Peter Zijlstra 已提交
3732
			list_del_init(&event->owner_entry);
3733 3734
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3735 3736 3737
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3738 3739 3740 3741 3742 3743 3744
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
	struct perf_event_context *ctx;
	struct perf_event *child, *tmp;

3758 3759
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3760

3761
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3762
	WARN_ON_ONCE(ctx->parent_ctx);
3763
	perf_remove_from_context(event, DETACH_GROUP | DETACH_STATE);
L
Leon Yu 已提交
3764
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3765 3766

	/*
3767 3768 3769
	 * At this point we must have event->state == PERF_EVENT_STATE_EXIT,
	 * either from the above perf_remove_from_context() or through
	 * perf_event_exit_event().
P
Peter Zijlstra 已提交
3770
	 *
3771 3772 3773
	 * Therefore, anybody acquiring event->child_mutex after the below
	 * loop _must_ also see this, most importantly inherit_event() which
	 * will avoid placing more children on the list.
P
Peter Zijlstra 已提交
3774
	 *
3775 3776
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3777
	 */
3778
	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_EXIT);
P
Peter Zijlstra 已提交
3779

3780 3781 3782
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3783

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

	/* Must be the last reference */
P
Peter Zijlstra 已提交
3834 3835 3836 3837 3838
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3839 3840 3841
/*
 * Called when the last reference to the file is gone.
 */
3842 3843
static int perf_release(struct inode *inode, struct file *file)
{
3844
	perf_event_release_kernel(file->private_data);
3845
	return 0;
3846 3847
}

3848
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3849
{
3850
	struct perf_event *child;
3851 3852
	u64 total = 0;

3853 3854 3855
	*enabled = 0;
	*running = 0;

3856
	mutex_lock(&event->child_mutex);
3857

3858
	(void)perf_event_read(event, false);
3859 3860
	total += perf_event_count(event);

3861 3862 3863 3864 3865 3866
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3867
		(void)perf_event_read(child, false);
3868
		total += perf_event_count(child);
3869 3870 3871
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3872
	mutex_unlock(&event->child_mutex);
3873 3874 3875

	return total;
}
3876
EXPORT_SYMBOL_GPL(perf_event_read_value);
3877

3878
static int __perf_read_group_add(struct perf_event *leader,
3879
					u64 read_format, u64 *values)
3880
{
3881 3882
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3883
	int ret;
P
Peter Zijlstra 已提交
3884

3885 3886 3887
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3888

3889 3890 3891 3892 3893 3894 3895 3896 3897
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3898

3899 3900 3901 3902 3903 3904 3905 3906 3907
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3908 3909
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3910

3911 3912 3913 3914 3915
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3916 3917

	return 0;
3918
}
3919

3920 3921 3922 3923 3924
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3925
	int ret;
3926
	u64 *values;
3927

3928
	lockdep_assert_held(&ctx->mutex);
3929

3930 3931 3932
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3933

3934 3935 3936 3937 3938 3939 3940
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3941

3942 3943 3944 3945 3946 3947 3948 3949 3950
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3951

3952
	mutex_unlock(&leader->child_mutex);
3953

3954
	ret = event->read_size;
3955 3956
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3957
	goto out;
3958

3959 3960 3961
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3962
	kfree(values);
3963
	return ret;
3964 3965
}

3966
static int perf_read_one(struct perf_event *event,
3967 3968
				 u64 read_format, char __user *buf)
{
3969
	u64 enabled, running;
3970 3971 3972
	u64 values[4];
	int n = 0;

3973 3974 3975 3976 3977
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3978
	if (read_format & PERF_FORMAT_ID)
3979
		values[n++] = primary_event_id(event);
3980 3981 3982 3983 3984 3985 3986

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4000
/*
4001
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4002 4003
 */
static ssize_t
4004
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4005
{
4006
	u64 read_format = event->attr.read_format;
4007
	int ret;
T
Thomas Gleixner 已提交
4008

4009
	/*
4010
	 * Return end-of-file for a read on a event that is in
4011 4012 4013
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4014
	if (event->state == PERF_EVENT_STATE_ERROR)
4015 4016
		return 0;

4017
	if (count < event->read_size)
4018 4019
		return -ENOSPC;

4020
	WARN_ON_ONCE(event->ctx->parent_ctx);
4021
	if (read_format & PERF_FORMAT_GROUP)
4022
		ret = perf_read_group(event, read_format, buf);
4023
	else
4024
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4025

4026
	return ret;
T
Thomas Gleixner 已提交
4027 4028 4029 4030 4031
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4032
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4033 4034
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4035

P
Peter Zijlstra 已提交
4036
	ctx = perf_event_ctx_lock(event);
4037
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4038 4039 4040
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4041 4042 4043 4044
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4045
	struct perf_event *event = file->private_data;
4046
	struct ring_buffer *rb;
4047
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4048

4049
	poll_wait(file, &event->waitq, wait);
4050

4051
	if (is_event_hup(event))
4052
		return events;
P
Peter Zijlstra 已提交
4053

4054
	/*
4055 4056
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4057 4058
	 */
	mutex_lock(&event->mmap_mutex);
4059 4060
	rb = event->rb;
	if (rb)
4061
		events = atomic_xchg(&rb->poll, 0);
4062
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4063 4064 4065
	return events;
}

P
Peter Zijlstra 已提交
4066
static void _perf_event_reset(struct perf_event *event)
4067
{
4068
	(void)perf_event_read(event, false);
4069
	local64_set(&event->count, 0);
4070
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4071 4072
}

4073
/*
4074 4075
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4076
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4077
 * task existence requirements of perf_event_enable/disable.
4078
 */
4079 4080
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4081
{
4082
	struct perf_event *child;
P
Peter Zijlstra 已提交
4083

4084
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4085

4086 4087 4088
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4089
		func(child);
4090
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4091 4092
}

4093 4094
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4095
{
4096 4097
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4098

P
Peter Zijlstra 已提交
4099 4100
	lockdep_assert_held(&ctx->mutex);

4101
	event = event->group_leader;
4102

4103 4104
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4105
		perf_event_for_each_child(sibling, func);
4106 4107
}

4108 4109 4110 4111
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4112
{
4113
	u64 value = *((u64 *)info);
4114
	bool active;
4115

4116 4117
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4118
	} else {
4119 4120
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4121
	}
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4153
	event_function_call(event, __perf_event_period, &value);
4154

4155
	return 0;
4156 4157
}

4158 4159
static const struct file_operations perf_fops;

4160
static inline int perf_fget_light(int fd, struct fd *p)
4161
{
4162 4163 4164
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4165

4166 4167 4168
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4169
	}
4170 4171
	*p = f;
	return 0;
4172 4173 4174 4175
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4176
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4177
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4178

P
Peter Zijlstra 已提交
4179
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4180
{
4181
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4182
	u32 flags = arg;
4183 4184

	switch (cmd) {
4185
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4186
		func = _perf_event_enable;
4187
		break;
4188
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4189
		func = _perf_event_disable;
4190
		break;
4191
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4192
		func = _perf_event_reset;
4193
		break;
P
Peter Zijlstra 已提交
4194

4195
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4196
		return _perf_event_refresh(event, arg);
4197

4198 4199
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4200

4201 4202 4203 4204 4205 4206 4207 4208 4209
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4210
	case PERF_EVENT_IOC_SET_OUTPUT:
4211 4212 4213
	{
		int ret;
		if (arg != -1) {
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4224 4225 4226
		}
		return ret;
	}
4227

L
Li Zefan 已提交
4228 4229 4230
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4231 4232 4233
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4234
	default:
P
Peter Zijlstra 已提交
4235
		return -ENOTTY;
4236
	}
P
Peter Zijlstra 已提交
4237 4238

	if (flags & PERF_IOC_FLAG_GROUP)
4239
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4240
	else
4241
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4242 4243

	return 0;
4244 4245
}

P
Peter Zijlstra 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4279
int perf_event_task_enable(void)
4280
{
P
Peter Zijlstra 已提交
4281
	struct perf_event_context *ctx;
4282
	struct perf_event *event;
4283

4284
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4285 4286 4287 4288 4289
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4290
	mutex_unlock(&current->perf_event_mutex);
4291 4292 4293 4294

	return 0;
}

4295
int perf_event_task_disable(void)
4296
{
P
Peter Zijlstra 已提交
4297
	struct perf_event_context *ctx;
4298
	struct perf_event *event;
4299

4300
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4301 4302 4303 4304 4305
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4306
	mutex_unlock(&current->perf_event_mutex);
4307 4308 4309 4310

	return 0;
}

4311
static int perf_event_index(struct perf_event *event)
4312
{
P
Peter Zijlstra 已提交
4313 4314 4315
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4316
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4317 4318
		return 0;

4319
	return event->pmu->event_idx(event);
4320 4321
}

4322
static void calc_timer_values(struct perf_event *event,
4323
				u64 *now,
4324 4325
				u64 *enabled,
				u64 *running)
4326
{
4327
	u64 ctx_time;
4328

4329 4330
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4331 4332 4333 4334
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4350 4351
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4352 4353 4354 4355 4356

unlock:
	rcu_read_unlock();
}

4357 4358
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4359 4360 4361
{
}

4362 4363 4364 4365 4366
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4367
void perf_event_update_userpage(struct perf_event *event)
4368
{
4369
	struct perf_event_mmap_page *userpg;
4370
	struct ring_buffer *rb;
4371
	u64 enabled, running, now;
4372 4373

	rcu_read_lock();
4374 4375 4376 4377
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4378 4379 4380 4381 4382 4383 4384 4385 4386
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4387
	calc_timer_values(event, &now, &enabled, &running);
4388

