core.c 180.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

391
	raw_spin_lock(&rq->lock);
392
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
393
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
395 396 397 398

	return HRTIMER_NORESTART;
}

399
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
400 401 402 403 404 405 406 407 408

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

409 410 411 412
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
413
{
414
	struct rq *rq = arg;
415

416
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
417
	__hrtick_restart(rq);
418
	rq->hrtick_csd_pending = 0;
419
	raw_spin_unlock(&rq->lock);
420 421
}

422 423 424 425 426
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
427
void hrtick_start(struct rq *rq, u64 delay)
428
{
429 430
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431

432
	hrtimer_set_expires(timer, time);
433 434

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
435
		__hrtick_restart(rq);
436
	} else if (!rq->hrtick_csd_pending) {
437
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 439
		rq->hrtick_csd_pending = 1;
	}
440 441 442 443 444 445 446 447 448 449 450 451 452 453
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
454
		hrtick_clear(cpu_rq(cpu));
455 456 457 458 459 460
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

461
static __init void init_hrtick(void)
462 463 464
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
465 466 467 468 469 470
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
471
void hrtick_start(struct rq *rq, u64 delay)
472
{
473
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474
			HRTIMER_MODE_REL_PINNED, 0);
475
}
476

A
Andrew Morton 已提交
477
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
478 479
{
}
480
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
481

482
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
483
{
484 485
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
486

487 488 489 490
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
491

492 493
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
494
}
A
Andrew Morton 已提交
495
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
496 497 498 499 500 501 502 503
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

504 505 506
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
507
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
508

I
Ingo Molnar 已提交
509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
517
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
518 519 520
{
	int cpu;

521
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
522

523
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
524 525
		return;

526
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
527 528 529 530 531 532 533 534 535 536 537

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

538
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
539 540 541 542
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

543
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
544 545
		return;
	resched_task(cpu_curr(cpu));
546
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
547
}
548

549
#ifdef CONFIG_NO_HZ_COMMON
550 551 552 553 554 555 556 557 558 559 560 561 562 563
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

564
	rcu_read_lock();
565
	for_each_domain(cpu, sd) {
566 567 568 569 570 571
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
572
	}
573 574
unlock:
	rcu_read_unlock();
575 576
	return cpu;
}
577 578 579 580 581 582 583 584 585 586
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
587
static void wake_up_idle_cpu(int cpu)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
603 604

	/*
605 606 607
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
608
	 */
609
	set_tsk_need_resched(rq->idle);
610

611 612 613 614
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
615 616
}

617
static bool wake_up_full_nohz_cpu(int cpu)
618
{
619
	if (tick_nohz_full_cpu(cpu)) {
620 621 622 623 624 625 626 627 628 629 630
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
631
	if (!wake_up_full_nohz_cpu(cpu))
632 633 634
		wake_up_idle_cpu(cpu);
}

635
static inline bool got_nohz_idle_kick(void)
636
{
637
	int cpu = smp_processor_id();
638 639 640 641 642 643 644 645 646 647 648 649 650

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
651 652
}

653
#else /* CONFIG_NO_HZ_COMMON */
654

655
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
656
{
657
	return false;
P
Peter Zijlstra 已提交
658 659
}

660
#endif /* CONFIG_NO_HZ_COMMON */
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
679

680
void sched_avg_update(struct rq *rq)
681
{
682 683
	s64 period = sched_avg_period();

684
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 686 687 688 689 690
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
691 692 693
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
694 695
}

696
#else /* !CONFIG_SMP */
697
void resched_task(struct task_struct *p)
698
{
699
	assert_raw_spin_locked(&task_rq(p)->lock);
700
	set_tsk_need_resched(p);
701
}
702
#endif /* CONFIG_SMP */
703

704 705
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706
/*
707 708 709 710
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
711
 */
712
int walk_tg_tree_from(struct task_group *from,
713
			     tg_visitor down, tg_visitor up, void *data)
714 715
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
716
	int ret;
717

718 719
	parent = from;

720
down:
P
Peter Zijlstra 已提交
721 722
	ret = (*down)(parent, data);
	if (ret)
723
		goto out;
724 725 726 727 728 729 730
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
731
	ret = (*up)(parent, data);
732 733
	if (ret || parent == from)
		goto out;
734 735 736 737 738

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
739
out:
P
Peter Zijlstra 已提交
740
	return ret;
741 742
}

743
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
744
{
745
	return 0;
P
Peter Zijlstra 已提交
746
}
747 748
#endif

749 750
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
751 752 753
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
754 755 756 757
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
758
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
759
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
760 761
		return;
	}
762

763
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
764
	load->inv_weight = prio_to_wmult[prio];
765 766
}

767
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
768
{
769
	update_rq_clock(rq);
I
Ingo Molnar 已提交
770
	sched_info_queued(p);
771
	p->sched_class->enqueue_task(rq, p, flags);
772 773
}

774
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775
{
776
	update_rq_clock(rq);
777
	sched_info_dequeued(p);
778
	p->sched_class->dequeue_task(rq, p, flags);
779 780
}

781
void activate_task(struct rq *rq, struct task_struct *p, int flags)
782 783 784 785
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

786
	enqueue_task(rq, p, flags);
787 788
}

789
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
790 791 792 793
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

794
	dequeue_task(rq, p, flags);
795 796
}

797
static void update_rq_clock_task(struct rq *rq, s64 delta)
798
{
799 800 801 802 803 804 805 806
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
807
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
829 830
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
831
	if (static_key_false((&paravirt_steal_rq_enabled))) {
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

849 850
	rq->clock_task += delta;

851 852 853 854
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
855 856
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

887
/*
I
Ingo Molnar 已提交
888
 * __normal_prio - return the priority that is based on the static prio
889 890 891
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
892
	return p->static_prio;
893 894
}

895 896 897 898 899 900 901
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
902
static inline int normal_prio(struct task_struct *p)
903 904 905
{
	int prio;

906
	if (task_has_rt_policy(p))
907 908 909 910 911 912 913 914 915 916 917 918 919
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
920
static int effective_prio(struct task_struct *p)
921 922 923 924 925 926 927 928 929 930 931 932
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
933 934 935
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
936 937
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
938
 */
939
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
940 941 942 943
{
	return cpu_curr(task_cpu(p)) == p;
}

944 945
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
946
				       int oldprio)
947 948 949
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
950 951 952 953
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
954 955
}

956
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
977
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
978 979 980
		rq->skip_clock_update = 1;
}

981 982 983 984 985 986 987
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
988
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
989
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
990
{
991 992 993 994 995
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
996 997
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
998 999

#ifdef CONFIG_LOCKDEP
1000 1001 1002 1003 1004
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1005
	 * see task_group().
1006 1007 1008 1009
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1010 1011 1012
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1013 1014
#endif

1015
	trace_sched_migrate_task(p, new_cpu);
1016

1017
	if (task_cpu(p) != new_cpu) {
1018 1019
		struct task_migration_notifier tmn;

1020 1021
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1022
		p->se.nr_migrations++;
1023
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1024 1025 1026 1027 1028 1029

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1030
	}
I
Ingo Molnar 已提交
1031 1032

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1033 1034
}

1035
struct migration_arg {
1036
	struct task_struct *task;
L
Linus Torvalds 已提交
1037
	int dest_cpu;
1038
};
L
Linus Torvalds 已提交
1039

1040 1041
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1042 1043 1044
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1045 1046 1047 1048 1049 1050 1051
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1052 1053 1054 1055 1056 1057
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1058
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1059 1060
{
	unsigned long flags;
I
Ingo Molnar 已提交
1061
	int running, on_rq;
R
Roland McGrath 已提交
1062
	unsigned long ncsw;
1063
	struct rq *rq;
L
Linus Torvalds 已提交
1064

1065 1066 1067 1068 1069 1070 1071 1072
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1085 1086 1087
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1088
			cpu_relax();
R
Roland McGrath 已提交
1089
		}
1090

1091 1092 1093 1094 1095 1096
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1097
		trace_sched_wait_task(p);
1098
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1099
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1100
		ncsw = 0;
1101
		if (!match_state || p->state == match_state)
1102
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1103
		task_rq_unlock(rq, p, &flags);
1104

R
Roland McGrath 已提交
1105 1106 1107 1108 1109 1110
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1121

1122 1123 1124 1125 1126
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1127
		 * So if it was still runnable (but just not actively
1128 1129 1130 1131
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1132 1133 1134 1135
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1136 1137
			continue;
		}
1138

1139 1140 1141 1142 1143 1144 1145
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1146 1147

	return ncsw;
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1157
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1158 1159 1160 1161 1162
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1163
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1173
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1174
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1175

1176
#ifdef CONFIG_SMP
1177
/*
1178
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1179
 */
1180 1181
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1182 1183
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1184 1185
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1204
	}
1205

1206 1207
	for (;;) {
		/* Any allowed, online CPU? */
1208
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1209 1210 1211 1212 1213 1214
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1245 1246 1247 1248 1249
	}

	return dest_cpu;
}

1250
/*
1251
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1252
 */
1253
static inline
1254
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1255
{
1256
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1268
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1269
		     !cpu_online(cpu)))
1270
		cpu = select_fallback_rq(task_cpu(p), p);
1271 1272

	return cpu;
1273
}
1274 1275 1276 1277 1278 1279

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1280 1281
#endif

P
Peter Zijlstra 已提交
1282
static void
1283
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1284
{
P
Peter Zijlstra 已提交
1285
#ifdef CONFIG_SCHEDSTATS
1286 1287
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1298
		rcu_read_lock();
P
Peter Zijlstra 已提交
1299 1300 1301 1302 1303 1304
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1305
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1306
	}
1307 1308 1309 1310

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1311 1312 1313
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1314
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1315 1316

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1317
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1318 1319 1320 1321 1322 1323

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1324
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1325
	p->on_rq = 1;
1326 1327 1328 1329

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1330 1331
}

1332 1333 1334
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1335
static void
1336
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1337 1338
{
	check_preempt_curr(rq, p, wake_flags);
1339
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1340 1341 1342 1343 1344 1345

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1346
	if (rq->idle_stamp) {
1347
		u64 delta = rq_clock(rq) - rq->idle_stamp;
T
Tejun Heo 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1384 1385
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1386 1387 1388 1389 1390 1391 1392 1393
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1394
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1395
static void sched_ttwu_pending(void)
1396 1397
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1398 1399
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1400 1401 1402

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1403 1404 1405
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1406 1407 1408 1409 1410 1411 1412 1413
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1414 1415 1416
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1433
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1434
	sched_ttwu_pending();
1435 1436 1437 1438

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1439
	if (unlikely(got_nohz_idle_kick())) {
1440
		this_rq()->idle_balance = 1;
1441
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1442
	}
1443
	irq_exit();
1444 1445 1446 1447
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1448
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1449 1450
		smp_send_reschedule(cpu);
}
1451

1452
bool cpus_share_cache(int this_cpu, int that_cpu)
1453 1454 1455
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1456
#endif /* CONFIG_SMP */
1457

1458 1459 1460 1461
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1462
#if defined(CONFIG_SMP)
1463
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1464
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1465 1466 1467 1468 1469
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1470 1471 1472
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1473 1474 1475
}

/**
L
Linus Torvalds 已提交
1476
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1477
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1478
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1479
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485 1486
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1487
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1488
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1489
 */
1490 1491
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1492 1493
{
	unsigned long flags;
1494
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1495

1496 1497 1498 1499 1500 1501 1502
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1503
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1504
	if (!(p->state & state))
L
Linus Torvalds 已提交
1505 1506
		goto out;

1507
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1508 1509
	cpu = task_cpu(p);

1510 1511
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1512 1513

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1514
	/*
1515 1516
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1517
	 */
1518
	while (p->on_cpu)
1519
		cpu_relax();
1520
	/*
1521
	 * Pairs with the smp_wmb() in finish_lock_switch().
1522
	 */
1523
	smp_rmb();
L
Linus Torvalds 已提交
1524

1525
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1526
	p->state = TASK_WAKING;
1527

1528
	if (p->sched_class->task_waking)
1529
		p->sched_class->task_waking(p);
1530

1531
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1532 1533
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1534
		set_task_cpu(p, cpu);
1535
	}
L
Linus Torvalds 已提交
1536 1537
#endif /* CONFIG_SMP */

