core.c 178.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
515
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
516 517 518
{
	int cpu;

519
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
520

521
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
522 523
		return;

524
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
525 526 527 528 529 530 531 532 533 534 535

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

536
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
537 538 539 540
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

541
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
542 543
		return;
	resched_task(cpu_curr(cpu));
544
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
545
}
546

547
#ifdef CONFIG_NO_HZ_COMMON
548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

562
	rcu_read_lock();
563
	for_each_domain(cpu, sd) {
564 565 566 567 568 569
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
570
	}
571 572
unlock:
	rcu_read_unlock();
573 574
	return cpu;
}
575 576 577 578 579 580 581 582 583 584
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
585
static void wake_up_idle_cpu(int cpu)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
601 602

	/*
603 604 605
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
606
	 */
607
	set_tsk_need_resched(rq->idle);
608

609 610 611 612
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
613 614
}

615
static bool wake_up_full_nohz_cpu(int cpu)
616
{
617
	if (tick_nohz_full_cpu(cpu)) {
618 619 620 621 622 623 624 625 626 627 628
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
629
	if (!wake_up_full_nohz_cpu(cpu))
630 631 632
		wake_up_idle_cpu(cpu);
}

633
static inline bool got_nohz_idle_kick(void)
634
{
635
	int cpu = smp_processor_id();
636 637 638 639 640 641 642 643 644 645 646 647 648

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
649 650
}

651
#else /* CONFIG_NO_HZ_COMMON */
652

653
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
654
{
655
	return false;
P
Peter Zijlstra 已提交
656 657
}

658
#endif /* CONFIG_NO_HZ_COMMON */
659

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
677

678
void sched_avg_update(struct rq *rq)
679
{
680 681
	s64 period = sched_avg_period();

682
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
683 684 685 686 687 688
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
689 690 691
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
692 693
}

694
#else /* !CONFIG_SMP */
695
void resched_task(struct task_struct *p)
696
{
697
	assert_raw_spin_locked(&task_rq(p)->lock);
698
	set_tsk_need_resched(p);
699
}
700
#endif /* CONFIG_SMP */
701

702 703
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704
/*
705 706 707 708
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
709
 */
710
int walk_tg_tree_from(struct task_group *from,
711
			     tg_visitor down, tg_visitor up, void *data)
712 713
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
714
	int ret;
715

716 717
	parent = from;

718
down:
P
Peter Zijlstra 已提交
719 720
	ret = (*down)(parent, data);
	if (ret)
721
		goto out;
722 723 724 725 726 727 728
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
729
	ret = (*up)(parent, data);
730 731
	if (ret || parent == from)
		goto out;
732 733 734 735 736

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
737
out:
P
Peter Zijlstra 已提交
738
	return ret;
739 740
}

741
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
742
{
743
	return 0;
P
Peter Zijlstra 已提交
744
}
745 746
#endif

747 748
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
749 750 751
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
752 753 754 755
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
756
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
757
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
758 759
		return;
	}
760

761
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
762
	load->inv_weight = prio_to_wmult[prio];
763 764
}

765
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766
{
767
	update_rq_clock(rq);
I
Ingo Molnar 已提交
768
	sched_info_queued(p);
769
	p->sched_class->enqueue_task(rq, p, flags);
770 771
}

772
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773
{
774
	update_rq_clock(rq);
775
	sched_info_dequeued(p);
776
	p->sched_class->dequeue_task(rq, p, flags);
777 778
}

779
void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 781 782 783
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

784
	enqueue_task(rq, p, flags);
785 786
}

787
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 789 790 791
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

792
	dequeue_task(rq, p, flags);
793 794
}

795
static void update_rq_clock_task(struct rq *rq, s64 delta)
796
{
797 798 799 800 801 802 803 804
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
827 828
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829
	if (static_key_false((&paravirt_steal_rq_enabled))) {
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

847 848
	rq->clock_task += delta;

849 850 851 852
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
853 854
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

885
/*
I
Ingo Molnar 已提交
886
 * __normal_prio - return the priority that is based on the static prio
887 888 889
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
890
	return p->static_prio;
891 892
}

893 894 895 896 897 898 899
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
900
static inline int normal_prio(struct task_struct *p)
901 902 903
{
	int prio;

904
	if (task_has_rt_policy(p))
905 906 907 908 909 910 911 912 913 914 915 916 917
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
918
static int effective_prio(struct task_struct *p)
919 920 921 922 923 924 925 926 927 928 929 930
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
931 932 933 934
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
935
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
936 937 938 939
{
	return cpu_curr(task_cpu(p)) == p;
}

940 941
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
942
				       int oldprio)
943 944 945
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
946 947 948 949
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
950 951
}

952
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
973
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 975 976
		rq->skip_clock_update = 1;
}

977 978 979 980 981 982 983
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
984
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
985
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
986
{
987 988 989 990 991
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
992 993
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
994 995

#ifdef CONFIG_LOCKDEP
996 997 998 999 1000
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1001
	 * see task_group().
1002 1003 1004 1005
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1006 1007 1008
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1009 1010
#endif

1011
	trace_sched_migrate_task(p, new_cpu);
1012

1013
	if (task_cpu(p) != new_cpu) {
1014 1015
		struct task_migration_notifier tmn;

1016 1017
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1018
		p->se.nr_migrations++;
1019
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020 1021 1022 1023 1024 1025

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026
	}
I
Ingo Molnar 已提交
1027 1028

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1029 1030
}

1031
struct migration_arg {
1032
	struct task_struct *task;
L
Linus Torvalds 已提交
1033
	int dest_cpu;
1034
};
L
Linus Torvalds 已提交
1035

1036 1037
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1038 1039 1040
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1041 1042 1043 1044 1045 1046 1047
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052 1053
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1054
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1055 1056
{
	unsigned long flags;
I
Ingo Molnar 已提交
1057
	int running, on_rq;
R
Roland McGrath 已提交
1058
	unsigned long ncsw;
1059
	struct rq *rq;
L
Linus Torvalds 已提交
1060

1061 1062 1063 1064 1065 1066 1067 1068
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1081 1082 1083
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1084
			cpu_relax();
R
Roland McGrath 已提交
1085
		}
1086

1087 1088 1089 1090 1091 1092
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1093
		trace_sched_wait_task(p);
1094
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1095
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1096
		ncsw = 0;
1097
		if (!match_state || p->state == match_state)
1098
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099
		task_rq_unlock(rq, p, &flags);
1100

R
Roland McGrath 已提交
1101 1102 1103 1104 1105 1106
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1117

1118 1119 1120 1121 1122
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1123
		 * So if it was still runnable (but just not actively
1124 1125 1126 1127
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1128 1129 1130 1131
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132 1133
			continue;
		}
1134

1135 1136 1137 1138 1139 1140 1141
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1142 1143

	return ncsw;
L
Linus Torvalds 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1153
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1154 1155 1156 1157 1158
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1159
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1169
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1170
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1171

1172
#ifdef CONFIG_SMP
1173
/*
1174
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175
 */
1176 1177
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1178 1179
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1180 1181
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1200
	}
1201

1202 1203
	for (;;) {
		/* Any allowed, online CPU? */
1204
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205 1206 1207 1208 1209 1210
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1241 1242 1243 1244 1245
	}

	return dest_cpu;
}

1246
/*
1247
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248
 */
1249
static inline
1250
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251
{
1252
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1264
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1265
		     !cpu_online(cpu)))
1266
		cpu = select_fallback_rq(task_cpu(p), p);
1267 1268

	return cpu;
1269
}
1270 1271 1272 1273 1274 1275

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1276 1277
#endif

P
Peter Zijlstra 已提交
1278
static void
1279
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1280
{
P
Peter Zijlstra 已提交
1281
#ifdef CONFIG_SCHEDSTATS
1282 1283
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294
		rcu_read_lock();
P
Peter Zijlstra 已提交
1295 1296 1297 1298 1299 1300
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1301
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1302
	}
1303 1304 1305 1306

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1307 1308 1309
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1310
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1311 1312

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1313
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1314 1315 1316 1317 1318 1319

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1320
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1321
	p->on_rq = 1;
1322 1323 1324 1325

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1326 1327
}

1328 1329 1330
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1331
static void
1332
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1333 1334
{
	check_preempt_curr(rq, p, wake_flags);
1335
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1336 1337 1338 1339 1340 1341

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1342
	if (rq->idle_stamp) {
1343
		u64 delta = rq_clock(rq) - rq->idle_stamp;
T
Tejun Heo 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1380 1381
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1382 1383 1384 1385 1386 1387 1388 1389
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1390
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1391
static void sched_ttwu_pending(void)
1392 1393
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1394 1395
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1396 1397 1398

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1399 1400 1401
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1402 1403 1404 1405 1406 1407 1408 1409
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1410 1411 1412
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1429
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1430
	sched_ttwu_pending();
1431 1432 1433 1434

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1435
	if (unlikely(got_nohz_idle_kick())) {
1436
		this_rq()->idle_balance = 1;
1437
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1438
	}
1439
	irq_exit();
1440 1441 1442 1443
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1444
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1445 1446
		smp_send_reschedule(cpu);
}
1447

1448
bool cpus_share_cache(int this_cpu, int that_cpu)
1449 1450 1451
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1452
#endif /* CONFIG_SMP */
1453

1454 1455 1456 1457
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1458
#if defined(CONFIG_SMP)
1459
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1460
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1461 1462 1463 1464 1465
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1466 1467 1468
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1469 1470 1471
}

/**
L
Linus Torvalds 已提交
1472
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1473
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1474
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1475
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1476 1477 1478 1479 1480 1481 1482
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1483 1484
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1485
 */
1486 1487
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1488 1489
{
	unsigned long flags;
1490
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1491

1492
	smp_wmb();
1493
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1494
	if (!(p->state & state))
L
Linus Torvalds 已提交
1495 1496
		goto out;

1497
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1498 1499
	cpu = task_cpu(p);

1500 1501
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1502 1503

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1504
	/*
1505 1506
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1507
	 */
1508
	while (p->on_cpu)
1509
		cpu_relax();
1510
	/*
1511
	 * Pairs with the smp_wmb() in finish_lock_switch().
1512
	 */
1513
	smp_rmb();
L
Linus Torvalds 已提交
1514

1515
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1516
	p->state = TASK_WAKING;
1517

1518
	if (p->sched_class->task_waking)
1519
		p->sched_class->task_waking(p);
1520

1521
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522 1523
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1524
		set_task_cpu(p, cpu);
1525
	}
L
Linus Torvalds 已提交
1526 1527
#endif /* CONFIG_SMP */

1528 1529
	ttwu_queue(p, cpu);
stat:
1530
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1531
out:
1532
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1533 1534 1535 1536

	return success;
}

T
Tejun Heo 已提交
1537 1538 1539 1540
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1541
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1542
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543
 * the current task.
T
Tejun Heo 已提交
1544 1545 1546 1547 1548
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1549 1550 1551 1552
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1553 1554
	lockdep_assert_held(&rq->lock);

1555 1556 1557 1558 1559 1560
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1561
	if (!(p->state & TASK_NORMAL))
1562
		goto out;
T
Tejun Heo 已提交
1563

P
Peter Zijlstra 已提交
1564
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1565 1566
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1567
	ttwu_do_wakeup(rq, p, 0);
1568
	ttwu_stat(p, smp_processor_id(), 0);
1569 1570
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1571 1572
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1584
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1585
{
1586 1587
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1588 1589 1590
}
EXPORT_SYMBOL(wake_up_process);

1591
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1592 1593 1594 1595 1596 1597 1598
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1599 1600 1601 1602 1603
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1604 1605 1606
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1607 1608
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1609
	p->se.prev_sum_exec_runtime	= 0;
1610
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1611
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1612
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1613

