core.c 178.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

391
	raw_spin_lock(&rq->lock);
392
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
393
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
395 396 397 398

	return HRTIMER_NORESTART;
}

399
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
400 401 402 403 404 405 406 407 408

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

409 410 411 412
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
413
{
414
	struct rq *rq = arg;
415

416
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
417
	__hrtick_restart(rq);
418
	rq->hrtick_csd_pending = 0;
419
	raw_spin_unlock(&rq->lock);
420 421
}

422 423 424 425 426
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
427
void hrtick_start(struct rq *rq, u64 delay)
428
{
429 430
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431

432
	hrtimer_set_expires(timer, time);
433 434

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
435
		__hrtick_restart(rq);
436
	} else if (!rq->hrtick_csd_pending) {
437
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 439
		rq->hrtick_csd_pending = 1;
	}
440 441 442 443 444 445 446 447 448 449 450 451 452 453
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
454
		hrtick_clear(cpu_rq(cpu));
455 456 457 458 459 460
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

461
static __init void init_hrtick(void)
462 463 464
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
465 466 467 468 469 470
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
471
void hrtick_start(struct rq *rq, u64 delay)
472
{
473
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474
			HRTIMER_MODE_REL_PINNED, 0);
475
}
476

A
Andrew Morton 已提交
477
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
478 479
{
}
480
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
481

482
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
483
{
484 485
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
486

487 488 489 490
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
491

492 493
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
494
}
A
Andrew Morton 已提交
495
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
496 497 498 499 500 501 502 503
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

504 505 506
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
507
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
508

I
Ingo Molnar 已提交
509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
517
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
518 519 520
{
	int cpu;

521
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
522

523
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
524 525
		return;

526
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
527 528 529 530 531 532 533 534 535 536 537

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

538
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
539 540 541 542
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

543
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
544 545
		return;
	resched_task(cpu_curr(cpu));
546
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
547
}
548

549
#ifdef CONFIG_NO_HZ_COMMON
550 551 552 553 554 555 556 557 558 559 560 561 562 563
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

564
	rcu_read_lock();
565
	for_each_domain(cpu, sd) {
566 567 568 569 570 571
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
572
	}
573 574
unlock:
	rcu_read_unlock();
575 576
	return cpu;
}
577 578 579 580 581 582 583 584 585 586
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
587
static void wake_up_idle_cpu(int cpu)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
603 604

	/*
605 606 607
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
608
	 */
609
	set_tsk_need_resched(rq->idle);
610

611 612 613 614
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
615 616
}

617
static bool wake_up_full_nohz_cpu(int cpu)
618
{
619
	if (tick_nohz_full_cpu(cpu)) {
620 621 622 623 624 625 626 627 628 629 630
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
631
	if (!wake_up_full_nohz_cpu(cpu))
632 633 634
		wake_up_idle_cpu(cpu);
}

635
static inline bool got_nohz_idle_kick(void)
636
{
637
	int cpu = smp_processor_id();
638 639 640 641 642 643 644 645 646 647 648 649 650

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
651 652
}

653
#else /* CONFIG_NO_HZ_COMMON */
654

655
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
656
{
657
	return false;
P
Peter Zijlstra 已提交
658 659
}

660
#endif /* CONFIG_NO_HZ_COMMON */
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
679

680
void sched_avg_update(struct rq *rq)
681
{
682 683
	s64 period = sched_avg_period();

684
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 686 687 688 689 690
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
691 692 693
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
694 695
}

696
#else /* !CONFIG_SMP */
697
void resched_task(struct task_struct *p)
698
{
699
	assert_raw_spin_locked(&task_rq(p)->lock);
700
	set_tsk_need_resched(p);
701
}
702
#endif /* CONFIG_SMP */
703

704 705
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706
/*
707 708 709 710
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
711
 */
712
int walk_tg_tree_from(struct task_group *from,
713
			     tg_visitor down, tg_visitor up, void *data)
714 715
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
716
	int ret;
717

718 719
	parent = from;

720
down:
P
Peter Zijlstra 已提交
721 722
	ret = (*down)(parent, data);
	if (ret)
723
		goto out;
724 725 726 727 728 729 730
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
731
	ret = (*up)(parent, data);
732 733
	if (ret || parent == from)
		goto out;
734 735 736 737 738

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
739
out:
P
Peter Zijlstra 已提交
740
	return ret;
741 742
}

743
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
744
{
745
	return 0;
P
Peter Zijlstra 已提交
746
}
747 748
#endif

749 750
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
751 752 753
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
754 755 756 757
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
758
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
759
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
760 761
		return;
	}
762

763
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
764
	load->inv_weight = prio_to_wmult[prio];
765 766
}

767
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
768
{
769
	update_rq_clock(rq);
I
Ingo Molnar 已提交
770
	sched_info_queued(p);
771
	p->sched_class->enqueue_task(rq, p, flags);
772 773
}

774
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775
{
776
	update_rq_clock(rq);
777
	sched_info_dequeued(p);
778
	p->sched_class->dequeue_task(rq, p, flags);
779 780
}

781
void activate_task(struct rq *rq, struct task_struct *p, int flags)
782 783 784 785
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

786
	enqueue_task(rq, p, flags);
787 788
}

789
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
790 791 792 793
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

794
	dequeue_task(rq, p, flags);
795 796
}

797
static void update_rq_clock_task(struct rq *rq, s64 delta)
798
{
799 800 801 802 803 804 805 806
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
807
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
829 830
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
831
	if (static_key_false((&paravirt_steal_rq_enabled))) {
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

849 850
	rq->clock_task += delta;

851 852 853 854
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
855 856
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

887
/*
I
Ingo Molnar 已提交
888
 * __normal_prio - return the priority that is based on the static prio
889 890 891
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
892
	return p->static_prio;
893 894
}

895 896 897 898 899 900 901
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
902
static inline int normal_prio(struct task_struct *p)
903 904 905
{
	int prio;

906
	if (task_has_rt_policy(p))
907 908 909 910 911 912 913 914 915 916 917 918 919
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
920
static int effective_prio(struct task_struct *p)
921 922 923 924 925 926 927 928 929 930 931 932
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
933 934 935 936
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
937
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
938 939 940 941
{
	return cpu_curr(task_cpu(p)) == p;
}

942 943
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
944
				       int oldprio)
945 946 947
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
948 949 950 951
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
952 953
}

954
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
975
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
976 977 978
		rq->skip_clock_update = 1;
}

979 980 981 982 983 984 985
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
986
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
987
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
988
{
989 990 991 992 993
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
994 995
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
996 997