1538 1539
	ttwu_queue(p, cpu);
stat:
1540
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1541
out:
1542
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1543 1544 1545 1546

	return success;
}

T
Tejun Heo 已提交
1547 1548 1549 1550
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1551
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1552
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1553
 * the current task.
T
Tejun Heo 已提交
1554 1555 1556 1557 1558
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1559 1560 1561 1562
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1563 1564
	lockdep_assert_held(&rq->lock);

1565 1566 1567 1568 1569 1570
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1571
	if (!(p->state & TASK_NORMAL))
1572
		goto out;
T
Tejun Heo 已提交
1573

P
Peter Zijlstra 已提交
1574
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1575 1576
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1577
	ttwu_do_wakeup(rq, p, 0);
1578
	ttwu_stat(p, smp_processor_id(), 0);
1579 1580
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1581 1582
}

1583 1584 1585 1586 1587
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1588 1589 1590
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1591 1592 1593 1594
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1595
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1596
{
1597 1598
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1599 1600 1601
}
EXPORT_SYMBOL(wake_up_process);

1602
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608 1609
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1610 1611 1612 1613 1614
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1615 1616 1617
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1618 1619
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1620
	p->se.prev_sum_exec_runtime	= 0;
1621
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1622
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1623
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1624 1625

#ifdef CONFIG_SCHEDSTATS
1626
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1627
#endif
N
Nick Piggin 已提交
1628

P
Peter Zijlstra 已提交
1629
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1630

1631 1632 1633
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1634 1635 1636 1637

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1638
		p->mm->numa_next_reset = jiffies;
1639 1640 1641 1642 1643 1644
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1645
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1646 1647
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1648 1649
}

1650
#ifdef CONFIG_NUMA_BALANCING
1651
#ifdef CONFIG_SCHED_DEBUG
1652 1653 1654 1655 1656 1657 1658
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1659 1660 1661 1662 1663 1664
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1665
}
1666
#endif /* CONFIG_SCHED_DEBUG */
1667
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1668 1669 1670 1671

/*
 * fork()/clone()-time setup:
 */
1672
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1673
{
1674
	unsigned long flags;
I
Ingo Molnar 已提交
1675 1676 1677
	int cpu = get_cpu();

	__sched_fork(p);
1678
	/*
1679
	 * We mark the process as running here. This guarantees that
1680 1681 1682
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1683
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1684

1685 1686 1687 1688 1689
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1690 1691 1692 1693
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1694
		if (task_has_rt_policy(p)) {
1695
			p->policy = SCHED_NORMAL;
1696
			p->static_prio = NICE_TO_PRIO(0);
1697 1698 1699 1700 1701 1702
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1703

1704 1705 1706 1707 1708 1709
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1710

H
Hiroshi Shimamoto 已提交
1711 1712
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1713

P
Peter Zijlstra 已提交
1714 1715 1716
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1717 1718 1719 1720 1721 1722 1723
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1724
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1725
	set_task_cpu(p, cpu);
1726
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1727

1728
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1729
	if (likely(sched_info_on()))
1730
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1731
#endif
P
Peter Zijlstra 已提交
1732 1733
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1734
#endif
1735
#ifdef CONFIG_PREEMPT_COUNT
1736
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1737
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1738
#endif
1739
#ifdef CONFIG_SMP
1740
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1741
#endif
1742

N
Nick Piggin 已提交
1743
	put_cpu();
L
Linus Torvalds 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1753
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1754 1755
{
	unsigned long flags;
I
Ingo Molnar 已提交
1756
	struct rq *rq;
1757

1758
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1759 1760 1761 1762 1763 1764
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1765
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1766 1767
#endif

1768 1769
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
1770
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1771
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1772
	p->on_rq = 1;
1773
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1774
	check_preempt_curr(rq, p, WF_FORK);
1775
#ifdef CONFIG_SMP
1776 1777
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1778
#endif
1779
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1780 1781
}

1782 1783 1784
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1785
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1786
 * @notifier: notifier struct to register
1787 1788 1789 1790 1791 1792 1793 1794 1795
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1796
 * @notifier: notifier struct to unregister
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1810
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1811 1812 1813 1814 1815 1816 1817 1818 1819
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1820
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1821 1822 1823
		notifier->ops->sched_out(notifier, next);
}

1824
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1836
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1837

1838 1839 1840
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1841
 * @prev: the current task that is being switched out
1842 1843 1844 1845 1846 1847 1848 1849 1850
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1851 1852 1853
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1854
{
1855
	trace_sched_switch(prev, next);
1856 1857
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1858
	fire_sched_out_preempt_notifiers(prev, next);
1859 1860 1861 1862
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1863 1864
/**
 * finish_task_switch - clean up after a task-switch
1865
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1866 1867
 * @prev: the thread we just switched away from.
 *
1868 1869 1870 1871
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1872 1873
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1874
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1875 1876 1877
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1878
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1879 1880 1881
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1882
	long prev_state;
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1888
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1889 1890
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1891
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1892 1893 1894 1895 1896
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1897
	prev_state = prev->state;
1898
	vtime_task_switch(prev);
1899
	finish_arch_switch(prev);
1900
	perf_event_task_sched_in(prev, current);
1901
	finish_lock_switch(rq, prev);
1902
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1903

1904
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1905 1906
	if (mm)
		mmdrop(mm);
1907
	if (unlikely(prev_state == TASK_DEAD)) {
1908 1909 1910
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1911
		 */
1912
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1913
		put_task_struct(prev);
1914
	}
1915 1916

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1934
		raw_spin_lock_irqsave(&rq->lock, flags);
1935 1936
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1937
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1938 1939 1940 1941 1942 1943

		rq->post_schedule = 0;
	}
}

#else
1944

1945 1946 1947 1948 1949 1950
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1951 1952
}

1953 1954
#endif

L
Linus Torvalds 已提交
1955 1956 1957 1958
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1959
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1960 1961
	__releases(rq->lock)
{
1962 1963
	struct rq *rq = this_rq();

1964
	finish_task_switch(rq, prev);
1965

1966 1967 1968 1969 1970
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1971

1972 1973 1974 1975
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1976
	if (current->set_child_tid)
1977
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1984
static inline void
1985
context_switch(struct rq *rq, struct task_struct *prev,
1986
	       struct task_struct *next)
L
Linus Torvalds 已提交
1987
{
I
Ingo Molnar 已提交
1988
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1989

1990
	prepare_task_switch(rq, prev, next);
1991

I
Ingo Molnar 已提交
1992 1993
	mm = next->mm;
	oldmm = prev->active_mm;
1994 1995 1996 1997 1998
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1999
	arch_start_context_switch(prev);
2000

2001
	if (!mm) {
L
Linus Torvalds 已提交
2002 2003 2004 2005 2006 2007
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2008
	if (!prev->mm) {
L
Linus Torvalds 已提交
2009 2010 2011
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2012 2013 2014 2015 2016 2017 2018
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2019
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2020
#endif
L
Linus Torvalds 已提交
2021

2022
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2023 2024 2025
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2026 2027 2028 2029 2030 2031 2032
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2033 2034 2035
}

/*
2036
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2037 2038
 *
 * externally visible scheduler statistics: current number of runnable
2039
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2049
}
L
Linus Torvalds 已提交
2050 2051

unsigned long long nr_context_switches(void)
2052
{
2053 2054
	int i;
	unsigned long long sum = 0;
2055

2056
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2057
		sum += cpu_rq(i)->nr_switches;
2058

L
Linus Torvalds 已提交
2059 2060
	return sum;
}
2061

L
Linus Torvalds 已提交
2062 2063 2064
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2065

2066
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2067
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2068

L
Linus Torvalds 已提交
2069 2070
	return sum;
}
2071

2072
unsigned long nr_iowait_cpu(int cpu)
2073
{
2074
	struct rq *this = cpu_rq(cpu);
2075 2076
	return atomic_read(&this->nr_iowait);
}
2077

I
Ingo Molnar 已提交
2078
#ifdef CONFIG_SMP
2079

2080
/*
P
Peter Zijlstra 已提交
2081 2082
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2083
 */
P
Peter Zijlstra 已提交
2084
void sched_exec(void)
2085
{
P
Peter Zijlstra 已提交
2086
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2087
	unsigned long flags;
2088
	int dest_cpu;
2089

2090
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2091
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2092 2093
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2094

2095
	if (likely(cpu_active(dest_cpu))) {
2096
		struct migration_arg arg = { p, dest_cpu };
2097

2098 2099
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2100 2101
		return;
	}
2102
unlock:
2103
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2104
}
I
Ingo Molnar 已提交
2105

L
Linus Torvalds 已提交
2106 2107 2108
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2109
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2110 2111

EXPORT_PER_CPU_SYMBOL(kstat);
2112
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2113 2114

/*
2115
 * Return any ns on the sched_clock that have not yet been accounted in
2116
 * @p in case that task is currently running.
2117 2118
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2119
 */
2120 2121 2122 2123 2124 2125
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2126
		ns = rq_clock_task(rq) - p->se.exec_start;
2127 2128 2129 2130 2131 2132 2133
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2134
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2135 2136
{
	unsigned long flags;
2137
	struct rq *rq;
2138
	u64 ns = 0;
2139

2140
	rq = task_rq_lock(p, &flags);
2141
	ns = do_task_delta_exec(p, rq);
2142
	task_rq_unlock(rq, p, &flags);
2143

2144 2145
	return ns;
}
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2160
	task_rq_unlock(rq, p, &flags);
2161 2162 2163

	return ns;
}
2164

2165 2166 2167 2168 2169 2170 2171 2172
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2173
	struct task_struct *curr = rq->curr;
2174 2175

	sched_clock_tick();
I
Ingo Molnar 已提交
2176

2177
	raw_spin_lock(&rq->lock);
2178
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2179
	curr->sched_class->task_tick(rq, curr, 0);
2180
	update_cpu_load_active(rq);
2181
	raw_spin_unlock(&rq->lock);
2182

2183
	perf_event_task_tick();
2184

2185
#ifdef CONFIG_SMP
2186
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2187
	trigger_load_balance(rq, cpu);
2188
#endif
2189
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2203 2204
 *
 * Return: Maximum deferment in nanoseconds.
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
L
Linus Torvalds 已提交
2217
}
2218
#endif
L
Linus Torvalds 已提交
2219

2220
notrace unsigned long get_parent_ip(unsigned long addr)
2221 2222 2223 2224 2225 2226 2227 2228
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2229

2230 2231 2232
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2233
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2234
{
2235
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2236 2237 2238
	/*
	 * Underflow?
	 */
2239 2240
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2241
#endif
L
Linus Torvalds 已提交
2242
	preempt_count() += val;
2243
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2244 2245 2246
	/*
	 * Spinlock count overflowing soon?
	 */
2247 2248
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2249 2250 2251
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2252 2253 2254
}
EXPORT_SYMBOL(add_preempt_count);

2255
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2256
{
2257
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2258 2259 2260
	/*
	 * Underflow?
	 */
2261
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2262
		return;
L
Linus Torvalds 已提交
2263 2264 2265
	/*
	 * Is the spinlock portion underflowing?
	 */
2266 2267 2268
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2269
#endif
2270

2271 2272
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2273 2274 2275 2276 2277 2278 2279
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2280
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2281
 */
I
Ingo Molnar 已提交
2282
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2283
{
2284 2285 2286
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2287 2288
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2289

I
Ingo Molnar 已提交
2290
	debug_show_held_locks(prev);
2291
	print_modules();
I
Ingo Molnar 已提交
2292 2293
	if (irqs_disabled())
		print_irqtrace_events(prev);
2294
	dump_stack();
2295
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2296
}
L
Linus Torvalds 已提交
2297

I
Ingo Molnar 已提交
2298 2299 2300 2301 2302
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2303
	/*
I
Ingo Molnar 已提交
2304
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2305 2306 2307
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2308
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2309
		__schedule_bug(prev);
2310
	rcu_sleep_check();
I
Ingo Molnar 已提交
2311

L
Linus Torvalds 已提交
2312 2313
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2314
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2315 2316
}

P
Peter Zijlstra 已提交
2317
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2318
{
2319
	if (prev->on_rq || rq->skip_clock_update < 0)
2320
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2321
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2322 2323
}

I
Ingo Molnar 已提交
2324 2325 2326 2327
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2328
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2329
{
2330
	const struct sched_class *class;
I
Ingo Molnar 已提交
2331
	struct task_struct *p;
L
Linus Torvalds 已提交
2332 2333

	/*
I
Ingo Molnar 已提交
2334 2335
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2336
	 */
2337
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2338
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2339 2340
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2341 2342
	}