1614 1615 1616 1617 1618 1619
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1620 1621 1622
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1623
#ifdef CONFIG_SCHEDSTATS
1624
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1625
#endif
N
Nick Piggin 已提交
1626

P
Peter Zijlstra 已提交
1627
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1628

1629 1630 1631
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1632 1633 1634 1635

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1636
		p->mm->numa_next_reset = jiffies;
1637 1638 1639 1640 1641 1642
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1643
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1644 1645
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1646 1647
}

1648
#ifdef CONFIG_NUMA_BALANCING
1649
#ifdef CONFIG_SCHED_DEBUG
1650 1651 1652 1653 1654 1655 1656
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1657 1658 1659 1660 1661 1662
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1663
}
1664
#endif /* CONFIG_SCHED_DEBUG */
1665
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1666 1667 1668 1669

/*
 * fork()/clone()-time setup:
 */
1670
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1671
{
1672
	unsigned long flags;
I
Ingo Molnar 已提交
1673 1674 1675
	int cpu = get_cpu();

	__sched_fork(p);
1676
	/*
1677
	 * We mark the process as running here. This guarantees that
1678 1679 1680
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1681
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1682

1683 1684 1685 1686 1687
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1688 1689 1690 1691
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1692
		if (task_has_rt_policy(p)) {
1693
			p->policy = SCHED_NORMAL;
1694
			p->static_prio = NICE_TO_PRIO(0);
1695 1696 1697 1698 1699 1700
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1701

1702 1703 1704 1705 1706 1707
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1708

H
Hiroshi Shimamoto 已提交
1709 1710
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1711

P
Peter Zijlstra 已提交
1712 1713 1714
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1715 1716 1717 1718 1719 1720 1721
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1722
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1723
	set_task_cpu(p, cpu);
1724
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1725

1726
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1727
	if (likely(sched_info_on()))
1728
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1729
#endif
P
Peter Zijlstra 已提交
1730 1731
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1732
#endif
1733
#ifdef CONFIG_PREEMPT_COUNT
1734
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1735
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1736
#endif
1737
#ifdef CONFIG_SMP
1738
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1739
#endif
1740

N
Nick Piggin 已提交
1741
	put_cpu();
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1751
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1752 1753
{
	unsigned long flags;
I
Ingo Molnar 已提交
1754
	struct rq *rq;
1755

1756
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1757 1758 1759 1760 1761 1762
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1763
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1764 1765
#endif

1766
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1767
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1768
	p->on_rq = 1;
1769
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1770
	check_preempt_curr(rq, p, WF_FORK);
1771
#ifdef CONFIG_SMP
1772 1773
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1774
#endif
1775
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1776 1777
}

1778 1779 1780
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1781
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1782
 * @notifier: notifier struct to register
1783 1784 1785 1786 1787 1788 1789 1790 1791
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1792
 * @notifier: notifier struct to unregister
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1806
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1807 1808 1809 1810 1811 1812 1813 1814 1815
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1816
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1817 1818 1819
		notifier->ops->sched_out(notifier, next);
}

1820
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1832
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1833

1834 1835 1836
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1837
 * @prev: the current task that is being switched out
1838 1839 1840 1841 1842 1843 1844 1845 1846
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1847 1848 1849
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1850
{
1851
	trace_sched_switch(prev, next);
1852 1853
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1854
	fire_sched_out_preempt_notifiers(prev, next);
1855 1856 1857 1858
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1859 1860
/**
 * finish_task_switch - clean up after a task-switch
1861
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1862 1863
 * @prev: the thread we just switched away from.
 *
1864 1865 1866 1867
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1868 1869
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1870
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1871 1872 1873
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1874
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1875 1876 1877
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1878
	long prev_state;
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1884
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1885 1886
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1887
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1893
	prev_state = prev->state;
1894
	vtime_task_switch(prev);
1895
	finish_arch_switch(prev);
1896
	perf_event_task_sched_in(prev, current);
1897
	finish_lock_switch(rq, prev);
1898
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1899

1900
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1901 1902
	if (mm)
		mmdrop(mm);
1903
	if (unlikely(prev_state == TASK_DEAD)) {
1904 1905 1906
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1907
		 */
1908
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1909
		put_task_struct(prev);
1910
	}
1911 1912

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
1913 1914
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1930
		raw_spin_lock_irqsave(&rq->lock, flags);
1931 1932
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1933
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1934 1935 1936 1937 1938 1939

		rq->post_schedule = 0;
	}
}

#else
1940

1941 1942 1943 1944 1945 1946
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1947 1948
}

1949 1950
#endif

L
Linus Torvalds 已提交
1951 1952 1953 1954
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1955
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1956 1957
	__releases(rq->lock)
{
1958 1959
	struct rq *rq = this_rq();

1960
	finish_task_switch(rq, prev);
1961

1962 1963 1964 1965 1966
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1967

1968 1969 1970 1971
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1972
	if (current->set_child_tid)
1973
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1980
static inline void
1981
context_switch(struct rq *rq, struct task_struct *prev,
1982
	       struct task_struct *next)
L
Linus Torvalds 已提交
1983
{
I
Ingo Molnar 已提交
1984
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1985

1986
	prepare_task_switch(rq, prev, next);
1987

I
Ingo Molnar 已提交
1988 1989
	mm = next->mm;
	oldmm = prev->active_mm;
1990 1991 1992 1993 1994
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1995
	arch_start_context_switch(prev);
1996

1997
	if (!mm) {
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002 2003
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2004
	if (!prev->mm) {
L
Linus Torvalds 已提交
2005 2006 2007
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2008 2009 2010 2011 2012 2013 2014
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2015
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2016
#endif
L
Linus Torvalds 已提交
2017

2018
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2019 2020 2021
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2022 2023 2024 2025 2026 2027 2028
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2029 2030 2031
}

/*
2032
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2033 2034
 *
 * externally visible scheduler statistics: current number of runnable
2035
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2045
}
L
Linus Torvalds 已提交
2046 2047

unsigned long long nr_context_switches(void)
2048
{
2049 2050
	int i;
	unsigned long long sum = 0;
2051

2052
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2053
		sum += cpu_rq(i)->nr_switches;
2054

L
Linus Torvalds 已提交
2055 2056
	return sum;
}
2057

L
Linus Torvalds 已提交
2058 2059 2060
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2061

2062
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2063
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2064

L
Linus Torvalds 已提交
2065 2066
	return sum;
}
2067

2068
unsigned long nr_iowait_cpu(int cpu)
2069
{
2070
	struct rq *this = cpu_rq(cpu);
2071 2072
	return atomic_read(&this->nr_iowait);
}
2073

I
Ingo Molnar 已提交
2074
#ifdef CONFIG_SMP
2075

2076
/*
P
Peter Zijlstra 已提交
2077 2078
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2079
 */
P
Peter Zijlstra 已提交
2080
void sched_exec(void)
2081
{
P
Peter Zijlstra 已提交
2082
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2083
	unsigned long flags;
2084
	int dest_cpu;
2085

2086
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2087
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2088 2089
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2090

2091
	if (likely(cpu_active(dest_cpu))) {
2092
		struct migration_arg arg = { p, dest_cpu };
2093

2094 2095
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2096 2097
		return;
	}
2098
unlock:
2099
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2100
}
I
Ingo Molnar 已提交
2101

L
Linus Torvalds 已提交
2102 2103 2104
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2105
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2106 2107

EXPORT_PER_CPU_SYMBOL(kstat);
2108
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2109 2110

/*
2111
 * Return any ns on the sched_clock that have not yet been accounted in
2112
 * @p in case that task is currently running.
2113 2114
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2115
 */
2116 2117 2118 2119 2120 2121
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2122
		ns = rq_clock_task(rq) - p->se.exec_start;
2123 2124 2125 2126 2127 2128 2129
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2130
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2131 2132
{
	unsigned long flags;
2133
	struct rq *rq;
2134
	u64 ns = 0;
2135

2136
	rq = task_rq_lock(p, &flags);
2137
	ns = do_task_delta_exec(p, rq);
2138
	task_rq_unlock(rq, p, &flags);
2139

2140 2141
	return ns;
}
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2156
	task_rq_unlock(rq, p, &flags);
2157 2158 2159

	return ns;
}
2160

2161 2162 2163 2164 2165 2166 2167 2168
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2169
	struct task_struct *curr = rq->curr;
2170 2171

	sched_clock_tick();
I
Ingo Molnar 已提交
2172

2173
	raw_spin_lock(&rq->lock);
2174
	update_rq_clock(rq);
2175
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2176
	curr->sched_class->task_tick(rq, curr, 0);
2177
	raw_spin_unlock(&rq->lock);
2178

2179
	perf_event_task_tick();
2180

2181
#ifdef CONFIG_SMP
2182
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2183
	trigger_load_balance(rq, cpu);
2184
#endif
2185
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2186 2187
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
L
Linus Torvalds 已提交
2211
}
2212
#endif
L
Linus Torvalds 已提交
2213

2214
notrace unsigned long get_parent_ip(unsigned long addr)
2215 2216 2217 2218 2219 2220 2221 2222
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2223

2224 2225 2226
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2227
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2228
{
2229
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2230 2231 2232
	/*
	 * Underflow?
	 */
2233 2234
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2235
#endif
L
Linus Torvalds 已提交
2236
	preempt_count() += val;
2237
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2238 2239 2240
	/*
	 * Spinlock count overflowing soon?
	 */
2241 2242
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2243 2244 2245
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2246 2247 2248
}
EXPORT_SYMBOL(add_preempt_count);

2249
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2250
{
2251
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2252 2253 2254
	/*
	 * Underflow?
	 */
2255
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2256
		return;
L
Linus Torvalds 已提交
2257 2258 2259
	/*
	 * Is the spinlock portion underflowing?
	 */
2260 2261 2262
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2263
#endif
2264

2265 2266
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271 2272 2273
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2274
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2275
 */
I
Ingo Molnar 已提交
2276
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2277
{
2278 2279 2280
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2281 2282
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2283

I
Ingo Molnar 已提交
2284
	debug_show_held_locks(prev);
2285
	print_modules();
I
Ingo Molnar 已提交
2286 2287
	if (irqs_disabled())
		print_irqtrace_events(prev);
2288
	dump_stack();
2289
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2290
}
L
Linus Torvalds 已提交
2291

I
Ingo Molnar 已提交
2292 2293 2294 2295 2296
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2297
	/*
I
Ingo Molnar 已提交
2298
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2299 2300 2301
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2302
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2303
		__schedule_bug(prev);
2304
	rcu_sleep_check();
I
Ingo Molnar 已提交
2305

L
Linus Torvalds 已提交
2306 2307
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2308
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2309 2310
}

P
Peter Zijlstra 已提交
2311
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2312
{
2313
	if (prev->on_rq || rq->skip_clock_update < 0)
2314
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2315
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2316 2317
}

I
Ingo Molnar 已提交
2318 2319 2320 2321
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2322
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2323
{
2324
	const struct sched_class *class;
I
Ingo Molnar 已提交
2325
	struct task_struct *p;
L
Linus Torvalds 已提交
2326 2327

	/*
I
Ingo Molnar 已提交
2328 2329
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2330
	 */
2331
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2332
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2333 2334
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2335 2336
	}

2337
	for_each_class(class) {
2338
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2339 2340 2341
		if (p)
			return p;
	}
2342 2343

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2344
}
L
Linus Torvalds 已提交
2345

I
Ingo Molnar 已提交
2346
/*
2347
 * __schedule() is the main scheduler function.
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2382
 */
2383
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2384 2385
{
	struct task_struct *prev, *next;
2386
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2387
	struct rq *rq;
2388
	int cpu;
I
Ingo Molnar 已提交
2389