#ifdef CONFIG_LOCKDEP
998 999 1000 1001 1002
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1003
	 * see task_group().
1004 1005 1006 1007
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1008 1009 1010
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1011 1012
#endif

1013
	trace_sched_migrate_task(p, new_cpu);
1014

1015
	if (task_cpu(p) != new_cpu) {
1016 1017
		struct task_migration_notifier tmn;

1018 1019
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1020
		p->se.nr_migrations++;
1021
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1022 1023 1024 1025 1026 1027

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1028
	}
I
Ingo Molnar 已提交
1029 1030

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1031 1032
}

1033
struct migration_arg {
1034
	struct task_struct *task;
L
Linus Torvalds 已提交
1035
	int dest_cpu;
1036
};
L
Linus Torvalds 已提交
1037

1038 1039
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1040 1041 1042
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1043 1044 1045 1046 1047 1048 1049
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1050 1051 1052 1053 1054 1055
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1056
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1057 1058
{
	unsigned long flags;
I
Ingo Molnar 已提交
1059
	int running, on_rq;
R
Roland McGrath 已提交
1060
	unsigned long ncsw;
1061
	struct rq *rq;
L
Linus Torvalds 已提交
1062

1063 1064 1065 1066 1067 1068 1069 1070
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1083 1084 1085
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1086
			cpu_relax();
R
Roland McGrath 已提交
1087
		}
1088

1089 1090 1091 1092 1093 1094
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1095
		trace_sched_wait_task(p);
1096
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1097
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1098
		ncsw = 0;
1099
		if (!match_state || p->state == match_state)
1100
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1101
		task_rq_unlock(rq, p, &flags);
1102

R
Roland McGrath 已提交
1103 1104 1105 1106 1107 1108
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1119

1120 1121 1122 1123 1124
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1125
		 * So if it was still runnable (but just not actively
1126 1127 1128 1129
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1130 1131 1132 1133
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1134 1135
			continue;
		}
1136

1137 1138 1139 1140 1141 1142 1143
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1144 1145

	return ncsw;
L
Linus Torvalds 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1155
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1156 1157 1158 1159 1160
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1161
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1171
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1172
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1173

1174
#ifdef CONFIG_SMP
1175
/*
1176
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1177
 */
1178 1179
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1180 1181
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1182 1183
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1202
	}
1203

1204 1205
	for (;;) {
		/* Any allowed, online CPU? */
1206
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1207 1208 1209 1210 1211 1212
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1243 1244 1245 1246 1247
	}

	return dest_cpu;
}

1248
/*
1249
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1250
 */
1251
static inline
1252
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1253
{
1254
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1266
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1267
		     !cpu_online(cpu)))
1268
		cpu = select_fallback_rq(task_cpu(p), p);
1269 1270

	return cpu;
1271
}
1272 1273 1274 1275 1276 1277

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1278 1279
#endif

P
Peter Zijlstra 已提交
1280
static void
1281
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1282
{
P
Peter Zijlstra 已提交
1283
#ifdef CONFIG_SCHEDSTATS
1284 1285
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1296
		rcu_read_lock();
P
Peter Zijlstra 已提交
1297 1298 1299 1300 1301 1302
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1303
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1304
	}
1305 1306 1307 1308

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1309 1310 1311
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1312
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1313 1314

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1315
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1316 1317 1318 1319 1320 1321

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1322
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1323
	p->on_rq = 1;
1324 1325 1326 1327

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1328 1329
}

1330 1331 1332
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1333
static void
1334
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1335 1336
{
	check_preempt_curr(rq, p, wake_flags);
1337
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1338 1339 1340 1341 1342 1343

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1344
	if (rq->idle_stamp) {
1345
		u64 delta = rq_clock(rq) - rq->idle_stamp;
T
Tejun Heo 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1382 1383
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1384 1385 1386 1387 1388 1389 1390 1391
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1392
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1393
static void sched_ttwu_pending(void)
1394 1395
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1396 1397
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1398 1399 1400

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1401 1402 1403
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1404 1405 1406 1407 1408 1409 1410 1411
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1412 1413 1414
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1431
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1432
	sched_ttwu_pending();
1433 1434 1435 1436

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1437
	if (unlikely(got_nohz_idle_kick())) {
1438
		this_rq()->idle_balance = 1;
1439
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1440
	}
1441
	irq_exit();
1442 1443 1444 1445
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1446
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1447 1448
		smp_send_reschedule(cpu);
}
1449

1450
bool cpus_share_cache(int this_cpu, int that_cpu)
1451 1452 1453
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1454
#endif /* CONFIG_SMP */
1455

1456 1457 1458 1459
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1460
#if defined(CONFIG_SMP)
1461
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1462
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1463 1464 1465 1466 1467
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1468 1469 1470
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1471 1472 1473
}

/**
L
Linus Torvalds 已提交
1474
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1475
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1476
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1477
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1478 1479 1480 1481 1482 1483 1484
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1485 1486
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1487
 */
1488 1489
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1490 1491
{
	unsigned long flags;
1492
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1493

1494
	smp_wmb();
1495
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1496
	if (!(p->state & state))
L
Linus Torvalds 已提交
1497 1498
		goto out;

1499
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1500 1501
	cpu = task_cpu(p);

1502 1503
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1504 1505

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1506
	/*
1507 1508
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1509
	 */
1510
	while (p->on_cpu)
1511
		cpu_relax();
1512
	/*
1513
	 * Pairs with the smp_wmb() in finish_lock_switch().
1514
	 */
1515
	smp_rmb();
L
Linus Torvalds 已提交
1516

1517
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1518
	p->state = TASK_WAKING;
1519

1520
	if (p->sched_class->task_waking)
1521
		p->sched_class->task_waking(p);
1522

1523
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1524 1525
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1526
		set_task_cpu(p, cpu);
1527
	}
L
Linus Torvalds 已提交
1528 1529
#endif /* CONFIG_SMP */

1530 1531
	ttwu_queue(p, cpu);
stat:
1532
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1533
out:
1534
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1535 1536 1537 1538

	return success;
}

T
Tejun Heo 已提交
1539 1540 1541 1542
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1543
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1544
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1545
 * the current task.
T
Tejun Heo 已提交
1546 1547 1548 1549 1550
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1551 1552 1553 1554
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1555 1556
	lockdep_assert_held(&rq->lock);

1557 1558 1559 1560 1561 1562
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1563
	if (!(p->state & TASK_NORMAL))
1564
		goto out;
T
Tejun Heo 已提交
1565