2343
	for_each_class(class) {
2344
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2345 2346 2347
		if (p)
			return p;
	}
2348 2349

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2350
}
L
Linus Torvalds 已提交
2351

I
Ingo Molnar 已提交
2352
/*
2353
 * __schedule() is the main scheduler function.
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2388
 */
2389
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2390 2391
{
	struct task_struct *prev, *next;
2392
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2393
	struct rq *rq;
2394
	int cpu;
I
Ingo Molnar 已提交
2395

2396 2397
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2398 2399
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2400
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2401 2402 2403
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2404

2405
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2406
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2407

2408 2409 2410 2411 2412 2413
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2414
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2415

2416
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2417
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2418
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2419
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2420
		} else {
2421 2422 2423
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2424
			/*
2425 2426 2427
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2437
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2438 2439
	}

2440
	pre_schedule(rq, prev);
2441

I
Ingo Molnar 已提交
2442
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2443 2444
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2445
	put_prev_task(rq, prev);
2446
	next = pick_next_task(rq);
2447 2448
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2449 2450 2451 2452 2453 2454

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2455
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2456
		/*
2457 2458 2459 2460
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2461 2462 2463
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2464
	} else
2465
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2466

2467
	post_schedule(rq);
L
Linus Torvalds 已提交
2468

2469
	sched_preempt_enable_no_resched();
2470
	if (need_resched())
L
Linus Torvalds 已提交
2471 2472
		goto need_resched;
}
2473

2474 2475
static inline void sched_submit_work(struct task_struct *tsk)
{
2476
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2477 2478 2479 2480 2481 2482 2483 2484 2485
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2486
asmlinkage void __sched schedule(void)
2487
{
2488 2489 2490
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2491 2492
	__schedule();
}
L
Linus Torvalds 已提交
2493 2494
EXPORT_SYMBOL(schedule);

2495
#ifdef CONFIG_CONTEXT_TRACKING
2496 2497 2498 2499 2500 2501 2502 2503
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2504
	user_exit();
2505
	schedule();
2506
	user_enter();
2507 2508 2509
}
#endif

2510 2511 2512 2513 2514 2515 2516
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2517
	sched_preempt_enable_no_resched();
2518 2519 2520 2521
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2522 2523
#ifdef CONFIG_PREEMPT
/*
2524
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2525
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2526 2527
 * occur there and call schedule directly.
 */
2528
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2529 2530
{
	struct thread_info *ti = current_thread_info();
2531

L
Linus Torvalds 已提交
2532 2533
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2534
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2535
	 */
N
Nick Piggin 已提交
2536
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
2537 2538
		return;

2539
	do {
2540
		add_preempt_count_notrace(PREEMPT_ACTIVE);
2541
		__schedule();
2542
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2543

2544 2545 2546 2547 2548
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2549
	} while (need_resched());
L
Linus Torvalds 已提交
2550 2551 2552 2553
}
EXPORT_SYMBOL(preempt_schedule);

/*
2554
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2555 2556 2557 2558 2559 2560 2561
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
2562
	enum ctx_state prev_state;
2563

2564
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
2565 2566
	BUG_ON(ti->preempt_count || !irqs_disabled());

2567 2568
	prev_state = exception_enter();

2569 2570 2571
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
2572
		__schedule();
2573 2574
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2575

2576 2577 2578 2579 2580
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2581
	} while (need_resched());
2582 2583

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2584 2585 2586 2587
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
2588
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2589
			  void *key)
L
Linus Torvalds 已提交
2590
{
P
Peter Zijlstra 已提交
2591
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2592 2593 2594 2595
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
2596 2597
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
2598 2599 2600
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
2601
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
2602 2603
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
2604
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
2605
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
2606
{
2607
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
2608

2609
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2610 2611
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
2612
		if (curr->func(curr, mode, wake_flags, key) &&
2613
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2623
 * @key: is directly passed to the wakeup function
2624 2625 2626
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2627
 */
2628
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
2629
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
2642
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
2643
{
2644
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
2645
}
2646
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
2647

2648 2649 2650 2651
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
2652
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2653

L
Linus Torvalds 已提交
2654
/**
2655
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
2656 2657 2658
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2659
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
2660 2661 2662 2663 2664 2665 2666
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
2667 2668 2669
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2670
 */
2671 2672
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2673 2674
{
	unsigned long flags;
P
Peter Zijlstra 已提交
2675
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
2676 2677 2678 2679

	if (unlikely(!q))
		return;

2680
	if (unlikely(nr_exclusive != 1))
P
Peter Zijlstra 已提交
2681
		wake_flags = 0;
L
Linus Torvalds 已提交
2682 2683

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
2684
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
2685 2686
	spin_unlock_irqrestore(&q->lock, flags);
}
2687 2688 2689 2690 2691 2692 2693 2694 2695
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
2696 2697
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

2698 2699 2700 2701 2702 2703 2704 2705
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
2706 2707 2708
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2709
 */
2710
void complete(struct completion *x)
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
2716
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
2717 2718 2719 2720
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

2721 2722 2723 2724 2725
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
2726 2727 2728
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2729
 */
2730
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
2736
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
2737 2738 2739 2740
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

2741
static inline long __sched
2742 2743
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2744 2745 2746 2747
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
2748
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
2749
		do {
2750
			if (signal_pending_state(state, current)) {
2751 2752
				timeout = -ERESTARTSYS;
				break;
2753 2754
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
2755
			spin_unlock_irq(&x->wait.lock);
2756
			timeout = action(timeout);
L
Linus Torvalds 已提交
2757
			spin_lock_irq(&x->wait.lock);
2758
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
2759
		__remove_wait_queue(&x->wait, &wait);
2760 2761
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
2762 2763
	}
	x->done--;
2764
	return timeout ?: 1;
L
Linus Torvalds 已提交
2765 2766
}

2767 2768 2769
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2770 2771 2772 2773
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
2774
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
2775
	spin_unlock_irq(&x->wait.lock);
2776 2777
	return timeout;
}
L
Linus Torvalds 已提交
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
2801
void __sched wait_for_completion(struct completion *x)
2802 2803
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2804
}
2805
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
2806

2807 2808 2809 2810 2811 2812 2813 2814
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
2815
 *
2816 2817
 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
 * till timeout) if completed.
2818
 */
2819
unsigned long __sched
2820
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
2821
{
2822
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2823
}
2824
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
2849 2850
 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
 * till timeout) if completed.
2851 2852 2853 2854 2855 2856 2857 2858
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

2859 2860 2861 2862 2863 2864
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
2865
 *
2866
 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2867
 */
2868
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
2869
{
2870 2871 2872 2873
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
2874
}
2875
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
2876

2877 2878 2879 2880 2881 2882 2883
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2884
 *
2885 2886
 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
 * or number of jiffies left till timeout) if completed.
2887
 */
2888
long __sched
2889 2890
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
2891
{
2892
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
2893
}
2894
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
2895

2896 2897 2898 2899 2900 2901
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
2902
 *
2903
 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2904
 */
M
Matthew Wilcox 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

2914 2915 2916 2917 2918 2919 2920 2921
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
2922
 *
2923 2924
 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
 * or number of jiffies left till timeout) if completed.
2925
 */
2926
long __sched
2927 2928 2929 2930 2931 2932 2933
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

2934 2935 2936 2937
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
2938
 *	Return: 0 if a decrement cannot be done without blocking
2939 2940 2941 2942 2943 2944 2945 2946 2947
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
2948
	unsigned long flags;
2949 2950
	int ret = 1;

2951
	spin_lock_irqsave(&x->wait.lock, flags);
2952 2953 2954 2955
	if (!x->done)
		ret = 0;
	else
		x->done--;
2956
	spin_unlock_irqrestore(&x->wait.lock, flags);
2957 2958 2959 2960 2961 2962 2963 2964
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
2965
 *	Return: 0 if there are waiters (wait_for_completion() in progress)
2966 2967 2968 2969 2970
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
2971
	unsigned long flags;
2972 2973
	int ret = 1;

2974
	spin_lock_irqsave(&x->wait.lock, flags);
2975 2976
	if (!x->done)
		ret = 0;
2977
	spin_unlock_irqrestore(&x->wait.lock, flags);
2978 2979 2980 2981
	return ret;
}
EXPORT_SYMBOL(completion_done);

2982 2983
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2984
{
I
Ingo Molnar 已提交
2985 2986 2987 2988
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2989

2990
	__set_current_state(state);
L
Linus Torvalds 已提交
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3006 3007 3008
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3009
long __sched
I
Ingo Molnar 已提交
3010
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3011
{
3012
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3013 3014 3015
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3016
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3017
{
3018
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3019 3020 3021
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3022
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3023
{
3024
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3025 3026 3027
}
EXPORT_SYMBOL(sleep_on_timeout);

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3040
void rt_mutex_setprio(struct task_struct *p, int prio)
3041
{
3042
	int oldprio, on_rq, running;
3043
	struct rq *rq;
3044
	const struct sched_class *prev_class;
3045 3046 3047

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3048
	rq = __task_rq_lock(p);
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3068
	trace_sched_pi_setprio(p, prio);
3069
	oldprio = p->prio;
3070
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3071
	on_rq = p->on_rq;
3072
	running = task_current(rq, p);
3073
	if (on_rq)
3074
		dequeue_task(rq, p, 0);
3075 3076
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3077 3078 3079 3080 3081 3082

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3083 3084
	p->prio = prio;

3085 3086
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3087
	if (on_rq)
3088
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3089

P
Peter Zijlstra 已提交
3090
	check_class_changed(rq, p, prev_class, oldprio);
3091
out_unlock:
3092
	__task_rq_unlock(rq);
3093 3094
}
#endif
3095
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3096
{
I
Ingo Molnar 已提交
3097
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3098
	unsigned long flags;
3099
	struct rq *rq;
L
Linus Torvalds 已提交
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3112
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3113
	 */
3114
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3115 3116 3117
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3118
	on_rq = p->on_rq;
3119
	if (on_rq)
3120
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3121 3122

	p->static_prio = NICE_TO_PRIO(nice);
3123
	set_load_weight(p);
3124 3125 3126
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3127

I
Ingo Molnar 已提交
3128
	if (on_rq) {
3129
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3130
		/*
3131 3132
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3133
		 */
3134
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3135 3136 3137
			resched_task(rq->curr);
	}
out_unlock:
3138
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3139 3140 3141
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3142 3143 3144 3145 3146
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3147
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3148
{
3149 3150
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3151

3152
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3153 3154 3155
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3165
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3166
{
3167
	long nice, retval;
L
Linus Torvalds 已提交
3168 3169 3170 3171 3172 3173

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3174 3175
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3176 3177 3178
	if (increment > 40)
		increment = 40;

3179
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3185 3186 3187
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3202
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3203 3204 3205
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3206
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3207 3208 3209 3210 3211 3212 3213
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
3214 3215
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
L
Linus Torvalds 已提交
3216
 */
3217
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3218 3219 3220
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3221
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3222 3223 3224 3225

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3226 3227
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3228 3229 3230
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3245 3246 3247 3248 3249
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3250 3251
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3252
 */
3253
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3254 3255 3256 3257 3258 3259 3260
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3261 3262
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3263
 */
A
Alexey Dobriyan 已提交
3264
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3265
{
3266
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3267 3268 3269
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3270 3271
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3272 3273 3274
{
	p->policy = policy;
	p->rt_priority = prio;
3275 3276 3277
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3278 3279 3280 3281
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3282
	set_load_weight(p);
L
Linus Torvalds 已提交
3283 3284
}

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3295 3296
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3297 3298 3299 3300
	rcu_read_unlock();
	return match;
}

3301
static int __sched_setscheduler(struct task_struct *p, int policy,
3302
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3303
{
3304
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3305
	unsigned long flags;
3306
	const struct sched_class *prev_class;
3307
	struct rq *rq;
3308
	int reset_on_fork;
L
Linus Torvalds 已提交
3309

3310 3311
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3312 3313
recheck:
	/* double check policy once rq lock held */
3314 3315
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3316
		policy = oldpolicy = p->policy;
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3327 3328
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3329 3330
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3331 3332
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3333
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3334
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3335
		return -EINVAL;
3336
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3337 3338
		return -EINVAL;

3339 3340 3341
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3342
	if (user && !capable(CAP_SYS_NICE)) {
3343
		if (rt_policy(policy)) {
3344 3345
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3356