2390 2391
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2392 2393
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2394
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2395 2396 2397
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2398

2399
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2400
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2401

2402
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2403

2404
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2405
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2406
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2407
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2408
		} else {
2409 2410 2411
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2412
			/*
2413 2414 2415
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2425
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2426 2427
	}

2428
	pre_schedule(rq, prev);
2429

I
Ingo Molnar 已提交
2430
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2431 2432
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2433
	put_prev_task(rq, prev);
2434
	next = pick_next_task(rq);
2435 2436
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2443
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2444
		/*
2445 2446 2447 2448
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2449 2450 2451
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2452
	} else
2453
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2454

2455
	post_schedule(rq);
L
Linus Torvalds 已提交
2456

2457
	sched_preempt_enable_no_resched();
2458
	if (need_resched())
L
Linus Torvalds 已提交
2459 2460
		goto need_resched;
}
2461

2462 2463
static inline void sched_submit_work(struct task_struct *tsk)
{
2464
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2465 2466 2467 2468 2469 2470 2471 2472 2473
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2474
asmlinkage void __sched schedule(void)
2475
{
2476 2477 2478
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2479 2480
	__schedule();
}
L
Linus Torvalds 已提交
2481 2482
EXPORT_SYMBOL(schedule);

2483
#ifdef CONFIG_CONTEXT_TRACKING
2484 2485 2486 2487 2488 2489 2490 2491
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2492
	user_exit();
2493
	schedule();
2494
	user_enter();
2495 2496 2497
}
#endif

2498 2499 2500 2501 2502 2503 2504
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2505
	sched_preempt_enable_no_resched();
2506 2507 2508 2509
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2510 2511
#ifdef CONFIG_PREEMPT
/*
2512
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2513
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2514 2515
 * occur there and call schedule directly.
 */
2516
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2517 2518
{
	struct thread_info *ti = current_thread_info();
2519

L
Linus Torvalds 已提交
2520 2521
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2522
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2523
	 */
N
Nick Piggin 已提交
2524
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
2525 2526
		return;

2527
	do {
2528
		add_preempt_count_notrace(PREEMPT_ACTIVE);
2529
		__schedule();
2530
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2531

2532 2533 2534 2535 2536
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2537
	} while (need_resched());
L
Linus Torvalds 已提交
2538 2539 2540 2541
}
EXPORT_SYMBOL(preempt_schedule);

/*
2542
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2543 2544 2545 2546 2547 2548 2549
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
2550
	enum ctx_state prev_state;
2551

2552
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
2553 2554
	BUG_ON(ti->preempt_count || !irqs_disabled());

2555 2556
	prev_state = exception_enter();

2557 2558 2559
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
2560
		__schedule();
2561 2562
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2563

2564 2565 2566 2567 2568
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2569
	} while (need_resched());
2570 2571

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2572 2573 2574 2575
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
2576
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2577
			  void *key)
L
Linus Torvalds 已提交
2578
{
P
Peter Zijlstra 已提交
2579
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2580 2581 2582 2583
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
2584 2585
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
2586 2587 2588
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
2589
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
2590 2591
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
2592
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
2593
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
2594
{
2595
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
2596

2597
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2598 2599
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
2600
		if (curr->func(curr, mode, wake_flags, key) &&
2601
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2611
 * @key: is directly passed to the wakeup function
2612 2613 2614
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2615
 */
2616
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
2617
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
2630
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
2631
{
2632
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
2633
}
2634
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
2635

2636 2637 2638 2639
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
2640
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2641

L
Linus Torvalds 已提交
2642
/**
2643
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
2644 2645 2646
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2647
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
2648 2649 2650 2651 2652 2653 2654
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
2655 2656 2657
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2658
 */
2659 2660
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2661 2662
{
	unsigned long flags;
P
Peter Zijlstra 已提交
2663
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
2669
		wake_flags = 0;
L
Linus Torvalds 已提交
2670 2671

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
2672
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
2673 2674
	spin_unlock_irqrestore(&q->lock, flags);
}
2675 2676 2677 2678 2679 2680 2681 2682 2683
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
2684 2685
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

2686 2687 2688 2689 2690 2691 2692 2693
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
2694 2695 2696
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2697
 */
2698
void complete(struct completion *x)
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
2704
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
2705 2706 2707 2708
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

2709 2710 2711 2712 2713
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
2714 2715 2716
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2717
 */
2718
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
2719 2720 2721 2722 2723
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
2724
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
2725 2726 2727 2728
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

2729
static inline long __sched
2730 2731
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2732 2733 2734 2735
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
2736
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
2737
		do {
2738
			if (signal_pending_state(state, current)) {
2739 2740
				timeout = -ERESTARTSYS;
				break;
2741 2742
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
2743
			spin_unlock_irq(&x->wait.lock);
2744
			timeout = action(timeout);
L
Linus Torvalds 已提交
2745
			spin_lock_irq(&x->wait.lock);
2746
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
2747
		__remove_wait_queue(&x->wait, &wait);
2748 2749
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
2750 2751
	}
	x->done--;
2752
	return timeout ?: 1;
L
Linus Torvalds 已提交
2753 2754
}

2755 2756 2757
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2758 2759 2760 2761
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
2762
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
2763
	spin_unlock_irq(&x->wait.lock);
2764 2765
	return timeout;
}
L
Linus Torvalds 已提交
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
2789
void __sched wait_for_completion(struct completion *x)
2790 2791
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2792
}
2793
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
2794

2795 2796 2797 2798 2799 2800 2801 2802
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
2803 2804 2805
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
2806
 */
2807
unsigned long __sched
2808
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
2809
{
2810
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2811
}
2812
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
2813

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

2847 2848 2849 2850 2851 2852
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
2853 2854
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2855
 */
2856
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
2857
{
2858 2859 2860 2861
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
2862
}
2863
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
2864

2865 2866 2867 2868 2869 2870 2871
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2872 2873 2874
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
2875
 */
2876
long __sched
2877 2878
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
2879
{
2880
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
2881
}
2882
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
2883

2884 2885 2886 2887 2888 2889
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
2890 2891
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2892
 */
M
Matthew Wilcox 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

2902 2903 2904 2905 2906 2907 2908 2909
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
2910 2911 2912
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
2913
 */
2914
long __sched
2915 2916 2917 2918 2919 2920 2921
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
2936
	unsigned long flags;
2937 2938
	int ret = 1;

2939
	spin_lock_irqsave(&x->wait.lock, flags);
2940 2941 2942 2943
	if (!x->done)
		ret = 0;
	else
		x->done--;
2944
	spin_unlock_irqrestore(&x->wait.lock, flags);
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
2959
	unsigned long flags;
2960 2961
	int ret = 1;

2962
	spin_lock_irqsave(&x->wait.lock, flags);
2963 2964
	if (!x->done)
		ret = 0;
2965
	spin_unlock_irqrestore(&x->wait.lock, flags);
2966 2967 2968 2969
	return ret;
}
EXPORT_SYMBOL(completion_done);

2970 2971
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2972
{
I
Ingo Molnar 已提交
2973 2974 2975 2976
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2977

2978
	__set_current_state(state);
L
Linus Torvalds 已提交
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2994 2995 2996
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
2997
long __sched
I
Ingo Molnar 已提交
2998
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2999
{
3000
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3001 3002 3003
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3004
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3005
{
3006
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3007 3008 3009
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3010
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3011
{
3012
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3013 3014 3015
}
EXPORT_SYMBOL(sleep_on_timeout);

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3028
void rt_mutex_setprio(struct task_struct *p, int prio)
3029
{
3030
	int oldprio, on_rq, running;
3031
	struct rq *rq;
3032
	const struct sched_class *prev_class;
3033 3034 3035

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3036
	rq = __task_rq_lock(p);
3037

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3056
	trace_sched_pi_setprio(p, prio);
3057
	oldprio = p->prio;
3058
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3059
	on_rq = p->on_rq;
3060
	running = task_current(rq, p);
3061
	if (on_rq)
3062
		dequeue_task(rq, p, 0);
3063 3064
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3065 3066 3067 3068 3069 3070

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3071 3072
	p->prio = prio;

3073 3074
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3075
	if (on_rq)
3076
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3077

P
Peter Zijlstra 已提交
3078
	check_class_changed(rq, p, prev_class, oldprio);
3079
out_unlock:
3080
	__task_rq_unlock(rq);
3081 3082
}
#endif
3083
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3084
{
I
Ingo Molnar 已提交
3085
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3086
	unsigned long flags;
3087
	struct rq *rq;
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3100
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3101
	 */
3102
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3103 3104 3105
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3106
	on_rq = p->on_rq;
3107
	if (on_rq)
3108
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3109 3110

	p->static_prio = NICE_TO_PRIO(nice);
3111
	set_load_weight(p);
3112 3113 3114
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3115

I
Ingo Molnar 已提交
3116
	if (on_rq) {
3117
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3118
		/*
3119 3120
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3121
		 */
3122
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3123 3124 3125
			resched_task(rq->curr);
	}
out_unlock:
3126
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3127 3128 3129
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3130 3131 3132 3133 3134
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3135
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3136
{
3137 3138
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3139

3140
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3141 3142 3143
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3153
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3154
{
3155
	long nice, retval;
L
Linus Torvalds 已提交
3156 3157 3158 3159 3160 3161

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3162 3163
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3164 3165 3166
	if (increment > 40)
		increment = 40;

3167
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3168 3169 3170 3171 3172
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3173 3174 3175
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3194
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200 3201 3202
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3203
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3204 3205 3206
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3207
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3208 3209 3210 3211 3212 3213 3214

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3229 3230 3231 3232 3233 3234
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3235
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3236 3237 3238 3239 3240 3241 3242 3243
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3244
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3245
{
3246
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3247 3248 3249
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3250 3251
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3252 3253 3254
{
	p->policy = policy;
	p->rt_priority = prio;
3255 3256 3257
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3258 3259 3260 3261
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3262
	set_load_weight(p);
L
Linus Torvalds 已提交
3263 3264
}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3275 3276
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3277 3278 3279 3280
	rcu_read_unlock();
	return match;
}

3281
static int __sched_setscheduler(struct task_struct *p, int policy,
3282
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3283
{
3284
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3285
	unsigned long flags;
3286
	const struct sched_class *prev_class;
3287
	struct rq *rq;
3288
	int reset_on_fork;
L
Linus Torvalds 已提交
3289

3290 3291
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3292 3293
recheck:
	/* double check policy once rq lock held */
3294 3295
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3296
		policy = oldpolicy = p->policy;
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3307 3308
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3309 3310
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3311 3312
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3313
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3314
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3315
		return -EINVAL;
3316
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3317 3318
		return -EINVAL;

3319 3320 3321
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3322
	if (user && !capable(CAP_SYS_NICE)) {
3323
		if (rt_policy(policy)) {
3324 3325
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3336

I
Ingo Molnar 已提交
3337
		/*
3338 3339
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3340
		 */
3341 3342 3343 3344
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3345

3346
		/* can't change other user's priorities */
3347
		if (!check_same_owner(p))
3348
			return -EPERM;
3349 3350 3351 3352

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3353
	}
L
Linus Torvalds 已提交
3354

3355
	if (user) {
3356
		retval = security_task_setscheduler(p);
3357 3358 3359 3360
		if (retval)
			return retval;
	}

3361 3362 3363
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3364
	 *
L
Lucas De Marchi 已提交
3365
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3366 3367
	 * runqueue lock must be held.
	 */
3368
	rq = task_rq_lock(p, &flags);
3369

3370 3371 3372 3373
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3374
		task_rq_unlock(rq, p, &flags);
3375 3376 3377
		return -EINVAL;
	}