P
Peter Zijlstra 已提交
1566
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1567 1568
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1569
	ttwu_do_wakeup(rq, p, 0);
1570
	ttwu_stat(p, smp_processor_id(), 0);
1571 1572
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1573 1574
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1586
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1587
{
1588 1589
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1590 1591 1592
}
EXPORT_SYMBOL(wake_up_process);

1593
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599 1600
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1601 1602 1603 1604 1605
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1606 1607 1608
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1609 1610
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1611
	p->se.prev_sum_exec_runtime	= 0;
1612
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1613
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1614
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1615 1616

#ifdef CONFIG_SCHEDSTATS
1617
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1618
#endif
N
Nick Piggin 已提交
1619

P
Peter Zijlstra 已提交
1620
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1621

1622 1623 1624
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1625 1626 1627 1628

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1629
		p->mm->numa_next_reset = jiffies;
1630 1631 1632 1633 1634 1635
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1636
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1637 1638
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1639 1640
}

1641
#ifdef CONFIG_NUMA_BALANCING
1642
#ifdef CONFIG_SCHED_DEBUG
1643 1644 1645 1646 1647 1648 1649
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1650 1651 1652 1653 1654 1655
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1656
}
1657
#endif /* CONFIG_SCHED_DEBUG */
1658
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1659 1660 1661 1662

/*
 * fork()/clone()-time setup:
 */
1663
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1664
{
1665
	unsigned long flags;
I
Ingo Molnar 已提交
1666 1667 1668
	int cpu = get_cpu();

	__sched_fork(p);
1669
	/*
1670
	 * We mark the process as running here. This guarantees that
1671 1672 1673
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1674
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1675

1676 1677 1678 1679 1680
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1681 1682 1683 1684
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1685
		if (task_has_rt_policy(p)) {
1686
			p->policy = SCHED_NORMAL;
1687
			p->static_prio = NICE_TO_PRIO(0);
1688 1689 1690 1691 1692 1693
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1694

1695 1696 1697 1698 1699 1700
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1701

H
Hiroshi Shimamoto 已提交
1702 1703
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1704

P
Peter Zijlstra 已提交
1705 1706 1707
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1708 1709 1710 1711 1712 1713 1714
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1715
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1716
	set_task_cpu(p, cpu);
1717
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1718

1719
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1720
	if (likely(sched_info_on()))
1721
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1722
#endif
P
Peter Zijlstra 已提交
1723 1724
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1725
#endif
1726
#ifdef CONFIG_PREEMPT_COUNT
1727
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1728
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1729
#endif
1730
#ifdef CONFIG_SMP
1731
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1732
#endif
1733

N
Nick Piggin 已提交
1734
	put_cpu();
L
Linus Torvalds 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1744
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1745 1746
{
	unsigned long flags;
I
Ingo Molnar 已提交
1747
	struct rq *rq;
1748

1749
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1750 1751 1752 1753 1754 1755
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1756
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1757 1758
#endif

1759 1760
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
1761
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1762
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1763
	p->on_rq = 1;
1764
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1765
	check_preempt_curr(rq, p, WF_FORK);
1766
#ifdef CONFIG_SMP
1767 1768
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1769
#endif
1770
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1771 1772
}

1773 1774 1775
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1776
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1777
 * @notifier: notifier struct to register
1778 1779 1780 1781 1782 1783 1784 1785 1786
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1787
 * @notifier: notifier struct to unregister
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1801
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802 1803 1804 1805 1806 1807 1808 1809 1810
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1811
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1812 1813 1814
		notifier->ops->sched_out(notifier, next);
}

1815
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1827
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1828

1829 1830 1831
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1832
 * @prev: the current task that is being switched out
1833 1834 1835 1836 1837 1838 1839 1840 1841
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1842 1843 1844
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1845
{
1846
	trace_sched_switch(prev, next);
1847 1848
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1849
	fire_sched_out_preempt_notifiers(prev, next);
1850 1851 1852 1853
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1854 1855
/**
 * finish_task_switch - clean up after a task-switch
1856
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1857 1858
 * @prev: the thread we just switched away from.
 *
1859 1860 1861 1862
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1863 1864
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1865
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1866 1867 1868
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1869
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1870 1871 1872
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1873
	long prev_state;
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1879
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1880 1881
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1882
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1888
	prev_state = prev->state;
1889
	vtime_task_switch(prev);
1890
	finish_arch_switch(prev);
1891
	perf_event_task_sched_in(prev, current);
1892
	finish_lock_switch(rq, prev);
1893
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1894

1895
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1896 1897
	if (mm)
		mmdrop(mm);
1898
	if (unlikely(prev_state == TASK_DEAD)) {
1899 1900 1901
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1902
		 */
1903
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1904
		put_task_struct(prev);
1905
	}
1906 1907

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
1908 1909
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1925
		raw_spin_lock_irqsave(&rq->lock, flags);
1926 1927
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1928
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1929 1930 1931 1932 1933 1934

		rq->post_schedule = 0;
	}
}

#else
1935

1936 1937 1938 1939 1940 1941
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1942 1943
}

1944 1945
#endif

L
Linus Torvalds 已提交
1946 1947 1948 1949
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1950
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1951 1952
	__releases(rq->lock)
{
1953 1954
	struct rq *rq = this_rq();

1955
	finish_task_switch(rq, prev);
1956

1957 1958 1959 1960 1961
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1962

1963 1964 1965 1966
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1967
	if (current->set_child_tid)
1968
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973 1974
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1975
static inline void
1976
context_switch(struct rq *rq, struct task_struct *prev,
1977
	       struct task_struct *next)
L
Linus Torvalds 已提交
1978
{
I
Ingo Molnar 已提交
1979
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1980

1981
	prepare_task_switch(rq, prev, next);
1982

I
Ingo Molnar 已提交
1983 1984
	mm = next->mm;
	oldmm = prev->active_mm;
1985 1986 1987 1988 1989
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1990
	arch_start_context_switch(prev);
1991

1992
	if (!mm) {
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1999
	if (!prev->mm) {
L
Linus Torvalds 已提交
2000 2001 2002
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2003 2004 2005 2006 2007 2008 2009
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2010
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2011
#endif
L
Linus Torvalds 已提交
2012

2013
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2014 2015 2016
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2017 2018 2019 2020 2021 2022 2023
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2024 2025 2026
}

/*
2027
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2028 2029
 *
 * externally visible scheduler statistics: current number of runnable
2030
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2040
}
L
Linus Torvalds 已提交
2041 2042

unsigned long long nr_context_switches(void)
2043
{
2044 2045
	int i;
	unsigned long long sum = 0;
2046

2047
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2048
		sum += cpu_rq(i)->nr_switches;
2049