4389
	userpg = rb->user_page;
4390 4391 4392 4393 4394
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4395
	++userpg->lock;
4396
	barrier();
4397
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4398
	userpg->offset = perf_event_count(event);
4399
	if (userpg->index)
4400
		userpg->offset -= local64_read(&event->hw.prev_count);
4401

4402
	userpg->time_enabled = enabled +
4403
			atomic64_read(&event->child_total_time_enabled);
4404

4405
	userpg->time_running = running +
4406
			atomic64_read(&event->child_total_time_running);
4407

4408
	arch_perf_update_userpage(event, userpg, now);
4409

4410
	barrier();
4411
	++userpg->lock;
4412
	preempt_enable();
4413
unlock:
4414
	rcu_read_unlock();
4415 4416
}

4417 4418 4419
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4420
	struct ring_buffer *rb;
4421 4422 4423 4424 4425 4426 4427 4428 4429
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4430 4431
	rb = rcu_dereference(event->rb);
	if (!rb)
4432 4433 4434 4435 4436
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4437
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4452 4453 4454
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4455
	struct ring_buffer *old_rb = NULL;
4456 4457
	unsigned long flags;

4458 4459 4460 4461 4462 4463
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4464

4465 4466 4467 4468
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4469

4470 4471
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4472
	}
4473

4474
	if (rb) {
4475 4476 4477 4478 4479
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4496 4497 4498 4499 4500 4501 4502 4503
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4504 4505 4506 4507
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4508 4509 4510
	rcu_read_unlock();
}

4511
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4512
{
4513
	struct ring_buffer *rb;
4514

4515
	rcu_read_lock();
4516 4517 4518 4519
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4520 4521 4522
	}
	rcu_read_unlock();

4523
	return rb;
4524 4525
}

4526
void ring_buffer_put(struct ring_buffer *rb)
4527
{
4528
	if (!atomic_dec_and_test(&rb->refcount))
4529
		return;
4530

4531
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4532

4533
	call_rcu(&rb->rcu_head, rb_free_rcu);
4534 4535 4536 4537
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4538
	struct perf_event *event = vma->vm_file->private_data;
4539

4540
	atomic_inc(&event->mmap_count);
4541
	atomic_inc(&event->rb->mmap_count);
4542

4543 4544 4545
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4546 4547
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4548 4549
}

4550 4551 4552 4553 4554 4555 4556 4557
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4558 4559
static void perf_mmap_close(struct vm_area_struct *vma)
{
4560
	struct perf_event *event = vma->vm_file->private_data;
4561

4562
	struct ring_buffer *rb = ring_buffer_get(event);
4563 4564 4565
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4566

4567 4568 4569
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4584 4585 4586
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4587
		goto out_put;
4588

4589
	ring_buffer_attach(event, NULL);
4590 4591 4592
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4593 4594
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4595

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4612

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4624 4625 4626
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4627
		mutex_unlock(&event->mmap_mutex);
4628
		put_event(event);
4629

4630 4631 4632 4633 4634
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4635
	}
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4651
out_put:
4652
	ring_buffer_put(rb); /* could be last */
4653 4654
}

4655
static const struct vm_operations_struct perf_mmap_vmops = {
4656
	.open		= perf_mmap_open,
4657
	.close		= perf_mmap_close, /* non mergable */
4658 4659
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4660 4661 4662 4663
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4664
	struct perf_event *event = file->private_data;
4665
	unsigned long user_locked, user_lock_limit;
4666
	struct user_struct *user = current_user();
4667
	unsigned long locked, lock_limit;
4668
	struct ring_buffer *rb = NULL;
4669 4670
	unsigned long vma_size;
	unsigned long nr_pages;
4671
	long user_extra = 0, extra = 0;
4672
	int ret = 0, flags = 0;
4673

4674 4675 4676
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4677
	 * same rb.
4678 4679 4680 4681
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4682
	if (!(vma->vm_flags & VM_SHARED))
4683
		return -EINVAL;
4684 4685

	vma_size = vma->vm_end - vma->vm_start;
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4746

4747
	/*
4748
	 * If we have rb pages ensure they're a power-of-two number, so we
4749 4750
	 * can do bitmasks instead of modulo.
	 */
4751
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4752 4753
		return -EINVAL;

4754
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4755 4756
		return -EINVAL;

4757
	WARN_ON_ONCE(event->ctx->parent_ctx);
4758
again:
4759
	mutex_lock(&event->mmap_mutex);
4760
	if (event->rb) {
4761
		if (event->rb->nr_pages != nr_pages) {
4762
			ret = -EINVAL;
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4776 4777 4778
		goto unlock;
	}

4779
	user_extra = nr_pages + 1;
4780 4781

accounting:
4782
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4783 4784 4785 4786 4787 4788

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4789
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4790

4791 4792
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4793

4794
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4795
	lock_limit >>= PAGE_SHIFT;
4796
	locked = vma->vm_mm->pinned_vm + extra;
4797

4798 4799
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4800 4801 4802
		ret = -EPERM;
		goto unlock;
	}
4803

4804
	WARN_ON(!rb && event->rb);
4805

4806
	if (vma->vm_flags & VM_WRITE)
4807
		flags |= RING_BUFFER_WRITABLE;
4808

4809
	if (!rb) {
4810 4811 4812
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4813

4814 4815 4816 4817
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4818

4819 4820 4821
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4822

4823
		ring_buffer_attach(event, rb);
4824

4825 4826 4827
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4828 4829
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4830 4831 4832
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4833

4834
unlock:
4835 4836 4837 4838
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4839
		atomic_inc(&event->mmap_count);
4840 4841 4842 4843
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4844
	mutex_unlock(&event->mmap_mutex);
4845

4846 4847 4848 4849
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4850
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4851
	vma->vm_ops = &perf_mmap_vmops;
4852

4853 4854 4855
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4856
	return ret;
4857 4858
}

P
Peter Zijlstra 已提交
4859 4860
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4861
	struct inode *inode = file_inode(filp);
4862
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4863 4864
	int retval;

A
Al Viro 已提交
4865
	inode_lock(inode);
4866
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
4867
	inode_unlock(inode);
P
Peter Zijlstra 已提交
4868 4869 4870 4871 4872 4873 4874

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4875
static const struct file_operations perf_fops = {
4876
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4877 4878 4879
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4880
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4881
	.compat_ioctl		= perf_compat_ioctl,
4882
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4883
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4884 4885
};

4886
/*
4887
 * Perf event wakeup
4888 4889 4890 4891 4892
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4893 4894 4895 4896 4897 4898 4899 4900
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4901
void perf_event_wakeup(struct perf_event *event)
4902
{
4903
	ring_buffer_wakeup(event);
4904

4905
	if (event->pending_kill) {
4906
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4907
		event->pending_kill = 0;
4908
	}
4909 4910
}

4911
static void perf_pending_event(struct irq_work *entry)
4912
{
4913 4914
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4915 4916 4917 4918 4919 4920 4921
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4922

4923 4924
	if (event->pending_disable) {
		event->pending_disable = 0;
4925
		perf_event_disable_local(event);
4926 4927
	}

4928 4929 4930
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4931
	}
4932 4933 4934

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4935 4936
}

4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4973
static void perf_sample_regs_user(struct perf_regs *regs_user,
4974 4975
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4976
{
4977 4978
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4979
		regs_user->regs = regs;
4980 4981
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4982 4983 4984
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4985 4986 4987
	}
}

4988 4989 4990 4991 4992 4993 4994 4995
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5091 5092 5093
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5107
		data->time = perf_event_clock(event);
5108

5109
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5121 5122 5123
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5148 5149 5150

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5151 5152
}

5153 5154 5155
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5156 5157 5158 5159 5160
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5161
static void perf_output_read_one(struct perf_output_handle *handle,
5162 5163
				 struct perf_event *event,
				 u64 enabled, u64 running)
5164
{
5165
	u64 read_format = event->attr.read_format;
5166 5167 5168
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5169
	values[n++] = perf_event_count(event);
5170
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5171
		values[n++] = enabled +
5172
			atomic64_read(&event->child_total_time_enabled);
5173 5174
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5175
		values[n++] = running +
5176
			atomic64_read(&event->child_total_time_running);
5177 5178
	}
	if (read_format & PERF_FORMAT_ID)
5179
		values[n++] = primary_event_id(event);
5180

5181
	__output_copy(handle, values, n * sizeof(u64));
5182 5183 5184
}

/*
5185
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5186 5187
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5188 5189
			    struct perf_event *event,
			    u64 enabled, u64 running)
5190
{
5191 5192
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5193 5194 5195 5196 5197 5198
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5199
		values[n++] = enabled;
5200 5201

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5202
		values[n++] = running;
5203

5204
	if (leader != event)
5205 5206
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5207
	values[n++] = perf_event_count(leader);
5208
	if (read_format & PERF_FORMAT_ID)
5209
		values[n++] = primary_event_id(leader);
5210

5211
	__output_copy(handle, values, n * sizeof(u64));
5212

5213
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5214 5215
		n = 0;

5216 5217
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5218 5219
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5220
		values[n++] = perf_event_count(sub);
5221
		if (read_format & PERF_FORMAT_ID)
5222
			values[n++] = primary_event_id(sub);
5223

5224
		__output_copy(handle, values, n * sizeof(u64));
5225 5226 5227
	}
}

5228 5229 5230
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5231
static void perf_output_read(struct perf_output_handle *handle,
5232
			     struct perf_event *event)
5233
{
5234
	u64 enabled = 0, running = 0, now;
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5246
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5247
		calc_timer_values(event, &now, &enabled, &running);
5248

