core.c 193.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
508
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
509 510
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743
static void update_rq_clock_task(struct rq *rq, s64 delta)
744
{
745 746 747 748 749 750 751 752
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
775 776
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777
	if (static_key_false((&paravirt_steal_rq_enabled))) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

795 796
	rq->clock_task += delta;

797 798 799 800
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

833
/*
I
Ingo Molnar 已提交
834
 * __normal_prio - return the priority that is based on the static prio
835 836 837
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
838
	return p->static_prio;
839 840
}

841 842 843 844 845 846 847
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
848
static inline int normal_prio(struct task_struct *p)
849 850 851
{
	int prio;

852
	if (task_has_rt_policy(p))
853 854 855 856 857 858 859 860 861 862 863 864 865
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
866
static int effective_prio(struct task_struct *p)
867 868 869 870 871 872 873 874 875 876 877 878
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
879 880 881 882
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
883
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
884 885 886 887
{
	return cpu_curr(task_cpu(p)) == p;
}

888 889
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
890
				       int oldprio)
891 892 893
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
894 895 896 897
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
921
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 923 924
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
926
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
927
{
928 929 930 931 932
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
933 934
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935 936

#ifdef CONFIG_LOCKDEP
937 938 939 940 941
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
942
	 * see task_group().
943 944 945 946
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
947 948 949
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
950 951
#endif

952
	trace_sched_migrate_task(p, new_cpu);
953

954 955
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
956
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957
	}
I
Ingo Molnar 已提交
958 959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
960 961
}

962
struct migration_arg {
963
	struct task_struct *task;
L
Linus Torvalds 已提交
964
	int dest_cpu;
965
};
L
Linus Torvalds 已提交
966

967 968
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
969 970 971
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
972 973 974 975 976 977 978
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
979 980 981 982 983 984
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
985
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
986 987
{
	unsigned long flags;
I
Ingo Molnar 已提交
988
	int running, on_rq;
R
Roland McGrath 已提交
989
	unsigned long ncsw;
990
	struct rq *rq;
L
Linus Torvalds 已提交
991

992 993 994 995 996 997 998 999
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1012 1013 1014
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1015
			cpu_relax();
R
Roland McGrath 已提交
1016
		}
1017

1018 1019 1020 1021 1022 1023
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1024
		trace_sched_wait_task(p);
1025
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1026
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1027
		ncsw = 0;
1028
		if (!match_state || p->state == match_state)
1029
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030
		task_rq_unlock(rq, p, &flags);
1031

R
Roland McGrath 已提交
1032 1033 1034 1035 1036 1037
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1048

1049 1050 1051 1052 1053
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1054
		 * So if it was still runnable (but just not actively
1055 1056 1057 1058
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1059 1060 1061 1062
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 1064
			continue;
		}
1065

1066 1067 1068 1069 1070 1071 1072
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1073 1074

	return ncsw;
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1084
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1085 1086 1087 1088 1089
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1090
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1100
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1101
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1102

1103
#ifdef CONFIG_SMP
1104
/*
1105
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106
 */
1107 1108 1109
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 1111
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1112 1113

	/* Look for allowed, online CPU in same node. */
1114
	for_each_cpu(dest_cpu, nodemask) {
1115 1116 1117 1118
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1119
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120
			return dest_cpu;
1121
	}
1122

1123 1124
	for (;;) {
		/* Any allowed, online CPU? */
1125
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 1127 1128 1129 1130 1131
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1162 1163 1164 1165 1166
	}

	return dest_cpu;
}

1167
/*
1168
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169
 */
1170
static inline
1171
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172
{
1173
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1185
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1186
		     !cpu_online(cpu)))
1187
		cpu = select_fallback_rq(task_cpu(p), p);
1188 1189

	return cpu;
1190
}
1191 1192 1193 1194 1195 1196

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1197 1198
#endif

P
Peter Zijlstra 已提交
1199
static void
1200
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1201
{
P
Peter Zijlstra 已提交
1202
#ifdef CONFIG_SCHEDSTATS
1203 1204
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215
		rcu_read_lock();
P
Peter Zijlstra 已提交
1216 1217 1218 1219 1220 1221
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1222
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1223
	}
1224 1225 1226 1227

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1228 1229 1230
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1231
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1232 1233

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1234
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1241
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1242
	p->on_rq = 1;
1243 1244 1245 1246

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1247 1248
}

1249 1250 1251
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1252
static void
1253
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1254
{
1255
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1256 1257 1258 1259 1260 1261 1262
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1263
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1309
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1310
static void sched_ttwu_pending(void)
1311 1312
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1313 1314
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1315 1316 1317

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1318 1319 1320
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1321 1322 1323 1324 1325 1326 1327 1328
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1329
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1346
	sched_ttwu_pending();
1347 1348 1349 1350

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1351 1352
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1353
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354
	}
1355
	irq_exit();
1356 1357 1358 1359
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1360
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 1362
		smp_send_reschedule(cpu);
}
1363

1364
bool cpus_share_cache(int this_cpu, int that_cpu)
1365 1366 1367
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1368
#endif /* CONFIG_SMP */
1369

1370 1371 1372 1373
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1374
#if defined(CONFIG_SMP)
1375
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377 1378 1379 1380 1381
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1382 1383 1384
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1385 1386 1387
}

/**
L
Linus Torvalds 已提交
1388
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1389
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1390
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1391
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396 1397 1398
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1399 1400
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1401
 */
1402 1403
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1404 1405
{
	unsigned long flags;
1406
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1407

1408
	smp_wmb();
1409
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1410
	if (!(p->state & state))
L
Linus Torvalds 已提交
1411 1412
		goto out;

1413
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1414 1415
	cpu = task_cpu(p);

1416 1417
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1418 1419

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1420
	/*
1421 1422
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1423
	 */
1424
	while (p->on_cpu)
1425
		cpu_relax();
1426
	/*
1427
	 * Pairs with the smp_wmb() in finish_lock_switch().
1428
	 */
1429
	smp_rmb();
L
Linus Torvalds 已提交
1430

1431
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1432
	p->state = TASK_WAKING;
1433

1434
	if (p->sched_class->task_waking)
1435
		p->sched_class->task_waking(p);
1436

1437
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438 1439
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1440
		set_task_cpu(p, cpu);
1441
	}
L
Linus Torvalds 已提交
1442 1443
#endif /* CONFIG_SMP */

1444 1445
	ttwu_queue(p, cpu);
stat:
1446
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1447
out:
1448
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1449 1450 1451 1452

	return success;
}

T
Tejun Heo 已提交
1453 1454 1455 1456
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1457
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1458
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459
 * the current task.
T
Tejun Heo 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1469 1470 1471 1472 1473 1474
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1475
	if (!(p->state & TASK_NORMAL))
1476
		goto out;
T
Tejun Heo 已提交
1477

P
Peter Zijlstra 已提交
1478
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1479 1480
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1481
	ttwu_do_wakeup(rq, p, 0);
1482
	ttwu_stat(p, smp_processor_id(), 0);
1483 1484
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1498
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1499
{
1500
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1501 1502 1503
}
EXPORT_SYMBOL(wake_up_process);

1504
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1512 1513 1514 1515 1516
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1517 1518 1519
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1520 1521
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1522
	p->se.prev_sum_exec_runtime	= 0;
1523
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1524
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1525
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1526

1527 1528 1529 1530
#ifdef CONFIG_SMP
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1531
#ifdef CONFIG_SCHEDSTATS
1532
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1533
#endif
N
Nick Piggin 已提交
1534

P
Peter Zijlstra 已提交
1535
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1536

1537 1538 1539
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1540 1541 1542 1543 1544
}

/*
 * fork()/clone()-time setup:
 */
1545
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1546
{
1547
	unsigned long flags;
I
Ingo Molnar 已提交
1548 1549 1550
	int cpu = get_cpu();

	__sched_fork(p);
1551
	/*
1552
	 * We mark the process as running here. This guarantees that
1553 1554 1555
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1556
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1557

1558 1559 1560 1561 1562
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1563 1564 1565 1566
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1567
		if (task_has_rt_policy(p)) {
1568
			p->policy = SCHED_NORMAL;
1569
			p->static_prio = NICE_TO_PRIO(0);
1570 1571 1572 1573 1574 1575
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1576

1577 1578 1579 1580 1581 1582
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1583

H
Hiroshi Shimamoto 已提交
1584 1585
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1586

P
Peter Zijlstra 已提交
1587 1588 1589
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1590 1591 1592 1593 1594 1595 1596
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1597
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1598
	set_task_cpu(p, cpu);
1599
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1600

1601
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1602
	if (likely(sched_info_on()))
1603
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1604
#endif
P
Peter Zijlstra 已提交
1605 1606
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1607
#endif
1608
#ifdef CONFIG_PREEMPT_COUNT
1609
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1610
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1611
#endif
1612
#ifdef CONFIG_SMP
1613
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1614
#endif
1615

N
Nick Piggin 已提交
1616
	put_cpu();
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1626
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1627 1628
{
	unsigned long flags;
I
Ingo Molnar 已提交
1629
	struct rq *rq;
1630

1631
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1632 1633 1634 1635 1636 1637
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1638
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1639 1640
#endif

1641
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1642
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1643
	p->on_rq = 1;
1644
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1645
	check_preempt_curr(rq, p, WF_FORK);
1646
#ifdef CONFIG_SMP
1647 1648
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1649
#endif
1650
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1651 1652
}

1653 1654 1655
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1656
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1657
 * @notifier: notifier struct to register
1658 1659 1660 1661 1662 1663 1664 1665 1666
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1667
 * @notifier: notifier struct to unregister
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1697
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1709
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1710

1711 1712 1713
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1714
 * @prev: the current task that is being switched out
1715 1716 1717 1718 1719 1720 1721 1722 1723
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1724 1725 1726
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1727
{
1728
	trace_sched_switch(prev, next);
1729 1730
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1731
	fire_sched_out_preempt_notifiers(prev, next);
1732 1733 1734 1735
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1736 1737
/**
 * finish_task_switch - clean up after a task-switch
1738
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1739 1740
 * @prev: the thread we just switched away from.
 *
1741 1742 1743 1744
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1745 1746
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1747
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1748 1749 1750
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1751
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1752 1753 1754
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1755
	long prev_state;
L
Linus Torvalds 已提交
1756 1757 1758 1759 1760

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1761
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1762 1763
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1764
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1770
	prev_state = prev->state;
1771
	vtime_task_switch(prev);
1772
	finish_arch_switch(prev);
1773
	perf_event_task_sched_in(prev, current);
1774
	finish_lock_switch(rq, prev);
1775
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1776

1777
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1778 1779
	if (mm)
		mmdrop(mm);
1780
	if (unlikely(prev_state == TASK_DEAD)) {
1781 1782 1783
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1784
		 */
1785
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1786
		put_task_struct(prev);
1787
	}
L
Linus Torvalds 已提交
1788 1789
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1805
		raw_spin_lock_irqsave(&rq->lock, flags);
1806 1807
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1808
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1809 1810 1811 1812 1813 1814

		rq->post_schedule = 0;
	}
}

#else
1815

1816 1817 1818 1819 1820 1821
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1822 1823
}

1824 1825
#endif

L
Linus Torvalds 已提交
1826 1827 1828 1829
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1830
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1831 1832
	__releases(rq->lock)
{
1833 1834
	struct rq *rq = this_rq();

1835
	finish_task_switch(rq, prev);
1836

1837 1838 1839 1840 1841
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1842

1843 1844 1845 1846
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1847
	if (current->set_child_tid)
1848
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1855
static inline void
1856
context_switch(struct rq *rq, struct task_struct *prev,
1857
	       struct task_struct *next)
L
Linus Torvalds 已提交
1858
{
I
Ingo Molnar 已提交
1859
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1860