I
Ingo Molnar 已提交
3357
		/*
3358 3359
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3360
		 */
3361 3362 3363 3364
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3365

3366
		/* can't change other user's priorities */
3367
		if (!check_same_owner(p))
3368
			return -EPERM;
3369 3370 3371 3372

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3373
	}
L
Linus Torvalds 已提交
3374

3375
	if (user) {
3376
		retval = security_task_setscheduler(p);
3377 3378 3379 3380
		if (retval)
			return retval;
	}

3381 3382 3383
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3384
	 *
L
Lucas De Marchi 已提交
3385
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3386 3387
	 * runqueue lock must be held.
	 */
3388
	rq = task_rq_lock(p, &flags);
3389

3390 3391 3392 3393
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3394
		task_rq_unlock(rq, p, &flags);
3395 3396 3397
		return -EINVAL;
	}

3398 3399 3400 3401 3402
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3403
		task_rq_unlock(rq, p, &flags);
3404 3405 3406
		return 0;
	}

3407 3408 3409 3410 3411 3412 3413
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3414 3415
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3416
			task_rq_unlock(rq, p, &flags);
3417 3418 3419 3420 3421
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3422 3423 3424
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3425
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3426 3427
		goto recheck;
	}
P
Peter Zijlstra 已提交
3428
	on_rq = p->on_rq;
3429
	running = task_current(rq, p);
3430
	if (on_rq)
3431
		dequeue_task(rq, p, 0);
3432 3433
	if (running)
		p->sched_class->put_prev_task(rq, p);
3434

3435 3436
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3437
	oldprio = p->prio;
3438
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3439
	__setscheduler(rq, p, policy, param->sched_priority);
3440

3441 3442
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3443
	if (on_rq)
3444
		enqueue_task(rq, p, 0);
3445

P
Peter Zijlstra 已提交
3446
	check_class_changed(rq, p, prev_class, oldprio);
3447
	task_rq_unlock(rq, p, &flags);
3448

3449 3450
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3451 3452
	return 0;
}
3453 3454 3455 3456 3457 3458 3459

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3460 3461
 * Return: 0 on success. An error code otherwise.
 *
3462 3463 3464
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3465
		       const struct sched_param *param)
3466 3467 3468
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3469 3470
EXPORT_SYMBOL_GPL(sched_setscheduler);

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3481 3482
 *
 * Return: 0 on success. An error code otherwise.
3483 3484
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3485
			       const struct sched_param *param)
3486 3487 3488 3489
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3490 3491
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3492 3493 3494
{
	struct sched_param lparam;
	struct task_struct *p;
3495
	int retval;
L
Linus Torvalds 已提交
3496 3497 3498 3499 3500

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3501 3502 3503

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3504
	p = find_process_by_pid(pid);
3505 3506 3507
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3508

L
Linus Torvalds 已提交
3509 3510 3511 3512 3513 3514 3515 3516
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3517 3518
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3519
 */
3520 3521
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3522
{
3523 3524 3525 3526
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3527 3528 3529 3530 3531 3532 3533
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3534 3535
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3536
 */
3537
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3538 3539 3540 3541 3542 3543 3544
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3545 3546 3547
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3548
 */
3549
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3550
{
3551
	struct task_struct *p;
3552
	int retval;
L
Linus Torvalds 已提交
3553 3554

	if (pid < 0)
3555
		return -EINVAL;
L
Linus Torvalds 已提交
3556 3557

	retval = -ESRCH;
3558
	rcu_read_lock();
L
Linus Torvalds 已提交
3559 3560 3561 3562
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3563 3564
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3565
	}
3566
	rcu_read_unlock();
L
Linus Torvalds 已提交
3567 3568 3569 3570
	return retval;
}

/**
3571
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3572 3573
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3574 3575 3576
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3577
 */
3578
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3579 3580
{
	struct sched_param lp;
3581
	struct task_struct *p;
3582
	int retval;
L
Linus Torvalds 已提交
3583 3584

	if (!param || pid < 0)
3585
		return -EINVAL;
L
Linus Torvalds 已提交
3586

3587
	rcu_read_lock();
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3598
	rcu_read_unlock();
L
Linus Torvalds 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3608
	rcu_read_unlock();
L
Linus Torvalds 已提交
3609 3610 3611
	return retval;
}

3612
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3613
{
3614
	cpumask_var_t cpus_allowed, new_mask;
3615 3616
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3617

3618
	get_online_cpus();
3619
	rcu_read_lock();
L
Linus Torvalds 已提交
3620 3621 3622

	p = find_process_by_pid(pid);
	if (!p) {
3623
		rcu_read_unlock();
3624
		put_online_cpus();
L
Linus Torvalds 已提交
3625 3626 3627
		return -ESRCH;
	}

3628
	/* Prevent p going away */
L
Linus Torvalds 已提交
3629
	get_task_struct(p);
3630
	rcu_read_unlock();
L
Linus Torvalds 已提交
3631

3632 3633 3634 3635
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3636 3637 3638 3639 3640 3641 3642 3643
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3644
	retval = -EPERM;
E
Eric W. Biederman 已提交
3645 3646 3647 3648 3649 3650 3651 3652
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3653

3654
	retval = security_task_setscheduler(p);
3655 3656 3657
	if (retval)
		goto out_unlock;

3658 3659
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
3660
again:
3661
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3662

P
Paul Menage 已提交
3663
	if (!retval) {
3664 3665
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3666 3667 3668 3669 3670
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3671
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3672 3673 3674
			goto again;
		}
	}
L
Linus Torvalds 已提交
3675
out_unlock:
3676 3677 3678 3679
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3680
	put_task_struct(p);
3681
	put_online_cpus();
L
Linus Torvalds 已提交
3682 3683 3684 3685
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3686
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3687
{
3688 3689 3690 3691 3692
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698 3699 3700
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3701 3702
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3703
 */
3704 3705
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3706
{
3707
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3708 3709
	int retval;

3710 3711
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3712

3713 3714 3715 3716 3717
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3718 3719
}

3720
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3721
{
3722
	struct task_struct *p;
3723
	unsigned long flags;
L
Linus Torvalds 已提交
3724 3725
	int retval;

3726
	get_online_cpus();
3727
	rcu_read_lock();
L
Linus Torvalds 已提交
3728 3729 3730 3731 3732 3733

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3734 3735 3736 3737
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3738
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3739
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3740
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3741 3742

out_unlock:
3743
	rcu_read_unlock();
3744
	put_online_cpus();
L
Linus Torvalds 已提交
3745

3746
	return retval;
L
Linus Torvalds 已提交
3747 3748 3749 3750 3751 3752 3753
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3754 3755
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3756
 */
3757 3758
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3759 3760
{
	int ret;
3761
	cpumask_var_t mask;
L
Linus Torvalds 已提交
3762

A
Anton Blanchard 已提交
3763
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3764 3765
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
3766 3767
		return -EINVAL;

3768 3769
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3770

3771 3772
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
3773
		size_t retlen = min_t(size_t, len, cpumask_size());
3774 3775

		if (copy_to_user(user_mask_ptr, mask, retlen))
3776 3777
			ret = -EFAULT;
		else
3778
			ret = retlen;
3779 3780
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
3781

3782
	return ret;
L
Linus Torvalds 已提交
3783 3784 3785 3786 3787
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
3788 3789
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
3790 3791
 *
 * Return: 0.
L
Linus Torvalds 已提交
3792
 */
3793
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
3794
{
3795
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
3796

3797
	schedstat_inc(rq, yld_count);
3798
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
3799 3800 3801 3802 3803 3804

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
3805
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3806
	do_raw_spin_unlock(&rq->lock);
3807
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
3808 3809 3810 3811 3812 3813

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
3814 3815 3816 3817 3818
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
3819
static void __cond_resched(void)
L
Linus Torvalds 已提交
3820
{
3821
	add_preempt_count(PREEMPT_ACTIVE);
3822
	__schedule();
3823
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3824 3825
}

3826
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
3827
{
P
Peter Zijlstra 已提交
3828
	if (should_resched()) {
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833
		__cond_resched();
		return 1;
	}
	return 0;
}
3834
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
3835 3836

/*
3837
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
3838 3839
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
3840
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
3841 3842 3843
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
3844
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
3845
{
P
Peter Zijlstra 已提交
3846
	int resched = should_resched();
J
Jan Kara 已提交
3847 3848
	int ret = 0;

3849 3850
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
3851
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
3852
		spin_unlock(lock);
P
Peter Zijlstra 已提交
3853
		if (resched)
N
Nick Piggin 已提交
3854 3855 3856
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
3857
		ret = 1;
L
Linus Torvalds 已提交
3858 3859
		spin_lock(lock);
	}
J
Jan Kara 已提交
3860
	return ret;
L
Linus Torvalds 已提交
3861
}
3862
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
3863

3864
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
3865 3866 3867
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
3868
	if (should_resched()) {
3869
		local_bh_enable();
L
Linus Torvalds 已提交
3870 3871 3872 3873 3874 3875
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
3876
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
3877 3878 3879 3880

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903 3904 3905 3906
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

3907 3908 3909 3910
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
3911 3912
 * @p: target task
 * @preempt: whether task preemption is allowed or not
3913 3914 3915 3916
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
3917
 * Return:
3918 3919 3920
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
3921 3922 3923 3924 3925 3926
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
3927
	int yielded = 0;
3928 3929 3930 3931 3932 3933

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
3934 3935 3936 3937 3938 3939 3940 3941 3942
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

3943 3944 3945 3946 3947 3948 3949
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
3950
		goto out_unlock;
3951 3952

	if (curr->sched_class != p->sched_class)
3953
		goto out_unlock;
3954 3955

	if (task_running(p_rq, p) || p->state)
3956
		goto out_unlock;
3957 3958

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3959
	if (yielded) {
3960
		schedstat_inc(rq, yld_count);
3961 3962 3963 3964 3965 3966 3967
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
3968

3969
out_unlock:
3970
	double_rq_unlock(rq, p_rq);
3971
out_irq:
3972 3973
	local_irq_restore(flags);

3974
	if (yielded > 0)
3975 3976 3977 3978 3979 3980
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
3981
/*
I
Ingo Molnar 已提交
3982
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
3983 3984 3985 3986
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
3987
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3988

3989
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3990
	atomic_inc(&rq->nr_iowait);
3991
	blk_flush_plug(current);
3992
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3993
	schedule();
3994
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3995
	atomic_dec(&rq->nr_iowait);
3996
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3997 3998 3999 4000 4001
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4002
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4003 4004
	long ret;

4005
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4006
	atomic_inc(&rq->nr_iowait);
4007
	blk_flush_plug(current);
4008
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4009
	ret = schedule_timeout(timeout);
4010
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4011
	atomic_dec(&rq->nr_iowait);
4012
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4013 4014 4015 4016 4017 4018 4019
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4020 4021 4022
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4023
 */
4024
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4034
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4035
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4046 4047 4048
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4049
 */
4050
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4060
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4061
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4074 4075 4076
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4077
 */
4078
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4079
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4080
{
4081
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4082
	unsigned int time_slice;
4083 4084
	unsigned long flags;
	struct rq *rq;
4085
	int retval;
L
Linus Torvalds 已提交
4086 4087 4088
	struct timespec t;

	if (pid < 0)
4089
		return -EINVAL;
L
Linus Torvalds 已提交
4090 4091

	retval = -ESRCH;
4092
	rcu_read_lock();
L
Linus Torvalds 已提交
4093 4094 4095 4096 4097 4098 4099 4100
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4101 4102
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4103
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4104

4105
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4106
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4107 4108
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4109

L
Linus Torvalds 已提交
4110
out_unlock:
4111
	rcu_read_unlock();
L
Linus Torvalds 已提交
4112 4113 4114
	return retval;
}

4115
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4116

4117
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4118 4119
{
	unsigned long free = 0;
4120
	int ppid;
4121
	unsigned state;
L
Linus Torvalds 已提交
4122 4123

	state = p->state ? __ffs(p->state) + 1 : 0;
4124
	printk(KERN_INFO "%-15.15s %c", p->comm,
4125
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4126
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4127
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4128
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4129
	else
P
Peter Zijlstra 已提交
4130
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4131 4132
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4133
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4134
	else
P
Peter Zijlstra 已提交
4135
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4136 4137
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4138
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4139
#endif
4140 4141 4142
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4143
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4144
		task_pid_nr(p), ppid,
4145
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4146