5249
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5250
		perf_output_read_group(handle, event, enabled, running);
5251
	else
5252
		perf_output_read_one(handle, event, enabled, running);
5253 5254
}

5255 5256 5257
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5258
			struct perf_event *event)
5259 5260 5261 5262 5263
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5264 5265 5266
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5292
		perf_output_read(handle, event);
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5303
			__output_copy(handle, data->callchain, size);
5304 5305 5306 5307 5308 5309 5310 5311
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5312 5313 5314 5315 5316 5317 5318 5319 5320
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5332

5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5367

5368
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5369 5370 5371
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5372
	}
A
Andi Kleen 已提交
5373 5374 5375

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5376 5377 5378

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5379

A
Andi Kleen 已提交
5380 5381 5382
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5413 5414 5415 5416
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5417
			 struct perf_event *event,
5418
			 struct pt_regs *regs)
5419
{
5420
	u64 sample_type = event->attr.sample_type;
5421

5422
	header->type = PERF_RECORD_SAMPLE;
5423
	header->size = sizeof(*header) + event->header_size;
5424 5425 5426

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5427

5428
	__perf_event_header__init_id(header, data, event);
5429

5430
	if (sample_type & PERF_SAMPLE_IP)
5431 5432
		data->ip = perf_instruction_pointer(regs);

5433
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5434
		int size = 1;
5435

5436
		data->callchain = perf_callchain(event, regs);
5437 5438 5439 5440 5441

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5442 5443
	}

5444
	if (sample_type & PERF_SAMPLE_RAW) {
5445 5446 5447 5448 5449 5450 5451
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5452
		header->size += round_up(size, sizeof(u64));
5453
	}
5454 5455 5456 5457 5458 5459 5460 5461 5462

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5463

5464
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5465 5466
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5467

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5491
						     data->regs_user.regs);
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5519
}
5520

5521 5522 5523
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5524 5525 5526
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5527

5528 5529 5530
	/* protect the callchain buffers */
	rcu_read_lock();

5531
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5532

5533
	if (perf_output_begin(&handle, event, header.size))
5534
		goto exit;
5535

5536
	perf_output_sample(&handle, &header, data, event);
5537

5538
	perf_output_end(&handle);
5539 5540 5541

exit:
	rcu_read_unlock();
5542 5543
}

5544
/*
5545
 * read event_id
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5556
perf_event_read_event(struct perf_event *event,
5557 5558 5559
			struct task_struct *task)
{
	struct perf_output_handle handle;
5560
	struct perf_sample_data sample;
5561
	struct perf_read_event read_event = {
5562
		.header = {
5563
			.type = PERF_RECORD_READ,
5564
			.misc = 0,
5565
			.size = sizeof(read_event) + event->read_size,
5566
		},
5567 5568
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5569
	};
5570
	int ret;
5571

5572
	perf_event_header__init_id(&read_event.header, &sample, event);
5573
	ret = perf_output_begin(&handle, event, read_event.header.size);
5574 5575 5576
	if (ret)
		return;

5577
	perf_output_put(&handle, read_event);
5578
	perf_output_read(&handle, event);
5579
	perf_event__output_id_sample(event, &handle, &sample);
5580

5581 5582 5583
	perf_output_end(&handle);
}

5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5598
		output(event, data);
5599 5600 5601
	}
}

J
Jiri Olsa 已提交
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5613
static void
5614
perf_event_aux(perf_event_aux_output_cb output, void *data,
5615 5616 5617 5618 5619 5620 5621
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5633 5634 5635 5636 5637
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5638
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5639 5640 5641 5642 5643
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5644
			perf_event_aux_ctx(ctx, output, data);
5645 5646 5647 5648 5649 5650
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5651
/*
P
Peter Zijlstra 已提交
5652 5653
 * task tracking -- fork/exit
 *
5654
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5655 5656
 */

P
Peter Zijlstra 已提交
5657
struct perf_task_event {
5658
	struct task_struct		*task;
5659
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5660 5661 5662 5663 5664 5665

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5666 5667
		u32				tid;
		u32				ptid;
5668
		u64				time;
5669
	} event_id;
P
Peter Zijlstra 已提交
5670 5671
};

5672 5673
static int perf_event_task_match(struct perf_event *event)
{
5674 5675 5676
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5677 5678
}

5679
static void perf_event_task_output(struct perf_event *event,
5680
				   void *data)
P
Peter Zijlstra 已提交
5681
{
5682
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5683
	struct perf_output_handle handle;
5684
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5685
	struct task_struct *task = task_event->task;
5686
	int ret, size = task_event->event_id.header.size;
5687

5688 5689 5690
	if (!perf_event_task_match(event))
		return;

5691
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5692

5693
	ret = perf_output_begin(&handle, event,
5694
				task_event->event_id.header.size);
5695
	if (ret)
5696
		goto out;
P
Peter Zijlstra 已提交
5697

5698 5699
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5700

5701 5702
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5703

5704 5705
	task_event->event_id.time = perf_event_clock(event);

5706
	perf_output_put(&handle, task_event->event_id);
5707

5708 5709
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5710
	perf_output_end(&handle);
5711 5712
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5713 5714
}

5715 5716
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5717
			      int new)
P
Peter Zijlstra 已提交
5718
{
P
Peter Zijlstra 已提交
5719
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5720

5721 5722 5723
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5724 5725
		return;

P
Peter Zijlstra 已提交
5726
	task_event = (struct perf_task_event){
5727 5728
		.task	  = task,
		.task_ctx = task_ctx,
5729
		.event_id    = {
P
Peter Zijlstra 已提交
5730
			.header = {
5731
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5732
				.misc = 0,
5733
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5734
			},
5735 5736
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5737 5738
			/* .tid  */
			/* .ptid */
5739
			/* .time */
P
Peter Zijlstra 已提交
5740 5741 5742
		},
	};

5743
	perf_event_aux(perf_event_task_output,
5744 5745
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5746 5747
}

5748
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5749
{
5750
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5751 5752
}

5753 5754 5755 5756 5757
/*
 * comm tracking
 */

struct perf_comm_event {
5758 5759
	struct task_struct	*task;
	char			*comm;
5760 5761 5762 5763 5764 5765 5766
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5767
	} event_id;
5768 5769
};

5770 5771 5772 5773 5774
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5775
static void perf_event_comm_output(struct perf_event *event,
5776
				   void *data)
5777
{
5778
	struct perf_comm_event *comm_event = data;
5779
	struct perf_output_handle handle;
5780
	struct perf_sample_data sample;
5781
	int size = comm_event->event_id.header.size;
5782 5783
	int ret;

5784 5785 5786
	if (!perf_event_comm_match(event))
		return;

5787 5788
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5789
				comm_event->event_id.header.size);
5790 5791

	if (ret)
5792
		goto out;
5793

5794 5795
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5796

5797
	perf_output_put(&handle, comm_event->event_id);
5798
	__output_copy(&handle, comm_event->comm,
5799
				   comm_event->comm_size);
5800 5801 5802

	perf_event__output_id_sample(event, &handle, &sample);

5803
	perf_output_end(&handle);
5804 5805
out:
	comm_event->event_id.header.size = size;
5806 5807
}

5808
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5809
{
5810
	char comm[TASK_COMM_LEN];
5811 5812
	unsigned int size;

5813
	memset(comm, 0, sizeof(comm));
5814
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5815
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5816 5817 5818 5819

	comm_event->comm = comm;
	comm_event->comm_size = size;

5820
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5821

5822
	perf_event_aux(perf_event_comm_output,
5823 5824
		       comm_event,
		       NULL);
5825 5826
}

5827
void perf_event_comm(struct task_struct *task, bool exec)
5828
{
5829 5830
	struct perf_comm_event comm_event;

5831
	if (!atomic_read(&nr_comm_events))
5832
		return;
5833

5834
	comm_event = (struct perf_comm_event){
5835
		.task	= task,
5836 5837
		/* .comm      */
		/* .comm_size */
5838
		.event_id  = {
5839
			.header = {
5840
				.type = PERF_RECORD_COMM,
5841
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5842 5843 5844 5845
				/* .size */
			},
			/* .pid */
			/* .tid */
5846 5847 5848
		},
	};

5849
	perf_event_comm_event(&comm_event);
5850 5851
}

5852 5853 5854 5855 5856
/*
 * mmap tracking
 */

struct perf_mmap_event {
5857 5858 5859 5860
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5861 5862 5863
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5864
	u32			prot, flags;
5865 5866 5867 5868 5869 5870 5871 5872 5873

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5874
	} event_id;
5875 5876
};

5877 5878 5879 5880 5881 5882 5883 5884
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5885
	       (executable && (event->attr.mmap || event->attr.mmap2));
5886 5887
}

5888
static void perf_event_mmap_output(struct perf_event *event,
5889
				   void *data)
5890
{
5891
	struct perf_mmap_event *mmap_event = data;
5892
	struct perf_output_handle handle;
5893
	struct perf_sample_data sample;
5894
	int size = mmap_event->event_id.header.size;
5895
	int ret;
5896

5897 5898 5899
	if (!perf_event_mmap_match(event, data))
		return;

5900 5901 5902 5903 5904
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5905
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5906 5907
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5908 5909
	}

5910 5911
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5912
				mmap_event->event_id.header.size);
5913
	if (ret)
5914
		goto out;
5915

5916 5917
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5918

5919
	perf_output_put(&handle, mmap_event->event_id);
5920 5921 5922 5923 5924 5925

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5926 5927
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5928 5929
	}