1861
	prepare_task_switch(rq, prev, next);
1862

I
Ingo Molnar 已提交
1863 1864
	mm = next->mm;
	oldmm = prev->active_mm;
1865 1866 1867 1868 1869
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1870
	arch_start_context_switch(prev);
1871

1872
	if (!mm) {
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1879
	if (!prev->mm) {
L
Linus Torvalds 已提交
1880 1881 1882
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1883 1884 1885 1886 1887 1888 1889
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1890
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1891
#endif
L
Linus Torvalds 已提交
1892 1893

	/* Here we just switch the register state and the stack. */
1894
	rcu_switch(prev, next);
L
Linus Torvalds 已提交
1895 1896
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1897 1898 1899 1900 1901 1902 1903
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1921
}
L
Linus Torvalds 已提交
1922 1923

unsigned long nr_uninterruptible(void)
1924
{
L
Linus Torvalds 已提交
1925
	unsigned long i, sum = 0;
1926

1927
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1928
		sum += cpu_rq(i)->nr_uninterruptible;
1929 1930

	/*
L
Linus Torvalds 已提交
1931 1932
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1933
	 */
L
Linus Torvalds 已提交
1934 1935
	if (unlikely((long)sum < 0))
		sum = 0;
1936

L
Linus Torvalds 已提交
1937
	return sum;
1938 1939
}

L
Linus Torvalds 已提交
1940
unsigned long long nr_context_switches(void)
1941
{
1942 1943
	int i;
	unsigned long long sum = 0;
1944

1945
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1946
		sum += cpu_rq(i)->nr_switches;
1947

L
Linus Torvalds 已提交
1948 1949
	return sum;
}
1950

L
Linus Torvalds 已提交
1951 1952 1953
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1954

1955
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1956
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1957

L
Linus Torvalds 已提交
1958 1959
	return sum;
}
1960

1961
unsigned long nr_iowait_cpu(int cpu)
1962
{
1963
	struct rq *this = cpu_rq(cpu);
1964 1965
	return atomic_read(&this->nr_iowait);
}
1966

1967 1968 1969 1970 1971
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
1972

1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2021 2022 2023 2024
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2057 2058 2059
/*
 * a1 = a0 * e + a * (1 - e)
 */
2060 2061 2062 2063 2064 2065 2066 2067 2068
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2069 2070
#ifdef CONFIG_NO_HZ
/*
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2109 2110 2111
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2112 2113
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2114

2115
static inline int calc_load_write_idx(void)
2116
{
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2143 2144
	long delta;

2145 2146 2147 2148
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2149
	delta = calc_load_fold_active(this_rq);
2150 2151 2152 2153
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2154 2155
}

2156
void calc_load_exit_idle(void)
2157
{
2158 2159 2160 2161 2162 2163 2164
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2165 2166

	/*
2167 2168 2169
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2170
	 */
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2183 2184 2185

	return delta;
}
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2264
static void calc_global_nohz(void)
2265 2266 2267
{
	long delta, active, n;

2268 2269 2270 2271 2272 2273
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2274

2275 2276
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2277

2278 2279 2280
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2281

2282 2283
		calc_load_update += n * LOAD_FREQ;
	}
2284

2285 2286 2287 2288 2289 2290 2291 2292 2293
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2294
}
2295
#else /* !CONFIG_NO_HZ */
2296

2297 2298
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2299

2300
#endif /* CONFIG_NO_HZ */
2301 2302

/*
2303 2304
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2305
 */
2306
void calc_global_load(unsigned long ticks)
2307
{
2308
	long active, delta;
L
Linus Torvalds 已提交
2309

2310
	if (time_before(jiffies, calc_load_update + 10))
2311
		return;
L
Linus Torvalds 已提交
2312

2313 2314 2315 2316 2317 2318 2319
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2320 2321
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2322

2323 2324 2325
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2326

2327
	calc_load_update += LOAD_FREQ;
2328 2329

	/*
2330
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2331 2332
	 */
	calc_global_nohz();
2333
}
L
Linus Torvalds 已提交
2334

2335
/*
2336 2337
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2338 2339 2340
 */
static void calc_load_account_active(struct rq *this_rq)
{
2341
	long delta;
2342

2343 2344
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2345

2346 2347
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2348
		atomic_long_add(delta, &calc_load_tasks);
2349 2350

	this_rq->calc_load_update += LOAD_FREQ;
2351 2352
}

2353 2354 2355 2356
/*
 * End of global load-average stuff
 */

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2424
/*
I
Ingo Molnar 已提交
2425
 * Update rq->cpu_load[] statistics. This function is usually called every
2426 2427
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2428
 */
2429 2430
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2431
{
I
Ingo Molnar 已提交
2432
	int i, scale;
2433

I
Ingo Molnar 已提交
2434
	this_rq->nr_load_updates++;
2435

I
Ingo Molnar 已提交
2436
	/* Update our load: */
2437 2438
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2439
		unsigned long old_load, new_load;
2440

I
Ingo Molnar 已提交
2441
		/* scale is effectively 1 << i now, and >> i divides by scale */
2442

I
Ingo Molnar 已提交
2443
		old_load = this_rq->cpu_load[i];
2444
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2445
		new_load = this_load;
I
Ingo Molnar 已提交
2446 2447 2448 2449 2450 2451
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2452 2453 2454
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2455
	}
2456 2457

	sched_avg_update(this_rq);
2458 2459
}

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2474 2475 2476 2477 2478 2479
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2480
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2481 2482 2483 2484
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2485
	 * bail if there's load or we're actually up-to-date.
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2522 2523 2524
/*
 * Called from scheduler_tick()
 */
2525 2526
static void update_cpu_load_active(struct rq *this_rq)
{
2527
	/*
2528
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2529 2530 2531
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2532

2533
	calc_load_account_active(this_rq);
2534 2535
}

I
Ingo Molnar 已提交
2536
#ifdef CONFIG_SMP
2537

2538
/*
P
Peter Zijlstra 已提交
2539 2540
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2541
 */
P
Peter Zijlstra 已提交
2542
void sched_exec(void)
2543
{
P
Peter Zijlstra 已提交
2544
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2545
	unsigned long flags;
2546
	int dest_cpu;
2547

2548
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2549
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2550 2551
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2552

2553
	if (likely(cpu_active(dest_cpu))) {
2554
		struct migration_arg arg = { p, dest_cpu };
2555

2556 2557
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2558 2559
		return;
	}
2560
unlock:
2561
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2562
}
I
Ingo Molnar 已提交
2563

L
Linus Torvalds 已提交
2564 2565 2566
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2567
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2568 2569

EXPORT_PER_CPU_SYMBOL(kstat);
2570
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2571 2572

/*
2573
 * Return any ns on the sched_clock that have not yet been accounted in
2574
 * @p in case that task is currently running.
2575 2576
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2577
 */
2578 2579 2580 2581 2582 2583
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2584
		ns = rq->clock_task - p->se.exec_start;
2585 2586 2587 2588 2589 2590 2591
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2592
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2593 2594
{
	unsigned long flags;
2595
	struct rq *rq;
2596
	u64 ns = 0;
2597

2598
	rq = task_rq_lock(p, &flags);
2599
	ns = do_task_delta_exec(p, rq);
2600
	task_rq_unlock(rq, p, &flags);
2601

2602 2603
	return ns;
}
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2618
	task_rq_unlock(rq, p, &flags);
2619 2620 2621

	return ns;
}
2622

2623 2624 2625 2626 2627 2628 2629 2630
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2631
	struct task_struct *curr = rq->curr;
2632 2633

	sched_clock_tick();
I
Ingo Molnar 已提交
2634

2635
	raw_spin_lock(&rq->lock);
2636
	update_rq_clock(rq);
2637
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2638
	curr->sched_class->task_tick(rq, curr, 0);
2639
	raw_spin_unlock(&rq->lock);
2640

2641
	perf_event_task_tick();
2642

2643
#ifdef CONFIG_SMP
2644
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2645
	trigger_load_balance(rq, cpu);
2646
#endif
L
Linus Torvalds 已提交
2647 2648
}

2649
notrace unsigned long get_parent_ip(unsigned long addr)
2650 2651 2652 2653 2654 2655 2656 2657
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2658

2659 2660 2661
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2662
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2663
{
2664
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2665 2666 2667
	/*
	 * Underflow?
	 */
2668 2669
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2670
#endif
L
Linus Torvalds 已提交
2671
	preempt_count() += val;
2672
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2673 2674 2675
	/*
	 * Spinlock count overflowing soon?
	 */
2676 2677
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2678 2679 2680
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2681 2682 2683
}
EXPORT_SYMBOL(add_preempt_count);

2684
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2685
{
2686
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2687 2688 2689
	/*
	 * Underflow?
	 */
2690
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2691
		return;
L
Linus Torvalds 已提交
2692 2693 2694
	/*
	 * Is the spinlock portion underflowing?
	 */
2695 2696 2697
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2698
#endif
2699

2700 2701
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2702 2703 2704 2705 2706 2707 2708
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2709
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2710
 */
I
Ingo Molnar 已提交
2711
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2712
{
2713 2714 2715
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2716 2717
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2718

I
Ingo Molnar 已提交
2719
	debug_show_held_locks(prev);
2720
	print_modules();
I
Ingo Molnar 已提交
2721 2722
	if (irqs_disabled())
		print_irqtrace_events(prev);
2723
	dump_stack();
2724
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2725
}
L
Linus Torvalds 已提交
2726

I
Ingo Molnar 已提交
2727 2728 2729 2730 2731
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2732
	/*
I
Ingo Molnar 已提交
2733
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2734 2735 2736
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2737
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2738
		__schedule_bug(prev);
2739
	rcu_sleep_check();
I
Ingo Molnar 已提交
2740

L
Linus Torvalds 已提交
2741 2742
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2743
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2744 2745
}

P
Peter Zijlstra 已提交
2746
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2747
{
2748
	if (prev->on_rq || rq->skip_clock_update < 0)
2749
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2750
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2751 2752
}

I
Ingo Molnar 已提交
2753 2754 2755 2756
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2757
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2758
{
2759
	const struct sched_class *class;
I
Ingo Molnar 已提交
2760
	struct task_struct *p;
L
Linus Torvalds 已提交
2761 2762

	/*
I
Ingo Molnar 已提交
2763 2764
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2765
	 */
2766
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2767
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2768 2769
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2770 2771
	}

2772
	for_each_class(class) {
2773
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2774 2775 2776
		if (p)
			return p;
	}
2777 2778

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2779
}
L
Linus Torvalds 已提交
2780

I
Ingo Molnar 已提交
2781
/*
2782
 * __schedule() is the main scheduler function.
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2817
 */
2818
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2819 2820
{
	struct task_struct *prev, *next;
2821
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2822
	struct rq *rq;
2823
	int cpu;
I
Ingo Molnar 已提交
2824

2825 2826
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2827 2828
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2829
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2830 2831 2832
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2833

2834
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2835
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2836

2837
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2838

2839
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2840
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2841
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2842
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2843
		} else {
2844 2845 2846
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2847
			/*
2848 2849 2850
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2860
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2861 2862
	}

2863
	pre_schedule(rq, prev);
2864

I
Ingo Molnar 已提交
2865
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2866 2867
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2868
	put_prev_task(rq, prev);
2869
	next = pick_next_task(rq);
2870 2871
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2878
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2879
		/*
2880 2881 2882 2883
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2884 2885 2886
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2887
	} else
2888
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2889

2890
	post_schedule(rq);
L
Linus Torvalds 已提交
2891

2892
	sched_preempt_enable_no_resched();
2893
	if (need_resched())
L
Linus Torvalds 已提交
2894 2895
		goto need_resched;
}
2896