3378 3379 3380 3381 3382
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3383
		task_rq_unlock(rq, p, &flags);
3384 3385 3386
		return 0;
	}

3387 3388 3389 3390 3391 3392 3393
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3394 3395
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3396
			task_rq_unlock(rq, p, &flags);
3397 3398 3399 3400 3401
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3402 3403 3404
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3405
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3406 3407
		goto recheck;
	}
P
Peter Zijlstra 已提交
3408
	on_rq = p->on_rq;
3409
	running = task_current(rq, p);
3410
	if (on_rq)
3411
		dequeue_task(rq, p, 0);
3412 3413
	if (running)
		p->sched_class->put_prev_task(rq, p);
3414

3415 3416
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3417
	oldprio = p->prio;
3418
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3419
	__setscheduler(rq, p, policy, param->sched_priority);
3420

3421 3422
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3423
	if (on_rq)
3424
		enqueue_task(rq, p, 0);
3425

P
Peter Zijlstra 已提交
3426
	check_class_changed(rq, p, prev_class, oldprio);
3427
	task_rq_unlock(rq, p, &flags);
3428

3429 3430
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3431 3432
	return 0;
}
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3443
		       const struct sched_param *param)
3444 3445 3446
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3447 3448
EXPORT_SYMBOL_GPL(sched_setscheduler);

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3461
			       const struct sched_param *param)
3462 3463 3464 3465
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3466 3467
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3468 3469 3470
{
	struct sched_param lparam;
	struct task_struct *p;
3471
	int retval;
L
Linus Torvalds 已提交
3472 3473 3474 3475 3476

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3477 3478 3479

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3480
	p = find_process_by_pid(pid);
3481 3482 3483
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3484

L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490 3491 3492 3493
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3494 3495
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3496
{
3497 3498 3499 3500
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3501 3502 3503 3504 3505 3506 3507 3508
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3509
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3510 3511 3512 3513 3514 3515 3516 3517
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3518
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3519
{
3520
	struct task_struct *p;
3521
	int retval;
L
Linus Torvalds 已提交
3522 3523

	if (pid < 0)
3524
		return -EINVAL;
L
Linus Torvalds 已提交
3525 3526

	retval = -ESRCH;
3527
	rcu_read_lock();
L
Linus Torvalds 已提交
3528 3529 3530 3531
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3532 3533
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3534
	}
3535
	rcu_read_unlock();
L
Linus Torvalds 已提交
3536 3537 3538 3539
	return retval;
}

/**
3540
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3541 3542 3543
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3544
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3545 3546
{
	struct sched_param lp;
3547
	struct task_struct *p;
3548
	int retval;
L
Linus Torvalds 已提交
3549 3550

	if (!param || pid < 0)
3551
		return -EINVAL;
L
Linus Torvalds 已提交
3552

3553
	rcu_read_lock();
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3564
	rcu_read_unlock();
L
Linus Torvalds 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3574
	rcu_read_unlock();
L
Linus Torvalds 已提交
3575 3576 3577
	return retval;
}

3578
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3579
{
3580
	cpumask_var_t cpus_allowed, new_mask;
3581 3582
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3583

3584
	get_online_cpus();
3585
	rcu_read_lock();
L
Linus Torvalds 已提交
3586 3587 3588

	p = find_process_by_pid(pid);
	if (!p) {
3589
		rcu_read_unlock();
3590
		put_online_cpus();
L
Linus Torvalds 已提交
3591 3592 3593
		return -ESRCH;
	}

3594
	/* Prevent p going away */
L
Linus Torvalds 已提交
3595
	get_task_struct(p);
3596
	rcu_read_unlock();
L
Linus Torvalds 已提交
3597

3598 3599 3600 3601
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3602 3603 3604 3605 3606 3607 3608 3609
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3610
	retval = -EPERM;
E
Eric W. Biederman 已提交
3611 3612 3613 3614 3615 3616 3617 3618
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3619

3620
	retval = security_task_setscheduler(p);
3621 3622 3623
	if (retval)
		goto out_unlock;

3624 3625
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
3626
again:
3627
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3628

P
Paul Menage 已提交
3629
	if (!retval) {
3630 3631
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3632 3633 3634 3635 3636
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3637
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3638 3639 3640
			goto again;
		}
	}
L
Linus Torvalds 已提交
3641
out_unlock:
3642 3643 3644 3645
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3646
	put_task_struct(p);
3647
	put_online_cpus();
L
Linus Torvalds 已提交
3648 3649 3650 3651
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3652
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3653
{
3654 3655 3656 3657 3658
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3659 3660 3661 3662 3663 3664 3665 3666 3667
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
3668 3669
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3670
{
3671
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3672 3673
	int retval;

3674 3675
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3676

3677 3678 3679 3680 3681
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3682 3683
}

3684
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3685
{
3686
	struct task_struct *p;
3687
	unsigned long flags;
L
Linus Torvalds 已提交
3688 3689
	int retval;

3690
	get_online_cpus();
3691
	rcu_read_lock();
L
Linus Torvalds 已提交
3692 3693 3694 3695 3696 3697

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3698 3699 3700 3701
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3702
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3703
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3704
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3705 3706

out_unlock:
3707
	rcu_read_unlock();
3708
	put_online_cpus();
L
Linus Torvalds 已提交
3709

3710
	return retval;
L
Linus Torvalds 已提交
3711 3712 3713 3714 3715 3716 3717 3718
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
3719 3720
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3721 3722
{
	int ret;
3723
	cpumask_var_t mask;
L
Linus Torvalds 已提交
3724

A
Anton Blanchard 已提交
3725
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3726 3727
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
3728 3729
		return -EINVAL;

3730 3731
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3732

3733 3734
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
3735
		size_t retlen = min_t(size_t, len, cpumask_size());
3736 3737

		if (copy_to_user(user_mask_ptr, mask, retlen))
3738 3739
			ret = -EFAULT;
		else
3740
			ret = retlen;
3741 3742
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
3743

3744
	return ret;
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
3750 3751
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
3752
 */
3753
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
3754
{
3755
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
3756

3757
	schedstat_inc(rq, yld_count);
3758
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
3759 3760 3761 3762 3763 3764

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
3765
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3766
	do_raw_spin_unlock(&rq->lock);
3767
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772 3773

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
3774 3775 3776 3777 3778
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
3779
static void __cond_resched(void)
L
Linus Torvalds 已提交
3780
{
3781
	add_preempt_count(PREEMPT_ACTIVE);
3782
	__schedule();
3783
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3784 3785
}

3786
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
3787
{
P
Peter Zijlstra 已提交
3788
	if (should_resched()) {
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793
		__cond_resched();
		return 1;
	}
	return 0;
}
3794
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
3795 3796

/*
3797
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
3798 3799
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
3800
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
3801 3802 3803
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
3804
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
3805
{
P
Peter Zijlstra 已提交
3806
	int resched = should_resched();
J
Jan Kara 已提交
3807 3808
	int ret = 0;

3809 3810
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
3811
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
3812
		spin_unlock(lock);
P
Peter Zijlstra 已提交
3813
		if (resched)
N
Nick Piggin 已提交
3814 3815 3816
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
3817
		ret = 1;
L
Linus Torvalds 已提交
3818 3819
		spin_lock(lock);
	}
J
Jan Kara 已提交
3820
	return ret;
L
Linus Torvalds 已提交
3821
}
3822
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
3823

3824
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
3825 3826 3827
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
3828
	if (should_resched()) {
3829
		local_bh_enable();
L
Linus Torvalds 已提交
3830 3831 3832 3833 3834 3835
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
3836
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
3837 3838 3839 3840

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863 3864 3865 3866
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

3867 3868 3869 3870
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
3871 3872
 * @p: target task
 * @preempt: whether task preemption is allowed or not
3873 3874 3875 3876
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
3877 3878 3879 3880
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
3881 3882 3883 3884 3885 3886
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
3887
	int yielded = 0;
3888 3889 3890 3891 3892 3893

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
3894 3895 3896 3897 3898 3899 3900 3901 3902
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

3903 3904 3905 3906 3907 3908 3909
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
3910
		goto out_unlock;
3911 3912

	if (curr->sched_class != p->sched_class)
3913
		goto out_unlock;
3914 3915

	if (task_running(p_rq, p) || p->state)
3916
		goto out_unlock;
3917 3918

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3919
	if (yielded) {
3920
		schedstat_inc(rq, yld_count);
3921 3922 3923 3924 3925 3926 3927
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
3928

3929
out_unlock:
3930
	double_rq_unlock(rq, p_rq);
3931
out_irq:
3932 3933
	local_irq_restore(flags);

3934
	if (yielded > 0)
3935 3936 3937 3938 3939 3940
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
3941
/*
I
Ingo Molnar 已提交
3942
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
3943 3944 3945 3946
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
3947
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3948

3949
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3950
	atomic_inc(&rq->nr_iowait);
3951
	blk_flush_plug(current);
3952
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3953
	schedule();
3954
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3955
	atomic_dec(&rq->nr_iowait);
3956
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3957 3958 3959 3960 3961
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
3962
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3963 3964
	long ret;

3965
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3966
	atomic_inc(&rq->nr_iowait);
3967
	blk_flush_plug(current);
3968
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3969
	ret = schedule_timeout(timeout);
3970
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3971
	atomic_dec(&rq->nr_iowait);
3972
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
3983
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
3993
	case SCHED_BATCH:
I
Ingo Molnar 已提交
3994
	case SCHED_IDLE:
L
Linus Torvalds 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4008
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4009 4010 4011 4012 4013 4014 4015 4016 4017
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4018
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4019
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4033
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4034
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4035
{
4036
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4037
	unsigned int time_slice;
4038 4039
	unsigned long flags;
	struct rq *rq;
4040
	int retval;
L
Linus Torvalds 已提交
4041 4042 4043
	struct timespec t;

	if (pid < 0)
4044
		return -EINVAL;
L
Linus Torvalds 已提交
4045 4046

	retval = -ESRCH;
4047
	rcu_read_lock();
L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054 4055
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4056 4057
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4058
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4059

4060
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4061
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4062 4063
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4064

L
Linus Torvalds 已提交
4065
out_unlock:
4066
	rcu_read_unlock();
L
Linus Torvalds 已提交
4067 4068 4069
	return retval;
}

4070
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4071

4072
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4073 4074
{
	unsigned long free = 0;
4075
	int ppid;
4076
	unsigned state;
L
Linus Torvalds 已提交
4077 4078

	state = p->state ? __ffs(p->state) + 1 : 0;
4079
	printk(KERN_INFO "%-15.15s %c", p->comm,
4080
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4081
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4082
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4083
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4084
	else
P
Peter Zijlstra 已提交
4085
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4086 4087
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4088
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4089
	else
P
Peter Zijlstra 已提交
4090
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4091 4092
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4093
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4094
#endif
4095 4096 4097
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4098
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4099
		task_pid_nr(p), ppid,
4100
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4101

4102
	print_worker_info(KERN_INFO, p);
4103
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4104 4105
}

I
Ingo Molnar 已提交
4106
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4107
{
4108
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4109

4110
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4111 4112
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4113
#else
P
Peter Zijlstra 已提交
4114 4115
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4116
#endif
4117
	rcu_read_lock();
L
Linus Torvalds 已提交
4118 4119 4120
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4121
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4122 4123
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4124
		if (!state_filter || (p->state & state_filter))
4125
			sched_show_task(p);
L
Linus Torvalds 已提交
4126 4127
	} while_each_thread(g, p);

4128 4129
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4130 4131 4132
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4133
	rcu_read_unlock();
I
Ingo Molnar 已提交
4134 4135 4136
	/*
	 * Only show locks if all tasks are dumped:
	 */
4137
	if (!state_filter)
I
Ingo Molnar 已提交
4138
		debug_show_all_locks();
L
Linus Torvalds 已提交
4139 4140
}