L
Linus Torvalds 已提交
2050 2051
	return sum;
}
2052

L
Linus Torvalds 已提交
2053 2054 2055
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2056

2057
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2058
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2059

L
Linus Torvalds 已提交
2060 2061
	return sum;
}
2062

2063
unsigned long nr_iowait_cpu(int cpu)
2064
{
2065
	struct rq *this = cpu_rq(cpu);
2066 2067
	return atomic_read(&this->nr_iowait);
}
2068

I
Ingo Molnar 已提交
2069
#ifdef CONFIG_SMP
2070

2071
/*
P
Peter Zijlstra 已提交
2072 2073
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2074
 */
P
Peter Zijlstra 已提交
2075
void sched_exec(void)
2076
{
P
Peter Zijlstra 已提交
2077
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2078
	unsigned long flags;
2079
	int dest_cpu;
2080

2081
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2082
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2083 2084
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2085

2086
	if (likely(cpu_active(dest_cpu))) {
2087
		struct migration_arg arg = { p, dest_cpu };
2088

2089 2090
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2091 2092
		return;
	}
2093
unlock:
2094
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2095
}
I
Ingo Molnar 已提交
2096

L
Linus Torvalds 已提交
2097 2098 2099
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2100
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2101 2102

EXPORT_PER_CPU_SYMBOL(kstat);
2103
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2104 2105

/*
2106
 * Return any ns on the sched_clock that have not yet been accounted in
2107
 * @p in case that task is currently running.
2108 2109
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2110
 */
2111 2112 2113 2114 2115 2116
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2117
		ns = rq_clock_task(rq) - p->se.exec_start;
2118 2119 2120 2121 2122 2123 2124
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2125
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2126 2127
{
	unsigned long flags;
2128
	struct rq *rq;
2129
	u64 ns = 0;
2130

2131
	rq = task_rq_lock(p, &flags);
2132
	ns = do_task_delta_exec(p, rq);
2133
	task_rq_unlock(rq, p, &flags);
2134

2135 2136
	return ns;
}
2137

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2151
	task_rq_unlock(rq, p, &flags);
2152 2153 2154

	return ns;
}
2155

2156 2157 2158 2159 2160 2161 2162 2163
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2164
	struct task_struct *curr = rq->curr;
2165 2166

	sched_clock_tick();
I
Ingo Molnar 已提交
2167

2168
	raw_spin_lock(&rq->lock);
2169
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2170
	curr->sched_class->task_tick(rq, curr, 0);
2171
	update_cpu_load_active(rq);
2172
	raw_spin_unlock(&rq->lock);
2173

2174
	perf_event_task_tick();
2175

2176
#ifdef CONFIG_SMP
2177
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2178
	trigger_load_balance(rq, cpu);
2179
#endif
2180
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
L
Linus Torvalds 已提交
2206
}
2207
#endif
L
Linus Torvalds 已提交
2208

2209
notrace unsigned long get_parent_ip(unsigned long addr)
2210 2211 2212 2213 2214 2215 2216 2217
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2218

2219 2220 2221
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2222
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2223
{
2224
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2225 2226 2227
	/*
	 * Underflow?
	 */
2228 2229
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2230
#endif
L
Linus Torvalds 已提交
2231
	preempt_count() += val;
2232
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2233 2234 2235
	/*
	 * Spinlock count overflowing soon?
	 */
2236 2237
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2238 2239 2240
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2241 2242 2243
}
EXPORT_SYMBOL(add_preempt_count);

2244
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2245
{
2246
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2247 2248 2249
	/*
	 * Underflow?
	 */
2250
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2251
		return;
L
Linus Torvalds 已提交
2252 2253 2254
	/*
	 * Is the spinlock portion underflowing?
	 */
2255 2256 2257
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2258
#endif
2259

2260 2261
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2262 2263 2264 2265 2266 2267 2268
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2269
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2270
 */
I
Ingo Molnar 已提交
2271
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2272
{
2273 2274 2275
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2276 2277
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2278

I
Ingo Molnar 已提交
2279
	debug_show_held_locks(prev);
2280
	print_modules();
I
Ingo Molnar 已提交
2281 2282
	if (irqs_disabled())
		print_irqtrace_events(prev);
2283
	dump_stack();
2284
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2285
}
L
Linus Torvalds 已提交
2286

I
Ingo Molnar 已提交
2287 2288 2289 2290 2291
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2292
	/*
I
Ingo Molnar 已提交
2293
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2294 2295 2296
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2297
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2298
		__schedule_bug(prev);
2299
	rcu_sleep_check();
I
Ingo Molnar 已提交
2300

L
Linus Torvalds 已提交
2301 2302
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2303
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2304 2305
}

P
Peter Zijlstra 已提交
2306
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2307
{
2308
	if (prev->on_rq || rq->skip_clock_update < 0)
2309
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2310
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2311 2312
}

I
Ingo Molnar 已提交
2313 2314 2315 2316
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2317
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2318
{
2319
	const struct sched_class *class;
I
Ingo Molnar 已提交
2320
	struct task_struct *p;
L
Linus Torvalds 已提交
2321 2322

	/*
I
Ingo Molnar 已提交
2323 2324
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2325
	 */
2326
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2327
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2328 2329
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2330 2331
	}

2332
	for_each_class(class) {
2333
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2334 2335 2336
		if (p)
			return p;
	}
2337 2338

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2339
}
L
Linus Torvalds 已提交
2340

I
Ingo Molnar 已提交
2341
/*
2342
 * __schedule() is the main scheduler function.
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2377
 */
2378
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2379 2380
{
	struct task_struct *prev, *next;
2381
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2382
	struct rq *rq;
2383
	int cpu;
I
Ingo Molnar 已提交
2384

2385 2386
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2387 2388
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2389
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2390 2391 2392
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2393

2394
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2395
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2396

2397
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2398

2399
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2400
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2401
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2402
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2403
		} else {
2404 2405 2406
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2407
			/*
2408 2409 2410
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2420
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2421 2422
	}

2423
	pre_schedule(rq, prev);
2424

I
Ingo Molnar 已提交
2425
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2426 2427
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2428
	put_prev_task(rq, prev);
2429
	next = pick_next_task(rq);
2430 2431
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2438
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2439
		/*
2440 2441 2442 2443
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2444 2445 2446
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2447
	} else
2448
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2449

2450
	post_schedule(rq);
L
Linus Torvalds 已提交
2451

2452
	sched_preempt_enable_no_resched();
2453
	if (need_resched())
L
Linus Torvalds 已提交
2454 2455
		goto need_resched;
}
2456