4147
	print_worker_info(KERN_INFO, p);
4148
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4149 4150
}

I
Ingo Molnar 已提交
4151
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4152
{
4153
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4154

4155
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4156 4157
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4158
#else
P
Peter Zijlstra 已提交
4159 4160
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4161
#endif
4162
	rcu_read_lock();
L
Linus Torvalds 已提交
4163 4164 4165
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4166
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4167 4168
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4169
		if (!state_filter || (p->state & state_filter))
4170
			sched_show_task(p);
L
Linus Torvalds 已提交
4171 4172
	} while_each_thread(g, p);

4173 4174
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4175 4176 4177
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4178
	rcu_read_unlock();
I
Ingo Molnar 已提交
4179 4180 4181
	/*
	 * Only show locks if all tasks are dumped:
	 */
4182
	if (!state_filter)
I
Ingo Molnar 已提交
4183
		debug_show_all_locks();
L
Linus Torvalds 已提交
4184 4185
}

4186
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4187
{
I
Ingo Molnar 已提交
4188
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4189 4190
}

4191 4192 4193 4194 4195 4196 4197 4198
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4199
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4200
{
4201
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4202 4203
	unsigned long flags;

4204
	raw_spin_lock_irqsave(&rq->lock, flags);
4205

I
Ingo Molnar 已提交
4206
	__sched_fork(idle);
4207
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4208 4209
	idle->se.exec_start = sched_clock();

4210
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4222
	__set_task_cpu(idle, cpu);
4223
	rcu_read_unlock();
L
Linus Torvalds 已提交
4224 4225

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4226 4227
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4228
#endif
4229
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4230 4231

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4232
	task_thread_info(idle)->preempt_count = 0;
4233

I
Ingo Molnar 已提交
4234 4235 4236 4237
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4238
	ftrace_graph_init_idle_task(idle, cpu);
4239
	vtime_init_idle(idle, cpu);
4240 4241 4242
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4243 4244
}

L
Linus Torvalds 已提交
4245
#ifdef CONFIG_SMP
4246 4247 4248 4249
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4250 4251

	cpumask_copy(&p->cpus_allowed, new_mask);
4252
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4253 4254
}

L
Linus Torvalds 已提交
4255 4256 4257
/*
 * This is how migration works:
 *
4258 4259 4260 4261 4262 4263
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4264
 *    it and puts it into the right queue.
4265 4266
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4267 4268 4269 4270 4271 4272 4273 4274
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4275
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4276 4277
 * call is not atomic; no spinlocks may be held.
 */
4278
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4279 4280
{
	unsigned long flags;
4281
	struct rq *rq;
4282
	unsigned int dest_cpu;
4283
	int ret = 0;
L
Linus Torvalds 已提交
4284 4285

	rq = task_rq_lock(p, &flags);
4286

4287 4288 4289
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4290
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4291 4292 4293 4294
		ret = -EINVAL;
		goto out;
	}

4295
	do_set_cpus_allowed(p, new_mask);
4296

L
Linus Torvalds 已提交
4297
	/* Can the task run on the task's current CPU? If so, we're done */
4298
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4299 4300
		goto out;

4301
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4302
	if (p->on_rq) {
4303
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4304
		/* Need help from migration thread: drop lock and wait. */
4305
		task_rq_unlock(rq, p, &flags);
4306
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4307 4308 4309 4310
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4311
	task_rq_unlock(rq, p, &flags);
4312

L
Linus Torvalds 已提交
4313 4314
	return ret;
}
4315
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4316 4317

/*
I
Ingo Molnar 已提交
4318
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4319 4320 4321 4322 4323 4324
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4325 4326
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4327
 */
4328
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4329
{
4330
	struct rq *rq_dest, *rq_src;
4331
	int ret = 0;
L
Linus Torvalds 已提交
4332

4333
	if (unlikely(!cpu_active(dest_cpu)))
4334
		return ret;
L
Linus Torvalds 已提交
4335 4336 4337 4338

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4339
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4340 4341 4342
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4343
		goto done;
L
Linus Torvalds 已提交
4344
	/* Affinity changed (again). */
4345
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4346
		goto fail;
L
Linus Torvalds 已提交
4347

4348 4349 4350 4351
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4352
	if (p->on_rq) {
4353
		dequeue_task(rq_src, p, 0);
4354
		set_task_cpu(p, dest_cpu);
4355
		enqueue_task(rq_dest, p, 0);
4356
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4357
	}
L
Linus Torvalds 已提交
4358
done:
4359
	ret = 1;
L
Linus Torvalds 已提交
4360
fail:
L
Linus Torvalds 已提交
4361
	double_rq_unlock(rq_src, rq_dest);
4362
	raw_spin_unlock(&p->pi_lock);
4363
	return ret;
L
Linus Torvalds 已提交
4364 4365 4366
}

/*
4367 4368 4369
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4370
 */
4371
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4372
{
4373
	struct migration_arg *arg = data;
4374

4375 4376 4377 4378
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4379
	local_irq_disable();
4380
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4381
	local_irq_enable();
L
Linus Torvalds 已提交
4382
	return 0;
4383 4384
}

L
Linus Torvalds 已提交
4385
#ifdef CONFIG_HOTPLUG_CPU
4386

4387
/*
4388 4389
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4390
 */
4391
void idle_task_exit(void)
L
Linus Torvalds 已提交
4392
{
4393
	struct mm_struct *mm = current->active_mm;
4394

4395
	BUG_ON(cpu_online(smp_processor_id()));
4396

4397 4398 4399
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4400 4401 4402
}

/*
4403 4404 4405 4406 4407
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4408
 */
4409
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4410
{
4411 4412 4413
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4414 4415
}

4416
/*
4417 4418 4419 4420 4421 4422
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4423
 */
4424
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4425
{
4426
	struct rq *rq = cpu_rq(dead_cpu);
4427 4428
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4429 4430

	/*
4431 4432 4433 4434 4435 4436 4437
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4438
	 */
4439
	rq->stop = NULL;
4440

4441 4442 4443 4444 4445 4446 4447
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4448
	for ( ; ; ) {
4449 4450 4451 4452 4453
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4454
			break;
4455

4456
		next = pick_next_task(rq);
4457
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4458
		next->sched_class->put_prev_task(rq, next);
4459

4460 4461 4462 4463 4464 4465 4466
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4467
	}
4468

4469
	rq->stop = stop;
4470
}
4471

L
Linus Torvalds 已提交
4472 4473
#endif /* CONFIG_HOTPLUG_CPU */

4474 4475 4476
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4477 4478
	{
		.procname	= "sched_domain",
4479
		.mode		= 0555,
4480
	},
4481
	{}
4482 4483 4484
};

static struct ctl_table sd_ctl_root[] = {
4485 4486
	{
		.procname	= "kernel",
4487
		.mode		= 0555,
4488 4489
		.child		= sd_ctl_dir,
	},
4490
	{}
4491 4492 4493 4494 4495
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4496
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4497 4498 4499 4500

	return entry;
}

4501 4502
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4503
	struct ctl_table *entry;
4504

4505 4506 4507
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4508
	 * will always be set. In the lowest directory the names are
4509 4510 4511
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4512 4513
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4514 4515 4516
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4517 4518 4519 4520 4521

	kfree(*tablep);
	*tablep = NULL;
}

4522
static int min_load_idx = 0;
4523
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4524

4525
static void
4526
set_table_entry(struct ctl_table *entry,
4527
		const char *procname, void *data, int maxlen,
4528 4529
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4530 4531 4532 4533 4534 4535
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4536 4537 4538 4539 4540

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4541 4542 4543 4544 4545
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4546
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4547

4548 4549 4550
	if (table == NULL)
		return NULL;

4551
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4552
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4553
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4554
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4555
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4556
		sizeof(int), 0644, proc_dointvec_minmax, true);
4557
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4558
		sizeof(int), 0644, proc_dointvec_minmax, true);
4559
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4560
		sizeof(int), 0644, proc_dointvec_minmax, true);
4561
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4562
		sizeof(int), 0644, proc_dointvec_minmax, true);
4563
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4564
		sizeof(int), 0644, proc_dointvec_minmax, true);
4565
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4566
		sizeof(int), 0644, proc_dointvec_minmax, false);
4567
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4568
		sizeof(int), 0644, proc_dointvec_minmax, false);
4569
	set_table_entry(&table[9], "cache_nice_tries",
4570
		&sd->cache_nice_tries,
4571
		sizeof(int), 0644, proc_dointvec_minmax, false);
4572
	set_table_entry(&table[10], "flags", &sd->flags,
4573
		sizeof(int), 0644, proc_dointvec_minmax, false);
4574
	set_table_entry(&table[11], "name", sd->name,
4575
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4576
	/* &table[12] is terminator */
4577 4578 4579 4580

	return table;
}

4581
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4582 4583 4584 4585 4586 4587 4588 4589 4590
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4591 4592
	if (table == NULL)
		return NULL;
4593 4594 4595 4596 4597

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4598
		entry->mode = 0555;
4599 4600 4601 4602 4603 4604 4605 4606
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4607
static void register_sched_domain_sysctl(void)
4608
{
4609
	int i, cpu_num = num_possible_cpus();
4610 4611 4612
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4613 4614 4615
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4616 4617 4618
	if (entry == NULL)
		return;

4619
	for_each_possible_cpu(i) {
4620 4621
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4622
		entry->mode = 0555;
4623
		entry->child = sd_alloc_ctl_cpu_table(i);
4624
		entry++;
4625
	}
4626 4627

	WARN_ON(sd_sysctl_header);
4628 4629
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4630

4631
/* may be called multiple times per register */
4632 4633
static void unregister_sched_domain_sysctl(void)
{
4634 4635
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4636
	sd_sysctl_header = NULL;
4637 4638
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4639
}
4640
#else
4641 4642 4643 4644
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4645 4646 4647 4648
{
}
#endif

4649 4650 4651 4652 4653
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4654
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4674
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4675 4676 4677 4678
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4679 4680 4681 4682
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4683
static int
4684
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4685
{
4686
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4687
	unsigned long flags;
4688
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4689

4690
	switch (action & ~CPU_TASKS_FROZEN) {
4691

L
Linus Torvalds 已提交
4692
	case CPU_UP_PREPARE:
4693
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
4694
		break;
4695

L
Linus Torvalds 已提交
4696
	case CPU_ONLINE:
4697
		/* Update our root-domain */
4698
		raw_spin_lock_irqsave(&rq->lock, flags);
4699
		if (rq->rd) {
4700
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4701 4702

			set_rq_online(rq);
4703
		}
4704
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4705
		break;
4706

L
Linus Torvalds 已提交
4707
#ifdef CONFIG_HOTPLUG_CPU
4708
	case CPU_DYING:
4709
		sched_ttwu_pending();
G
Gregory Haskins 已提交
4710
		/* Update our root-domain */
4711
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4712
		if (rq->rd) {
4713
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4714
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4715
		}
4716 4717
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
4718
		raw_spin_unlock_irqrestore(&rq->lock, flags);
4719
		break;
4720

4721
	case CPU_DEAD:
4722
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
4723
		break;
L
Linus Torvalds 已提交
4724 4725
#endif
	}
4726 4727 4728

	update_max_interval();

L
Linus Torvalds 已提交
4729 4730 4731
	return NOTIFY_OK;
}

4732 4733 4734
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
4735
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
4736
 */
4737
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
4738
	.notifier_call = migration_call,
4739
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
4740 4741
};

4742
static int sched_cpu_active(struct notifier_block *nfb,
4743 4744 4745
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
4746
	case CPU_STARTING:
4747 4748 4749 4750 4751 4752 4753 4754
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4755
static int sched_cpu_inactive(struct notifier_block *nfb,
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4767
static int __init migration_init(void)
L
Linus Torvalds 已提交
4768 4769
{
	void *cpu = (void *)(long)smp_processor_id();
4770
	int err;
4771

4772
	/* Initialize migration for the boot CPU */
4773 4774
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
4775 4776
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
4777

4778 4779 4780 4781
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

4782
	return 0;
L
Linus Torvalds 已提交
4783
}
4784
early_initcall(migration_init);
L
Linus Torvalds 已提交
4785 4786 4787
#endif

#ifdef CONFIG_SMP
4788

4789 4790
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

4791
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
4792

4793
static __read_mostly int sched_debug_enabled;
4794

4795
static int __init sched_debug_setup(char *str)
4796
{
4797
	sched_debug_enabled = 1;
4798 4799 4800

	return 0;
}
4801 4802 4803 4804 4805 4806
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
4807