2897 2898
static inline void sched_submit_work(struct task_struct *tsk)
{
2899
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2900 2901 2902 2903 2904 2905 2906 2907 2908
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2909
asmlinkage void __sched schedule(void)
2910
{
2911 2912 2913
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2914 2915
	__schedule();
}
L
Linus Torvalds 已提交
2916 2917
EXPORT_SYMBOL(schedule);

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
#ifdef CONFIG_RCU_USER_QS
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
	rcu_user_exit();
	schedule();
	rcu_user_enter();
}
#endif

2933 2934 2935 2936 2937 2938 2939
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2940
	sched_preempt_enable_no_resched();
2941 2942 2943 2944
	schedule();
	preempt_disable();
}

2945
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2946

2947 2948 2949
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2950
		return false;
2951 2952

	/*
2953 2954 2955 2956
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2957
	 */
2958
	barrier();
2959

2960
	return owner->on_cpu;
2961
}
2962

2963 2964 2965 2966 2967 2968 2969 2970
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2971

2972
	rcu_read_lock();
2973 2974
	while (owner_running(lock, owner)) {
		if (need_resched())
2975
			break;
2976

2977
		arch_mutex_cpu_relax();
2978
	}
2979
	rcu_read_unlock();
2980

2981
	/*
2982 2983 2984
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
2985
	 */
2986
	return lock->owner == NULL;
2987 2988 2989
}
#endif

L
Linus Torvalds 已提交
2990 2991
#ifdef CONFIG_PREEMPT
/*
2992
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2993
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2994 2995
 * occur there and call schedule directly.
 */
2996
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2997 2998
{
	struct thread_info *ti = current_thread_info();
2999

L
Linus Torvalds 已提交
3000 3001
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3002
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3003
	 */
N
Nick Piggin 已提交
3004
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3005 3006
		return;

3007
	do {
3008
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3009
		__schedule();
3010
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3011

3012 3013 3014 3015 3016
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3017
	} while (need_resched());
L
Linus Torvalds 已提交
3018 3019 3020 3021
}
EXPORT_SYMBOL(preempt_schedule);

/*
3022
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028 3029
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3030

3031
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3032 3033
	BUG_ON(ti->preempt_count || !irqs_disabled());

3034
	rcu_user_exit();
3035 3036 3037
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3038
		__schedule();
3039 3040
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3041

3042 3043 3044 3045 3046
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3047
	} while (need_resched());
L
Linus Torvalds 已提交
3048 3049 3050 3051
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3052
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3053
			  void *key)
L
Linus Torvalds 已提交
3054
{
P
Peter Zijlstra 已提交
3055
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3056 3057 3058 3059
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3060 3061
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3062 3063 3064
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3065
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3066 3067
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3068
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3069
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3070
{
3071
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3072

3073
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3074 3075
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3076
		if (curr->func(curr, mode, wake_flags, key) &&
3077
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3087
 * @key: is directly passed to the wakeup function
3088 3089 3090
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3091
 */
3092
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3093
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3106
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3107
{
3108
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3109
}
3110
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3111

3112 3113 3114 3115
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3116
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3117

L
Linus Torvalds 已提交
3118
/**
3119
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3120 3121 3122
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3123
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3124 3125 3126 3127 3128 3129 3130
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3131 3132 3133
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3134
 */
3135 3136
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3137 3138
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3139
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3140 3141 3142 3143 3144

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3145
		wake_flags = 0;
L
Linus Torvalds 已提交
3146 3147

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3148
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3149 3150
	spin_unlock_irqrestore(&q->lock, flags);
}
3151 3152 3153 3154 3155 3156 3157 3158 3159
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3160 3161
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3162 3163 3164 3165 3166 3167 3168 3169
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3170 3171 3172
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3173
 */
3174
void complete(struct completion *x)
L
Linus Torvalds 已提交
3175 3176 3177 3178 3179
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3180
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3181 3182 3183 3184
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3185 3186 3187 3188 3189
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3190 3191 3192
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3193
 */
3194
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3200
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3201 3202 3203 3204
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3205 3206
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3207 3208 3209 3210
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3211
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3212
		do {
3213
			if (signal_pending_state(state, current)) {
3214 3215
				timeout = -ERESTARTSYS;
				break;
3216 3217
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3218 3219 3220
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3221
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3222
		__remove_wait_queue(&x->wait, &wait);
3223 3224
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3225 3226
	}
	x->done--;
3227
	return timeout ?: 1;
L
Linus Torvalds 已提交
3228 3229
}

3230 3231
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3232 3233 3234 3235
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3236
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3237
	spin_unlock_irq(&x->wait.lock);
3238 3239
	return timeout;
}
L
Linus Torvalds 已提交
3240

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3251
void __sched wait_for_completion(struct completion *x)
3252 3253
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3254
}
3255
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3256

3257 3258 3259 3260 3261 3262 3263 3264
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3265 3266 3267
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3268
 */
3269
unsigned long __sched
3270
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3271
{
3272
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3273
}
3274
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3275

3276 3277 3278 3279 3280 3281
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3282 3283
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3284
 */
3285
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3286
{
3287 3288 3289 3290
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3291
}
3292
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3293

3294 3295 3296 3297 3298 3299 3300
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3301 3302 3303
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3304
 */
3305
long __sched
3306 3307
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3308
{
3309
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3310
}
3311
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3312

3313 3314 3315 3316 3317 3318
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3319 3320
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3321
 */
M
Matthew Wilcox 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3331 3332 3333 3334 3335 3336 3337 3338
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3339 3340 3341
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3342
 */
3343
long __sched
3344 3345 3346 3347 3348 3349 3350
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3365
	unsigned long flags;
3366 3367
	int ret = 1;

3368
	spin_lock_irqsave(&x->wait.lock, flags);
3369 3370 3371 3372
	if (!x->done)
		ret = 0;
	else
		x->done--;
3373
	spin_unlock_irqrestore(&x->wait.lock, flags);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3388
	unsigned long flags;
3389 3390
	int ret = 1;

3391
	spin_lock_irqsave(&x->wait.lock, flags);
3392 3393
	if (!x->done)
		ret = 0;
3394
	spin_unlock_irqrestore(&x->wait.lock, flags);
3395 3396 3397 3398
	return ret;
}
EXPORT_SYMBOL(completion_done);

3399 3400
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3401
{
I
Ingo Molnar 已提交
3402 3403 3404 3405
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3406

3407
	__set_current_state(state);
L
Linus Torvalds 已提交
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3423 3424 3425
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3426
long __sched
I
Ingo Molnar 已提交
3427
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3428
{
3429
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3430 3431 3432
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3433
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3434
{
3435
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3436 3437 3438
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3439
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3440
{
3441
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3442 3443 3444
}
EXPORT_SYMBOL(sleep_on_timeout);

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3457
void rt_mutex_setprio(struct task_struct *p, int prio)
3458
{
3459
	int oldprio, on_rq, running;
3460
	struct rq *rq;
3461
	const struct sched_class *prev_class;
3462 3463 3464

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3465
	rq = __task_rq_lock(p);
3466

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3485
	trace_sched_pi_setprio(p, prio);
3486
	oldprio = p->prio;
3487
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3488
	on_rq = p->on_rq;
3489
	running = task_current(rq, p);
3490
	if (on_rq)
3491
		dequeue_task(rq, p, 0);
3492 3493
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3494 3495 3496 3497 3498 3499

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3500 3501
	p->prio = prio;

3502 3503
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3504
	if (on_rq)
3505
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3506

P
Peter Zijlstra 已提交
3507
	check_class_changed(rq, p, prev_class, oldprio);
3508
out_unlock:
3509
	__task_rq_unlock(rq);
3510 3511
}
#endif
3512
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3513
{
I
Ingo Molnar 已提交
3514
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3515
	unsigned long flags;
3516
	struct rq *rq;
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3529
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3530
	 */
3531
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3532 3533 3534
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3535
	on_rq = p->on_rq;
3536
	if (on_rq)
3537
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3538 3539

	p->static_prio = NICE_TO_PRIO(nice);
3540
	set_load_weight(p);
3541 3542 3543
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3544

I
Ingo Molnar 已提交
3545
	if (on_rq) {
3546
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3547
		/*
3548 3549
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3550
		 */
3551
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3552 3553 3554
			resched_task(rq->curr);
	}
out_unlock:
3555
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3556 3557 3558
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3559 3560 3561 3562 3563
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3564
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3565
{
3566 3567
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3568

3569
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3570 3571 3572
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3573 3574 3575 3576 3577 3578 3579 3580 3581
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3582
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3583
{
3584
	long nice, retval;
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589 3590

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3591 3592
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3593 3594 3595
	if (increment > 40)
		increment = 40;

3596
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3597 3598 3599 3600 3601
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3602 3603 3604
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3623
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3624 3625 3626 3627 3628 3629 3630 3631
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3632
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3633 3634 3635
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3636
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642 3643

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3658 3659 3660 3661 3662 3663
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3664
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3665 3666 3667 3668 3669 3670 3671 3672
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3673
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3674
{
3675
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3676 3677 3678
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3679 3680
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3681 3682 3683
{
	p->policy = policy;
	p->rt_priority = prio;
3684 3685 3686
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3687 3688 3689 3690
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3691
	set_load_weight(p);
L
Linus Torvalds 已提交
3692 3693
}

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3704 3705
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3706 3707 3708 3709
	rcu_read_unlock();
	return match;
}

3710
static int __sched_setscheduler(struct task_struct *p, int policy,
3711
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3712
{
3713
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3714
	unsigned long flags;
3715
	const struct sched_class *prev_class;
3716
	struct rq *rq;
3717
	int reset_on_fork;
L
Linus Torvalds 已提交
3718

3719 3720
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3721 3722
recheck:
	/* double check policy once rq lock held */
3723 3724
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3725
		policy = oldpolicy = p->policy;
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3736 3737
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3738 3739
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3740 3741
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3742
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3743
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3744
		return -EINVAL;
3745
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3746 3747
		return -EINVAL;

3748 3749 3750
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3751
	if (user && !capable(CAP_SYS_NICE)) {
3752
		if (rt_policy(policy)) {
3753 3754
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3765

I
Ingo Molnar 已提交
3766
		/*
3767 3768
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3769
		 */
3770 3771 3772 3773
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3774

3775
		/* can't change other user's priorities */
3776
		if (!check_same_owner(p))
3777
			return -EPERM;
3778 3779 3780 3781

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3782
	}
L
Linus Torvalds 已提交
3783

3784
	if (user) {
3785
		retval = security_task_setscheduler(p);
3786 3787 3788 3789
		if (retval)
			return retval;
	}

3790 3791 3792
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3793
	 *
L
Lucas De Marchi 已提交
3794
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3795 3796
	 * runqueue lock must be held.
	 */
3797
	rq = task_rq_lock(p, &flags);
3798

3799 3800 3801 3802
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3803
		task_rq_unlock(rq, p, &flags);
3804 3805 3806
		return -EINVAL;
	}

3807 3808 3809 3810 3811
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3812
		task_rq_unlock(rq, p, &flags);
3813 3814 3815
		return 0;
	}

3816 3817 3818 3819 3820 3821 3822
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3823 3824
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3825
			task_rq_unlock(rq, p, &flags);
3826 3827 3828 3829 3830
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3831 3832 3833
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3834
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3835 3836
		goto recheck;
	}
P
Peter Zijlstra 已提交
3837
	on_rq = p->on_rq;
3838
	running = task_current(rq, p);
3839
	if (on_rq)
3840
		dequeue_task(rq, p, 0);
3841 3842
	if (running)
		p->sched_class->put_prev_task(rq, p);
3843

3844 3845
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3846
	oldprio = p->prio;
3847
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3848
	__setscheduler(rq, p, policy, param->sched_priority);
3849