I
Ingo Molnar 已提交
4141 4142
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4143
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4144 4145
}

4146 4147 4148 4149 4150 4151 4152 4153
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4154
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4155
{
4156
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4157 4158
	unsigned long flags;

4159
	raw_spin_lock_irqsave(&rq->lock, flags);
4160

I
Ingo Molnar 已提交
4161
	__sched_fork(idle);
4162
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4163 4164
	idle->se.exec_start = sched_clock();

4165
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4177
	__set_task_cpu(idle, cpu);
4178
	rcu_read_unlock();
L
Linus Torvalds 已提交
4179 4180

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4181 4182
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4183
#endif
4184
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4185 4186

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4187
	task_thread_info(idle)->preempt_count = 0;
4188

I
Ingo Molnar 已提交
4189 4190 4191 4192
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4193
	ftrace_graph_init_idle_task(idle, cpu);
4194
	vtime_init_idle(idle);
4195 4196 4197
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4198 4199
}

L
Linus Torvalds 已提交
4200
#ifdef CONFIG_SMP
4201 4202 4203 4204
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4205 4206

	cpumask_copy(&p->cpus_allowed, new_mask);
4207
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4208 4209
}

L
Linus Torvalds 已提交
4210 4211 4212
/*
 * This is how migration works:
 *
4213 4214 4215 4216 4217 4218
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4219
 *    it and puts it into the right queue.
4220 4221
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4222 4223 4224 4225 4226 4227 4228 4229
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4230
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4231 4232
 * call is not atomic; no spinlocks may be held.
 */
4233
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4234 4235
{
	unsigned long flags;
4236
	struct rq *rq;
4237
	unsigned int dest_cpu;
4238
	int ret = 0;
L
Linus Torvalds 已提交
4239 4240

	rq = task_rq_lock(p, &flags);
4241

4242 4243 4244
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4245
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4246 4247 4248 4249
		ret = -EINVAL;
		goto out;
	}

4250
	do_set_cpus_allowed(p, new_mask);
4251

L
Linus Torvalds 已提交
4252
	/* Can the task run on the task's current CPU? If so, we're done */
4253
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4254 4255
		goto out;

4256
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4257
	if (p->on_rq) {
4258
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4259
		/* Need help from migration thread: drop lock and wait. */
4260
		task_rq_unlock(rq, p, &flags);
4261
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4262 4263 4264 4265
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4266
	task_rq_unlock(rq, p, &flags);
4267

L
Linus Torvalds 已提交
4268 4269
	return ret;
}
4270
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4271 4272

/*
I
Ingo Molnar 已提交
4273
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4280 4281
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4282
 */
4283
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4284
{
4285
	struct rq *rq_dest, *rq_src;
4286
	int ret = 0;
L
Linus Torvalds 已提交
4287

4288
	if (unlikely(!cpu_active(dest_cpu)))
4289
		return ret;
L
Linus Torvalds 已提交
4290 4291 4292 4293

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4294
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4295 4296 4297
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4298
		goto done;
L
Linus Torvalds 已提交
4299
	/* Affinity changed (again). */
4300
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4301
		goto fail;
L
Linus Torvalds 已提交
4302

4303 4304 4305 4306
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4307
	if (p->on_rq) {
4308
		dequeue_task(rq_src, p, 0);
4309
		set_task_cpu(p, dest_cpu);
4310
		enqueue_task(rq_dest, p, 0);
4311
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4312
	}
L
Linus Torvalds 已提交
4313
done:
4314
	ret = 1;
L
Linus Torvalds 已提交
4315
fail:
L
Linus Torvalds 已提交
4316
	double_rq_unlock(rq_src, rq_dest);
4317
	raw_spin_unlock(&p->pi_lock);
4318
	return ret;
L
Linus Torvalds 已提交
4319 4320 4321
}

/*
4322 4323 4324
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4325
 */
4326
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4327
{
4328
	struct migration_arg *arg = data;
4329

4330 4331 4332 4333
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4334
	local_irq_disable();
4335
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4336
	local_irq_enable();
L
Linus Torvalds 已提交
4337
	return 0;
4338 4339
}

L
Linus Torvalds 已提交
4340
#ifdef CONFIG_HOTPLUG_CPU
4341

4342
/*
4343 4344
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4345
 */
4346
void idle_task_exit(void)
L
Linus Torvalds 已提交
4347
{
4348
	struct mm_struct *mm = current->active_mm;
4349

4350
	BUG_ON(cpu_online(smp_processor_id()));
4351

4352 4353 4354
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4355 4356 4357
}

/*
4358 4359 4360 4361 4362
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4363
 */
4364
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4365
{
4366 4367 4368
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4369 4370
}

4371
/*
4372 4373 4374 4375 4376 4377
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4378
 */
4379
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4380
{
4381
	struct rq *rq = cpu_rq(dead_cpu);
4382 4383
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4384 4385

	/*
4386 4387 4388 4389 4390 4391 4392
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4393
	 */
4394
	rq->stop = NULL;
4395

4396 4397 4398 4399 4400 4401 4402
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4403
	for ( ; ; ) {
4404 4405 4406 4407 4408
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4409
			break;
4410

4411
		next = pick_next_task(rq);
4412
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4413
		next->sched_class->put_prev_task(rq, next);
4414

4415 4416 4417 4418 4419 4420 4421
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4422
	}
4423

4424
	rq->stop = stop;
4425
}
4426

L
Linus Torvalds 已提交
4427 4428
#endif /* CONFIG_HOTPLUG_CPU */

4429 4430 4431
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4432 4433
	{
		.procname	= "sched_domain",
4434
		.mode		= 0555,
4435
	},
4436
	{}
4437 4438 4439
};

static struct ctl_table sd_ctl_root[] = {
4440 4441
	{
		.procname	= "kernel",
4442
		.mode		= 0555,
4443 4444
		.child		= sd_ctl_dir,
	},
4445
	{}
4446 4447 4448 4449 4450
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4451
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4452 4453 4454 4455

	return entry;
}

4456 4457
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4458
	struct ctl_table *entry;
4459

4460 4461 4462
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4463
	 * will always be set. In the lowest directory the names are
4464 4465 4466
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4467 4468
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4469 4470 4471
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4472 4473 4474 4475 4476

	kfree(*tablep);
	*tablep = NULL;
}

4477
static int min_load_idx = 0;
4478
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4479

4480
static void
4481
set_table_entry(struct ctl_table *entry,
4482
		const char *procname, void *data, int maxlen,
4483 4484
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4485 4486 4487 4488 4489 4490
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4491 4492 4493 4494 4495

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4496 4497 4498 4499 4500
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4501
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4502

4503 4504 4505
	if (table == NULL)
		return NULL;

4506
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4507
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4508
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4509
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4510
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4511
		sizeof(int), 0644, proc_dointvec_minmax, true);
4512
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4513
		sizeof(int), 0644, proc_dointvec_minmax, true);
4514
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4515
		sizeof(int), 0644, proc_dointvec_minmax, true);
4516
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4517
		sizeof(int), 0644, proc_dointvec_minmax, true);
4518
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4519
		sizeof(int), 0644, proc_dointvec_minmax, true);
4520
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4521
		sizeof(int), 0644, proc_dointvec_minmax, false);
4522
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4523
		sizeof(int), 0644, proc_dointvec_minmax, false);
4524
	set_table_entry(&table[9], "cache_nice_tries",
4525
		&sd->cache_nice_tries,
4526
		sizeof(int), 0644, proc_dointvec_minmax, false);
4527
	set_table_entry(&table[10], "flags", &sd->flags,
4528
		sizeof(int), 0644, proc_dointvec_minmax, false);
4529
	set_table_entry(&table[11], "name", sd->name,
4530
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4531
	/* &table[12] is terminator */
4532 4533 4534 4535

	return table;
}

4536
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4537 4538 4539 4540 4541 4542 4543 4544 4545
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4546 4547
	if (table == NULL)
		return NULL;
4548 4549 4550 4551 4552

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4553
		entry->mode = 0555;
4554 4555 4556 4557 4558 4559 4560 4561
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4562
static void register_sched_domain_sysctl(void)
4563
{
4564
	int i, cpu_num = num_possible_cpus();
4565 4566 4567
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4568 4569 4570
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4571 4572 4573
	if (entry == NULL)
		return;

4574
	for_each_possible_cpu(i) {
4575 4576
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4577
		entry->mode = 0555;
4578
		entry->child = sd_alloc_ctl_cpu_table(i);
4579
		entry++;
4580
	}
4581 4582

	WARN_ON(sd_sysctl_header);
4583 4584
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4585

4586
/* may be called multiple times per register */
4587 4588
static void unregister_sched_domain_sysctl(void)
{
4589 4590
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4591
	sd_sysctl_header = NULL;
4592 4593
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4594
}
4595
#else
4596 4597 4598 4599
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4600 4601 4602 4603
{
}
#endif

4604 4605 4606 4607 4608
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4609
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4629
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4630 4631 4632 4633
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4634 4635 4636 4637
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4638 4639
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4640
{
4641
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4642
	unsigned long flags;
4643
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4644

4645
	switch (action & ~CPU_TASKS_FROZEN) {
4646

L
Linus Torvalds 已提交
4647
	case CPU_UP_PREPARE:
4648
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
4649
		break;
4650

L
Linus Torvalds 已提交
4651
	case CPU_ONLINE:
4652
		/* Update our root-domain */
4653
		raw_spin_lock_irqsave(&rq->lock, flags);
4654
		if (rq->rd) {
4655
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4656 4657

			set_rq_online(rq);
4658
		}
4659
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4660
		break;
4661

L
Linus Torvalds 已提交
4662
#ifdef CONFIG_HOTPLUG_CPU
4663
	case CPU_DYING:
4664
		sched_ttwu_pending();
G
Gregory Haskins 已提交
4665
		/* Update our root-domain */
4666
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4667
		if (rq->rd) {
4668
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4669
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4670
		}
4671 4672
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
4673
		raw_spin_unlock_irqrestore(&rq->lock, flags);
4674
		break;
4675

4676
	case CPU_DEAD:
4677
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
4678
		break;
L
Linus Torvalds 已提交
4679 4680
#endif
	}
4681 4682 4683

	update_max_interval();

L
Linus Torvalds 已提交
4684 4685 4686
	return NOTIFY_OK;
}

4687 4688 4689
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
4690
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
4691
 */
4692
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
4693
	.notifier_call = migration_call,
4694
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
4695 4696
};

4697 4698 4699 4700
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
4701
	case CPU_STARTING:
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4722
static int __init migration_init(void)
L
Linus Torvalds 已提交
4723 4724
{
	void *cpu = (void *)(long)smp_processor_id();
4725
	int err;
4726

4727
	/* Initialize migration for the boot CPU */
4728 4729
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
4730 4731
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
4732

4733 4734 4735 4736
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

4737
	return 0;
L
Linus Torvalds 已提交
4738
}
4739
early_initcall(migration_init);
L
Linus Torvalds 已提交
4740 4741 4742
#endif

#ifdef CONFIG_SMP
4743

4744 4745
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

4746
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
4747

4748
static __read_mostly int sched_debug_enabled;
4749

4750
static int __init sched_debug_setup(char *str)
4751
{
4752
	sched_debug_enabled = 1;
4753 4754 4755

	return 0;
}
4756 4757 4758 4759 4760 4761
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
4762

4763
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4764
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
4765
{
I
Ingo Molnar 已提交
4766
	struct sched_group *group = sd->groups;
4767
	char str[256];
L
Linus Torvalds 已提交
4768

R
Rusty Russell 已提交
4769
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4770
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
4771 4772 4773 4774