2457 2458
static inline void sched_submit_work(struct task_struct *tsk)
{
2459
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2460 2461 2462 2463 2464 2465 2466 2467 2468
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2469
asmlinkage void __sched schedule(void)
2470
{
2471 2472 2473
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2474 2475
	__schedule();
}
L
Linus Torvalds 已提交
2476 2477
EXPORT_SYMBOL(schedule);

2478
#ifdef CONFIG_CONTEXT_TRACKING
2479 2480 2481 2482 2483 2484 2485 2486
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2487
	user_exit();
2488
	schedule();
2489
	user_enter();
2490 2491 2492
}
#endif

2493 2494 2495 2496 2497 2498 2499
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2500
	sched_preempt_enable_no_resched();
2501 2502 2503 2504
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2505 2506
#ifdef CONFIG_PREEMPT
/*
2507
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2508
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2509 2510
 * occur there and call schedule directly.
 */
2511
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2512 2513
{
	struct thread_info *ti = current_thread_info();
2514

L
Linus Torvalds 已提交
2515 2516
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2517
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2518
	 */
N
Nick Piggin 已提交
2519
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
2520 2521
		return;

2522
	do {
2523
		add_preempt_count_notrace(PREEMPT_ACTIVE);
2524
		__schedule();
2525
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2526

2527 2528 2529 2530 2531
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2532
	} while (need_resched());
L
Linus Torvalds 已提交
2533 2534 2535 2536
}
EXPORT_SYMBOL(preempt_schedule);

/*
2537
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2538 2539 2540 2541 2542 2543 2544
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
2545
	enum ctx_state prev_state;
2546

2547
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
2548 2549
	BUG_ON(ti->preempt_count || !irqs_disabled());

2550 2551
	prev_state = exception_enter();

2552 2553 2554
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
2555
		__schedule();
2556 2557
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2558

2559 2560 2561 2562 2563
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2564
	} while (need_resched());
2565 2566

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2567 2568 2569 2570
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
2571
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2572
			  void *key)
L
Linus Torvalds 已提交
2573
{
P
Peter Zijlstra 已提交
2574
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2575 2576 2577 2578
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
2579 2580
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
2581 2582 2583
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
2584
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
2585 2586
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
2587
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
2588
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
2589
{
2590
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
2591

2592
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2593 2594
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
2595
		if (curr->func(curr, mode, wake_flags, key) &&
2596
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2606
 * @key: is directly passed to the wakeup function
2607 2608 2609
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2610
 */
2611
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
2612
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
2625
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
2626
{
2627
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
2628
}
2629
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
2630

2631 2632 2633 2634
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
2635
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2636

L
Linus Torvalds 已提交
2637
/**
2638
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
2639 2640 2641
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2642
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
2643 2644 2645 2646 2647 2648 2649
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
2650 2651 2652
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2653
 */
2654 2655
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2656 2657
{
	unsigned long flags;
P
Peter Zijlstra 已提交
2658
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
2659 2660 2661 2662 2663

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
2664
		wake_flags = 0;
L
Linus Torvalds 已提交
2665 2666

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
2667
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
2668 2669
	spin_unlock_irqrestore(&q->lock, flags);
}
2670 2671 2672 2673 2674 2675 2676 2677 2678
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
2679 2680
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

2681 2682 2683 2684 2685 2686 2687 2688
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
2689 2690 2691
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2692
 */
2693
void complete(struct completion *x)
L
Linus Torvalds 已提交
2694 2695 2696 2697 2698
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
2699
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
2700 2701 2702 2703
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

2704 2705 2706 2707 2708
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
2709 2710 2711
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2712
 */
2713
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
2714 2715 2716 2717 2718
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
2719
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
2720 2721 2722 2723
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

2724
static inline long __sched
2725 2726
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2727 2728 2729 2730
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
2731
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
2732
		do {
2733
			if (signal_pending_state(state, current)) {
2734 2735
				timeout = -ERESTARTSYS;
				break;
2736 2737
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
2738
			spin_unlock_irq(&x->wait.lock);
2739
			timeout = action(timeout);
L
Linus Torvalds 已提交
2740
			spin_lock_irq(&x->wait.lock);
2741
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
2742
		__remove_wait_queue(&x->wait, &wait);
2743 2744
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
2745 2746
	}
	x->done--;
2747
	return timeout ?: 1;
L
Linus Torvalds 已提交
2748 2749
}

2750 2751 2752
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2753 2754 2755 2756
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
2757
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
2758
	spin_unlock_irq(&x->wait.lock);
2759 2760
	return timeout;
}
L
Linus Torvalds 已提交
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
2784
void __sched wait_for_completion(struct completion *x)
2785 2786
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2787
}
2788
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
2789

2790 2791 2792 2793 2794 2795 2796 2797
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
2798 2799 2800
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
2801
 */
2802
unsigned long __sched
2803
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
2804
{
2805
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2806
}
2807
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

2842 2843 2844 2845 2846 2847
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
2848 2849
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2850
 */
2851
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
2852
{
2853 2854 2855 2856
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
2857
}
2858
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
2859

2860 2861 2862 2863 2864 2865 2866
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2867 2868 2869
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
2870
 */
2871
long __sched
2872 2873
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
2874
{
2875
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
2876
}
2877
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
2878

2879 2880 2881 2882 2883 2884
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
2885 2886
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2887
 */
M
Matthew Wilcox 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

2897 2898 2899 2900 2901 2902 2903 2904
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
2905 2906 2907
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
2908
 */
2909
long __sched
2910 2911 2912 2913 2914 2915 2916
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
2931
	unsigned long flags;
2932 2933
	int ret = 1;

2934
	spin_lock_irqsave(&x->wait.lock, flags);
2935 2936 2937 2938
	if (!x->done)
		ret = 0;
	else
		x->done--;
2939
	spin_unlock_irqrestore(&x->wait.lock, flags);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
2954
	unsigned long flags;
2955 2956
	int ret = 1;

2957
	spin_lock_irqsave(&x->wait.lock, flags);
2958 2959
	if (!x->done)
		ret = 0;
2960
	spin_unlock_irqrestore(&x->wait.lock, flags);
2961 2962 2963 2964
	return ret;
}
EXPORT_SYMBOL(completion_done);

2965 2966
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2967
{
I
Ingo Molnar 已提交
2968 2969 2970 2971
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2972

2973
	__set_current_state(state);
L
Linus Torvalds 已提交
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2989 2990 2991
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
2992
long __sched
I
Ingo Molnar 已提交
2993
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2994
{
2995
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2996 2997 2998
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
2999
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3000
{
3001
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3002 3003 3004
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3005
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3006
{
3007
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3008 3009 3010
}
EXPORT_SYMBOL(sleep_on_timeout);