3850 3851
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3852
	if (on_rq)
3853
		enqueue_task(rq, p, 0);
3854

P
Peter Zijlstra 已提交
3855
	check_class_changed(rq, p, prev_class, oldprio);
3856
	task_rq_unlock(rq, p, &flags);
3857

3858 3859
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3860 3861
	return 0;
}
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3872
		       const struct sched_param *param)
3873 3874 3875
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3876 3877
EXPORT_SYMBOL_GPL(sched_setscheduler);

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3890
			       const struct sched_param *param)
3891 3892 3893 3894
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3895 3896
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3897 3898 3899
{
	struct sched_param lparam;
	struct task_struct *p;
3900
	int retval;
L
Linus Torvalds 已提交
3901 3902 3903 3904 3905

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3906 3907 3908

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3909
	p = find_process_by_pid(pid);
3910 3911 3912
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3913

L
Linus Torvalds 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3923 3924
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3925
{
3926 3927 3928 3929
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3930 3931 3932 3933 3934 3935 3936 3937
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3938
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3939 3940 3941 3942 3943 3944 3945 3946
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3947
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3948
{
3949
	struct task_struct *p;
3950
	int retval;
L
Linus Torvalds 已提交
3951 3952

	if (pid < 0)
3953
		return -EINVAL;
L
Linus Torvalds 已提交
3954 3955

	retval = -ESRCH;
3956
	rcu_read_lock();
L
Linus Torvalds 已提交
3957 3958 3959 3960
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3961 3962
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3963
	}
3964
	rcu_read_unlock();
L
Linus Torvalds 已提交
3965 3966 3967 3968
	return retval;
}

/**
3969
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3970 3971 3972
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3973
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3974 3975
{
	struct sched_param lp;
3976
	struct task_struct *p;
3977
	int retval;
L
Linus Torvalds 已提交
3978 3979

	if (!param || pid < 0)
3980
		return -EINVAL;
L
Linus Torvalds 已提交
3981

3982
	rcu_read_lock();
L
Linus Torvalds 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3993
	rcu_read_unlock();
L
Linus Torvalds 已提交
3994 3995 3996 3997 3998 3999 4000 4001 4002

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4003
	rcu_read_unlock();
L
Linus Torvalds 已提交
4004 4005 4006
	return retval;
}

4007
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4008
{
4009
	cpumask_var_t cpus_allowed, new_mask;
4010 4011
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4012

4013
	get_online_cpus();
4014
	rcu_read_lock();
L
Linus Torvalds 已提交
4015 4016 4017

	p = find_process_by_pid(pid);
	if (!p) {
4018
		rcu_read_unlock();
4019
		put_online_cpus();
L
Linus Torvalds 已提交
4020 4021 4022
		return -ESRCH;
	}

4023
	/* Prevent p going away */
L
Linus Torvalds 已提交
4024
	get_task_struct(p);
4025
	rcu_read_unlock();
L
Linus Torvalds 已提交
4026

4027 4028 4029 4030 4031 4032 4033 4034
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4035
	retval = -EPERM;
4036
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4037 4038
		goto out_unlock;

4039
	retval = security_task_setscheduler(p);
4040 4041 4042
	if (retval)
		goto out_unlock;

4043 4044
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4045
again:
4046
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4047

P
Paul Menage 已提交
4048
	if (!retval) {
4049 4050
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4051 4052 4053 4054 4055
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4056
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4057 4058 4059
			goto again;
		}
	}
L
Linus Torvalds 已提交
4060
out_unlock:
4061 4062 4063 4064
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4065
	put_task_struct(p);
4066
	put_online_cpus();
L
Linus Torvalds 已提交
4067 4068 4069 4070
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4071
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4072
{
4073 4074 4075 4076 4077
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4087 4088
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4089
{
4090
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4091 4092
	int retval;

4093 4094
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4095

4096 4097 4098 4099 4100
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4101 4102
}

4103
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4104
{
4105
	struct task_struct *p;
4106
	unsigned long flags;
L
Linus Torvalds 已提交
4107 4108
	int retval;

4109
	get_online_cpus();
4110
	rcu_read_lock();
L
Linus Torvalds 已提交
4111 4112 4113 4114 4115 4116

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4117 4118 4119 4120
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4121
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4122
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4123
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4124 4125

out_unlock:
4126
	rcu_read_unlock();
4127
	put_online_cpus();
L
Linus Torvalds 已提交
4128

4129
	return retval;
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135 4136 4137
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4138 4139
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4140 4141
{
	int ret;
4142
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4143

A
Anton Blanchard 已提交
4144
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4145 4146
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4147 4148
		return -EINVAL;

4149 4150
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4151

4152 4153
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4154
		size_t retlen = min_t(size_t, len, cpumask_size());
4155 4156

		if (copy_to_user(user_mask_ptr, mask, retlen))
4157 4158
			ret = -EFAULT;
		else
4159
			ret = retlen;
4160 4161
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4162

4163
	return ret;
L
Linus Torvalds 已提交
4164 4165 4166 4167 4168
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4169 4170
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4171
 */
4172
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4173
{
4174
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4175

4176
	schedstat_inc(rq, yld_count);
4177
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182 4183

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4184
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4185
	do_raw_spin_unlock(&rq->lock);
4186
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4187 4188 4189 4190 4191 4192

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4193 4194 4195 4196 4197
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4198
static void __cond_resched(void)
L
Linus Torvalds 已提交
4199
{
4200
	add_preempt_count(PREEMPT_ACTIVE);
4201
	__schedule();
4202
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4203 4204
}

4205
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4206
{
P
Peter Zijlstra 已提交
4207
	if (should_resched()) {
L
Linus Torvalds 已提交
4208 4209 4210 4211 4212
		__cond_resched();
		return 1;
	}
	return 0;
}
4213
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4214 4215

/*
4216
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4217 4218
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4219
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4220 4221 4222
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4223
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4224
{
P
Peter Zijlstra 已提交
4225
	int resched = should_resched();
J
Jan Kara 已提交
4226 4227
	int ret = 0;

4228 4229
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4230
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4231
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4232
		if (resched)
N
Nick Piggin 已提交
4233 4234 4235
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4236
		ret = 1;
L
Linus Torvalds 已提交
4237 4238
		spin_lock(lock);
	}
J
Jan Kara 已提交
4239
	return ret;
L
Linus Torvalds 已提交
4240
}
4241
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4242

4243
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4244 4245 4246
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4247
	if (should_resched()) {
4248
		local_bh_enable();
L
Linus Torvalds 已提交
4249 4250 4251 4252 4253 4254
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4255
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4256 4257 4258 4259

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283 4284 4285
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4286 4287 4288 4289
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4290 4291
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4326
	if (yielded) {
4327
		schedstat_inc(rq, yld_count);
4328 4329 4330 4331 4332 4333 4334
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4347
/*
I
Ingo Molnar 已提交
4348
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4349 4350 4351 4352
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4353
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4354

4355
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4356
	atomic_inc(&rq->nr_iowait);
4357
	blk_flush_plug(current);
4358
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4359
	schedule();
4360
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4361
	atomic_dec(&rq->nr_iowait);
4362
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4363 4364 4365 4366 4367
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4368
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4369 4370
	long ret;

4371
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4372
	atomic_inc(&rq->nr_iowait);
4373
	blk_flush_plug(current);
4374
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4375
	ret = schedule_timeout(timeout);
4376
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4377
	atomic_dec(&rq->nr_iowait);
4378
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4389
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4399
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4400
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4414
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4424
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4425
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4439
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4440
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4441
{
4442
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4443
	unsigned int time_slice;
4444 4445
	unsigned long flags;
	struct rq *rq;
4446
	int retval;
L
Linus Torvalds 已提交
4447 4448 4449
	struct timespec t;

	if (pid < 0)
4450
		return -EINVAL;
L
Linus Torvalds 已提交
4451 4452

	retval = -ESRCH;
4453
	rcu_read_lock();
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458 4459 4460 4461
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4462 4463
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4464
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4465

4466
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4467
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4468 4469
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4470

L
Linus Torvalds 已提交
4471
out_unlock:
4472
	rcu_read_unlock();
L
Linus Torvalds 已提交
4473 4474 4475
	return retval;
}

4476
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4477

4478
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4479 4480
{
	unsigned long free = 0;
4481
	unsigned state;
L
Linus Torvalds 已提交
4482 4483

	state = p->state ? __ffs(p->state) + 1 : 0;
4484
	printk(KERN_INFO "%-15.15s %c", p->comm,
4485
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4486
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4487
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4488
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4489
	else
P
Peter Zijlstra 已提交
4490
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4491 4492
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4493
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4494
	else
P
Peter Zijlstra 已提交
4495
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4496 4497
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4498
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4499
#endif
P
Peter Zijlstra 已提交
4500
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4501
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4502
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4503

4504
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4505 4506
}

I
Ingo Molnar 已提交
4507
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4508
{
4509
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4510

4511
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4512 4513
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4514
#else
P
Peter Zijlstra 已提交
4515 4516
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4517
#endif
4518
	rcu_read_lock();
L
Linus Torvalds 已提交
4519 4520 4521
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4522
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4523 4524
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4525
		if (!state_filter || (p->state & state_filter))
4526
			sched_show_task(p);
L
Linus Torvalds 已提交
4527 4528
	} while_each_thread(g, p);

4529 4530
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4531 4532 4533
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4534
	rcu_read_unlock();
I
Ingo Molnar 已提交
4535 4536 4537
	/*
	 * Only show locks if all tasks are dumped:
	 */
4538
	if (!state_filter)
I
Ingo Molnar 已提交
4539
		debug_show_all_locks();
L
Linus Torvalds 已提交
4540 4541
}

I
Ingo Molnar 已提交
4542 4543
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4544
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4545 4546
}

4547 4548 4549 4550 4551 4552 4553 4554
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4555
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4556
{
4557
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4558 4559
	unsigned long flags;

4560
	raw_spin_lock_irqsave(&rq->lock, flags);
4561

I
Ingo Molnar 已提交
4562
	__sched_fork(idle);
4563
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4564 4565
	idle->se.exec_start = sched_clock();

4566
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4578
	__set_task_cpu(idle, cpu);
4579
	rcu_read_unlock();
L
Linus Torvalds 已提交
4580 4581

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4582 4583
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4584
#endif
4585
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4586 4587

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4588
	task_thread_info(idle)->preempt_count = 0;
4589

I
Ingo Molnar 已提交
4590 4591 4592 4593
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4594
	ftrace_graph_init_idle_task(idle, cpu);
4595 4596 4597
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4598 4599
}

L
Linus Torvalds 已提交
4600
#ifdef CONFIG_SMP
4601 4602 4603 4604
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4605 4606

	cpumask_copy(&p->cpus_allowed, new_mask);
4607
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4608 4609
}

L
Linus Torvalds 已提交
4610 4611 4612
/*
 * This is how migration works:
 *
4613 4614 4615 4616 4617 4618
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4619
 *    it and puts it into the right queue.
4620 4621
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4622 4623 4624 4625 4626 4627 4628 4629
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4630
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4631 4632
 * call is not atomic; no spinlocks may be held.
 */
4633
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4634 4635
{
	unsigned long flags;
4636
	struct rq *rq;
4637
	unsigned int dest_cpu;
4638
	int ret = 0;
L
Linus Torvalds 已提交
4639 4640

	rq = task_rq_lock(p, &flags);
4641

4642 4643 4644
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4645
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4646 4647 4648 4649
		ret = -EINVAL;
		goto out;
	}

4650
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4651 4652 4653 4654
		ret = -EINVAL;
		goto out;
	}