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
4775
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
4776
		if (sd->parent)
P
Peter Zijlstra 已提交
4777 4778
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
4779
		return -1;
N
Nick Piggin 已提交
4780 4781
	}

P
Peter Zijlstra 已提交
4782
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
4783

4784
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
4785 4786
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
4787
	}
4788
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4789 4790
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
4791
	}
L
Linus Torvalds 已提交
4792

I
Ingo Molnar 已提交
4793
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
4794
	do {
I
Ingo Molnar 已提交
4795
		if (!group) {
P
Peter Zijlstra 已提交
4796 4797
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
4798 4799 4800
			break;
		}

4801 4802 4803 4804 4805 4806
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
4807 4808 4809
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
4810 4811
			break;
		}
L
Linus Torvalds 已提交
4812

4813
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4814 4815
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
4816 4817
			break;
		}
L
Linus Torvalds 已提交
4818

4819 4820
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4821 4822
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
4823 4824
			break;
		}
L
Linus Torvalds 已提交
4825

4826
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
4827

R
Rusty Russell 已提交
4828
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4829

P
Peter Zijlstra 已提交
4830
		printk(KERN_CONT " %s", str);
4831
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
4832
			printk(KERN_CONT " (cpu_power = %d)",
4833
				group->sgp->power);
4834
		}
L
Linus Torvalds 已提交
4835

I
Ingo Molnar 已提交
4836 4837
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
4838
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4839

4840
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
4841
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
4842

4843 4844
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
4845 4846
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
4847 4848
	return 0;
}
L
Linus Torvalds 已提交
4849

I
Ingo Molnar 已提交
4850 4851 4852
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
4853

4854
	if (!sched_debug_enabled)
4855 4856
		return;

I
Ingo Molnar 已提交
4857 4858 4859 4860
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
4861

I
Ingo Molnar 已提交
4862 4863 4864
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
4865
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
4866
			break;
L
Linus Torvalds 已提交
4867 4868
		level++;
		sd = sd->parent;
4869
		if (!sd)
I
Ingo Molnar 已提交
4870 4871
			break;
	}
L
Linus Torvalds 已提交
4872
}
4873
#else /* !CONFIG_SCHED_DEBUG */
4874
# define sched_domain_debug(sd, cpu) do { } while (0)
4875 4876 4877 4878
static inline bool sched_debug(void)
{
	return false;
}
4879
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
4880

4881
static int sd_degenerate(struct sched_domain *sd)
4882
{
4883
	if (cpumask_weight(sched_domain_span(sd)) == 1)
4884 4885 4886 4887 4888 4889
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
4890 4891 4892
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
4893 4894 4895 4896 4897
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
4898
	if (sd->flags & (SD_WAKE_AFFINE))
4899 4900 4901 4902 4903
		return 0;

	return 1;
}

4904 4905
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4906 4907 4908 4909 4910 4911
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

4912
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4913 4914 4915 4916 4917 4918 4919
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
4920 4921 4922
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
4923 4924
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
4925 4926 4927 4928 4929 4930 4931
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

4932
static void free_rootdomain(struct rcu_head *rcu)
4933
{
4934
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4935

4936
	cpupri_cleanup(&rd->cpupri);
4937 4938 4939 4940 4941 4942
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
4943 4944
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
4945
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
4946 4947
	unsigned long flags;

4948
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4949 4950

	if (rq->rd) {
I
Ingo Molnar 已提交
4951
		old_rd = rq->rd;
G
Gregory Haskins 已提交
4952

4953
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4954
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4955

4956
		cpumask_clear_cpu(rq->cpu, old_rd->span);
4957

I
Ingo Molnar 已提交
4958 4959 4960 4961 4962 4963 4964
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
4965 4966 4967 4968 4969
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

4970
	cpumask_set_cpu(rq->cpu, rd->span);
4971
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4972
		set_rq_online(rq);
G
Gregory Haskins 已提交
4973

4974
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
4975 4976

	if (old_rd)
4977
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
4978 4979
}

4980
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
4981 4982 4983
{
	memset(rd, 0, sizeof(*rd));

4984
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4985
		goto out;
4986
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4987
		goto free_span;
4988
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4989
		goto free_online;
4990

4991
	if (cpupri_init(&rd->cpupri) != 0)
4992
		goto free_rto_mask;
4993
	return 0;
4994

4995 4996
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
4997 4998 4999 5000
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5001
out:
5002
	return -ENOMEM;
G
Gregory Haskins 已提交
5003 5004
}

5005 5006 5007 5008 5009 5010
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5011 5012
static void init_defrootdomain(void)
{
5013
	init_rootdomain(&def_root_domain);
5014

G
Gregory Haskins 已提交
5015 5016 5017
	atomic_set(&def_root_domain.refcount, 1);
}

5018
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5019 5020 5021 5022 5023 5024 5025
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5026
	if (init_rootdomain(rd) != 0) {
5027 5028 5029
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5030 5031 5032 5033

	return rd;
}

5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5053 5054 5055
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5056 5057 5058 5059 5060 5061 5062 5063

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5064
		kfree(sd->groups->sgp);
5065
		kfree(sd->groups);
5066
	}
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5081 5082 5083 5084 5085 5086 5087
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5088
 * two cpus are in the same cache domain, see cpus_share_cache().
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5099
	if (sd)
5100 5101 5102 5103 5104 5105
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5106
/*
I
Ingo Molnar 已提交
5107
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5108 5109
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5110 5111
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5112
{
5113
	struct rq *rq = cpu_rq(cpu);
5114 5115 5116
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5117
	for (tmp = sd; tmp; ) {
5118 5119 5120
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5121

5122
		if (sd_parent_degenerate(tmp, parent)) {
5123
			tmp->parent = parent->parent;
5124 5125
			if (parent->parent)
				parent->parent->child = tmp;
5126
			destroy_sched_domain(parent, cpu);
5127 5128
		} else
			tmp = tmp->parent;
5129 5130
	}

5131
	if (sd && sd_degenerate(sd)) {
5132
		tmp = sd;
5133
		sd = sd->parent;
5134
		destroy_sched_domain(tmp, cpu);
5135 5136 5137
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5138

5139
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5140

G
Gregory Haskins 已提交
5141
	rq_attach_root(rq, rd);
5142
	tmp = rq->sd;
N
Nick Piggin 已提交
5143
	rcu_assign_pointer(rq->sd, sd);
5144
	destroy_sched_domains(tmp, cpu);
5145 5146

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5147 5148 5149
}

/* cpus with isolated domains */
5150
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5151 5152 5153 5154

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5155
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5156
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5157 5158 5159
	return 1;
}

I
Ingo Molnar 已提交
5160
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5161

5162 5163 5164 5165 5166
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5167 5168 5169
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5170
	struct sched_group_power **__percpu sgp;
5171 5172
};

5173
struct s_data {
5174
	struct sched_domain ** __percpu sd;
5175 5176 5177
	struct root_domain	*rd;
};

5178 5179
enum s_alloc {
	sa_rootdomain,
5180
	sa_sd,
5181
	sa_sd_storage,
5182 5183 5184
	sa_none,
};

5185 5186 5187
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5188 5189
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5190 5191
#define SDTL_OVERLAP	0x01

5192
struct sched_domain_topology_level {
5193 5194
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5195
	int		    flags;
5196
	int		    numa_level;
5197
	struct sd_data      data;
5198 5199
};

P
Peter Zijlstra 已提交
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5256 5257 5258 5259 5260 5261
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5262
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5263
				GFP_KERNEL, cpu_to_node(cpu));
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5277
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5278 5279 5280
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5281 5282 5283 5284 5285 5286
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5287

P
Peter Zijlstra 已提交
5288 5289 5290 5291 5292
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5293
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5294
		    group_balance_cpu(sg) == cpu)
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5314
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5315
{
5316 5317
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5318

5319 5320
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5321

5322
	if (sg) {
5323
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5324
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5325
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5326
	}
5327 5328

	return cpu;
5329 5330
}

5331
/*
5332 5333 5334
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5335 5336
 *
 * Assumes the sched_domain tree is fully constructed
5337
 */
5338 5339
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5340
{
5341 5342 5343
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5344
	struct cpumask *covered;
5345
	int i;
5346

5347 5348 5349 5350 5351 5352
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5353 5354 5355
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5356
	cpumask_clear(covered);
5357

5358 5359 5360 5361
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5362

5363 5364
		if (cpumask_test_cpu(i, covered))
			continue;
5365

5366
		cpumask_clear(sched_group_cpus(sg));
5367
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5368
		cpumask_setall(sched_group_mask(sg));
5369

5370 5371 5372
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5373

5374 5375 5376
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5377

5378 5379 5380 5381 5382 5383 5384
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5385 5386

	return 0;
5387
}
5388

5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5401
	struct sched_group *sg = sd->groups;
5402

5403 5404 5405 5406 5407 5408
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5409

P
Peter Zijlstra 已提交
5410
	if (cpu != group_balance_cpu(sg))
5411
		return;
5412

5413
	update_group_power(sd, cpu);
5414
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5415 5416
}

5417 5418 5419
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5420 5421
}

5422 5423 5424 5425 5426
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5427 5428 5429 5430 5431 5432
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5433 5434 5435 5436 5437 5438 5439 5440 5441
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5442 5443 5444 5445 5446 5447 5448 5449 5450
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5451 5452 5453
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5454

5455
static int default_relax_domain_level = -1;
5456
int sched_domain_level_max;
5457 5458 5459

static int __init setup_relax_domain_level(char *str)
{
5460 5461
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5462

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5481
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5482 5483
	} else {
		/* turn on idle balance on this domain */
5484
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5485 5486 5487
	}
}

5488 5489 5490
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5491 5492 5493 5494 5495
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5496 5497
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5498 5499
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5500
	case sa_sd_storage:
5501
		__sdt_free(cpu_map); /* fall through */
5502 5503 5504 5505
	case sa_none:
		break;
	}
}
5506

5507 5508 5509
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5510 5511
	memset(d, 0, sizeof(*d));

5512 5513
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5514 5515 5516
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5517
	d->rd = alloc_rootdomain();
5518
	if (!d->rd)
5519
		return sa_sd;
5520 5521
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5522

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5535
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5536
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5537 5538

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5539
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5540 5541
}

5542 5543
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5544
{
5545
	return topology_thread_cpumask(cpu);
5546
}
5547
#endif
5548

5549 5550 5551
/*
 * Topology list, bottom-up.
 */
5552
static struct sched_domain_topology_level default_topology[] = {
5553 5554
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5555
#endif
5556
#ifdef CONFIG_SCHED_MC
5557
	{ sd_init_MC, cpu_coregroup_mask, },
5558
#endif
5559 5560 5561 5562
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5563 5564 5565 5566 5567
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5568 5569 5570
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5571 5572 5573 5574 5575 5576 5577 5578 5579
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5580
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5598
		.imbalance_pct		= 125,
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
5718
		}
5719 5720 5721 5722 5723 5724

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
5725 5726 5727 5728 5729
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
5730
	 * The sched_domains_numa_distance[] array includes the actual distance
5731 5732 5733
	 * numbers.
	 */

5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
5760
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5761 5762 5763 5764 5765 5766
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
5767
				if (node_distance(j, k) > sched_domains_numa_distance[i])
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
5799 5800

	sched_domains_numa_levels = level;
5801
}
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
5849 5850 5851 5852 5853
}
#else
static inline void sched_init_numa(void)
{
}
5854 5855 5856 5857 5858 5859 5860

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
5861 5862
#endif /* CONFIG_NUMA */

5863 5864 5865 5866 5867
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5868
	for_each_sd_topology(tl) {
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

5879 5880 5881 5882
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

5883 5884 5885
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
5886
			struct sched_group_power *sgp;
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