5930
	__output_copy(&handle, mmap_event->file_name,
5931
				   mmap_event->file_size);
5932 5933 5934

	perf_event__output_id_sample(event, &handle, &sample);

5935
	perf_output_end(&handle);
5936 5937
out:
	mmap_event->event_id.header.size = size;
5938 5939
}

5940
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5941
{
5942 5943
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5944 5945
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5946
	u32 prot = 0, flags = 0;
5947 5948 5949
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5950
	char *name;
5951

5952
	if (file) {
5953 5954
		struct inode *inode;
		dev_t dev;
5955

5956
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5957
		if (!buf) {
5958 5959
			name = "//enomem";
			goto cpy_name;
5960
		}
5961
		/*
5962
		 * d_path() works from the end of the rb backwards, so we
5963 5964 5965
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5966
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5967
		if (IS_ERR(name)) {
5968 5969
			name = "//toolong";
			goto cpy_name;
5970
		}
5971 5972 5973 5974 5975 5976
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5999
		goto got_name;
6000
	} else {
6001 6002 6003 6004 6005 6006
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6007
		name = (char *)arch_vma_name(vma);
6008 6009
		if (name)
			goto cpy_name;
6010

6011
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6012
				vma->vm_end >= vma->vm_mm->brk) {
6013 6014
			name = "[heap]";
			goto cpy_name;
6015 6016
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6017
				vma->vm_end >= vma->vm_mm->start_stack) {
6018 6019
			name = "[stack]";
			goto cpy_name;
6020 6021
		}

6022 6023
		name = "//anon";
		goto cpy_name;
6024 6025
	}

6026 6027 6028
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6029
got_name:
6030 6031 6032 6033 6034 6035 6036 6037
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6038 6039 6040

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6041 6042 6043 6044
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6045 6046
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6047

6048 6049 6050
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6051
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6052

6053
	perf_event_aux(perf_event_mmap_output,
6054 6055
		       mmap_event,
		       NULL);
6056

6057 6058 6059
	kfree(buf);
}

6060
void perf_event_mmap(struct vm_area_struct *vma)
6061
{
6062 6063
	struct perf_mmap_event mmap_event;

6064
	if (!atomic_read(&nr_mmap_events))
6065 6066 6067
		return;

	mmap_event = (struct perf_mmap_event){
6068
		.vma	= vma,
6069 6070
		/* .file_name */
		/* .file_size */
6071
		.event_id  = {
6072
			.header = {
6073
				.type = PERF_RECORD_MMAP,
6074
				.misc = PERF_RECORD_MISC_USER,
6075 6076 6077 6078
				/* .size */
			},
			/* .pid */
			/* .tid */
6079 6080
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6081
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6082
		},
6083 6084 6085 6086
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6087 6088
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6089 6090
	};

6091
	perf_event_mmap_event(&mmap_event);
6092 6093
}

A
Alexander Shishkin 已提交
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6246 6247 6248 6249
/*
 * IRQ throttle logging
 */

6250
static void perf_log_throttle(struct perf_event *event, int enable)
6251 6252
{
	struct perf_output_handle handle;
6253
	struct perf_sample_data sample;
6254 6255 6256 6257 6258
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6259
		u64				id;
6260
		u64				stream_id;
6261 6262
	} throttle_event = {
		.header = {
6263
			.type = PERF_RECORD_THROTTLE,
6264 6265 6266
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6267
		.time		= perf_event_clock(event),
6268 6269
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6270 6271
	};

6272
	if (enable)
6273
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6274

6275 6276 6277
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6278
				throttle_event.header.size);
6279 6280 6281 6282
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6283
	perf_event__output_id_sample(event, &handle, &sample);
6284 6285 6286
	perf_output_end(&handle);
}

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6323
/*
6324
 * Generic event overflow handling, sampling.
6325 6326
 */

6327
static int __perf_event_overflow(struct perf_event *event,
6328 6329
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6330
{
6331 6332
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6333
	u64 seq;
6334 6335
	int ret = 0;

6336 6337 6338 6339 6340 6341 6342
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6343 6344 6345 6346 6347 6348 6349 6350 6351
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6352 6353
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6354
			tick_nohz_full_kick();
6355 6356
			ret = 1;
		}
6357
	}
6358

6359
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6360
		u64 now = perf_clock();
6361
		s64 delta = now - hwc->freq_time_stamp;
6362

6363
		hwc->freq_time_stamp = now;
6364

6365
		if (delta > 0 && delta < 2*TICK_NSEC)
6366
			perf_adjust_period(event, delta, hwc->last_period, true);
6367 6368
	}

6369 6370
	/*
	 * XXX event_limit might not quite work as expected on inherited
6371
	 * events
6372 6373
	 */

6374 6375
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6376
		ret = 1;
6377
		event->pending_kill = POLL_HUP;
6378 6379
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6380 6381
	}

6382
	if (event->overflow_handler)
6383
		event->overflow_handler(event, data, regs);
6384
	else
6385
		perf_event_output(event, data, regs);
6386

6387
	if (*perf_event_fasync(event) && event->pending_kill) {
6388 6389
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6390 6391
	}

6392
	return ret;
6393 6394
}

6395
int perf_event_overflow(struct perf_event *event,
6396 6397
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6398
{
6399
	return __perf_event_overflow(event, 1, data, regs);
6400 6401
}

6402
/*
6403
 * Generic software event infrastructure
6404 6405
 */

6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6417
/*
6418 6419
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6420 6421 6422 6423
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6424
u64 perf_swevent_set_period(struct perf_event *event)
6425
{
6426
	struct hw_perf_event *hwc = &event->hw;
6427 6428 6429 6430 6431
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6432 6433

again:
6434
	old = val = local64_read(&hwc->period_left);
6435 6436
	if (val < 0)
		return 0;
6437

6438 6439 6440
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6441
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6442
		goto again;
6443

6444
	return nr;
6445 6446
}

6447
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6448
				    struct perf_sample_data *data,
6449
				    struct pt_regs *regs)
6450
{
6451
	struct hw_perf_event *hwc = &event->hw;
6452
	int throttle = 0;
6453

6454 6455
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6456

6457 6458
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6459

6460
	for (; overflow; overflow--) {
6461
		if (__perf_event_overflow(event, throttle,
6462
					    data, regs)) {
6463 6464 6465 6466 6467 6468
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6469
		throttle = 1;
6470
	}
6471 6472
}

P
Peter Zijlstra 已提交
6473
static void perf_swevent_event(struct perf_event *event, u64 nr,
6474
			       struct perf_sample_data *data,
6475
			       struct pt_regs *regs)
6476
{
6477
	struct hw_perf_event *hwc = &event->hw;
6478

6479
	local64_add(nr, &event->count);
6480

6481 6482 6483
	if (!regs)
		return;

6484
	if (!is_sampling_event(event))
6485
		return;
6486

6487 6488 6489 6490 6491 6492
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6493
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6494
		return perf_swevent_overflow(event, 1, data, regs);
6495

6496
	if (local64_add_negative(nr, &hwc->period_left))
6497
		return;
6498

6499
	perf_swevent_overflow(event, 0, data, regs);
6500 6501
}

6502 6503 6504
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6505
	if (event->hw.state & PERF_HES_STOPPED)
6506
		return 1;
P
Peter Zijlstra 已提交
6507

6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6519
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6520
				enum perf_type_id type,
L
Li Zefan 已提交
6521 6522 6523
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6524
{
6525
	if (event->attr.type != type)
6526
		return 0;
6527

6528
	if (event->attr.config != event_id)
6529 6530
		return 0;

6531 6532
	if (perf_exclude_event(event, regs))
		return 0;
6533 6534 6535 6536

	return 1;
}

6537 6538 6539 6540 6541 6542 6543
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6544 6545
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6546
{
6547 6548 6549 6550
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6551

6552 6553
/* For the read side: events when they trigger */
static inline struct hlist_head *
6554
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6555 6556
{
	struct swevent_hlist *hlist;
6557

6558
	hlist = rcu_dereference(swhash->swevent_hlist);
6559 6560 6561
	if (!hlist)
		return NULL;

6562 6563 6564 6565 6566
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6567
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6578
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6579 6580 6581 6582 6583
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6584 6585 6586
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6587
				    u64 nr,
6588 6589
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6590
{
6591
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6592
	struct perf_event *event;
6593
	struct hlist_head *head;
6594

6595
	rcu_read_lock();
6596
	head = find_swevent_head_rcu(swhash, type, event_id);
6597 6598 6599
	if (!head)
		goto end;

6600
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6601
		if (perf_swevent_match(event, type, event_id, data, regs))
6602
			perf_swevent_event(event, nr, data, regs);
6603
	}
6604 6605
end:
	rcu_read_unlock();
6606 6607
}

6608 6609
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6610
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6611
{
6612
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6613

6614
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6615
}
I
Ingo Molnar 已提交
6616
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6617

6618
inline void perf_swevent_put_recursion_context(int rctx)
6619
{
6620
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6621

6622
	put_recursion_context(swhash->recursion, rctx);
6623
}
6624

6625
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6626
{
6627
	struct perf_sample_data data;
6628

6629
	if (WARN_ON_ONCE(!regs))
6630
		return;
6631

6632
	perf_sample_data_init(&data, addr, 0);
6633
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6646 6647

	perf_swevent_put_recursion_context(rctx);
6648
fail:
6649
	preempt_enable_notrace();
6650 6651
}

6652
static void perf_swevent_read(struct perf_event *event)
6653 6654 6655
{
}

P
Peter Zijlstra 已提交
6656
static int perf_swevent_add(struct perf_event *event, int flags)
6657
{
6658
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6659
	struct hw_perf_event *hwc = &event->hw;
6660 6661
	struct hlist_head *head;