4808
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4809
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
4810
{
I
Ingo Molnar 已提交
4811
	struct sched_group *group = sd->groups;
4812
	char str[256];
L
Linus Torvalds 已提交
4813

R
Rusty Russell 已提交
4814
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4815
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
4816 4817 4818 4819

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
4820
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
4821
		if (sd->parent)
P
Peter Zijlstra 已提交
4822 4823
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
4824
		return -1;
N
Nick Piggin 已提交
4825 4826
	}

P
Peter Zijlstra 已提交
4827
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
4828

4829
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
4830 4831
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
4832
	}
4833
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4834 4835
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
4836
	}
L
Linus Torvalds 已提交
4837

I
Ingo Molnar 已提交
4838
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
4839
	do {
I
Ingo Molnar 已提交
4840
		if (!group) {
P
Peter Zijlstra 已提交
4841 4842
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
4843 4844 4845
			break;
		}

4846 4847 4848 4849 4850 4851
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
4852 4853 4854
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
4855 4856
			break;
		}
L
Linus Torvalds 已提交
4857

4858
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4859 4860
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
4861 4862
			break;
		}
L
Linus Torvalds 已提交
4863

4864 4865
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4866 4867
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
4868 4869
			break;
		}
L
Linus Torvalds 已提交
4870

4871
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
4872

R
Rusty Russell 已提交
4873
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4874

P
Peter Zijlstra 已提交
4875
		printk(KERN_CONT " %s", str);
4876
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
4877
			printk(KERN_CONT " (cpu_power = %d)",
4878
				group->sgp->power);
4879
		}
L
Linus Torvalds 已提交
4880

I
Ingo Molnar 已提交
4881 4882
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
4883
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4884

4885
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
4886
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
4887

4888 4889
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
4890 4891
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
4892 4893
	return 0;
}
L
Linus Torvalds 已提交
4894

I
Ingo Molnar 已提交
4895 4896 4897
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
4898

4899
	if (!sched_debug_enabled)
4900 4901
		return;

I
Ingo Molnar 已提交
4902 4903 4904 4905
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
4906

I
Ingo Molnar 已提交
4907 4908 4909
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
4910
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
4911
			break;
L
Linus Torvalds 已提交
4912 4913
		level++;
		sd = sd->parent;
4914
		if (!sd)
I
Ingo Molnar 已提交
4915 4916
			break;
	}
L
Linus Torvalds 已提交
4917
}
4918
#else /* !CONFIG_SCHED_DEBUG */
4919
# define sched_domain_debug(sd, cpu) do { } while (0)
4920 4921 4922 4923
static inline bool sched_debug(void)
{
	return false;
}
4924
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
4925

4926
static int sd_degenerate(struct sched_domain *sd)
4927
{
4928
	if (cpumask_weight(sched_domain_span(sd)) == 1)
4929 4930 4931 4932 4933 4934
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
4935 4936 4937
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
4938 4939 4940 4941 4942
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
4943
	if (sd->flags & (SD_WAKE_AFFINE))
4944 4945 4946 4947 4948
		return 0;

	return 1;
}

4949 4950
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4951 4952 4953 4954 4955 4956
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

4957
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4958 4959 4960 4961 4962 4963 4964
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
4965 4966
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
4967 4968
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING);
4969 4970
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
4971 4972 4973 4974 4975 4976 4977
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

4978
static void free_rootdomain(struct rcu_head *rcu)
4979
{
4980
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4981

4982
	cpupri_cleanup(&rd->cpupri);
4983 4984 4985 4986 4987 4988
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
4989 4990
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
4991
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
4992 4993
	unsigned long flags;

4994
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4995 4996

	if (rq->rd) {
I
Ingo Molnar 已提交
4997
		old_rd = rq->rd;
G
Gregory Haskins 已提交
4998

4999
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5000
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5001

5002
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5003

I
Ingo Molnar 已提交
5004 5005 5006 5007 5008 5009 5010
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5011 5012 5013 5014 5015
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5016
	cpumask_set_cpu(rq->cpu, rd->span);
5017
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5018
		set_rq_online(rq);
G
Gregory Haskins 已提交
5019

5020
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5021 5022

	if (old_rd)
5023
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5024 5025
}

5026
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5027 5028 5029
{
	memset(rd, 0, sizeof(*rd));

5030
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5031
		goto out;
5032
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5033
		goto free_span;
5034
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5035
		goto free_online;
5036

5037
	if (cpupri_init(&rd->cpupri) != 0)
5038
		goto free_rto_mask;
5039
	return 0;
5040

5041 5042
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5043 5044 5045 5046
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5047
out:
5048
	return -ENOMEM;
G
Gregory Haskins 已提交
5049 5050
}

5051 5052 5053 5054 5055 5056
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5057 5058
static void init_defrootdomain(void)
{
5059
	init_rootdomain(&def_root_domain);
5060

G
Gregory Haskins 已提交
5061 5062 5063
	atomic_set(&def_root_domain.refcount, 1);
}

5064
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5065 5066 5067 5068 5069 5070 5071
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5072
	if (init_rootdomain(rd) != 0) {
5073 5074 5075
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5076 5077 5078 5079

	return rd;
}

5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5099 5100 5101
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5102 5103 5104 5105 5106 5107 5108 5109

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5110
		kfree(sd->groups->sgp);
5111
		kfree(sd->groups);
5112
	}
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5127 5128 5129 5130 5131 5132 5133
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5134
 * two cpus are in the same cache domain, see cpus_share_cache().
5135 5136
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5137
DEFINE_PER_CPU(int, sd_llc_size);
5138 5139 5140 5141 5142 5143
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;
5144
	int size = 1;
5145 5146

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5147
	if (sd) {
5148
		id = cpumask_first(sched_domain_span(sd));
5149 5150
		size = cpumask_weight(sched_domain_span(sd));
	}
5151 5152

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5153
	per_cpu(sd_llc_size, cpu) = size;
5154 5155 5156
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5157
/*
I
Ingo Molnar 已提交
5158
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5159 5160
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5161 5162
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5163
{
5164
	struct rq *rq = cpu_rq(cpu);
5165 5166 5167
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5168
	for (tmp = sd; tmp; ) {
5169 5170 5171
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5172

5173
		if (sd_parent_degenerate(tmp, parent)) {
5174
			tmp->parent = parent->parent;
5175 5176
			if (parent->parent)
				parent->parent->child = tmp;
5177 5178 5179 5180 5181 5182 5183
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5184
			destroy_sched_domain(parent, cpu);
5185 5186
		} else
			tmp = tmp->parent;
5187 5188
	}

5189
	if (sd && sd_degenerate(sd)) {
5190
		tmp = sd;
5191
		sd = sd->parent;
5192
		destroy_sched_domain(tmp, cpu);
5193 5194 5195
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5196

5197
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5198

G
Gregory Haskins 已提交
5199
	rq_attach_root(rq, rd);
5200
	tmp = rq->sd;
N
Nick Piggin 已提交
5201
	rcu_assign_pointer(rq->sd, sd);
5202
	destroy_sched_domains(tmp, cpu);
5203 5204

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5205 5206 5207
}

/* cpus with isolated domains */
5208
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5209 5210 5211 5212

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5213
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5214
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5215 5216 5217
	return 1;
}

I
Ingo Molnar 已提交
5218
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5219

5220 5221 5222 5223 5224
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5225 5226 5227
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5228
	struct sched_group_power **__percpu sgp;
5229 5230
};

5231
struct s_data {
5232
	struct sched_domain ** __percpu sd;
5233 5234 5235
	struct root_domain	*rd;
};

5236 5237
enum s_alloc {
	sa_rootdomain,
5238
	sa_sd,
5239
	sa_sd_storage,
5240 5241 5242
	sa_none,
};

5243 5244 5245
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5246 5247
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5248 5249
#define SDTL_OVERLAP	0x01

5250
struct sched_domain_topology_level {
5251 5252
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5253
	int		    flags;
5254
	int		    numa_level;
5255
	struct sd_data      data;
5256 5257
};

P
Peter Zijlstra 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5314 5315 5316 5317 5318 5319
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5320
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5321
				GFP_KERNEL, cpu_to_node(cpu));
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5335
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5336 5337 5338
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5339 5340 5341 5342 5343 5344
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5345

P
Peter Zijlstra 已提交
5346 5347 5348 5349 5350
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5351
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5352
		    group_balance_cpu(sg) == cpu)
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5372
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5373
{
5374 5375
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5376

5377 5378
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5379

5380
	if (sg) {
5381
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5382
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5383
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5384
	}
5385 5386

	return cpu;
5387 5388
}

5389
/*
5390 5391 5392
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5393 5394
 *
 * Assumes the sched_domain tree is fully constructed
5395
 */
5396 5397
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5398
{
5399 5400 5401
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5402
	struct cpumask *covered;
5403
	int i;
5404

5405 5406 5407
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5408
	if (cpu != cpumask_first(span))
5409 5410
		return 0;

5411 5412 5413
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5414
	cpumask_clear(covered);
5415

5416 5417
	for_each_cpu(i, span) {
		struct sched_group *sg;
5418
		int group, j;
5419

5420 5421
		if (cpumask_test_cpu(i, covered))
			continue;
5422

5423
		group = get_group(i, sdd, &sg);
5424
		cpumask_clear(sched_group_cpus(sg));
5425
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5426
		cpumask_setall(sched_group_mask(sg));
5427

5428 5429 5430
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5431

5432 5433 5434
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5435

5436 5437 5438 5439 5440 5441 5442
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5443 5444

	return 0;
5445
}
5446

5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5459
	struct sched_group *sg = sd->groups;
5460

5461
	WARN_ON(!sg);
5462 5463 5464 5465 5466

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5467

P
Peter Zijlstra 已提交
5468
	if (cpu != group_balance_cpu(sg))
5469
		return;
5470

5471
	update_group_power(sd, cpu);
5472
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5473 5474
}

5475 5476 5477
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5478 5479
}

5480 5481 5482 5483 5484
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5485 5486 5487 5488 5489 5490
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5491 5492 5493 5494 5495 5496 5497 5498 5499
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5500 5501 5502 5503 5504 5505 5506 5507 5508
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5509 5510 5511
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5512

5513
static int default_relax_domain_level = -1;
5514
int sched_domain_level_max;
5515 5516 5517

static int __init setup_relax_domain_level(char *str)
{
5518 5519
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5520

5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5539
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5540 5541
	} else {
		/* turn on idle balance on this domain */
5542
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5543 5544 5545
	}
}

5546 5547 5548
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5549 5550 5551 5552 5553
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5554 5555
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5556 5557
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5558
	case sa_sd_storage:
5559
		__sdt_free(cpu_map); /* fall through */
5560 5561 5562 5563
	case sa_none:
		break;
	}
}
5564

5565 5566 5567
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5568 5569
	memset(d, 0, sizeof(*d));

5570 5571
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5572 5573 5574
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5575
	d->rd = alloc_rootdomain();
5576
	if (!d->rd)
5577
		return sa_sd;
5578 5579
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5580

5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5593
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5594
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5595 5596

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5597
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5598 5599
}

5600 5601
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5602
{
5603
	return topology_thread_cpumask(cpu);
5604
}
5605
#endif
5606

5607 5608 5609
/*
 * Topology list, bottom-up.
 */
5610
static struct sched_domain_topology_level default_topology[] = {
5611 5612
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5613
#endif
5614
#ifdef CONFIG_SCHED_MC
5615
	{ sd_init_MC, cpu_coregroup_mask, },
5616
#endif
5617 5618 5619 5620
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5621 5622 5623 5624 5625
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5626 5627 5628
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5629 5630 5631 5632 5633 5634 5635 5636 5637
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5638
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5656
		.imbalance_pct		= 125,
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
5776
		}
5777 5778 5779 5780 5781 5782

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
5783 5784 5785 5786 5787
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
5788
	 * The sched_domains_numa_distance[] array includes the actual distance
5789 5790 5791
	 * numbers.
	 */

5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
5818
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5819 5820 5821 5822 5823 5824
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
5825
				if (node_distance(j, k) > sched_domains_numa_distance[i])
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
5857 5858

	sched_domains_numa_levels = level;
5859
}
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
5907 5908 5909 5910 5911
}
#else
static inline void sched_init_numa(void)
{
}
5912 5913 5914 5915 5916 5917 5918