5900 5901
			sg->next = sg;

5902
			*per_cpu_ptr(sdd->sg, j) = sg;
5903

P
Peter Zijlstra 已提交
5904
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5905 5906 5907 5908 5909
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5921
	for_each_sd_topology(tl) {
5922 5923 5924
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
5938 5939
		}
		free_percpu(sdd->sd);
5940
		sdd->sd = NULL;
5941
		free_percpu(sdd->sg);
5942
		sdd->sg = NULL;
5943
		free_percpu(sdd->sgp);
5944
		sdd->sgp = NULL;
5945 5946 5947
	}
}

5948
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5949 5950
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
5951
{
5952
	struct sched_domain *sd = tl->init(tl, cpu);
5953
	if (!sd)
5954
		return child;
5955 5956

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5957 5958 5959
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5960
		child->parent = sd;
5961
		sd->child = child;
5962
	}
5963
	set_domain_attribute(sd, attr);
5964 5965 5966 5967

	return sd;
}

5968 5969 5970 5971
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
5972 5973
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
5974
{
5975
	enum s_alloc alloc_state;
5976
	struct sched_domain *sd;
5977
	struct s_data d;
5978
	int i, ret = -ENOMEM;
5979

5980 5981 5982
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
5983

5984
	/* Set up domains for cpus specified by the cpu_map. */
5985
	for_each_cpu(i, cpu_map) {
5986 5987
		struct sched_domain_topology_level *tl;

5988
		sd = NULL;
5989
		for_each_sd_topology(tl) {
5990
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5991 5992
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
5993 5994
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
5995 5996
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
5997
		}
5998 5999 6000 6001 6002 6003
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6004 6005 6006 6007 6008 6009 6010
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6011
		}
6012
	}
6013

L
Linus Torvalds 已提交
6014
	/* Calculate CPU power for physical packages and nodes */
6015 6016 6017
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6018

6019 6020
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6021
			init_sched_groups_power(i, sd);
6022
		}
6023
	}
6024

L
Linus Torvalds 已提交
6025
	/* Attach the domains */
6026
	rcu_read_lock();
6027
	for_each_cpu(i, cpu_map) {
6028
		sd = *per_cpu_ptr(d.sd, i);
6029
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6030
	}
6031
	rcu_read_unlock();
6032

6033
	ret = 0;
6034
error:
6035
	__free_domain_allocs(&d, alloc_state, cpu_map);
6036
	return ret;
L
Linus Torvalds 已提交
6037
}
P
Paul Jackson 已提交
6038

6039
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6040
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6041 6042
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6043 6044 6045

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6046 6047
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6048
 */
6049
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6050

6051 6052 6053 6054 6055 6056
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6057
{
6058
	return 0;
6059 6060
}

6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6086
/*
I
Ingo Molnar 已提交
6087
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6088 6089
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6090
 */
6091
static int init_sched_domains(const struct cpumask *cpu_map)
6092
{
6093 6094
	int err;

6095
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6096
	ndoms_cur = 1;
6097
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6098
	if (!doms_cur)
6099 6100
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6101
	err = build_sched_domains(doms_cur[0], NULL);
6102
	register_sched_domain_sysctl();
6103 6104

	return err;
6105 6106 6107 6108 6109 6110
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6111
static void detach_destroy_domains(const struct cpumask *cpu_map)
6112 6113 6114
{
	int i;

6115
	rcu_read_lock();
6116
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6117
		cpu_attach_domain(NULL, &def_root_domain, i);
6118
	rcu_read_unlock();
6119 6120
}

6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6137 6138
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6139
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6140 6141 6142
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6143
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6144 6145 6146
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6147 6148 6149
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6150 6151 6152 6153 6154 6155
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6156
 *
6157
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6158 6159
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6160
 *
P
Paul Jackson 已提交
6161 6162
 * Call with hotplug lock held
 */
6163
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6164
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6165
{
6166
	int i, j, n;
6167
	int new_topology;
P
Paul Jackson 已提交
6168

6169
	mutex_lock(&sched_domains_mutex);
6170

6171 6172 6173
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6174 6175 6176
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6177
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6178 6179 6180

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6181
		for (j = 0; j < n && !new_topology; j++) {
6182
			if (cpumask_equal(doms_cur[i], doms_new[j])
6183
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6184 6185 6186
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6187
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6188 6189 6190 6191
match1:
		;
	}

6192 6193
	if (doms_new == NULL) {
		ndoms_cur = 0;
6194
		doms_new = &fallback_doms;
6195
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6196
		WARN_ON_ONCE(dattr_new);
6197 6198
	}

P
Paul Jackson 已提交
6199 6200
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6201
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6202
			if (cpumask_equal(doms_new[i], doms_cur[j])
6203
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6204 6205 6206
				goto match2;
		}
		/* no match - add a new doms_new */
6207
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6208 6209 6210 6211 6212
match2:
		;
	}

	/* Remember the new sched domains */
6213 6214
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6215
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6216
	doms_cur = doms_new;
6217
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6218
	ndoms_cur = ndoms_new;
6219 6220

	register_sched_domain_sysctl();
6221

6222
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6223 6224
}

6225 6226
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6227
/*
6228 6229 6230
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6231 6232 6233
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6234
 */
6235 6236
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6237
{
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6260
	case CPU_ONLINE:
6261
	case CPU_DOWN_FAILED:
6262
		cpuset_update_active_cpus(true);
6263
		break;
6264 6265 6266
	default:
		return NOTIFY_DONE;
	}
6267
	return NOTIFY_OK;
6268
}
6269

6270 6271
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6272
{
6273
	switch (action) {
6274
	case CPU_DOWN_PREPARE:
6275
		cpuset_update_active_cpus(false);
6276 6277 6278 6279 6280
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6281 6282 6283
	default:
		return NOTIFY_DONE;
	}
6284
	return NOTIFY_OK;
6285 6286
}

L
Linus Torvalds 已提交
6287 6288
void __init sched_init_smp(void)
{
6289 6290 6291
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6292
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6293

6294 6295
	sched_init_numa();

6296
	get_online_cpus();
6297
	mutex_lock(&sched_domains_mutex);
6298
	init_sched_domains(cpu_active_mask);
6299 6300 6301
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6302
	mutex_unlock(&sched_domains_mutex);
6303
	put_online_cpus();
6304

6305
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6306 6307
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6308

6309
	init_hrtick();
6310 6311

	/* Move init over to a non-isolated CPU */
6312
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6313
		BUG();
I
Ingo Molnar 已提交
6314
	sched_init_granularity();
6315
	free_cpumask_var(non_isolated_cpus);
6316

6317
	init_sched_rt_class();
L
Linus Torvalds 已提交
6318 6319 6320 6321
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6322
	sched_init_granularity();
L
Linus Torvalds 已提交
6323 6324 6325
}
#endif /* CONFIG_SMP */

6326 6327
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6328 6329 6330 6331 6332 6333 6334
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6335
#ifdef CONFIG_CGROUP_SCHED
6336 6337 6338 6339
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6340
struct task_group root_task_group;
6341
LIST_HEAD(task_groups);
6342
#endif
P
Peter Zijlstra 已提交
6343

6344
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6345

L
Linus Torvalds 已提交
6346 6347
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6348
	int i, j;
6349 6350 6351 6352 6353 6354 6355
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6356
#endif
6357
#ifdef CONFIG_CPUMASK_OFFSTACK
6358
	alloc_size += num_possible_cpus() * cpumask_size();
6359 6360
#endif
	if (alloc_size) {
6361
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6362 6363

#ifdef CONFIG_FAIR_GROUP_SCHED
6364
		root_task_group.se = (struct sched_entity **)ptr;
6365 6366
		ptr += nr_cpu_ids * sizeof(void **);

6367
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6368
		ptr += nr_cpu_ids * sizeof(void **);
6369

6370
#endif /* CONFIG_FAIR_GROUP_SCHED */
6371
#ifdef CONFIG_RT_GROUP_SCHED
6372
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6373 6374
		ptr += nr_cpu_ids * sizeof(void **);

6375
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6376 6377
		ptr += nr_cpu_ids * sizeof(void **);

6378
#endif /* CONFIG_RT_GROUP_SCHED */
6379 6380
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6381
			per_cpu(load_balance_mask, i) = (void *)ptr;
6382 6383 6384
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6385
	}
I
Ingo Molnar 已提交
6386

G
Gregory Haskins 已提交
6387 6388 6389 6390
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6391 6392 6393 6394
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6395
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6396
			global_rt_period(), global_rt_runtime());
6397
#endif /* CONFIG_RT_GROUP_SCHED */
6398

D
Dhaval Giani 已提交
6399
#ifdef CONFIG_CGROUP_SCHED
6400 6401
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6402
	INIT_LIST_HEAD(&root_task_group.siblings);
6403
	autogroup_init(&init_task);
6404

D
Dhaval Giani 已提交
6405
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6406

6407
	for_each_possible_cpu(i) {
6408
		struct rq *rq;
L
Linus Torvalds 已提交
6409 6410

		rq = cpu_rq(i);
6411
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6412
		rq->nr_running = 0;
6413 6414
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6415
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6416
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6417
#ifdef CONFIG_FAIR_GROUP_SCHED
6418
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6419
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6420
		/*
6421
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6422 6423 6424 6425
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6426
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6427 6428 6429
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6430
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6431 6432 6433
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6434
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6435
		 *
6436 6437
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6438
		 */
6439
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6440
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6441 6442 6443
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6444
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6445
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6446
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6447
#endif
L
Linus Torvalds 已提交
6448

I
Ingo Molnar 已提交
6449 6450
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6451 6452 6453

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6454
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6455
		rq->sd = NULL;
G
Gregory Haskins 已提交
6456
		rq->rd = NULL;
6457
		rq->cpu_power = SCHED_POWER_SCALE;
6458
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6459
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6460
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6461
		rq->push_cpu = 0;
6462
		rq->cpu = i;
6463
		rq->online = 0;
6464 6465
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6466 6467 6468

		INIT_LIST_HEAD(&rq->cfs_tasks);

6469
		rq_attach_root(rq, &def_root_domain);
6470
#ifdef CONFIG_NO_HZ_COMMON
6471
		rq->nohz_flags = 0;
6472
#endif
6473 6474 6475
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6476
#endif
P
Peter Zijlstra 已提交
6477
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6478 6479 6480
		atomic_set(&rq->nr_iowait, 0);
	}

6481
	set_load_weight(&init_task);
6482

6483 6484 6485 6486
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6487
#ifdef CONFIG_RT_MUTEXES
6488
	plist_head_init(&init_task.pi_waiters);
6489 6490
#endif

L
Linus Torvalds 已提交
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6504 6505 6506

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6507 6508 6509 6510
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6511

6512
#ifdef CONFIG_SMP
6513
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6514 6515 6516
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6517
	idle_thread_set_boot_cpu();
6518 6519
#endif
	init_sched_fair_class();
6520

6521
	scheduler_running = 1;
L
Linus Torvalds 已提交
6522 6523
}

6524
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6525 6526
static inline int preempt_count_equals(int preempt_offset)
{
6527
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6528

A
Arnd Bergmann 已提交
6529
	return (nested == preempt_offset);
6530 6531
}

6532
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6533 6534 6535
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6536
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6537 6538
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6539 6540 6541 6542 6543
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6544 6545 6546 6547 6548 6549 6550
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6551 6552 6553 6554 6555

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6556 6557 6558 6559 6560
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6561 6562
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6563 6564
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6565
	int on_rq;
6566