4655
	do_set_cpus_allowed(p, new_mask);
4656

L
Linus Torvalds 已提交
4657
	/* Can the task run on the task's current CPU? If so, we're done */
4658
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4659 4660
		goto out;

4661
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4662
	if (p->on_rq) {
4663
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4664
		/* Need help from migration thread: drop lock and wait. */
4665
		task_rq_unlock(rq, p, &flags);
4666
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4667 4668 4669 4670
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4671
	task_rq_unlock(rq, p, &flags);
4672

L
Linus Torvalds 已提交
4673 4674
	return ret;
}
4675
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4676 4677

/*
I
Ingo Molnar 已提交
4678
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683 4684
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4685 4686
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4687
 */
4688
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4689
{
4690
	struct rq *rq_dest, *rq_src;
4691
	int ret = 0;
L
Linus Torvalds 已提交
4692

4693
	if (unlikely(!cpu_active(dest_cpu)))
4694
		return ret;
L
Linus Torvalds 已提交
4695 4696 4697 4698

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4699
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4700 4701 4702
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4703
		goto done;
L
Linus Torvalds 已提交
4704
	/* Affinity changed (again). */
4705
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4706
		goto fail;
L
Linus Torvalds 已提交
4707

4708 4709 4710 4711
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4712
	if (p->on_rq) {
4713
		dequeue_task(rq_src, p, 0);
4714
		set_task_cpu(p, dest_cpu);
4715
		enqueue_task(rq_dest, p, 0);
4716
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4717
	}
L
Linus Torvalds 已提交
4718
done:
4719
	ret = 1;
L
Linus Torvalds 已提交
4720
fail:
L
Linus Torvalds 已提交
4721
	double_rq_unlock(rq_src, rq_dest);
4722
	raw_spin_unlock(&p->pi_lock);
4723
	return ret;
L
Linus Torvalds 已提交
4724 4725 4726
}

/*
4727 4728 4729
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4730
 */
4731
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4732
{
4733
	struct migration_arg *arg = data;
4734

4735 4736 4737 4738
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4739
	local_irq_disable();
4740
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4741
	local_irq_enable();
L
Linus Torvalds 已提交
4742
	return 0;
4743 4744
}

L
Linus Torvalds 已提交
4745
#ifdef CONFIG_HOTPLUG_CPU
4746

4747
/*
4748 4749
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4750
 */
4751
void idle_task_exit(void)
L
Linus Torvalds 已提交
4752
{
4753
	struct mm_struct *mm = current->active_mm;
4754

4755
	BUG_ON(cpu_online(smp_processor_id()));
4756

4757 4758 4759
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4760 4761 4762
}

/*
4763 4764 4765 4766 4767
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4768
 */
4769
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4770
{
4771 4772 4773
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4774 4775
}

4776
/*
4777 4778 4779 4780 4781 4782
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4783
 */
4784
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4785
{
4786
	struct rq *rq = cpu_rq(dead_cpu);
4787 4788
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4789 4790

	/*
4791 4792 4793 4794 4795 4796 4797
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4798
	 */
4799
	rq->stop = NULL;
4800

I
Ingo Molnar 已提交
4801
	for ( ; ; ) {
4802 4803 4804 4805 4806
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4807
			break;
4808

4809
		next = pick_next_task(rq);
4810
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4811
		next->sched_class->put_prev_task(rq, next);
4812

4813 4814 4815 4816 4817 4818 4819
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4820
	}
4821

4822
	rq->stop = stop;
4823
}
4824

L
Linus Torvalds 已提交
4825 4826
#endif /* CONFIG_HOTPLUG_CPU */

4827 4828 4829
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4830 4831
	{
		.procname	= "sched_domain",
4832
		.mode		= 0555,
4833
	},
4834
	{}
4835 4836 4837
};

static struct ctl_table sd_ctl_root[] = {
4838 4839
	{
		.procname	= "kernel",
4840
		.mode		= 0555,
4841 4842
		.child		= sd_ctl_dir,
	},
4843
	{}
4844 4845 4846 4847 4848
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4849
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4850 4851 4852 4853

	return entry;
}

4854 4855
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4856
	struct ctl_table *entry;
4857

4858 4859 4860
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4861
	 * will always be set. In the lowest directory the names are
4862 4863 4864
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4865 4866
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4867 4868 4869
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4870 4871 4872 4873 4874

	kfree(*tablep);
	*tablep = NULL;
}

4875 4876 4877
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4878
static void
4879
set_table_entry(struct ctl_table *entry,
4880
		const char *procname, void *data, int maxlen,
4881 4882
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4883 4884 4885 4886 4887 4888
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4889 4890 4891 4892 4893

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4894 4895 4896 4897 4898
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4899
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4900

4901 4902 4903
	if (table == NULL)
		return NULL;

4904
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4905
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4906
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4907
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4908
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4909
		sizeof(int), 0644, proc_dointvec_minmax, true);
4910
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4911
		sizeof(int), 0644, proc_dointvec_minmax, true);
4912
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4913
		sizeof(int), 0644, proc_dointvec_minmax, true);
4914
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4915
		sizeof(int), 0644, proc_dointvec_minmax, true);
4916
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4917
		sizeof(int), 0644, proc_dointvec_minmax, true);
4918
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4919
		sizeof(int), 0644, proc_dointvec_minmax, false);
4920
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4921
		sizeof(int), 0644, proc_dointvec_minmax, false);
4922
	set_table_entry(&table[9], "cache_nice_tries",
4923
		&sd->cache_nice_tries,
4924
		sizeof(int), 0644, proc_dointvec_minmax, false);
4925
	set_table_entry(&table[10], "flags", &sd->flags,
4926
		sizeof(int), 0644, proc_dointvec_minmax, false);
4927
	set_table_entry(&table[11], "name", sd->name,
4928
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4929
	/* &table[12] is terminator */
4930 4931 4932 4933

	return table;
}

4934
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4935 4936 4937 4938 4939 4940 4941 4942 4943
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4944 4945
	if (table == NULL)
		return NULL;
4946 4947 4948 4949 4950

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4951
		entry->mode = 0555;
4952 4953 4954 4955 4956 4957 4958 4959
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4960
static void register_sched_domain_sysctl(void)
4961
{
4962
	int i, cpu_num = num_possible_cpus();
4963 4964 4965
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4966 4967 4968
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4969 4970 4971
	if (entry == NULL)
		return;

4972
	for_each_possible_cpu(i) {
4973 4974
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4975
		entry->mode = 0555;
4976
		entry->child = sd_alloc_ctl_cpu_table(i);
4977
		entry++;
4978
	}
4979 4980

	WARN_ON(sd_sysctl_header);
4981 4982
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4983

4984
/* may be called multiple times per register */
4985 4986
static void unregister_sched_domain_sysctl(void)
{
4987 4988
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4989
	sd_sysctl_header = NULL;
4990 4991
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4992
}
4993
#else
4994 4995 4996 4997
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4998 4999 5000 5001
{
}
#endif

5002 5003 5004 5005 5006
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5007
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5027
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5028 5029 5030 5031
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5032 5033 5034 5035
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5036 5037
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5038
{
5039
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5040
	unsigned long flags;
5041
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5042

5043
	switch (action & ~CPU_TASKS_FROZEN) {
5044

L
Linus Torvalds 已提交
5045
	case CPU_UP_PREPARE:
5046
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5047
		break;
5048

L
Linus Torvalds 已提交
5049
	case CPU_ONLINE:
5050
		/* Update our root-domain */
5051
		raw_spin_lock_irqsave(&rq->lock, flags);
5052
		if (rq->rd) {
5053
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5054 5055

			set_rq_online(rq);
5056
		}
5057
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5058
		break;
5059

L
Linus Torvalds 已提交
5060
#ifdef CONFIG_HOTPLUG_CPU
5061
	case CPU_DYING:
5062
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5063
		/* Update our root-domain */
5064
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5065
		if (rq->rd) {
5066
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5067
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5068
		}
5069 5070
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5071
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5072
		break;
5073

5074
	case CPU_DEAD:
5075
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5076
		break;
L
Linus Torvalds 已提交
5077 5078
#endif
	}
5079 5080 5081

	update_max_interval();

L
Linus Torvalds 已提交
5082 5083 5084
	return NOTIFY_OK;
}

5085 5086 5087
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5088
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5089
 */
5090
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5091
	.notifier_call = migration_call,
5092
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5093 5094
};

5095 5096 5097 5098
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5099
	case CPU_STARTING:
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5120
static int __init migration_init(void)
L
Linus Torvalds 已提交
5121 5122
{
	void *cpu = (void *)(long)smp_processor_id();
5123
	int err;
5124

5125
	/* Initialize migration for the boot CPU */
5126 5127
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5128 5129
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5130

5131 5132 5133 5134
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5135
	return 0;
L
Linus Torvalds 已提交
5136
}
5137
early_initcall(migration_init);
L
Linus Torvalds 已提交
5138 5139 5140
#endif

#ifdef CONFIG_SMP
5141

5142 5143
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5144
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5145

5146
static __read_mostly int sched_debug_enabled;
5147

5148
static int __init sched_debug_setup(char *str)
5149
{
5150
	sched_debug_enabled = 1;
5151 5152 5153

	return 0;
}
5154 5155 5156 5157 5158 5159
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5160

5161
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5162
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5163
{
I
Ingo Molnar 已提交
5164
	struct sched_group *group = sd->groups;
5165
	char str[256];
L
Linus Torvalds 已提交
5166

R
Rusty Russell 已提交
5167
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5168
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5169 5170 5171 5172

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5173
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5174
		if (sd->parent)
P
Peter Zijlstra 已提交
5175 5176
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5177
		return -1;
N
Nick Piggin 已提交
5178 5179
	}

P
Peter Zijlstra 已提交
5180
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5181

5182
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5183 5184
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5185
	}
5186
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5187 5188
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5189
	}
L
Linus Torvalds 已提交
5190

I
Ingo Molnar 已提交
5191
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5192
	do {
I
Ingo Molnar 已提交
5193
		if (!group) {
P
Peter Zijlstra 已提交
5194 5195
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5196 5197 5198
			break;
		}

5199 5200 5201 5202 5203 5204
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5205 5206 5207
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5208 5209
			break;
		}
L
Linus Torvalds 已提交
5210

5211
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5212 5213
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5214 5215
			break;
		}
L
Linus Torvalds 已提交
5216

5217 5218
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5219 5220
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5221 5222
			break;
		}
L
Linus Torvalds 已提交
5223

5224
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5225

R
Rusty Russell 已提交
5226
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5227

P
Peter Zijlstra 已提交
5228
		printk(KERN_CONT " %s", str);
5229
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5230
			printk(KERN_CONT " (cpu_power = %d)",
5231
				group->sgp->power);
5232
		}
L
Linus Torvalds 已提交
5233

I
Ingo Molnar 已提交
5234 5235
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5236
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5237

5238
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5239
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5240

5241 5242
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5243 5244
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5245 5246
	return 0;
}
L
Linus Torvalds 已提交
5247

I
Ingo Molnar 已提交
5248 5249 5250
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5251

5252
	if (!sched_debug_enabled)
5253 5254
		return;

I
Ingo Molnar 已提交
5255 5256 5257 5258
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5259

I
Ingo Molnar 已提交
5260 5261 5262
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5263
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5264
			break;
L
Linus Torvalds 已提交
5265 5266
		level++;
		sd = sd->parent;
5267
		if (!sd)
I
Ingo Molnar 已提交
5268 5269
			break;
	}
L
Linus Torvalds 已提交
5270
}
5271
#else /* !CONFIG_SCHED_DEBUG */
5272
# define sched_domain_debug(sd, cpu) do { } while (0)
5273 5274 5275 5276
static inline bool sched_debug(void)
{
	return false;
}
5277
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5278