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
5919 5920
#endif /* CONFIG_NUMA */

5921 5922 5923 5924 5925
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5926
	for_each_sd_topology(tl) {
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

5937 5938 5939 5940
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

5941 5942 5943
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
5944
			struct sched_group_power *sgp;
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

5958 5959
			sg->next = sg;

5960
			*per_cpu_ptr(sdd->sg, j) = sg;
5961

P
Peter Zijlstra 已提交
5962
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5963 5964 5965 5966 5967
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5979
	for_each_sd_topology(tl) {
5980 5981 5982
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
5996 5997
		}
		free_percpu(sdd->sd);
5998
		sdd->sd = NULL;
5999
		free_percpu(sdd->sg);
6000
		sdd->sg = NULL;
6001
		free_percpu(sdd->sgp);
6002
		sdd->sgp = NULL;
6003 6004 6005
	}
}

6006
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6007 6008
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6009
{
6010
	struct sched_domain *sd = tl->init(tl, cpu);
6011
	if (!sd)
6012
		return child;
6013 6014

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6015 6016 6017
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6018
		child->parent = sd;
6019
		sd->child = child;
6020
	}
6021
	set_domain_attribute(sd, attr);
6022 6023 6024 6025

	return sd;
}

6026 6027 6028 6029
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6030 6031
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6032
{
6033
	enum s_alloc alloc_state;
6034
	struct sched_domain *sd;
6035
	struct s_data d;
6036
	int i, ret = -ENOMEM;
6037

6038 6039 6040
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6041

6042
	/* Set up domains for cpus specified by the cpu_map. */
6043
	for_each_cpu(i, cpu_map) {
6044 6045
		struct sched_domain_topology_level *tl;

6046
		sd = NULL;
6047
		for_each_sd_topology(tl) {
6048
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6049 6050
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6051 6052
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6053 6054
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6055
		}
6056 6057 6058 6059 6060 6061
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6062 6063 6064 6065 6066 6067 6068
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6069
		}
6070
	}
6071

L
Linus Torvalds 已提交
6072
	/* Calculate CPU power for physical packages and nodes */
6073 6074 6075
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6076

6077 6078
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6079
			init_sched_groups_power(i, sd);
6080
		}
6081
	}
6082

L
Linus Torvalds 已提交
6083
	/* Attach the domains */
6084
	rcu_read_lock();
6085
	for_each_cpu(i, cpu_map) {
6086
		sd = *per_cpu_ptr(d.sd, i);
6087
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6088
	}
6089
	rcu_read_unlock();
6090

6091
	ret = 0;
6092
error:
6093
	__free_domain_allocs(&d, alloc_state, cpu_map);
6094
	return ret;
L
Linus Torvalds 已提交
6095
}
P
Paul Jackson 已提交
6096

6097
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6098
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6099 6100
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6101 6102 6103

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6104 6105
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6106
 */
6107
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6108

6109 6110 6111 6112 6113 6114
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6115
{
6116
	return 0;
6117 6118
}

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6144
/*
I
Ingo Molnar 已提交
6145
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6146 6147
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6148
 */
6149
static int init_sched_domains(const struct cpumask *cpu_map)
6150
{
6151 6152
	int err;

6153
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6154
	ndoms_cur = 1;
6155
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6156
	if (!doms_cur)
6157 6158
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6159
	err = build_sched_domains(doms_cur[0], NULL);
6160
	register_sched_domain_sysctl();
6161 6162

	return err;
6163 6164 6165 6166 6167 6168
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6169
static void detach_destroy_domains(const struct cpumask *cpu_map)
6170 6171 6172
{
	int i;

6173
	rcu_read_lock();
6174
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6175
		cpu_attach_domain(NULL, &def_root_domain, i);
6176
	rcu_read_unlock();
6177 6178
}

6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6195 6196
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6197
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6198 6199 6200
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6201
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6202 6203 6204
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6205 6206 6207
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6208 6209 6210 6211 6212 6213
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6214
 *
6215
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6216 6217
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6218
 *
P
Paul Jackson 已提交
6219 6220
 * Call with hotplug lock held
 */
6221
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6222
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6223
{
6224
	int i, j, n;
6225
	int new_topology;
P
Paul Jackson 已提交
6226

6227
	mutex_lock(&sched_domains_mutex);
6228

6229 6230 6231
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6232 6233 6234
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6235
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6236 6237 6238

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6239
		for (j = 0; j < n && !new_topology; j++) {
6240
			if (cpumask_equal(doms_cur[i], doms_new[j])
6241
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6242 6243 6244
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6245
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6246 6247 6248 6249
match1:
		;
	}

6250
	n = ndoms_cur;
6251
	if (doms_new == NULL) {
6252
		n = 0;
6253
		doms_new = &fallback_doms;
6254
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6255
		WARN_ON_ONCE(dattr_new);
6256 6257
	}

P
Paul Jackson 已提交
6258 6259
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6260
		for (j = 0; j < n && !new_topology; j++) {
6261
			if (cpumask_equal(doms_new[i], doms_cur[j])
6262
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6263 6264 6265
				goto match2;
		}
		/* no match - add a new doms_new */
6266
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6267 6268 6269 6270 6271
match2:
		;
	}

	/* Remember the new sched domains */
6272 6273
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6274
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6275
	doms_cur = doms_new;
6276
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6277
	ndoms_cur = ndoms_new;
6278 6279

	register_sched_domain_sysctl();
6280

6281
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6282 6283
}

6284 6285
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6286
/*
6287 6288 6289
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6290 6291 6292
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6293
 */
6294 6295
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6296
{
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6319
	case CPU_ONLINE:
6320
	case CPU_DOWN_FAILED:
6321
		cpuset_update_active_cpus(true);
6322
		break;
6323 6324 6325
	default:
		return NOTIFY_DONE;
	}
6326
	return NOTIFY_OK;
6327
}
6328

6329 6330
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6331
{
6332
	switch (action) {
6333
	case CPU_DOWN_PREPARE:
6334
		cpuset_update_active_cpus(false);
6335 6336 6337 6338 6339
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6340 6341 6342
	default:
		return NOTIFY_DONE;
	}
6343
	return NOTIFY_OK;
6344 6345
}

L
Linus Torvalds 已提交
6346 6347
void __init sched_init_smp(void)
{
6348 6349 6350
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6351
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6352

6353 6354
	sched_init_numa();

6355
	get_online_cpus();
6356
	mutex_lock(&sched_domains_mutex);
6357
	init_sched_domains(cpu_active_mask);
6358 6359 6360
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6361
	mutex_unlock(&sched_domains_mutex);
6362
	put_online_cpus();
6363

6364
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6365 6366
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6367

6368
	init_hrtick();
6369 6370

	/* Move init over to a non-isolated CPU */
6371
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6372
		BUG();
I
Ingo Molnar 已提交
6373
	sched_init_granularity();
6374
	free_cpumask_var(non_isolated_cpus);
6375

6376
	init_sched_rt_class();
L
Linus Torvalds 已提交
6377 6378 6379 6380
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6381
	sched_init_granularity();
L
Linus Torvalds 已提交
6382 6383 6384
}
#endif /* CONFIG_SMP */

6385 6386
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6387 6388 6389 6390 6391 6392 6393
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6394
#ifdef CONFIG_CGROUP_SCHED
6395 6396 6397 6398
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6399
struct task_group root_task_group;
6400
LIST_HEAD(task_groups);
6401
#endif
P
Peter Zijlstra 已提交
6402

6403
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6404

L
Linus Torvalds 已提交
6405 6406
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6407
	int i, j;
6408 6409 6410 6411 6412 6413 6414
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6415
#endif
6416
#ifdef CONFIG_CPUMASK_OFFSTACK
6417
	alloc_size += num_possible_cpus() * cpumask_size();
6418 6419
#endif
	if (alloc_size) {
6420
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6421 6422

#ifdef CONFIG_FAIR_GROUP_SCHED
6423
		root_task_group.se = (struct sched_entity **)ptr;
6424 6425
		ptr += nr_cpu_ids * sizeof(void **);

6426
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6427
		ptr += nr_cpu_ids * sizeof(void **);
6428

6429
#endif /* CONFIG_FAIR_GROUP_SCHED */
6430
#ifdef CONFIG_RT_GROUP_SCHED
6431
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6432 6433
		ptr += nr_cpu_ids * sizeof(void **);

6434
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6435 6436
		ptr += nr_cpu_ids * sizeof(void **);

6437
#endif /* CONFIG_RT_GROUP_SCHED */
6438 6439
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6440
			per_cpu(load_balance_mask, i) = (void *)ptr;
6441 6442 6443
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6444
	}
I
Ingo Molnar 已提交
6445

G
Gregory Haskins 已提交
6446 6447 6448 6449
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6450 6451 6452 6453
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6454
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6455
			global_rt_period(), global_rt_runtime());
6456
#endif /* CONFIG_RT_GROUP_SCHED */
6457

D
Dhaval Giani 已提交
6458
#ifdef CONFIG_CGROUP_SCHED
6459 6460
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6461
	INIT_LIST_HEAD(&root_task_group.siblings);
6462
	autogroup_init(&init_task);
6463

D
Dhaval Giani 已提交
6464
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6465

6466
	for_each_possible_cpu(i) {
6467
		struct rq *rq;
L
Linus Torvalds 已提交
6468 6469

		rq = cpu_rq(i);
6470
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6471
		rq->nr_running = 0;
6472 6473
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6474
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6475
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6476
#ifdef CONFIG_FAIR_GROUP_SCHED
6477
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6478
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6479
		/*
6480
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6481 6482 6483 6484
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6485
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6486 6487 6488
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6489
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6490 6491 6492
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6493
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6494
		 *
6495 6496
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6497
		 */
6498
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6499
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6500 6501 6502
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6503
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6504
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6505
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6506
#endif
L
Linus Torvalds 已提交
6507

I
Ingo Molnar 已提交
6508 6509
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6510 6511 6512

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6513
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6514
		rq->sd = NULL;
G
Gregory Haskins 已提交
6515
		rq->rd = NULL;
6516
		rq->cpu_power = SCHED_POWER_SCALE;
6517
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6518
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6519
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6520
		rq->push_cpu = 0;
6521
		rq->cpu = i;
6522
		rq->online = 0;
6523 6524
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6525 6526 6527

		INIT_LIST_HEAD(&rq->cfs_tasks);

6528
		rq_attach_root(rq, &def_root_domain);
6529
#ifdef CONFIG_NO_HZ_COMMON
6530
		rq->nohz_flags = 0;
6531
#endif
6532 6533 6534
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6535
#endif
P
Peter Zijlstra 已提交
6536
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6537 6538 6539
		atomic_set(&rq->nr_iowait, 0);
	}

6540
	set_load_weight(&init_task);
6541

6542 6543 6544 6545
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6546
#ifdef CONFIG_RT_MUTEXES
6547
	plist_head_init(&init_task.pi_waiters);
6548 6549
#endif

L
Linus Torvalds 已提交
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6563 6564 6565

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6566 6567 6568 6569
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6570

6571
#ifdef CONFIG_SMP
6572
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6573 6574 6575
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6576
	idle_thread_set_boot_cpu();
6577 6578
#endif
	init_sched_fair_class();
6579

6580
	scheduler_running = 1;
L
Linus Torvalds 已提交
6581 6582
}

6583
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6584 6585
static inline int preempt_count_equals(int preempt_offset)
{
6586
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6587

A
Arnd Bergmann 已提交
6588
	return (nested == preempt_offset);
6589 6590
}

6591
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6592 6593 6594
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6595
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6596 6597
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6598 6599 6600 6601 6602
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6603 6604 6605 6606 6607 6608 6609
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6610 6611 6612 6613 6614

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6615 6616 6617 6618 6619
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6620 6621
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6622 6623
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6624
	int on_rq;
6625

P
Peter Zijlstra 已提交
6626
	on_rq = p->on_rq;
6627
	if (on_rq)
6628
		dequeue_task(rq, p, 0);
6629 6630
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6631
		enqueue_task(rq, p, 0);
6632 6633
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6634 6635

	check_class_changed(rq, p, prev_class, old_prio);
6636 6637
}

L
Linus Torvalds 已提交
6638 6639
void normalize_rt_tasks(void)
{
6640
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6641
	unsigned long flags;
6642
	struct rq *rq;
L
Linus Torvalds 已提交
6643