P
Peter Zijlstra 已提交
6567
	on_rq = p->on_rq;
6568
	if (on_rq)
6569
		dequeue_task(rq, p, 0);
6570 6571
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6572
		enqueue_task(rq, p, 0);
6573 6574
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6575 6576

	check_class_changed(rq, p, prev_class, old_prio);
6577 6578
}

L
Linus Torvalds 已提交
6579 6580
void normalize_rt_tasks(void)
{
6581
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6582
	unsigned long flags;
6583
	struct rq *rq;
L
Linus Torvalds 已提交
6584

6585
	read_lock_irqsave(&tasklist_lock, flags);
6586
	do_each_thread(g, p) {
6587 6588 6589 6590 6591 6592
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6593 6594
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6595 6596 6597
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6598
#endif
I
Ingo Molnar 已提交
6599 6600 6601 6602 6603 6604 6605 6606

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6607
			continue;
I
Ingo Molnar 已提交
6608
		}
L
Linus Torvalds 已提交
6609

6610
		raw_spin_lock(&p->pi_lock);
6611
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6612

6613
		normalize_task(rq, p);
6614

6615
		__task_rq_unlock(rq);
6616
		raw_spin_unlock(&p->pi_lock);
6617 6618
	} while_each_thread(g, p);

6619
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
6620 6621 6622
}

#endif /* CONFIG_MAGIC_SYSRQ */
6623

6624
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6625
/*
6626
 * These functions are only useful for the IA64 MCA handling, or kdb.
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6641
struct task_struct *curr_task(int cpu)
6642 6643 6644 6645
{
	return cpu_curr(cpu);
}

6646 6647 6648
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6649 6650 6651 6652 6653 6654
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6655 6656
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6657 6658 6659 6660 6661 6662 6663
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6664
void set_curr_task(int cpu, struct task_struct *p)
6665 6666 6667 6668 6669
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6670

D
Dhaval Giani 已提交
6671
#ifdef CONFIG_CGROUP_SCHED
6672 6673 6674
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6675 6676 6677 6678
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6679
	autogroup_free(tg);
6680 6681 6682 6683
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
6684
struct task_group *sched_create_group(struct task_group *parent)
6685 6686 6687 6688 6689 6690 6691
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6692
	if (!alloc_fair_sched_group(tg, parent))
6693 6694
		goto err;

6695
	if (!alloc_rt_sched_group(tg, parent))
6696 6697
		goto err;

6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6709
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6710
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6711 6712 6713 6714 6715

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6716
	list_add_rcu(&tg->siblings, &parent->children);
6717
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6718 6719
}

6720
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
6721
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6722 6723
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
6724
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6725 6726
}

6727
/* Destroy runqueue etc associated with a task group */
6728
void sched_destroy_group(struct task_group *tg)
6729 6730 6731 6732 6733 6734
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6735
{
6736
	unsigned long flags;
6737
	int i;
S
Srivatsa Vaddagiri 已提交
6738

6739 6740
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
6741
		unregister_fair_sched_group(tg, i);
6742 6743

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6744
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6745
	list_del_rcu(&tg->siblings);
6746
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6747 6748
}

6749
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6750 6751 6752
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6753 6754
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6755
{
P
Peter Zijlstra 已提交
6756
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6757 6758 6759 6760 6761 6762
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

6763
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
6764
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
6765

6766
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
6767
		dequeue_task(rq, tsk, 0);
6768 6769
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6770

P
Peter Zijlstra 已提交
6771 6772 6773 6774 6775 6776
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6777
#ifdef CONFIG_FAIR_GROUP_SCHED
6778 6779 6780
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
6781
#endif
6782
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
6783

6784 6785 6786
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
6787
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
6788

6789
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
6790
}
D
Dhaval Giani 已提交
6791
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6792

6793
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
6794 6795 6796
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6797
		return 1ULL << 20;
P
Peter Zijlstra 已提交
6798

P
Peter Zijlstra 已提交
6799
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
6800
}
6801 6802 6803 6804 6805 6806 6807
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6808

P
Peter Zijlstra 已提交
6809 6810
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6811
{
P
Peter Zijlstra 已提交
6812
	struct task_struct *g, *p;
6813

P
Peter Zijlstra 已提交
6814
	do_each_thread(g, p) {
6815
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
6816 6817
			return 1;
	} while_each_thread(g, p);
6818

P
Peter Zijlstra 已提交
6819 6820
	return 0;
}
6821

P
Peter Zijlstra 已提交
6822 6823 6824 6825 6826
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6827

6828
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6829 6830 6831 6832 6833
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6834

P
Peter Zijlstra 已提交
6835 6836
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6837

P
Peter Zijlstra 已提交
6838 6839 6840
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6841 6842
	}

6843 6844 6845 6846 6847
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6848

6849 6850 6851
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6852 6853
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6854

P
Peter Zijlstra 已提交
6855
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6856

6857 6858 6859 6860 6861
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6862

6863 6864 6865
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6866 6867 6868
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6869

P
Peter Zijlstra 已提交
6870 6871 6872 6873
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6874

P
Peter Zijlstra 已提交
6875
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6876
	}
P
Peter Zijlstra 已提交
6877

P
Peter Zijlstra 已提交
6878 6879 6880 6881
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6882 6883
}

P
Peter Zijlstra 已提交
6884
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6885
{
6886 6887
	int ret;

P
Peter Zijlstra 已提交
6888 6889 6890 6891 6892 6893
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6894 6895 6896 6897 6898
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6899 6900
}

6901
static int tg_set_rt_bandwidth(struct task_group *tg,
6902
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6903
{
P
Peter Zijlstra 已提交
6904
	int i, err = 0;
P
Peter Zijlstra 已提交
6905 6906

	mutex_lock(&rt_constraints_mutex);
6907
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6908 6909
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6910
		goto unlock;
P
Peter Zijlstra 已提交
6911

6912
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6913 6914
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6915 6916 6917 6918

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6919
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6920
		rt_rq->rt_runtime = rt_runtime;
6921
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6922
	}
6923
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6924
unlock:
6925
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6926 6927 6928
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6929 6930
}

6931
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6932 6933 6934 6935 6936 6937 6938 6939
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6940
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6941 6942
}

6943
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6944 6945 6946
{
	u64 rt_runtime_us;

6947
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6948 6949
		return -1;

6950
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6951 6952 6953
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
6954

6955
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6956 6957 6958 6959 6960 6961
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

6962 6963 6964
	if (rt_period == 0)
		return -EINVAL;

6965
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6966 6967
}

6968
static long sched_group_rt_period(struct task_group *tg)
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
6979
	u64 runtime, period;
6980 6981
	int ret = 0;

6982 6983 6984
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

6985 6986 6987 6988 6989 6990 6991 6992
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
6993

6994
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
6995
	read_lock(&tasklist_lock);
6996
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
6997
	read_unlock(&tasklist_lock);
6998 6999 7000 7001
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7002

7003
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7004 7005 7006 7007 7008 7009 7010 7011
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7012
#else /* !CONFIG_RT_GROUP_SCHED */
7013 7014
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7015 7016 7017
	unsigned long flags;
	int i;

7018 7019 7020
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7021 7022 7023 7024 7025 7026 7027
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7028
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7029 7030 7031
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7032
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7033
		rt_rq->rt_runtime = global_rt_runtime();
7034
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7035
	}
7036
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7037

7038 7039
	return 0;
}
7040
#endif /* CONFIG_RT_GROUP_SCHED */
7041

7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7061
int sched_rt_handler(struct ctl_table *table, int write,
7062
		void __user *buffer, size_t *lenp,
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7073
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7090

7091
#ifdef CONFIG_CGROUP_SCHED
7092 7093

/* return corresponding task_group object of a cgroup */
7094
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7095
{
7096 7097
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7098 7099
}

7100
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7101
{
7102
	struct task_group *tg, *parent;
7103

7104
	if (!cgrp->parent) {
7105
		/* This is early initialization for the top cgroup */
7106
		return &root_task_group.css;
7107 7108
	}

7109 7110
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7111 7112 7113 7114 7115 7116
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7130
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7131
{
7132
	struct task_group *tg = cgroup_tg(cgrp);
7133 7134 7135 7136

	sched_destroy_group(tg);
}

7137 7138 7139 7140 7141 7142 7143
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7144
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7145
				 struct cgroup_taskset *tset)
7146
{
7147 7148 7149
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7150
#ifdef CONFIG_RT_GROUP_SCHED
7151 7152
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7153
#else
7154 7155 7156
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7157
#endif
7158
	}
7159 7160
	return 0;
}
7161

7162
static void cpu_cgroup_attach(struct cgroup *cgrp,
7163
			      struct cgroup_taskset *tset)
7164
{
7165 7166 7167 7168
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7169 7170
}

7171
static void
7172 7173
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7186
#ifdef CONFIG_FAIR_GROUP_SCHED
7187
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7188
				u64 shareval)
7189
{
7190
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7191 7192
}

7193
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7194
{
7195
	struct task_group *tg = cgroup_tg(cgrp);
7196

7197
	return (u64) scale_load_down(tg->shares);
7198
}
7199 7200

#ifdef CONFIG_CFS_BANDWIDTH
7201 7202
static DEFINE_MUTEX(cfs_constraints_mutex);

7203 7204 7205
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7206 7207
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7208 7209
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7210
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7211
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7232 7233 7234 7235 7236
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7237
	runtime_enabled = quota != RUNTIME_INF;
7238 7239
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7240 7241 7242
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7243

P
Paul Turner 已提交
7244
	__refill_cfs_bandwidth_runtime(cfs_b);
7245 7246 7247 7248 7249 7250
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7251 7252 7253 7254
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7255
		struct rq *rq = cfs_rq->rq;
7256 7257

		raw_spin_lock_irq(&rq->lock);
7258
		cfs_rq->runtime_enabled = runtime_enabled;
7259
		cfs_rq->runtime_remaining = 0;
7260

7261
		if (cfs_rq->throttled)
7262
			unthrottle_cfs_rq(cfs_rq);
7263 7264
		raw_spin_unlock_irq(&rq->lock);
	}
7265 7266
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7267

7268
	return ret;
7269 7270 7271 7272 7273 7274
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7275
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7288
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7289 7290
		return -1;

7291
	quota_us = tg->cfs_bandwidth.quota;
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7302
	quota = tg->cfs_bandwidth.quota;
7303 7304 7305 7306 7307 7308 7309 7310

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7311
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7371
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7372 7373 7374 7375 7376
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7377
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7398
	int ret;
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7410 7411 7412 7413 7414
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7415
}
7416 7417 7418 7419 7420

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7421
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7422 7423 7424 7425 7426 7427 7428

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7429
#endif /* CONFIG_CFS_BANDWIDTH */
7430
#endif /* CONFIG_FAIR_GROUP_SCHED */
7431

7432
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7433
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7434
				s64 val)
P
Peter Zijlstra 已提交
7435
{
7436
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7437 7438
}

7439
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7440
{
7441
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7442
}
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7454
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7455

7456
static struct cftype cpu_files[] = {
7457
#ifdef CONFIG_FAIR_GROUP_SCHED
7458 7459
	{
		.name = "shares",
7460 7461
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7462
	},
7463
#endif
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7475 7476 7477 7478
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7479
#endif
7480
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7481
	{
P
Peter Zijlstra 已提交
7482
		.name = "rt_runtime_us",
7483 7484
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7485
	},
7486 7487
	{
		.name = "rt_period_us",
7488 7489
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7490
	},
7491
#endif
7492
	{ }	/* terminate */
7493 7494 7495
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7496
	.name		= "cpu",
7497 7498
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7499 7500
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
7501 7502
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7503
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7504
	.subsys_id	= cpu_cgroup_subsys_id,
7505
	.base_cftypes	= cpu_files,
7506 7507 7508
	.early_init	= 1,
};

7509
#endif	/* CONFIG_CGROUP_SCHED */
7510

7511 7512 7513 7514 7515
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}