5279
static int sd_degenerate(struct sched_domain *sd)
5280
{
5281
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5282 5283 5284 5285 5286 5287
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5288 5289 5290
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5291 5292 5293 5294 5295
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5296
	if (sd->flags & (SD_WAKE_AFFINE))
5297 5298 5299 5300 5301
		return 0;

	return 1;
}

5302 5303
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5304 5305 5306 5307 5308 5309
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5310
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5311 5312 5313 5314 5315 5316 5317
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5318 5319 5320
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5321 5322
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5323 5324 5325 5326 5327 5328 5329
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5330
static void free_rootdomain(struct rcu_head *rcu)
5331
{
5332
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5333

5334
	cpupri_cleanup(&rd->cpupri);
5335 5336 5337 5338 5339 5340
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5341 5342
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5343
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5344 5345
	unsigned long flags;

5346
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5347 5348

	if (rq->rd) {
I
Ingo Molnar 已提交
5349
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5350

5351
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5352
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5353

5354
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5355

I
Ingo Molnar 已提交
5356 5357 5358 5359 5360 5361 5362
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5363 5364 5365 5366 5367
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5368
	cpumask_set_cpu(rq->cpu, rd->span);
5369
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5370
		set_rq_online(rq);
G
Gregory Haskins 已提交
5371

5372
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5373 5374

	if (old_rd)
5375
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5376 5377
}

5378
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5379 5380 5381
{
	memset(rd, 0, sizeof(*rd));

5382
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5383
		goto out;
5384
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5385
		goto free_span;
5386
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5387
		goto free_online;
5388

5389
	if (cpupri_init(&rd->cpupri) != 0)
5390
		goto free_rto_mask;
5391
	return 0;
5392

5393 5394
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5395 5396 5397 5398
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5399
out:
5400
	return -ENOMEM;
G
Gregory Haskins 已提交
5401 5402
}

5403 5404 5405 5406 5407 5408
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5409 5410
static void init_defrootdomain(void)
{
5411
	init_rootdomain(&def_root_domain);
5412

G
Gregory Haskins 已提交
5413 5414 5415
	atomic_set(&def_root_domain.refcount, 1);
}

5416
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5417 5418 5419 5420 5421 5422 5423
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5424
	if (init_rootdomain(rd) != 0) {
5425 5426 5427
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5428 5429 5430 5431

	return rd;
}

5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5451 5452 5453
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5454 5455 5456 5457 5458 5459 5460 5461

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5462
		kfree(sd->groups->sgp);
5463
		kfree(sd->groups);
5464
	}
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5479 5480 5481 5482 5483 5484 5485
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5486
 * two cpus are in the same cache domain, see cpus_share_cache().
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5497
	if (sd)
5498 5499 5500 5501 5502 5503
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5504
/*
I
Ingo Molnar 已提交
5505
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5506 5507
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5508 5509
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5510
{
5511
	struct rq *rq = cpu_rq(cpu);
5512 5513 5514
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5515
	for (tmp = sd; tmp; ) {
5516 5517 5518
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5519

5520
		if (sd_parent_degenerate(tmp, parent)) {
5521
			tmp->parent = parent->parent;
5522 5523
			if (parent->parent)
				parent->parent->child = tmp;
5524
			destroy_sched_domain(parent, cpu);
5525 5526
		} else
			tmp = tmp->parent;
5527 5528
	}

5529
	if (sd && sd_degenerate(sd)) {
5530
		tmp = sd;
5531
		sd = sd->parent;
5532
		destroy_sched_domain(tmp, cpu);
5533 5534 5535
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5536

5537
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5538

G
Gregory Haskins 已提交
5539
	rq_attach_root(rq, rd);
5540
	tmp = rq->sd;
N
Nick Piggin 已提交
5541
	rcu_assign_pointer(rq->sd, sd);
5542
	destroy_sched_domains(tmp, cpu);
5543 5544

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5545 5546 5547
}

/* cpus with isolated domains */
5548
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5549 5550 5551 5552

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5553
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5554
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5555 5556 5557
	return 1;
}

I
Ingo Molnar 已提交
5558
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5559

5560 5561 5562 5563 5564
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5565 5566 5567
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5568
	struct sched_group_power **__percpu sgp;
5569 5570
};

5571
struct s_data {
5572
	struct sched_domain ** __percpu sd;
5573 5574 5575
	struct root_domain	*rd;
};

5576 5577
enum s_alloc {
	sa_rootdomain,
5578
	sa_sd,
5579
	sa_sd_storage,
5580 5581 5582
	sa_none,
};

5583 5584 5585
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5586 5587
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5588 5589
#define SDTL_OVERLAP	0x01

5590
struct sched_domain_topology_level {
5591 5592
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5593
	int		    flags;
5594
	int		    numa_level;
5595
	struct sd_data      data;
5596 5597
};

P
Peter Zijlstra 已提交
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5654 5655 5656 5657 5658 5659
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5660
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5661
				GFP_KERNEL, cpu_to_node(cpu));
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5675
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5676 5677 5678
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5679 5680 5681 5682 5683 5684
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5685

P
Peter Zijlstra 已提交
5686 5687 5688 5689 5690
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5691
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5692
		    group_balance_cpu(sg) == cpu)
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5712
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5713
{
5714 5715
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5716

5717 5718
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5719

5720
	if (sg) {
5721
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5722
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5723
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5724
	}
5725 5726

	return cpu;
5727 5728
}

5729
/*
5730 5731 5732
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5733 5734
 *
 * Assumes the sched_domain tree is fully constructed
5735
 */
5736 5737
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5738
{
5739 5740 5741
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5742
	struct cpumask *covered;
5743
	int i;
5744

5745 5746 5747 5748 5749 5750
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5751 5752 5753
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5754
	cpumask_clear(covered);
5755

5756 5757 5758 5759
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5760

5761 5762
		if (cpumask_test_cpu(i, covered))
			continue;
5763

5764
		cpumask_clear(sched_group_cpus(sg));
5765
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5766
		cpumask_setall(sched_group_mask(sg));
5767

5768 5769 5770
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5771

5772 5773 5774
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5775

5776 5777 5778 5779 5780 5781 5782
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5783 5784

	return 0;
5785
}
5786

5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5799
	struct sched_group *sg = sd->groups;
5800

5801 5802 5803 5804 5805 5806
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5807

P
Peter Zijlstra 已提交
5808
	if (cpu != group_balance_cpu(sg))
5809
		return;
5810

5811
	update_group_power(sd, cpu);
5812
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5813 5814
}

5815 5816 5817
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5818 5819
}

5820 5821 5822 5823 5824
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5825 5826 5827 5828 5829 5830
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5831 5832 5833 5834 5835 5836 5837 5838 5839
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5840 5841 5842 5843 5844 5845 5846 5847 5848
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5849 5850 5851
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5852

5853
static int default_relax_domain_level = -1;
5854
int sched_domain_level_max;
5855 5856 5857

static int __init setup_relax_domain_level(char *str)
{
5858 5859
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5860

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5879
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5880 5881
	} else {
		/* turn on idle balance on this domain */
5882
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5883 5884 5885
	}
}

5886 5887 5888
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5889 5890 5891 5892 5893
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5894 5895
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5896 5897
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5898
	case sa_sd_storage:
5899
		__sdt_free(cpu_map); /* fall through */
5900 5901 5902 5903
	case sa_none:
		break;
	}
}
5904

5905 5906 5907
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5908 5909
	memset(d, 0, sizeof(*d));

5910 5911
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5912 5913 5914
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5915
	d->rd = alloc_rootdomain();
5916
	if (!d->rd)
5917
		return sa_sd;
5918 5919
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5920

5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5933
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5934
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5935 5936

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5937
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5938 5939
}

5940 5941
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5942
{
5943
	return topology_thread_cpumask(cpu);
5944
}
5945
#endif
5946

5947 5948 5949
/*
 * Topology list, bottom-up.
 */
5950
static struct sched_domain_topology_level default_topology[] = {
5951 5952
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5953
#endif
5954
#ifdef CONFIG_SCHED_MC
5955
	{ sd_init_MC, cpu_coregroup_mask, },
5956
#endif
5957 5958 5959 5960
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5961 5962 5963 5964 5965
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5966 5967 5968 5969 5970 5971 5972 5973 5974
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5975
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5993
		.imbalance_pct		= 125,
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6113
		}
6114 6115 6116 6117 6118 6119

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6120 6121 6122 6123 6124 6125 6126 6127 6128
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6155
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6156 6157 6158 6159 6160 6161
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6162
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6194 6195

	sched_domains_numa_levels = level;
6196
}
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6244 6245 6246 6247 6248
}
#else
static inline void sched_init_numa(void)
{
}
6249 6250 6251 6252 6253 6254 6255

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6256 6257
#endif /* CONFIG_NUMA */

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6274 6275 6276 6277
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6278 6279 6280
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6281
			struct sched_group_power *sgp;
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6295 6296
			sg->next = sg;

6297
			*per_cpu_ptr(sdd->sg, j) = sg;
6298

P
Peter Zijlstra 已提交
6299
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6300 6301 6302 6303 6304
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6333 6334
		}
		free_percpu(sdd->sd);
6335
		sdd->sd = NULL;
6336
		free_percpu(sdd->sg);
6337
		sdd->sg = NULL;
6338
		free_percpu(sdd->sgp);
6339
		sdd->sgp = NULL;
6340 6341 6342
	}
}

6343 6344
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6345
		struct sched_domain_attr *attr, struct sched_domain *child,
6346 6347
		int cpu)
{
6348
	struct sched_domain *sd = tl->init(tl, cpu);
6349
	if (!sd)
6350
		return child;
6351 6352

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6353 6354 6355
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6356
		child->parent = sd;
6357
	}
6358
	sd->child = child;
6359
	set_domain_attribute(sd, attr);
6360 6361 6362 6363

	return sd;
}

6364 6365 6366 6367
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6368 6369
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6370 6371
{
	enum s_alloc alloc_state = sa_none;
6372
	struct sched_domain *sd;
6373
	struct s_data d;
6374
	int i, ret = -ENOMEM;
6375

6376 6377 6378
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6379

6380
	/* Set up domains for cpus specified by the cpu_map. */
6381
	for_each_cpu(i, cpu_map) {
6382 6383
		struct sched_domain_topology_level *tl;

6384
		sd = NULL;
6385
		for (tl = sched_domain_topology; tl->init; tl++) {
6386
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6387 6388
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6389 6390
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6391
		}
6392

6393 6394 6395
		while (sd->child)
			sd = sd->child;

6396
		*per_cpu_ptr(d.sd, i) = sd;
6397 6398 6399 6400 6401 6402
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6403 6404 6405 6406 6407 6408 6409
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6410
		}
6411
	}
6412

L
Linus Torvalds 已提交
6413
	/* Calculate CPU power for physical packages and nodes */
6414 6415 6416
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6417

6418 6419
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6420
			init_sched_groups_power(i, sd);
6421
		}
6422
	}
6423

L
Linus Torvalds 已提交
6424
	/* Attach the domains */
6425
	rcu_read_lock();
6426
	for_each_cpu(i, cpu_map) {
6427
		sd = *per_cpu_ptr(d.sd, i);
6428
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6429
	}
6430
	rcu_read_unlock();
6431

6432
	ret = 0;
6433
error:
6434
	__free_domain_allocs(&d, alloc_state, cpu_map);
6435
	return ret;
L
Linus Torvalds 已提交
6436
}
P
Paul Jackson 已提交
6437

6438
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6439
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6440 6441
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6442 6443 6444

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6445 6446
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6447
 */
6448
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6449

6450 6451 6452 6453 6454 6455
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6456
{
6457
	return 0;
6458 6459
}