6662
	if (is_sampling_event(event)) {
6663
		hwc->last_period = hwc->sample_period;
6664
		perf_swevent_set_period(event);
6665
	}
6666

P
Peter Zijlstra 已提交
6667 6668
	hwc->state = !(flags & PERF_EF_START);

6669
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6670
	if (WARN_ON_ONCE(!head))
6671 6672 6673
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6674
	perf_event_update_userpage(event);
6675

6676 6677 6678
	return 0;
}

P
Peter Zijlstra 已提交
6679
static void perf_swevent_del(struct perf_event *event, int flags)
6680
{
6681
	hlist_del_rcu(&event->hlist_entry);
6682 6683
}

P
Peter Zijlstra 已提交
6684
static void perf_swevent_start(struct perf_event *event, int flags)
6685
{
P
Peter Zijlstra 已提交
6686
	event->hw.state = 0;
6687
}
I
Ingo Molnar 已提交
6688

P
Peter Zijlstra 已提交
6689
static void perf_swevent_stop(struct perf_event *event, int flags)
6690
{
P
Peter Zijlstra 已提交
6691
	event->hw.state = PERF_HES_STOPPED;
6692 6693
}

6694 6695
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6696
swevent_hlist_deref(struct swevent_htable *swhash)
6697
{
6698 6699
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6700 6701
}

6702
static void swevent_hlist_release(struct swevent_htable *swhash)
6703
{
6704
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6705

6706
	if (!hlist)
6707 6708
		return;

6709
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6710
	kfree_rcu(hlist, rcu_head);
6711 6712 6713 6714
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6715
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6716

6717
	mutex_lock(&swhash->hlist_mutex);
6718

6719 6720
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6721

6722
	mutex_unlock(&swhash->hlist_mutex);
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6735
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6736 6737
	int err = 0;

6738 6739
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6740 6741 6742 6743 6744 6745 6746
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6747
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6748
	}
6749
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6750
exit:
6751
	mutex_unlock(&swhash->hlist_mutex);
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6772
fail:
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6783
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6784

6785 6786 6787
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6788

6789 6790
	WARN_ON(event->parent);

6791
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6792 6793 6794 6795 6796
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6797
	u64 event_id = event->attr.config;
6798 6799 6800 6801

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6802 6803 6804 6805 6806 6807
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6808 6809 6810 6811 6812 6813 6814 6815 6816
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6817
	if (event_id >= PERF_COUNT_SW_MAX)
6818 6819 6820 6821 6822 6823 6824 6825 6826
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6827
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6828 6829 6830 6831 6832 6833 6834
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6835
	.task_ctx_nr	= perf_sw_context,
6836

6837 6838
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6839
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6840 6841 6842 6843
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6844 6845 6846
	.read		= perf_swevent_read,
};

6847 6848
#ifdef CONFIG_EVENT_TRACING

6849 6850 6851 6852 6853
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6854 6855 6856 6857
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6858 6859 6860 6861 6862 6863 6864 6865 6866
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6867 6868
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6869 6870 6871 6872
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6873 6874 6875 6876 6877 6878 6879 6880 6881
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6882 6883
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6884 6885
{
	struct perf_sample_data data;
6886 6887
	struct perf_event *event;

6888 6889 6890 6891 6892
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6893
	perf_sample_data_init(&data, addr, 0);
6894 6895
	data.raw = &raw;

6896
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6897
		if (perf_tp_event_match(event, &data, regs))
6898
			perf_swevent_event(event, count, &data, regs);
6899
	}
6900

6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6926
	perf_swevent_put_recursion_context(rctx);
6927 6928 6929
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6930
static void tp_perf_event_destroy(struct perf_event *event)
6931
{
6932
	perf_trace_destroy(event);
6933 6934
}

6935
static int perf_tp_event_init(struct perf_event *event)
6936
{
6937 6938
	int err;

6939 6940 6941
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6942 6943 6944 6945 6946 6947
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6948 6949
	err = perf_trace_init(event);
	if (err)
6950
		return err;
6951

6952
	event->destroy = tp_perf_event_destroy;
6953

6954 6955 6956 6957
	return 0;
}

static struct pmu perf_tracepoint = {
6958 6959
	.task_ctx_nr	= perf_sw_context,

6960
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6961 6962 6963 6964
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6965 6966 6967 6968 6969
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6970
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6971
}
L
Li Zefan 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7006 7007
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7008 7009 7010 7011 7012 7013
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7014
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7039
#else
L
Li Zefan 已提交
7040

7041
static inline void perf_tp_register(void)
7042 7043
{
}
L
Li Zefan 已提交
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7054 7055 7056 7057 7058 7059 7060 7061
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7062
#endif /* CONFIG_EVENT_TRACING */
7063

7064
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7065
void perf_bp_event(struct perf_event *bp, void *data)
7066
{
7067 7068 7069
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7070
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7071

P
Peter Zijlstra 已提交
7072
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7073
		perf_swevent_event(bp, 1, &sample, regs);
7074 7075 7076
}
#endif

7077 7078 7079
/*
 * hrtimer based swevent callback
 */
7080

7081
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7082
{
7083 7084 7085 7086 7087
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7088

7089
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7090 7091 7092 7093

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7094
	event->pmu->read(event);
7095

7096
	perf_sample_data_init(&data, 0, event->hw.last_period);
7097 7098 7099
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7100
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7101
			if (__perf_event_overflow(event, 1, &data, regs))
7102 7103
				ret = HRTIMER_NORESTART;
	}
7104

7105 7106
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7107

7108
	return ret;
7109 7110
}

7111
static void perf_swevent_start_hrtimer(struct perf_event *event)
7112
{
7113
	struct hw_perf_event *hwc = &event->hw;
7114 7115 7116 7117
	s64 period;

	if (!is_sampling_event(event))
		return;
7118

7119 7120 7121 7122
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7123

7124 7125 7126 7127
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7128 7129
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7130
}
7131 7132

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7133
{
7134 7135
	struct hw_perf_event *hwc = &event->hw;

7136
	if (is_sampling_event(event)) {
7137
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7138
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7139 7140 7141

		hrtimer_cancel(&hwc->hrtimer);
	}
7142 7143
}

P
Peter Zijlstra 已提交
7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7164
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7165 7166 7167 7168
		event->attr.freq = 0;
	}
}

7169 7170 7171 7172 7173
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7174
{
7175 7176 7177
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7178
	now = local_clock();
7179 7180
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7181 7182
}

P
Peter Zijlstra 已提交
7183
static void cpu_clock_event_start(struct perf_event *event, int flags)
7184
{
P
Peter Zijlstra 已提交
7185
	local64_set(&event->hw.prev_count, local_clock());
7186 7187 7188
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7189
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7190
{
7191 7192 7193
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7194

P
Peter Zijlstra 已提交
7195 7196 7197 7198
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7199
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7200 7201 7202 7203 7204 7205 7206 7207 7208

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7209 7210 7211 7212
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7213

7214 7215 7216 7217 7218 7219 7220 7221
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7222 7223 7224 7225 7226 7227
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7228 7229
	perf_swevent_init_hrtimer(event);

7230
	return 0;
7231 7232
}

7233
static struct pmu perf_cpu_clock = {
7234 7235
	.task_ctx_nr	= perf_sw_context,

7236 7237
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7238
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7239 7240 7241 7242
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7243 7244 7245 7246 7247 7248 7249 7250
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7251
{
7252 7253
	u64 prev;
	s64 delta;
7254

7255 7256 7257 7258
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7259

P
Peter Zijlstra 已提交
7260
static void task_clock_event_start(struct perf_event *event, int flags)
7261
{
P
Peter Zijlstra 已提交
7262
	local64_set(&event->hw.prev_count, event->ctx->time);
7263 7264 7265
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7266
static void task_clock_event_stop(struct perf_event *event, int flags)
7267 7268 7269
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7270 7271 7272 7273 7274 7275
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7276
	perf_event_update_userpage(event);
7277

P
Peter Zijlstra 已提交
7278 7279 7280 7281 7282 7283
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7284 7285 7286 7287
}

static void task_clock_event_read(struct perf_event *event)
{
7288 7289 7290
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7291 7292 7293 7294 7295

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7296
{
7297 7298 7299 7300 7301 7302
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7303 7304 7305 7306 7307 7308
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7309 7310
	perf_swevent_init_hrtimer(event);

7311
	return 0;
L
Li Zefan 已提交
7312 7313
}

7314
static struct pmu perf_task_clock = {
7315 7316
	.task_ctx_nr	= perf_sw_context,

7317 7318
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7319
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7320 7321 7322 7323
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7324 7325
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7326

P
Peter Zijlstra 已提交
7327
static void perf_pmu_nop_void(struct pmu *pmu)
7328 7329
{
}
L
Li Zefan 已提交
7330

7331 7332 7333 7334
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7335
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7336
{
P
Peter Zijlstra 已提交
7337
	return 0;
L
Li Zefan 已提交
7338 7339
}

7340
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7341 7342

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7343
{
7344 7345 7346 7347 7348
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7349
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7350 7351
}

P
Peter Zijlstra 已提交
7352 7353
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7354 7355 7356 7357 7358 7359 7360
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7361 7362 7363
	perf_pmu_enable(pmu);
	return 0;
}
7364

P
Peter Zijlstra 已提交
7365
static void perf_pmu_cancel_txn(struct pmu *pmu)
7366
{
7367 7368 7369 7370 7371 7372 7373
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7374
	perf_pmu_enable(pmu);
7375 7376
}