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3023
void rt_mutex_setprio(struct task_struct *p, int prio)
3024
{
3025
	int oldprio, on_rq, running;
3026
	struct rq *rq;
3027
	const struct sched_class *prev_class;
3028 3029 3030

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3031
	rq = __task_rq_lock(p);
3032

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3051
	trace_sched_pi_setprio(p, prio);
3052
	oldprio = p->prio;
3053
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3054
	on_rq = p->on_rq;
3055
	running = task_current(rq, p);
3056
	if (on_rq)
3057
		dequeue_task(rq, p, 0);
3058 3059
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3060 3061 3062 3063 3064 3065

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3066 3067
	p->prio = prio;

3068 3069
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3070
	if (on_rq)
3071
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3072

P
Peter Zijlstra 已提交
3073
	check_class_changed(rq, p, prev_class, oldprio);
3074
out_unlock:
3075
	__task_rq_unlock(rq);
3076 3077
}
#endif
3078
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3079
{
I
Ingo Molnar 已提交
3080
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3081
	unsigned long flags;
3082
	struct rq *rq;
L
Linus Torvalds 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3095
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3096
	 */
3097
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3098 3099 3100
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3101
	on_rq = p->on_rq;
3102
	if (on_rq)
3103
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3104 3105

	p->static_prio = NICE_TO_PRIO(nice);
3106
	set_load_weight(p);
3107 3108 3109
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3110

I
Ingo Molnar 已提交
3111
	if (on_rq) {
3112
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3113
		/*
3114 3115
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3116
		 */
3117
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3118 3119 3120
			resched_task(rq->curr);
	}
out_unlock:
3121
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3122 3123 3124
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3125 3126 3127 3128 3129
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3130
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3131
{
3132 3133
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3134

3135
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3136 3137 3138
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3148
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3149
{
3150
	long nice, retval;
L
Linus Torvalds 已提交
3151 3152 3153 3154 3155 3156

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3157 3158
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3159 3160 3161
	if (increment > 40)
		increment = 40;

3162
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3168 3169 3170
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3189
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3190 3191 3192 3193 3194 3195 3196 3197
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3198
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3199 3200 3201
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3202
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207 3208 3209

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3224 3225 3226 3227 3228 3229
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3230
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3231 3232 3233 3234 3235 3236 3237 3238
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3239
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3240
{
3241
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3242 3243 3244
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3245 3246
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3247 3248 3249
{
	p->policy = policy;
	p->rt_priority = prio;
3250 3251 3252
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3253 3254 3255 3256
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3257
	set_load_weight(p);
L
Linus Torvalds 已提交
3258 3259
}

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3270 3271
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3272 3273 3274 3275
	rcu_read_unlock();
	return match;
}

3276
static int __sched_setscheduler(struct task_struct *p, int policy,
3277
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3278
{
3279
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3280
	unsigned long flags;
3281
	const struct sched_class *prev_class;
3282
	struct rq *rq;
3283
	int reset_on_fork;
L
Linus Torvalds 已提交
3284

3285 3286
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3287 3288
recheck:
	/* double check policy once rq lock held */
3289 3290
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3291
		policy = oldpolicy = p->policy;
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3302 3303
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3304 3305
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3306 3307
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3308
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3309
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3310
		return -EINVAL;
3311
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3312 3313
		return -EINVAL;

3314 3315 3316
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3317
	if (user && !capable(CAP_SYS_NICE)) {
3318
		if (rt_policy(policy)) {
3319 3320
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3331

I
Ingo Molnar 已提交
3332
		/*
3333 3334
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3335
		 */
3336 3337 3338 3339
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3340

3341
		/* can't change other user's priorities */
3342
		if (!check_same_owner(p))
3343
			return -EPERM;
3344 3345 3346 3347

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3348
	}
L
Linus Torvalds 已提交
3349

3350
	if (user) {
3351
		retval = security_task_setscheduler(p);
3352 3353 3354 3355
		if (retval)
			return retval;
	}

3356 3357 3358
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3359
	 *
L
Lucas De Marchi 已提交
3360
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3361 3362
	 * runqueue lock must be held.
	 */
3363
	rq = task_rq_lock(p, &flags);
3364

3365 3366 3367 3368
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3369
		task_rq_unlock(rq, p, &flags);
3370 3371 3372
		return -EINVAL;
	}

3373 3374 3375 3376 3377
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3378
		task_rq_unlock(rq, p, &flags);
3379 3380 3381
		return 0;
	}

3382 3383 3384 3385 3386 3387 3388
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3389 3390
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3391
			task_rq_unlock(rq, p, &flags);
3392 3393 3394 3395 3396
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3397 3398 3399
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3400
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3401 3402
		goto recheck;
	}
P
Peter Zijlstra 已提交
3403
	on_rq = p->on_rq;
3404
	running = task_current(rq, p);
3405
	if (on_rq)
3406
		dequeue_task(rq, p, 0);
3407 3408
	if (running)
		p->sched_class->put_prev_task(rq, p);
3409

3410 3411
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3412
	oldprio = p->prio;
3413
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3414
	__setscheduler(rq, p, policy, param->sched_priority);
3415

3416 3417
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3418
	if (on_rq)
3419
		enqueue_task(rq, p, 0);
3420

P
Peter Zijlstra 已提交
3421
	check_class_changed(rq, p, prev_class, oldprio);
3422
	task_rq_unlock(rq, p, &flags);
3423

3424 3425
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3426 3427
	return 0;
}
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3438
		       const struct sched_param *param)
3439 3440 3441
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3442 3443
EXPORT_SYMBOL_GPL(sched_setscheduler);

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3456
			       const struct sched_param *param)
3457 3458 3459 3460
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3461 3462
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3463 3464 3465
{
	struct sched_param lparam;
	struct task_struct *p;
3466
	int retval;
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3472 3473 3474

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3475
	p = find_process_by_pid(pid);
3476 3477 3478
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3479

L
Linus Torvalds 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3489 3490
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3491
{
3492 3493 3494 3495
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3496 3497 3498 3499 3500 3501 3502 3503
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3504
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509 3510 3511 3512
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3513
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3514
{
3515
	struct task_struct *p;
3516
	int retval;
L
Linus Torvalds 已提交
3517 3518

	if (pid < 0)
3519
		return -EINVAL;
L
Linus Torvalds 已提交
3520 3521

	retval = -ESRCH;
3522
	rcu_read_lock();
L
Linus Torvalds 已提交
3523 3524 3525 3526
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3527 3528
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3529
	}
3530
	rcu_read_unlock();
L
Linus Torvalds 已提交
3531 3532 3533 3534
	return retval;
}