6644
	read_lock_irqsave(&tasklist_lock, flags);
6645
	do_each_thread(g, p) {
6646 6647 6648 6649 6650 6651
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6652 6653
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6654 6655 6656
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6657
#endif
I
Ingo Molnar 已提交
6658 6659 6660 6661 6662 6663 6664 6665

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6666
			continue;
I
Ingo Molnar 已提交
6667
		}
L
Linus Torvalds 已提交
6668

6669
		raw_spin_lock(&p->pi_lock);
6670
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6671

6672
		normalize_task(rq, p);
6673

6674
		__task_rq_unlock(rq);
6675
		raw_spin_unlock(&p->pi_lock);
6676 6677
	} while_each_thread(g, p);

6678
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
6679 6680 6681
}

#endif /* CONFIG_MAGIC_SYSRQ */
6682

6683
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6684
/*
6685
 * These functions are only useful for the IA64 MCA handling, or kdb.
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6699 6700
 *
 * Return: The current task for @cpu.
6701
 */
6702
struct task_struct *curr_task(int cpu)
6703 6704 6705 6706
{
	return cpu_curr(cpu);
}

6707 6708 6709
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6710 6711 6712 6713 6714 6715
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6716 6717
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6718 6719 6720 6721 6722 6723 6724
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6725
void set_curr_task(int cpu, struct task_struct *p)
6726 6727 6728 6729 6730
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6731

D
Dhaval Giani 已提交
6732
#ifdef CONFIG_CGROUP_SCHED
6733 6734 6735
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6736 6737 6738 6739
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6740
	autogroup_free(tg);
6741 6742 6743 6744
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
6745
struct task_group *sched_create_group(struct task_group *parent)
6746 6747 6748 6749 6750 6751 6752
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6753
	if (!alloc_fair_sched_group(tg, parent))
6754 6755
		goto err;

6756
	if (!alloc_rt_sched_group(tg, parent))
6757 6758
		goto err;

6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6770
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6771
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6772 6773 6774 6775 6776

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6777
	list_add_rcu(&tg->siblings, &parent->children);
6778
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6779 6780
}

6781
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
6782
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6783 6784
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
6785
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6786 6787
}

6788
/* Destroy runqueue etc associated with a task group */
6789
void sched_destroy_group(struct task_group *tg)
6790 6791 6792 6793 6794 6795
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6796
{
6797
	unsigned long flags;
6798
	int i;
S
Srivatsa Vaddagiri 已提交
6799

6800 6801
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
6802
		unregister_fair_sched_group(tg, i);
6803 6804

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6805
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6806
	list_del_rcu(&tg->siblings);
6807
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6808 6809
}

6810
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6811 6812 6813
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6814 6815
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6816
{
P
Peter Zijlstra 已提交
6817
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6818 6819 6820 6821 6822 6823
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

6824
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
6825
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
6826

6827
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
6828
		dequeue_task(rq, tsk, 0);
6829 6830
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6831

6832
	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
P
Peter Zijlstra 已提交
6833 6834 6835 6836 6837
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6838
#ifdef CONFIG_FAIR_GROUP_SCHED
6839 6840 6841
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
6842
#endif
6843
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
6844

6845 6846 6847
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
6848
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
6849

6850
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
6851
}
D
Dhaval Giani 已提交
6852
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6853

6854
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
6855 6856 6857
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6858
		return 1ULL << 20;
P
Peter Zijlstra 已提交
6859

P
Peter Zijlstra 已提交
6860
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
6861
}
6862 6863 6864 6865 6866 6867 6868
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6869

P
Peter Zijlstra 已提交
6870 6871
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6872
{
P
Peter Zijlstra 已提交
6873
	struct task_struct *g, *p;
6874

P
Peter Zijlstra 已提交
6875
	do_each_thread(g, p) {
6876
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
6877 6878
			return 1;
	} while_each_thread(g, p);
6879

P
Peter Zijlstra 已提交
6880 6881
	return 0;
}
6882

P
Peter Zijlstra 已提交
6883 6884 6885 6886 6887
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6888

6889
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6890 6891 6892 6893 6894
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6895

P
Peter Zijlstra 已提交
6896 6897
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6898

P
Peter Zijlstra 已提交
6899 6900 6901
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6902 6903
	}

6904 6905 6906 6907 6908
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6909

6910 6911 6912
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6913 6914
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6915

P
Peter Zijlstra 已提交
6916
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6917

6918 6919 6920 6921 6922
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6923

6924 6925 6926
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6927 6928 6929
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6930

P
Peter Zijlstra 已提交
6931 6932 6933 6934
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6935

P
Peter Zijlstra 已提交
6936
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6937
	}
P
Peter Zijlstra 已提交
6938

P
Peter Zijlstra 已提交
6939 6940 6941 6942
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6943 6944
}

P
Peter Zijlstra 已提交
6945
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6946
{
6947 6948
	int ret;

P
Peter Zijlstra 已提交
6949 6950 6951 6952 6953 6954
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6955 6956 6957 6958 6959
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6960 6961
}

6962
static int tg_set_rt_bandwidth(struct task_group *tg,
6963
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6964
{
P
Peter Zijlstra 已提交
6965
	int i, err = 0;
P
Peter Zijlstra 已提交
6966 6967

	mutex_lock(&rt_constraints_mutex);
6968
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6969 6970
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6971
		goto unlock;
P
Peter Zijlstra 已提交
6972

6973
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6974 6975
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6976 6977 6978 6979

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6980
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6981
		rt_rq->rt_runtime = rt_runtime;
6982
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6983
	}
6984
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6985
unlock:
6986
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6987 6988 6989
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6990 6991
}

6992
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6993 6994 6995 6996 6997 6998 6999 7000
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7001
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7002 7003
}

7004
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7005 7006 7007
{
	u64 rt_runtime_us;

7008
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7009 7010
		return -1;

7011
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7012 7013 7014
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7015

7016
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7017 7018 7019 7020 7021 7022
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7023 7024 7025
	if (rt_period == 0)
		return -EINVAL;

7026
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7027 7028
}

7029
static long sched_group_rt_period(struct task_group *tg)
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7040
	u64 runtime, period;
7041 7042
	int ret = 0;

7043 7044 7045
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7046 7047 7048 7049 7050 7051 7052 7053
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7054

7055
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7056
	read_lock(&tasklist_lock);
7057
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7058
	read_unlock(&tasklist_lock);
7059 7060 7061 7062
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7063

7064
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7065 7066 7067 7068 7069 7070 7071 7072
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7073
#else /* !CONFIG_RT_GROUP_SCHED */
7074 7075
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7076 7077 7078
	unsigned long flags;
	int i;

7079 7080 7081
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7082 7083 7084 7085 7086 7087 7088
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7089
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7090 7091 7092
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7093
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7094
		rt_rq->rt_runtime = global_rt_runtime();
7095
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7096
	}
7097
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7098

7099 7100
	return 0;
}
7101
#endif /* CONFIG_RT_GROUP_SCHED */
7102

7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7122
int sched_rt_handler(struct ctl_table *table, int write,
7123
		void __user *buffer, size_t *lenp,
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7134
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7151

7152
#ifdef CONFIG_CGROUP_SCHED
7153

7154
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7155
{
7156
	return css ? container_of(css, struct task_group, css) : NULL;
7157 7158
}

7159 7160
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7161
{
7162 7163
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7164

7165
	if (!parent) {
7166
		/* This is early initialization for the top cgroup */
7167
		return &root_task_group.css;
7168 7169
	}

7170
	tg = sched_create_group(parent);
7171 7172 7173 7174 7175 7176
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7177
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7178
{
7179 7180
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7181

T
Tejun Heo 已提交
7182 7183
	if (parent)
		sched_online_group(tg, parent);
7184 7185 7186
	return 0;
}

7187
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7188
{
7189
	struct task_group *tg = css_tg(css);
7190 7191 7192 7193

	sched_destroy_group(tg);
}

7194
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7195
{
7196
	struct task_group *tg = css_tg(css);
7197 7198 7199 7200

	sched_offline_group(tg);
}

7201
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7202
				 struct cgroup_taskset *tset)
7203
{
7204 7205
	struct task_struct *task;

7206
	cgroup_taskset_for_each(task, css, tset) {
7207
#ifdef CONFIG_RT_GROUP_SCHED
7208
		if (!sched_rt_can_attach(css_tg(css), task))
7209
			return -EINVAL;
7210
#else
7211 7212 7213
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7214
#endif
7215
	}
7216 7217
	return 0;
}
7218

7219
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7220
			      struct cgroup_taskset *tset)
7221
{
7222 7223
	struct task_struct *task;

7224
	cgroup_taskset_for_each(task, css, tset)
7225
		sched_move_task(task);
7226 7227
}

7228 7229 7230
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7243
#ifdef CONFIG_FAIR_GROUP_SCHED
7244 7245
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7246
{
7247
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7248 7249
}

7250 7251
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7252
{
7253
	struct task_group *tg = css_tg(css);
7254

7255
	return (u64) scale_load_down(tg->shares);
7256
}
7257 7258

#ifdef CONFIG_CFS_BANDWIDTH
7259 7260
static DEFINE_MUTEX(cfs_constraints_mutex);

7261 7262 7263
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7264 7265
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7266 7267
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7268
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7269
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7290 7291 7292 7293 7294
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7295
	runtime_enabled = quota != RUNTIME_INF;
7296 7297
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7298 7299 7300
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7301

P
Paul Turner 已提交
7302
	__refill_cfs_bandwidth_runtime(cfs_b);
7303 7304 7305 7306 7307 7308
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7309 7310 7311 7312
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7313
		struct rq *rq = cfs_rq->rq;
7314 7315

		raw_spin_lock_irq(&rq->lock);
7316
		cfs_rq->runtime_enabled = runtime_enabled;
7317
		cfs_rq->runtime_remaining = 0;
7318

7319
		if (cfs_rq->throttled)
7320
			unthrottle_cfs_rq(cfs_rq);
7321 7322
		raw_spin_unlock_irq(&rq->lock);
	}
7323 7324
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7325

7326
	return ret;
7327 7328 7329 7330 7331 7332
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7333
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7346
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7347 7348
		return -1;

7349
	quota_us = tg->cfs_bandwidth.quota;
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7360
	quota = tg->cfs_bandwidth.quota;
7361 7362 7363 7364 7365 7366 7367 7368

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7369
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7370 7371 7372 7373 7374
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7375 7376
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7377
{
7378
	return tg_get_cfs_quota(css_tg(css));
7379 7380
}

7381 7382
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7383
{
7384
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7385 7386
}

7387 7388
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7389
{
7390
	return tg_get_cfs_period(css_tg(css));
7391 7392
}

7393 7394
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7395
{
7396
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7397 7398
}

7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7431
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7432 7433 7434 7435 7436
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7437
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7458
	int ret;
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7470 7471 7472 7473 7474
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7475
}
7476

7477
static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7478 7479
		struct cgroup_map_cb *cb)
{
7480
	struct task_group *tg = css_tg(css);
7481
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7482 7483 7484 7485 7486 7487 7488

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7489
#endif /* CONFIG_CFS_BANDWIDTH */
7490
#endif /* CONFIG_FAIR_GROUP_SCHED */
7491

7492
#ifdef CONFIG_RT_GROUP_SCHED
7493 7494
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7495
{
7496
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7497 7498
}

7499 7500
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7501
{
7502
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7503
}
7504

7505 7506
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7507
{
7508
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7509 7510
}

7511 7512
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7513
{
7514
	return sched_group_rt_period(css_tg(css));
7515
}
7516
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7517

7518
static struct cftype cpu_files[] = {
7519
#ifdef CONFIG_FAIR_GROUP_SCHED
7520 7521
	{
		.name = "shares",
7522 7523
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7524
	},
7525
#endif
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7537 7538 7539 7540
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7541
#endif
7542
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7543
	{
P
Peter Zijlstra 已提交
7544
		.name = "rt_runtime_us",
7545 7546
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7547
	},
7548 7549
	{
		.name = "rt_period_us",
7550 7551
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7552
	},
7553
#endif
7554
	{ }	/* terminate */
7555 7556 7557
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7558
	.name		= "cpu",
7559 7560
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7561 7562
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
7563 7564
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7565
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7566
	.subsys_id	= cpu_cgroup_subsys_id,
7567
	.base_cftypes	= cpu_files,
7568 7569 7570
	.early_init	= 1,
};

7571
#endif	/* CONFIG_CGROUP_SCHED */
7572

7573 7574 7575 7576 7577
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}