7377 7378
static int perf_event_idx_default(struct perf_event *event)
{
7379
	return 0;
7380 7381
}

P
Peter Zijlstra 已提交
7382 7383 7384 7385
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7386
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7387
{
P
Peter Zijlstra 已提交
7388
	struct pmu *pmu;
7389

P
Peter Zijlstra 已提交
7390 7391
	if (ctxn < 0)
		return NULL;
7392

P
Peter Zijlstra 已提交
7393 7394 7395 7396
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7397

P
Peter Zijlstra 已提交
7398
	return NULL;
7399 7400
}

7401
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7402
{
7403 7404 7405 7406 7407 7408 7409
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7410 7411
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7412 7413 7414 7415 7416 7417
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7418

P
Peter Zijlstra 已提交
7419
	mutex_lock(&pmus_lock);
7420
	/*
P
Peter Zijlstra 已提交
7421
	 * Like a real lame refcount.
7422
	 */
7423 7424 7425
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7426
			goto out;
7427
		}
P
Peter Zijlstra 已提交
7428
	}
7429

7430
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7431 7432
out:
	mutex_unlock(&pmus_lock);
7433
}
P
Peter Zijlstra 已提交
7434
static struct idr pmu_idr;
7435

P
Peter Zijlstra 已提交
7436 7437 7438 7439 7440 7441 7442
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7443
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7444

7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7455 7456
static DEFINE_MUTEX(mux_interval_mutex);

7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7476
	mutex_lock(&mux_interval_mutex);
7477 7478 7479
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7480 7481
	get_online_cpus();
	for_each_online_cpu(cpu) {
7482 7483 7484 7485
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7486 7487
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7488
	}
7489 7490
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7491 7492 7493

	return count;
}
7494
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7495

7496 7497 7498 7499
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7500
};
7501
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7502 7503 7504 7505

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7506
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7522
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7543
static struct lock_class_key cpuctx_mutex;
7544
static struct lock_class_key cpuctx_lock;
7545

7546
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7547
{
P
Peter Zijlstra 已提交
7548
	int cpu, ret;
7549

7550
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7551 7552 7553 7554
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7555

P
Peter Zijlstra 已提交
7556 7557 7558 7559 7560 7561
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7562 7563 7564
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7565 7566 7567 7568 7569
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7570 7571 7572 7573 7574 7575
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7576
skip_type:
P
Peter Zijlstra 已提交
7577 7578 7579
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7580

W
Wei Yongjun 已提交
7581
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7582 7583
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7584
		goto free_dev;
7585

P
Peter Zijlstra 已提交
7586 7587 7588 7589
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7590
		__perf_event_init_context(&cpuctx->ctx);
7591
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7592
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7593
		cpuctx->ctx.pmu = pmu;
7594

7595
		__perf_mux_hrtimer_init(cpuctx, cpu);
7596

7597
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7598
	}
7599

P
Peter Zijlstra 已提交
7600
got_cpu_context:
P
Peter Zijlstra 已提交
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7612
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7613 7614
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7615
		}
7616
	}
7617

P
Peter Zijlstra 已提交
7618 7619 7620 7621 7622
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7623 7624 7625
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7626
	list_add_rcu(&pmu->entry, &pmus);
7627
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7628 7629
	ret = 0;
unlock:
7630 7631
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7632
	return ret;
P
Peter Zijlstra 已提交
7633

P
Peter Zijlstra 已提交
7634 7635 7636 7637
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7638 7639 7640 7641
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7642 7643 7644
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7645
}
7646
EXPORT_SYMBOL_GPL(perf_pmu_register);
7647

7648
void perf_pmu_unregister(struct pmu *pmu)
7649
{
7650 7651 7652
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7653

7654
	/*
P
Peter Zijlstra 已提交
7655 7656
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7657
	 */
7658
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7659
	synchronize_rcu();
7660

P
Peter Zijlstra 已提交
7661
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7662 7663
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7664 7665
	device_del(pmu->dev);
	put_device(pmu->dev);
7666
	free_pmu_context(pmu);
7667
}
7668
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7669

7670 7671
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7672
	struct perf_event_context *ctx = NULL;
7673 7674 7675 7676
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7677 7678

	if (event->group_leader != event) {
7679 7680 7681 7682 7683 7684
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7685 7686 7687
		BUG_ON(!ctx);
	}

7688 7689
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7690 7691 7692 7693

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7694 7695 7696 7697 7698 7699
	if (ret)
		module_put(pmu->module);

	return ret;
}

7700
static struct pmu *perf_init_event(struct perf_event *event)
7701 7702 7703
{
	struct pmu *pmu = NULL;
	int idx;
7704
	int ret;
7705 7706

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7707 7708 7709 7710

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7711
	if (pmu) {
7712
		ret = perf_try_init_event(pmu, event);
7713 7714
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7715
		goto unlock;
7716
	}
P
Peter Zijlstra 已提交
7717

7718
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7719
		ret = perf_try_init_event(pmu, event);
7720
		if (!ret)
P
Peter Zijlstra 已提交
7721
			goto unlock;
7722

7723 7724
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7725
			goto unlock;
7726
		}
7727
	}
P
Peter Zijlstra 已提交
7728 7729
	pmu = ERR_PTR(-ENOENT);
unlock:
7730
	srcu_read_unlock(&pmus_srcu, idx);
7731

7732
	return pmu;
7733 7734
}

7735 7736 7737 7738 7739 7740 7741 7742 7743
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7744 7745
static void account_event(struct perf_event *event)
{
7746 7747
	bool inc = false;

7748 7749 7750
	if (event->parent)
		return;

7751
	if (event->attach_state & PERF_ATTACH_TASK)
7752
		inc = true;
7753 7754 7755 7756 7757 7758
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7759 7760 7761 7762
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7763 7764
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7765
		inc = true;
7766
	}
7767
	if (has_branch_stack(event))
7768
		inc = true;
7769
	if (is_cgroup_event(event))
7770 7771 7772
		inc = true;

	if (inc)
7773
		static_key_slow_inc(&perf_sched_events.key);
7774 7775

	account_event_cpu(event, event->cpu);
7776 7777
}

T
Thomas Gleixner 已提交
7778
/*
7779
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7780
 */
7781
static struct perf_event *
7782
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7783 7784 7785
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7786
		 perf_overflow_handler_t overflow_handler,
7787
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7788
{
P
Peter Zijlstra 已提交
7789
	struct pmu *pmu;
7790 7791
	struct perf_event *event;
	struct hw_perf_event *hwc;
7792
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7793

7794 7795 7796 7797 7798
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7799
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7800
	if (!event)
7801
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7802

7803
	/*
7804
	 * Single events are their own group leaders, with an
7805 7806 7807
	 * empty sibling list:
	 */
	if (!group_leader)
7808
		group_leader = event;
7809

7810 7811
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7812

7813 7814 7815
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7816
	INIT_LIST_HEAD(&event->rb_entry);
7817
	INIT_LIST_HEAD(&event->active_entry);
7818 7819
	INIT_HLIST_NODE(&event->hlist_entry);

7820

7821
	init_waitqueue_head(&event->waitq);
7822
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7823

7824
	mutex_init(&event->mmap_mutex);
7825

7826
	atomic_long_set(&event->refcount, 1);
7827 7828 7829 7830 7831
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7832

7833
	event->parent		= parent_event;
7834

7835
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7836
	event->id		= atomic64_inc_return(&perf_event_id);
7837

7838
	event->state		= PERF_EVENT_STATE_INACTIVE;
7839

7840 7841 7842
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7843 7844 7845
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7846
		 */
7847
		event->hw.target = task;
7848 7849
	}

7850 7851 7852 7853
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7854
	if (!overflow_handler && parent_event) {
7855
		overflow_handler = parent_event->overflow_handler;
7856 7857
		context = parent_event->overflow_handler_context;
	}
7858

7859
	event->overflow_handler	= overflow_handler;
7860
	event->overflow_handler_context = context;
7861

J
Jiri Olsa 已提交
7862
	perf_event__state_init(event);
7863

7864
	pmu = NULL;
7865

7866
	hwc = &event->hw;
7867
	hwc->sample_period = attr->sample_period;
7868
	if (attr->freq && attr->sample_freq)
7869
		hwc->sample_period = 1;
7870
	hwc->last_period = hwc->sample_period;
7871

7872
	local64_set(&hwc->period_left, hwc->sample_period);
7873

7874
	/*
7875
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7876
	 */
7877
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7878
		goto err_ns;
7879 7880 7881

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7882

7883 7884 7885 7886 7887 7888
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7889
	pmu = perf_init_event(event);
7890
	if (!pmu)
7891 7892
		goto err_ns;
	else if (IS_ERR(pmu)) {
7893
		err = PTR_ERR(pmu);
7894
		goto err_ns;
I
Ingo Molnar 已提交
7895
	}
7896

7897 7898 7899 7900
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7901
	if (!event->parent) {
7902 7903
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7904
			if (err)
7905
				goto err_per_task;
7906
		}
7907
	}
7908

7909
	return event;
7910

7911 7912 7913
err_per_task:
	exclusive_event_destroy(event);

7914 7915 7916
err_pmu:
	if (event->destroy)
		event->destroy(event);
7917
	module_put(pmu->module);
7918
err_ns:
7919 7920
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7921 7922 7923 7924 7925
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7926 7927
}

7928 7929
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7930 7931
{
	u32 size;
7932
	int ret;
7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7957 7958 7959
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7960 7961
	 */
	if (size > sizeof(*attr)) {
7962 7963 7964
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7965