/**
3535
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3536 3537 3538
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3539
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3540 3541
{
	struct sched_param lp;
3542
	struct task_struct *p;
3543
	int retval;
L
Linus Torvalds 已提交
3544 3545

	if (!param || pid < 0)
3546
		return -EINVAL;
L
Linus Torvalds 已提交
3547

3548
	rcu_read_lock();
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3559
	rcu_read_unlock();
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3569
	rcu_read_unlock();
L
Linus Torvalds 已提交
3570 3571 3572
	return retval;
}

3573
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3574
{
3575
	cpumask_var_t cpus_allowed, new_mask;
3576 3577
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3578

3579
	get_online_cpus();
3580
	rcu_read_lock();
L
Linus Torvalds 已提交
3581 3582 3583

	p = find_process_by_pid(pid);
	if (!p) {
3584
		rcu_read_unlock();
3585
		put_online_cpus();
L
Linus Torvalds 已提交
3586 3587 3588
		return -ESRCH;
	}

3589
	/* Prevent p going away */
L
Linus Torvalds 已提交
3590
	get_task_struct(p);
3591
	rcu_read_unlock();
L
Linus Torvalds 已提交
3592

3593 3594 3595 3596
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3597 3598 3599 3600 3601 3602 3603 3604
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3605
	retval = -EPERM;
E
Eric W. Biederman 已提交
3606 3607 3608 3609 3610 3611 3612 3613
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3614

3615
	retval = security_task_setscheduler(p);
3616 3617 3618
	if (retval)
		goto out_unlock;

3619 3620
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
3621
again:
3622
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3623

P
Paul Menage 已提交
3624
	if (!retval) {
3625 3626
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3627 3628 3629 3630 3631
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3632
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3633 3634 3635
			goto again;
		}
	}
L
Linus Torvalds 已提交
3636
out_unlock:
3637 3638 3639 3640
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3641
	put_task_struct(p);
3642
	put_online_cpus();
L
Linus Torvalds 已提交
3643 3644 3645 3646
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3647
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3648
{
3649 3650 3651 3652 3653
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
3663 3664
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3665
{
3666
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3667 3668
	int retval;

3669 3670
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3671

3672 3673 3674 3675 3676
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3677 3678
}

3679
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3680
{
3681
	struct task_struct *p;
3682
	unsigned long flags;
L
Linus Torvalds 已提交
3683 3684
	int retval;

3685
	get_online_cpus();
3686
	rcu_read_lock();
L
Linus Torvalds 已提交
3687 3688 3689 3690 3691 3692

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3693 3694 3695 3696
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3697
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3698
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3699
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3700 3701

out_unlock:
3702
	rcu_read_unlock();
3703
	put_online_cpus();
L
Linus Torvalds 已提交
3704

3705
	return retval;
L
Linus Torvalds 已提交
3706 3707 3708 3709 3710 3711 3712 3713
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
3714 3715
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3716 3717
{
	int ret;
3718
	cpumask_var_t mask;
L
Linus Torvalds 已提交
3719

A
Anton Blanchard 已提交
3720
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3721 3722
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
3723 3724
		return -EINVAL;

3725 3726
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3727

3728 3729
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
3730
		size_t retlen = min_t(size_t, len, cpumask_size());
3731 3732

		if (copy_to_user(user_mask_ptr, mask, retlen))
3733 3734
			ret = -EFAULT;
		else
3735
			ret = retlen;
3736 3737
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
3738

3739
	return ret;
L
Linus Torvalds 已提交
3740 3741 3742 3743 3744
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
3745 3746
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
3747
 */
3748
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
3749
{
3750
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
3751

3752
	schedstat_inc(rq, yld_count);
3753
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
3754 3755 3756 3757 3758 3759

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
3760
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3761
	do_raw_spin_unlock(&rq->lock);
3762
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
3763 3764 3765 3766 3767 3768

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
3769 3770 3771 3772 3773
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
3774
static void __cond_resched(void)
L
Linus Torvalds 已提交
3775
{
3776
	add_preempt_count(PREEMPT_ACTIVE);
3777
	__schedule();
3778
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3779 3780
}

3781
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
3782
{
P
Peter Zijlstra 已提交
3783
	if (should_resched()) {
L
Linus Torvalds 已提交
3784 3785 3786 3787 3788
		__cond_resched();
		return 1;
	}
	return 0;
}
3789
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
3790 3791

/*
3792
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
3793 3794
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
3795
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
3796 3797 3798
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
3799
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
3800
{
P
Peter Zijlstra 已提交
3801
	int resched = should_resched();
J
Jan Kara 已提交
3802 3803
	int ret = 0;

3804 3805
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
3806
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
3807
		spin_unlock(lock);
P
Peter Zijlstra 已提交
3808
		if (resched)
N
Nick Piggin 已提交
3809 3810 3811
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
3812
		ret = 1;
L
Linus Torvalds 已提交
3813 3814
		spin_lock(lock);
	}
J
Jan Kara 已提交
3815
	return ret;
L
Linus Torvalds 已提交
3816
}
3817
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
3818

3819
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
3820 3821 3822
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
3823
	if (should_resched()) {
3824
		local_bh_enable();
L
Linus Torvalds 已提交
3825 3826 3827 3828 3829 3830
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
3831
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
3832 3833 3834 3835

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
3854 3855 3856 3857 3858 3859 3860 3861
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

3862 3863 3864 3865
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
3866 3867
 * @p: target task
 * @preempt: whether task preemption is allowed or not
3868 3869 3870 3871
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
3872 3873 3874 3875
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
3876 3877 3878 3879 3880 3881
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
3882
	int yielded = 0;
3883 3884 3885 3886 3887 3888

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
3889 3890 3891 3892 3893 3894 3895 3896 3897
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

3898 3899 3900 3901 3902 3903 3904
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
3905
		goto out_unlock;
3906 3907

	if (curr->sched_class != p->sched_class)
3908
		goto out_unlock;
3909 3910

	if (task_running(p_rq, p) || p->state)
3911
		goto out_unlock;
3912 3913

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3914
	if (yielded) {
3915
		schedstat_inc(rq, yld_count);
3916 3917 3918 3919 3920 3921 3922
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
3923

3924
out_unlock:
3925
	double_rq_unlock(rq, p_rq);
3926
out_irq:
3927 3928
	local_irq_restore(flags);

3929
	if (yielded > 0)
3930 3931 3932 3933 3934 3935
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
3936
/*
I
Ingo Molnar 已提交
3937
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
3938 3939 3940 3941
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
3942
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3943