6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6485
/*
I
Ingo Molnar 已提交
6486
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6487 6488
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6489
 */
6490
static int init_sched_domains(const struct cpumask *cpu_map)
6491
{
6492 6493
	int err;

6494
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6495
	ndoms_cur = 1;
6496
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6497
	if (!doms_cur)
6498 6499
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6500
	err = build_sched_domains(doms_cur[0], NULL);
6501
	register_sched_domain_sysctl();
6502 6503

	return err;
6504 6505 6506 6507 6508 6509
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6510
static void detach_destroy_domains(const struct cpumask *cpu_map)
6511 6512 6513
{
	int i;

6514
	rcu_read_lock();
6515
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6516
		cpu_attach_domain(NULL, &def_root_domain, i);
6517
	rcu_read_unlock();
6518 6519
}

6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6536 6537
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6538
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6539 6540 6541
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6542
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6543 6544 6545
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6546 6547 6548
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6549 6550 6551 6552 6553 6554
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6555
 *
6556
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6557 6558
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6559
 *
P
Paul Jackson 已提交
6560 6561
 * Call with hotplug lock held
 */
6562
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6563
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6564
{
6565
	int i, j, n;
6566
	int new_topology;
P
Paul Jackson 已提交
6567

6568
	mutex_lock(&sched_domains_mutex);
6569

6570 6571 6572
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6573 6574 6575
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6576
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6577 6578 6579

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6580
		for (j = 0; j < n && !new_topology; j++) {
6581
			if (cpumask_equal(doms_cur[i], doms_new[j])
6582
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6583 6584 6585
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6586
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6587 6588 6589 6590
match1:
		;
	}

6591 6592
	if (doms_new == NULL) {
		ndoms_cur = 0;
6593
		doms_new = &fallback_doms;
6594
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6595
		WARN_ON_ONCE(dattr_new);
6596 6597
	}

P
Paul Jackson 已提交
6598 6599
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6600
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6601
			if (cpumask_equal(doms_new[i], doms_cur[j])
6602
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6603 6604 6605
				goto match2;
		}
		/* no match - add a new doms_new */
6606
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6607 6608 6609 6610 6611
match2:
		;
	}

	/* Remember the new sched domains */
6612 6613
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6614
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6615
	doms_cur = doms_new;
6616
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6617
	ndoms_cur = ndoms_new;
6618 6619

	register_sched_domain_sysctl();
6620

6621
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6622 6623
}

6624 6625
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6626
/*
6627 6628 6629
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6630 6631 6632
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6633
 */
6634 6635
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6636
{
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6659
	case CPU_ONLINE:
6660
	case CPU_DOWN_FAILED:
6661
		cpuset_update_active_cpus(true);
6662
		break;
6663 6664 6665
	default:
		return NOTIFY_DONE;
	}
6666
	return NOTIFY_OK;
6667
}
6668

6669 6670
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6671
{
6672
	switch (action) {
6673
	case CPU_DOWN_PREPARE:
6674
		cpuset_update_active_cpus(false);
6675 6676 6677 6678 6679
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6680 6681 6682
	default:
		return NOTIFY_DONE;
	}
6683
	return NOTIFY_OK;
6684 6685
}

L
Linus Torvalds 已提交
6686 6687
void __init sched_init_smp(void)
{
6688 6689 6690
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6691
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6692

6693 6694
	sched_init_numa();

6695
	get_online_cpus();
6696
	mutex_lock(&sched_domains_mutex);
6697
	init_sched_domains(cpu_active_mask);
6698 6699 6700
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6701
	mutex_unlock(&sched_domains_mutex);
6702
	put_online_cpus();
6703

6704
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6705 6706
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6707 6708 6709 6710

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6711
	init_hrtick();
6712 6713

	/* Move init over to a non-isolated CPU */
6714
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6715
		BUG();
I
Ingo Molnar 已提交
6716
	sched_init_granularity();
6717
	free_cpumask_var(non_isolated_cpus);
6718

6719
	init_sched_rt_class();
L
Linus Torvalds 已提交
6720 6721 6722 6723
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6724
	sched_init_granularity();
L
Linus Torvalds 已提交
6725 6726 6727
}
#endif /* CONFIG_SMP */

6728 6729
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6730 6731 6732 6733 6734 6735 6736
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6737 6738
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6739
LIST_HEAD(task_groups);
6740
#endif
P
Peter Zijlstra 已提交
6741

6742
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6743

L
Linus Torvalds 已提交
6744 6745
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6746
	int i, j;
6747 6748 6749 6750 6751 6752 6753
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6754
#endif
6755
#ifdef CONFIG_CPUMASK_OFFSTACK
6756
	alloc_size += num_possible_cpus() * cpumask_size();
6757 6758
#endif
	if (alloc_size) {
6759
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6760 6761

#ifdef CONFIG_FAIR_GROUP_SCHED
6762
		root_task_group.se = (struct sched_entity **)ptr;
6763 6764
		ptr += nr_cpu_ids * sizeof(void **);

6765
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6766
		ptr += nr_cpu_ids * sizeof(void **);
6767

6768
#endif /* CONFIG_FAIR_GROUP_SCHED */
6769
#ifdef CONFIG_RT_GROUP_SCHED
6770
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6771 6772
		ptr += nr_cpu_ids * sizeof(void **);

6773
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6774 6775
		ptr += nr_cpu_ids * sizeof(void **);

6776
#endif /* CONFIG_RT_GROUP_SCHED */
6777 6778 6779 6780 6781 6782
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6783
	}
I
Ingo Molnar 已提交
6784

G
Gregory Haskins 已提交
6785 6786 6787 6788
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6789 6790 6791 6792
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6793
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6794
			global_rt_period(), global_rt_runtime());
6795
#endif /* CONFIG_RT_GROUP_SCHED */
6796

D
Dhaval Giani 已提交
6797
#ifdef CONFIG_CGROUP_SCHED
6798 6799
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6800
	INIT_LIST_HEAD(&root_task_group.siblings);
6801
	autogroup_init(&init_task);
6802

D
Dhaval Giani 已提交
6803
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6804

6805 6806 6807 6808 6809 6810
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6811
	for_each_possible_cpu(i) {
6812
		struct rq *rq;
L
Linus Torvalds 已提交
6813 6814

		rq = cpu_rq(i);
6815
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6816
		rq->nr_running = 0;
6817 6818
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6819
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6820
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6821
#ifdef CONFIG_FAIR_GROUP_SCHED
6822
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6823
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6824
		/*
6825
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6826 6827 6828 6829
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6830
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6831 6832 6833
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6834
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6835 6836 6837
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6838
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6839
		 *
6840 6841
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6842
		 */
6843
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6844
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6845 6846 6847
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6848
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6849
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6850
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6851
#endif
L
Linus Torvalds 已提交
6852

I
Ingo Molnar 已提交
6853 6854
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6855 6856 6857

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6858
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6859
		rq->sd = NULL;
G
Gregory Haskins 已提交
6860
		rq->rd = NULL;
6861
		rq->cpu_power = SCHED_POWER_SCALE;
6862
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6863
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6864
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6865
		rq->push_cpu = 0;
6866
		rq->cpu = i;
6867
		rq->online = 0;
6868 6869
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6870 6871 6872

		INIT_LIST_HEAD(&rq->cfs_tasks);

6873
		rq_attach_root(rq, &def_root_domain);
6874
#ifdef CONFIG_NO_HZ
6875
		rq->nohz_flags = 0;
6876
#endif
L
Linus Torvalds 已提交
6877
#endif
P
Peter Zijlstra 已提交
6878
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6879 6880 6881
		atomic_set(&rq->nr_iowait, 0);
	}

6882
	set_load_weight(&init_task);
6883

6884 6885 6886 6887
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6888
#ifdef CONFIG_RT_MUTEXES
6889
	plist_head_init(&init_task.pi_waiters);
6890 6891
#endif

L
Linus Torvalds 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6905 6906 6907

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6908 6909 6910 6911
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6912

6913
#ifdef CONFIG_SMP
6914
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6915 6916 6917
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6918
	idle_thread_set_boot_cpu();
6919 6920
#endif
	init_sched_fair_class();
6921

6922
	scheduler_running = 1;
L
Linus Torvalds 已提交
6923 6924
}

6925
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6926 6927
static inline int preempt_count_equals(int preempt_offset)
{
6928
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6929

A
Arnd Bergmann 已提交
6930
	return (nested == preempt_offset);
6931 6932
}

6933
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6934 6935 6936
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6937
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6938 6939
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6940 6941 6942 6943 6944
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6945 6946 6947 6948 6949 6950 6951
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6952 6953 6954 6955 6956

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6957 6958 6959 6960 6961
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6962 6963
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6964 6965
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6966
	int on_rq;
6967

P
Peter Zijlstra 已提交
6968
	on_rq = p->on_rq;
6969
	if (on_rq)
6970
		dequeue_task(rq, p, 0);
6971 6972
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6973
		enqueue_task(rq, p, 0);
6974 6975
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6976 6977

	check_class_changed(rq, p, prev_class, old_prio);
6978 6979
}

L
Linus Torvalds 已提交
6980 6981
void normalize_rt_tasks(void)
{
6982
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6983
	unsigned long flags;
6984
	struct rq *rq;
L
Linus Torvalds 已提交
6985

6986
	read_lock_irqsave(&tasklist_lock, flags);
6987
	do_each_thread(g, p) {
6988 6989 6990 6991 6992 6993
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6994 6995
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6996 6997 6998
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6999
#endif
I
Ingo Molnar 已提交
7000 7001 7002 7003 7004 7005 7006 7007

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7008
			continue;
I
Ingo Molnar 已提交
7009
		}
L
Linus Torvalds 已提交
7010

7011
		raw_spin_lock(&p->pi_lock);
7012
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7013

7014
		normalize_task(rq, p);
7015

7016
		__task_rq_unlock(rq);
7017
		raw_spin_unlock(&p->pi_lock);
7018 7019
	} while_each_thread(g, p);

7020
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7021 7022 7023
}

#endif /* CONFIG_MAGIC_SYSRQ */
7024

7025
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7026
/*
7027
 * These functions are only useful for the IA64 MCA handling, or kdb.
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7042
struct task_struct *curr_task(int cpu)
7043 7044 7045 7046
{
	return cpu_curr(cpu);
}

7047 7048 7049
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7050 7051 7052 7053 7054 7055
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7056 7057
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7058 7059 7060 7061 7062 7063 7064
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7065
void set_curr_task(int cpu, struct task_struct *p)
7066 7067 7068 7069 7070
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7071

D
Dhaval Giani 已提交
7072
#ifdef CONFIG_CGROUP_SCHED
7073 7074 7075
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7076 7077 7078 7079
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7080
	autogroup_free(tg);
7081 7082 7083 7084
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7085
struct task_group *sched_create_group(struct task_group *parent)
7086 7087 7088 7089 7090 7091 7092 7093
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7094
	if (!alloc_fair_sched_group(tg, parent))
7095 7096
		goto err;

7097
	if (!alloc_rt_sched_group(tg, parent))
7098 7099
		goto err;

7100
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7101
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7102 7103 7104 7105 7106

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7107
	list_add_rcu(&tg->siblings, &parent->children);
7108
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7109

7110
	return tg;
S
Srivatsa Vaddagiri 已提交
7111 7112

err:
P
Peter Zijlstra 已提交
7113
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7114 7115 7116
	return ERR_PTR(-ENOMEM);
}

7117
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7118
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7119 7120
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7121
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7122 7123
}

7124
/* Destroy runqueue etc associated with a task group */
7125
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7126
{
7127
	unsigned long flags;
7128
	int i;
S
Srivatsa Vaddagiri 已提交
7129

7130 7131
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7132
		unregister_fair_sched_group(tg, i);
7133 7134