7966 7967
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7968

7969
		for (; addr < end; addr++) {
7970 7971 7972 7973 7974 7975
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7976
		size = sizeof(*attr);
7977 7978 7979 7980 7981 7982
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7983
	if (attr->__reserved_1)
7984 7985 7986 7987 7988 7989 7990 7991
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8020 8021
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8022 8023
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8024
	}
8025

8026
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8027
		ret = perf_reg_validate(attr->sample_regs_user);
8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8046

8047 8048
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8049 8050 8051 8052 8053 8054 8055 8056 8057
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8058 8059
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8060
{
8061
	struct ring_buffer *rb = NULL;
8062 8063
	int ret = -EINVAL;

8064
	if (!output_event)
8065 8066
		goto set;

8067 8068
	/* don't allow circular references */
	if (event == output_event)
8069 8070
		goto out;

8071 8072 8073 8074 8075 8076 8077
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8078
	 * If its not a per-cpu rb, it must be the same task.
8079 8080 8081 8082
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8083 8084 8085 8086 8087 8088
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8089 8090 8091 8092 8093 8094 8095
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8096
set:
8097
	mutex_lock(&event->mmap_mutex);
8098 8099 8100
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8101

8102
	if (output_event) {
8103 8104 8105
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8106
			goto unlock;
8107 8108
	}

8109
	ring_buffer_attach(event, rb);
8110

8111
	ret = 0;
8112 8113 8114
unlock:
	mutex_unlock(&event->mmap_mutex);

8115 8116 8117 8118
out:
	return ret;
}

P
Peter Zijlstra 已提交
8119 8120 8121 8122 8123 8124 8125 8126 8127
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8165
/**
8166
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8167
 *
8168
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8169
 * @pid:		target pid
I
Ingo Molnar 已提交
8170
 * @cpu:		target cpu
8171
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8172
 */
8173 8174
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8175
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8176
{
8177 8178
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8179
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8180
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8181
	struct file *event_file = NULL;
8182
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8183
	struct task_struct *task = NULL;
8184
	struct pmu *pmu;
8185
	int event_fd;
8186
	int move_group = 0;
8187
	int err;
8188
	int f_flags = O_RDWR;
8189
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8190

8191
	/* for future expandability... */
S
Stephane Eranian 已提交
8192
	if (flags & ~PERF_FLAG_ALL)
8193 8194
		return -EINVAL;

8195 8196 8197
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8198

8199 8200 8201 8202 8203
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8204
	if (attr.freq) {
8205
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8206
			return -EINVAL;
8207 8208 8209
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8210 8211
	}

S
Stephane Eranian 已提交
8212 8213 8214 8215 8216 8217 8218 8219 8220
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8221 8222 8223 8224
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8225 8226 8227
	if (event_fd < 0)
		return event_fd;

8228
	if (group_fd != -1) {
8229 8230
		err = perf_fget_light(group_fd, &group);
		if (err)
8231
			goto err_fd;
8232
		group_leader = group.file->private_data;
8233 8234 8235 8236 8237 8238
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8239
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8240 8241 8242 8243 8244 8245 8246
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8247 8248 8249 8250 8251 8252
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8253 8254
	get_online_cpus();

8255 8256 8257
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8258
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8259
				 NULL, NULL, cgroup_fd);
8260 8261
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8262
		goto err_cpus;
8263 8264
	}

8265 8266 8267 8268 8269 8270 8271
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8272 8273
	account_event(event);

8274 8275 8276 8277 8278
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8279

8280 8281 8282 8283 8284 8285
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8308 8309 8310 8311

	/*
	 * Get the target context (task or percpu):
	 */
8312
	ctx = find_get_context(pmu, task, event);
8313 8314
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8315
		goto err_alloc;
8316 8317
	}

8318 8319 8320 8321 8322
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8323 8324 8325 8326 8327
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8328
	/*
8329
	 * Look up the group leader (we will attach this event to it):
8330
	 */
8331
	if (group_leader) {
8332
		err = -EINVAL;
8333 8334

		/*
I
Ingo Molnar 已提交
8335 8336 8337 8338
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8339
			goto err_context;
8340 8341 8342 8343 8344

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8345 8346 8347
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8348
		 */
8349
		if (move_group) {
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8363 8364 8365 8366 8367 8368
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8369 8370 8371
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8372
		if (attr.exclusive || attr.pinned)
8373
			goto err_context;
8374 8375 8376 8377 8378
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8379
			goto err_context;
8380
	}
T
Thomas Gleixner 已提交
8381

8382 8383
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8384 8385
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8386
		goto err_context;
8387
	}
8388

8389
	if (move_group) {
P
Peter Zijlstra 已提交
8390
		gctx = group_leader->ctx;
8391 8392 8393 8394 8395
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8396 8397 8398 8399 8400
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8401 8402 8403 8404 8405 8406 8407
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8408

8409 8410 8411
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8412

8413 8414 8415
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8416 8417 8418 8419
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8420
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8421

8422 8423
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8424
			perf_remove_from_context(sibling, 0);
8425 8426 8427
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8428 8429 8430 8431
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8432
		synchronize_rcu();
P
Peter Zijlstra 已提交
8433

8434 8435 8436 8437 8438 8439 8440 8441 8442 8443
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8444 8445
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8446
			perf_event__state_init(sibling);
8447
			perf_install_in_context(ctx, sibling, sibling->cpu);
8448 8449
			get_ctx(ctx);
		}
8450 8451 8452 8453 8454 8455 8456 8457 8458

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8459

8460 8461 8462 8463 8464 8465
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8466 8467
	}

8468 8469 8470 8471 8472 8473 8474 8475 8476
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8477 8478
	event->owner = current;

8479
	perf_install_in_context(ctx, event, event->cpu);
8480
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8481

8482
	if (move_group)
P
Peter Zijlstra 已提交
8483
		mutex_unlock(&gctx->mutex);
8484
	mutex_unlock(&ctx->mutex);
8485

8486 8487
	put_online_cpus();

8488 8489 8490
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8491

8492 8493 8494 8495 8496 8497
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8498
	fdput(group);
8499 8500
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8501

8502 8503 8504 8505 8506 8507
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8508
err_context:
8509
	perf_unpin_context(ctx);
8510
	put_ctx(ctx);
8511
err_alloc:
8512
	free_event(event);
8513
err_cpus:
8514
	put_online_cpus();
8515
err_task:
P
Peter Zijlstra 已提交
8516 8517
	if (task)
		put_task_struct(task);
8518
err_group_fd:
8519
	fdput(group);
8520 8521
err_fd:
	put_unused_fd(event_fd);
8522
	return err;
T
Thomas Gleixner 已提交
8523 8524
}

8525 8526 8527 8528 8529
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8530
 * @task: task to profile (NULL for percpu)
8531 8532 8533
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8534
				 struct task_struct *task,
8535 8536
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8537 8538
{
	struct perf_event_context *ctx;
8539
	struct perf_event *event;
8540
	int err;
8541

8542 8543 8544
	/*
	 * Get the target context (task or percpu):
	 */
8545

8546
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8547
				 overflow_handler, context, -1);
8548 8549 8550 8551
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8552

8553
	/* Mark owner so we could distinguish it from user events. */
8554
	event->owner = TASK_TOMBSTONE;
8555

8556 8557
	account_event(event);

8558
	ctx = find_get_context(event->pmu, task, event);
8559 8560
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8561
		goto err_free;
8562
	}
8563 8564 8565

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8566 8567 8568 8569 8570 8571 8572 8573
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8574
	perf_install_in_context(ctx, event, cpu);
8575
	perf_unpin_context(ctx);
8576 8577 8578 8579
	mutex_unlock(&ctx->mutex);

	return event;

8580 8581 8582
err_free:
	free_event(event);
err:
8583
	return ERR_PTR(err);
8584
}
8585
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8586

8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8597 8598 8599 8600 8601
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8602 8603
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8604
		perf_remove_from_context(event, 0);
8605
		unaccount_event_cpu(event, src_cpu);
8606
		put_ctx(src_ctx);
8607
		list_add(&event->migrate_entry, &events);
8608 8609
	}

8610 8611 8612
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8613 8614
	synchronize_rcu();

8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8639 8640
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8641 8642
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8643
		account_event_cpu(event, dst_cpu);
8644 8645 8646 8647
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8648
	mutex_unlock(&src_ctx->mutex);
8649 8650 8651
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8652
static void sync_child_event(struct perf_event *child_event,
8653
			       struct task_struct *child)
8654
{
8655
	struct perf_event *parent_event = child_event->parent;
8656
	u64 child_val;
8657

8658 8659
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8660

P
Peter Zijlstra 已提交
8661
	child_val = perf_event_count(child_event);
8662 8663 8664 8665

	/*
	 * Add back the child's count to the parent's count:
	 */
8666
	atomic64_add(child_val, &parent_event->child_count);
8667 8668 8669 8670
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8671 8672
}

8673
static void
8674 8675 8676
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8677
{
8678 8679
	struct perf_event *parent_event = child_event->parent;

8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8692 8693 8694
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8695
	if (parent_event)
8696 8697
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
8698
	child_event->state = PERF_EVENT_STATE_EXIT; /* see perf_event_release_kernel() */
8699
	raw_spin_unlock_irq(&child_ctx->lock);
8700

8701
	/*
8702
	 * Parent events are governed by their filedesc, retain them.
8703
	 */
8704
	if (!parent_event) {
8705
		perf_event_wakeup(child_event);
8706
		return;
8707
	}
8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8728 8729
}

P
Peter Zijlstra 已提交
8730
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8731
{
8732
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8733 8734 8735
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8736

8737
	child_ctx = perf_pin_task_context(child, ctxn);
8738
	if (!child_ctx)
8739 8740
		return;

8741
	/*
8742 8743 8744 8745 8746 8747 8748 8749
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
8750
	 */
8751
	mutex_lock(&child_ctx->mutex);
8752 8753

	/*
8754 8755 8756
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
8757
	 */
8758
	raw_spin_lock_irq(&child_ctx->lock);
8759
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8760

8761
	/*
8762 8763
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8764
	 */
8765 8766 8767 8768
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8769

8770
	clone_ctx = unclone_ctx(child_ctx);
8771
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8772

8773 8774
	if (clone_ctx)
		put_ctx(clone_ctx);
8775

P
Peter Zijlstra 已提交
8776
	/*
8777 8778 8779
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8780
	 */
8781
	perf_event_task(child, child_ctx, 0);
8782

8783
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8784
		perf_event_exit_event(child_event, child_ctx, child);
8785

8786 8787 8788
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8789 8790
}

P
Peter Zijlstra 已提交
8791 8792 8793 8794 8795
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8796
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8797 8798
	int ctxn;

P
Peter Zijlstra 已提交
8799 8800 8801 8802 8803 8804 8805 8806 8807 8808
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8809
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8810 8811 8812
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8813 8814
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8815 8816 8817 8818 8819 8820 8821 8822

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8823 8824
}

8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8837
	put_event(parent);
8838

P
Peter Zijlstra 已提交
8839
	raw_spin_lock_irq(&ctx->lock);
8840
	perf_group_detach(event);
8841
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8842
	raw_spin_unlock_irq(&ctx->lock);
8843 8844 8845
	free_event(event);
}

8846
/*
P
Peter Zijlstra 已提交
8847
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8848
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8849 8850 8851
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8852
 */
8853
void perf_event_free_task(struct task_struct *task)
8854
{
P
Peter Zijlstra 已提交
8855
	struct perf_event_context *ctx;
8856
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8857
	int ctxn;
8858

P
Peter Zijlstra 已提交
8859 8860 8861 8862
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8863

P
Peter Zijlstra 已提交
8864
		mutex_lock(&ctx->mutex);
8865
again:
P
Peter Zijlstra 已提交
8866 8867 8868
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8869

P
Peter Zijlstra 已提交
8870 8871 8872
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8873

P
Peter Zijlstra 已提交
8874 8875 8876
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8877

P
Peter Zijlstra 已提交
8878
		mutex_unlock(&ctx->mutex);
8879

P
Peter Zijlstra 已提交
8880 8881
		put_ctx(ctx);
	}
8882 8883
}

8884 8885 8886 8887 8888 8889 8890 8891
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8892
struct file *perf_event_get(unsigned int fd)
8893
{
8894
	struct file *file;
8895

8896 8897 8898
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
8899

8900 8901 8902 8903
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
8904

8905
	return file;
8906 8907 8908 8909 8910 8911 8912 8913 8914 8915
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8927
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8928
	struct perf_event *child_event;
8929
	unsigned long flags;
P
Peter Zijlstra 已提交
8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8942
					   child,
P
Peter Zijlstra 已提交
8943
					   group_leader, parent_event,
8944
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8945 8946
	if (IS_ERR(child_event))
		return child_event;
8947

8948 8949 8950 8951 8952 8953 8954
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
8955 8956
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8957
		mutex_unlock(&parent_event->child_mutex);
8958 8959 8960 8961
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8962 8963 8964 8965 8966 8967 8968
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8969
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8986 8987
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8988

8989 8990 8991 8992
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8993
	perf_event__id_header_size(child_event);
8994

P
Peter Zijlstra 已提交
8995 8996 8997
	/*
	 * Link it up in the child's context:
	 */
8998
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8999
	add_event_to_ctx(child_event, child_ctx);
9000
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9032 9033 9034 9035 9036
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9037
		   struct task_struct *child, int ctxn,
9038 9039 9040
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9041
	struct perf_event_context *child_ctx;
9042 9043 9044 9045

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9046 9047
	}

9048
	child_ctx = child->perf_event_ctxp[ctxn];
9049 9050 9051 9052 9053 9054 9055
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9056

9057
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9058 9059
		if (!child_ctx)
			return -ENOMEM;
9060

P
Peter Zijlstra 已提交
9061
		child->perf_event_ctxp[ctxn] = child_ctx;
9062 9063 9064 9065 9066 9067 9068 9069 9070
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9071 9072
}

9073
/*
9074
 * Initialize the perf_event context in task_struct
9075
 */
9076
static int perf_event_init_context(struct task_struct *child, int ctxn)
9077
{
9078
	struct perf_event_context *child_ctx, *parent_ctx;
9079 9080
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9081
	struct task_struct *parent = current;
9082
	int inherited_all = 1;
9083
	unsigned long flags;
9084
	int ret = 0;
9085

P
Peter Zijlstra 已提交
9086
	if (likely(!parent->perf_event_ctxp[ctxn]))
9087 9088
		return 0;

9089
	/*
9090 9091
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9092
	 */
P
Peter Zijlstra 已提交
9093
	parent_ctx = perf_pin_task_context(parent, ctxn);
9094 9095
	if (!parent_ctx)
		return 0;
9096

9097 9098 9099 9100 9101 9102 9103
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9104 9105 9106 9107
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9108
	mutex_lock(&parent_ctx->mutex);
9109 9110 9111 9112 9113

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9114
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9115 9116
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9117 9118 9119
		if (ret)
			break;
	}
9120

9121 9122 9123 9124 9125 9126 9127 9128 9129
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9130
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9131 9132
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9133
		if (ret)
9134
			break;
9135 9136
	}

9137 9138 9139
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9140
	child_ctx = child->perf_event_ctxp[ctxn];
9141

9142
	if (child_ctx && inherited_all) {
9143 9144 9145
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9146 9147 9148
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9149
		 */
P
Peter Zijlstra 已提交
9150
		cloned_ctx = parent_ctx->parent_ctx;
9151 9152
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9153
			child_ctx->parent_gen = parent_ctx->parent_gen;
9154 9155 9156 9157 9158
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9159 9160
	}

P
Peter Zijlstra 已提交
9161
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9162
	mutex_unlock(&parent_ctx->mutex);
9163

9164
	perf_unpin_context(parent_ctx);
9165
	put_ctx(parent_ctx);
9166

9167
	return ret;
9168 9169
}

P
Peter Zijlstra 已提交
9170 9171 9172 9173 9174 9175 9176
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9177 9178 9179 9180
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9181 9182
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9183 9184
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9185
			return ret;
P
Peter Zijlstra 已提交
9186
		}
P
Peter Zijlstra 已提交
9187 9188 9189 9190 9191
	}

	return 0;
}

9192 9193
static void __init perf_event_init_all_cpus(void)
{
9194
	struct swevent_htable *swhash;
9195 9196 9197
	int cpu;

	for_each_possible_cpu(cpu) {
9198 9199
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9200
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9201 9202 9203
	}
}

9204
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9205
{
P
Peter Zijlstra 已提交
9206
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9207

9208
	mutex_lock(&swhash->hlist_mutex);
9209
	if (swhash->hlist_refcount > 0) {
9210 9211
		struct swevent_hlist *hlist;

9212 9213 9214
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9215
	}
9216
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9217 9218
}

9219
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9220
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9221
{
P
Peter Zijlstra 已提交
9222
	struct perf_event_context *ctx = __info;
9223 9224
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9225

9226 9227
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9228
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9229
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9230
}
P
Peter Zijlstra 已提交
9231 9232 9233 9234 9235 9236 9237 9238 9239

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9240
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9241 9242 9243 9244 9245 9246 9247 9248

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9249
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9250
{
P
Peter Zijlstra 已提交
9251
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9252 9253
}
#else
9254
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9255 9256
#endif

P
Peter Zijlstra 已提交
9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9277
static int
T
Thomas Gleixner 已提交
9278 9279 9280 9281
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9282
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9283 9284

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9285
	case CPU_DOWN_FAILED:
9286
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9287 9288
		break;

P
Peter Zijlstra 已提交
9289
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9290
	case CPU_DOWN_PREPARE:
9291
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9292 9293 9294 9295 9296 9297 9298 9299
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9300
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9301
{
9302 9303
	int ret;

P
Peter Zijlstra 已提交
9304 9305
	idr_init(&pmu_idr);

9306
	perf_event_init_all_cpus();
9307
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9308 9309 9310
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9311 9312
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9313
	register_reboot_notifier(&perf_reboot_notifier);
9314 9315 9316

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9317 9318 9319

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9320 9321 9322 9323 9324 9325 9326

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9327
}
P
Peter Zijlstra 已提交
9328

9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9368 9369

#ifdef CONFIG_CGROUP_PERF
9370 9371
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9372 9373 9374
{
	struct perf_cgroup *jc;

9375
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9388
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9389
{
9390 9391
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9392 9393 9394 9395 9396 9397 9398
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9399
	rcu_read_lock();
S
Stephane Eranian 已提交
9400
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9401
	rcu_read_unlock();
S
Stephane Eranian 已提交
9402 9403 9404
	return 0;
}

9405
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9406
{
9407
	struct task_struct *task;
9408
	struct cgroup_subsys_state *css;
9409

9410
	cgroup_taskset_for_each(task, css, tset)
9411
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9412 9413
}

9414
struct cgroup_subsys perf_event_cgrp_subsys = {
9415 9416
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9417
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9418 9419
};
#endif /* CONFIG_CGROUP_PERF */