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7135
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7136
	list_del_rcu(&tg->siblings);
7137
	spin_unlock_irqrestore(&task_group_lock, flags);
7138 7139

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7140
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7141 7142
}

7143
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7144 7145 7146
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7147 7148
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7149
{
P
Peter Zijlstra 已提交
7150
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7151 7152 7153 7154 7155 7156
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7157
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7158
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7159

7160
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7161
		dequeue_task(rq, tsk, 0);
7162 7163
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7164

P
Peter Zijlstra 已提交
7165 7166 7167 7168 7169 7170
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7171
#ifdef CONFIG_FAIR_GROUP_SCHED
7172 7173 7174
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7175
#endif
7176
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7177

7178 7179 7180
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7181
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7182

7183
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7184
}
D
Dhaval Giani 已提交
7185
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7186

7187
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7188 7189 7190
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7191
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7192

P
Peter Zijlstra 已提交
7193
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7194
}
7195 7196 7197 7198 7199 7200 7201
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7202

P
Peter Zijlstra 已提交
7203 7204
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7205
{
P
Peter Zijlstra 已提交
7206
	struct task_struct *g, *p;
7207

P
Peter Zijlstra 已提交
7208
	do_each_thread(g, p) {
7209
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7210 7211
			return 1;
	} while_each_thread(g, p);
7212

P
Peter Zijlstra 已提交
7213 7214
	return 0;
}
7215

P
Peter Zijlstra 已提交
7216 7217 7218 7219 7220
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7221

7222
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7223 7224 7225 7226 7227
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7228

P
Peter Zijlstra 已提交
7229 7230
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7231

P
Peter Zijlstra 已提交
7232 7233 7234
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7235 7236
	}

7237 7238 7239 7240 7241
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7242

7243 7244 7245
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7246 7247
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7248

P
Peter Zijlstra 已提交
7249
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7250

7251 7252 7253 7254 7255
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7256

7257 7258 7259
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7260 7261 7262
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7263

P
Peter Zijlstra 已提交
7264 7265 7266 7267
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7268

P
Peter Zijlstra 已提交
7269
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7270
	}
P
Peter Zijlstra 已提交
7271

P
Peter Zijlstra 已提交
7272 7273 7274 7275
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7276 7277
}

P
Peter Zijlstra 已提交
7278
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7279
{
7280 7281
	int ret;

P
Peter Zijlstra 已提交
7282 7283 7284 7285 7286 7287
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7288 7289 7290 7291 7292
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7293 7294
}

7295
static int tg_set_rt_bandwidth(struct task_group *tg,
7296
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7297
{
P
Peter Zijlstra 已提交
7298
	int i, err = 0;
P
Peter Zijlstra 已提交
7299 7300

	mutex_lock(&rt_constraints_mutex);
7301
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7302 7303
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7304
		goto unlock;
P
Peter Zijlstra 已提交
7305

7306
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7307 7308
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7309 7310 7311 7312

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7313
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7314
		rt_rq->rt_runtime = rt_runtime;
7315
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7316
	}
7317
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7318
unlock:
7319
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7320 7321 7322
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7323 7324
}

7325 7326 7327 7328 7329 7330 7331 7332 7333
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7334
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7335 7336
}

P
Peter Zijlstra 已提交
7337 7338 7339 7340
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7341
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7342 7343
		return -1;

7344
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7345 7346 7347
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7348 7349 7350 7351 7352 7353 7354 7355

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7356 7357 7358
	if (rt_period == 0)
		return -EINVAL;

7359
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7373
	u64 runtime, period;
7374 7375
	int ret = 0;

7376 7377 7378
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7379 7380 7381 7382 7383 7384 7385 7386
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7387

7388
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7389
	read_lock(&tasklist_lock);
7390
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7391
	read_unlock(&tasklist_lock);
7392 7393 7394 7395
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7406
#else /* !CONFIG_RT_GROUP_SCHED */
7407 7408
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7409 7410 7411
	unsigned long flags;
	int i;

7412 7413 7414
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7415 7416 7417 7418 7419 7420 7421
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7422
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7423 7424 7425
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7426
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7427
		rt_rq->rt_runtime = global_rt_runtime();
7428
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7429
	}
7430
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7431

7432 7433
	return 0;
}
7434
#endif /* CONFIG_RT_GROUP_SCHED */
7435 7436

int sched_rt_handler(struct ctl_table *table, int write,
7437
		void __user *buffer, size_t *lenp,
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7448
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7465

7466
#ifdef CONFIG_CGROUP_SCHED
7467 7468

/* return corresponding task_group object of a cgroup */
7469
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7470
{
7471 7472
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7473 7474
}

7475
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7476
{
7477
	struct task_group *tg, *parent;
7478

7479
	if (!cgrp->parent) {
7480
		/* This is early initialization for the top cgroup */
7481
		return &root_task_group.css;
7482 7483
	}

7484 7485
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7486 7487 7488 7489 7490 7491
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7492
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7493
{
7494
	struct task_group *tg = cgroup_tg(cgrp);
7495 7496 7497 7498

	sched_destroy_group(tg);
}

7499
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7500
				 struct cgroup_taskset *tset)
7501
{
7502 7503 7504
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7505
#ifdef CONFIG_RT_GROUP_SCHED
7506 7507
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7508
#else
7509 7510 7511
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7512
#endif
7513
	}
7514 7515
	return 0;
}
7516

7517
static void cpu_cgroup_attach(struct cgroup *cgrp,
7518
			      struct cgroup_taskset *tset)
7519
{
7520 7521 7522 7523
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7524 7525
}

7526
static void
7527 7528
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7541
#ifdef CONFIG_FAIR_GROUP_SCHED
7542
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7543
				u64 shareval)
7544
{
7545
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7546 7547
}

7548
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7549
{
7550
	struct task_group *tg = cgroup_tg(cgrp);
7551

7552
	return (u64) scale_load_down(tg->shares);
7553
}
7554 7555

#ifdef CONFIG_CFS_BANDWIDTH
7556 7557
static DEFINE_MUTEX(cfs_constraints_mutex);

7558 7559 7560
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7561 7562
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7563 7564
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7565
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7566
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7587 7588 7589 7590 7591
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7592
	runtime_enabled = quota != RUNTIME_INF;
7593 7594
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7595 7596 7597
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7598

P
Paul Turner 已提交
7599
	__refill_cfs_bandwidth_runtime(cfs_b);
7600 7601 7602 7603 7604 7605
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7606 7607 7608 7609
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7610
		struct rq *rq = cfs_rq->rq;
7611 7612

		raw_spin_lock_irq(&rq->lock);
7613
		cfs_rq->runtime_enabled = runtime_enabled;
7614
		cfs_rq->runtime_remaining = 0;
7615

7616
		if (cfs_rq->throttled)
7617
			unthrottle_cfs_rq(cfs_rq);
7618 7619
		raw_spin_unlock_irq(&rq->lock);
	}
7620 7621
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7622

7623
	return ret;
7624 7625 7626 7627 7628 7629
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7630
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7643
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7644 7645
		return -1;

7646
	quota_us = tg->cfs_bandwidth.quota;
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7657
	quota = tg->cfs_bandwidth.quota;
7658 7659 7660 7661 7662 7663 7664 7665

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7666
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7726
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7727 7728 7729 7730 7731
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7732
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7753
	int ret;
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7765 7766 7767 7768 7769
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7770
}
7771 7772 7773 7774 7775

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7776
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7777 7778 7779 7780 7781 7782 7783

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7784
#endif /* CONFIG_CFS_BANDWIDTH */
7785
#endif /* CONFIG_FAIR_GROUP_SCHED */
7786

7787
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7788
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7789
				s64 val)
P
Peter Zijlstra 已提交
7790
{
7791
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7792 7793
}

7794
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7795
{
7796
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7797
}
7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7809
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7810

7811
static struct cftype cpu_files[] = {
7812
#ifdef CONFIG_FAIR_GROUP_SCHED
7813 7814
	{
		.name = "shares",
7815 7816
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7817
	},
7818
#endif
7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7830 7831 7832 7833
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7834
#endif
7835
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7836
	{
P
Peter Zijlstra 已提交
7837
		.name = "rt_runtime_us",
7838 7839
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7840
	},
7841 7842
	{
		.name = "rt_period_us",
7843 7844
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7845
	},
7846
#endif
7847
	{ }	/* terminate */
7848 7849 7850
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7851 7852 7853
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7854 7855
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7856
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7857
	.subsys_id	= cpu_cgroup_subsys_id,
7858
	.base_cftypes	= cpu_files,
7859 7860 7861
	.early_init	= 1,
};

7862
#endif	/* CONFIG_CGROUP_SCHED */
7863 7864 7865 7866 7867 7868 7869 7870 7871 7872

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7873 7874
struct cpuacct root_cpuacct;

7875
/* create a new cpu accounting group */
7876
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7877
{
7878
	struct cpuacct *ca;
7879

7880 7881 7882 7883
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7884
	if (!ca)
7885
		goto out;
7886 7887

	ca->cpuusage = alloc_percpu(u64);
7888 7889 7890
	if (!ca->cpuusage)
		goto out_free_ca;

7891 7892 7893
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7894

7895
	return &ca->css;
7896

7897
out_free_cpuusage:
7898 7899 7900 7901 7902
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7903 7904 7905
}

/* destroy an existing cpu accounting group */
7906
static void cpuacct_destroy(struct cgroup *cgrp)
7907
{
7908
	struct cpuacct *ca = cgroup_ca(cgrp);
7909

7910
	free_percpu(ca->cpustat);
7911 7912 7913 7914
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7915 7916
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7917
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7918 7919 7920 7921 7922 7923
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7924
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7925
	data = *cpuusage;
7926
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7927 7928 7929 7930 7931 7932 7933 7934 7935
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7936
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7937 7938 7939 7940 7941

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7942
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7943
	*cpuusage = val;
7944
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7945 7946 7947 7948 7949
#else
	*cpuusage = val;
#endif
}

7950
/* return total cpu usage (in nanoseconds) of a group */
7951
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7952
{
7953
	struct cpuacct *ca = cgroup_ca(cgrp);
7954 7955 7956
	u64 totalcpuusage = 0;
	int i;

7957 7958
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7959 7960 7961 7962

	return totalcpuusage;
}

7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

7975 7976
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
7977 7978 7979 7980 7981

out:
	return err;
}

7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

7997 7998 7999 8000 8001 8002
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8003
			      struct cgroup_map_cb *cb)
8004 8005
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8006 8007
	int cpu;
	s64 val = 0;
8008

8009 8010 8011 8012
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8013
	}
8014 8015
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8016

8017 8018 8019 8020 8021 8022
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8023
	}
8024 8025 8026 8027

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8028 8029 8030
	return 0;
}

8031 8032 8033
static struct cftype files[] = {
	{
		.name = "usage",
8034 8035
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8036
	},
8037 8038 8039 8040
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8041 8042 8043 8044
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8045
	{ }	/* terminate */
8046 8047 8048 8049 8050 8051 8052
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8053
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8054 8055
{
	struct cpuacct *ca;
8056
	int cpu;
8057

L
Li Zefan 已提交
8058
	if (unlikely(!cpuacct_subsys.active))
8059 8060
		return;

8061
	cpu = task_cpu(tsk);
8062 8063 8064

	rcu_read_lock();

8065 8066
	ca = task_ca(tsk);

8067
	for (; ca; ca = parent_ca(ca)) {
8068
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8069 8070
		*cpuusage += cputime;
	}
8071 8072

	rcu_read_unlock();
8073 8074 8075 8076 8077 8078 8079
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8080
	.base_cftypes = files,
8081 8082
};
#endif	/* CONFIG_CGROUP_CPUACCT */