3944
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3945
	atomic_inc(&rq->nr_iowait);
3946
	blk_flush_plug(current);
3947
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3948
	schedule();
3949
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3950
	atomic_dec(&rq->nr_iowait);
3951
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3952 3953 3954 3955 3956
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
3957
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3958 3959
	long ret;

3960
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3961
	atomic_inc(&rq->nr_iowait);
3962
	blk_flush_plug(current);
3963
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3964
	ret = schedule_timeout(timeout);
3965
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3966
	atomic_dec(&rq->nr_iowait);
3967
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
3978
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
3988
	case SCHED_BATCH:
I
Ingo Molnar 已提交
3989
	case SCHED_IDLE:
L
Linus Torvalds 已提交
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4003
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4013
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4014
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4028
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4029
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4030
{
4031
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4032
	unsigned int time_slice;
4033 4034
	unsigned long flags;
	struct rq *rq;
4035
	int retval;
L
Linus Torvalds 已提交
4036 4037 4038
	struct timespec t;

	if (pid < 0)
4039
		return -EINVAL;
L
Linus Torvalds 已提交
4040 4041

	retval = -ESRCH;
4042
	rcu_read_lock();
L
Linus Torvalds 已提交
4043 4044 4045 4046 4047 4048 4049 4050
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4051 4052
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4053
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4054

4055
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4056
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4057 4058
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4059

L
Linus Torvalds 已提交
4060
out_unlock:
4061
	rcu_read_unlock();
L
Linus Torvalds 已提交
4062 4063 4064
	return retval;
}

4065
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4066

4067
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4068 4069
{
	unsigned long free = 0;
4070
	int ppid;
4071
	unsigned state;
L
Linus Torvalds 已提交
4072 4073

	state = p->state ? __ffs(p->state) + 1 : 0;
4074
	printk(KERN_INFO "%-15.15s %c", p->comm,
4075
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4076
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4077
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4078
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4079
	else
P
Peter Zijlstra 已提交
4080
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4081 4082
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4083
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4084
	else
P
Peter Zijlstra 已提交
4085
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4086 4087
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4088
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4089
#endif
4090 4091 4092
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4093
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4094
		task_pid_nr(p), ppid,
4095
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4096

4097
	print_worker_info(KERN_INFO, p);
4098
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4099 4100
}

I
Ingo Molnar 已提交
4101
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4102
{
4103
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4104

4105
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4106 4107
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4108
#else
P
Peter Zijlstra 已提交
4109 4110
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4111
#endif
4112
	rcu_read_lock();
L
Linus Torvalds 已提交
4113 4114 4115
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4116
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4117 4118
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4119
		if (!state_filter || (p->state & state_filter))
4120
			sched_show_task(p);
L
Linus Torvalds 已提交
4121 4122
	} while_each_thread(g, p);

4123 4124
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4125 4126 4127
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4128
	rcu_read_unlock();
I
Ingo Molnar 已提交
4129 4130 4131
	/*
	 * Only show locks if all tasks are dumped:
	 */
4132
	if (!state_filter)
I
Ingo Molnar 已提交
4133
		debug_show_all_locks();
L
Linus Torvalds 已提交
4134 4135
}

4136
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4137
{
I
Ingo Molnar 已提交
4138
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4139 4140
}

4141 4142 4143 4144 4145 4146 4147 4148
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4149
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4150
{
4151
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4152 4153
	unsigned long flags;

4154
	raw_spin_lock_irqsave(&rq->lock, flags);
4155

I
Ingo Molnar 已提交
4156
	__sched_fork(idle);
4157
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4158 4159
	idle->se.exec_start = sched_clock();

4160
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4172
	__set_task_cpu(idle, cpu);
4173
	rcu_read_unlock();
L
Linus Torvalds 已提交
4174 4175

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4176 4177
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4178
#endif
4179
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4180 4181

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4182
	task_thread_info(idle)->preempt_count = 0;
4183

I
Ingo Molnar 已提交
4184 4185 4186 4187
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4188
	ftrace_graph_init_idle_task(idle, cpu);
4189
	vtime_init_idle(idle, cpu);
4190 4191 4192
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4193 4194
}

L
Linus Torvalds 已提交
4195
#ifdef CONFIG_SMP
4196 4197 4198 4199
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4200 4201

	cpumask_copy(&p->cpus_allowed, new_mask);
4202
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4203 4204
}

L
Linus Torvalds 已提交
4205 4206 4207
/*
 * This is how migration works:
 *
4208 4209 4210 4211 4212 4213
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4214
 *    it and puts it into the right queue.
4215 4216
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4217 4218 4219 4220 4221 4222 4223 4224
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4225
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4226 4227
 * call is not atomic; no spinlocks may be held.
 */
4228
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4229 4230
{
	unsigned long flags;
4231
	struct rq *rq;
4232
	unsigned int dest_cpu;
4233
	int ret = 0;
L
Linus Torvalds 已提交
4234 4235

	rq = task_rq_lock(p, &flags);
4236

4237 4238 4239
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4240
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4241 4242 4243 4244
		ret = -EINVAL;
		goto out;
	}

4245
	do_set_cpus_allowed(p, new_mask);
4246

L
Linus Torvalds 已提交
4247
	/* Can the task run on the task's current CPU? If so, we're done */
4248
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4249 4250
		goto out;

4251
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4252
	if (p->on_rq) {
4253
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4254
		/* Need help from migration thread: drop lock and wait. */
4255
		task_rq_unlock(rq, p, &flags);
4256
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4257 4258 4259 4260
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4261
	task_rq_unlock(rq, p, &flags);
4262

L
Linus Torvalds 已提交
4263 4264
	return ret;
}
4265
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4266 4267

/*
I
Ingo Molnar 已提交
4268
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4275 4276
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4277
 */
4278
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4279
{
4280
	struct rq *rq_dest, *rq_src;
4281
	int ret = 0;
L
Linus Torvalds 已提交
4282

4283
	if (unlikely(!cpu_active(dest_cpu)))
4284
		return ret;
L
Linus Torvalds 已提交
4285 4286 4287 4288

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4289
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4290 4291 4292
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4293
		goto done;
L
Linus Torvalds 已提交
4294
	/* Affinity changed (again). */
4295
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4296
		goto fail;
L
Linus Torvalds 已提交
4297

4298 4299 4300 4301
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4302
	if (p->on_rq) {
4303
		dequeue_task(rq_src, p, 0);
4304
		set_task_cpu(p, dest_cpu);
4305
		enqueue_task(rq_dest, p, 0);
4306
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4307
	}
L
Linus Torvalds 已提交
4308
done:
4309
	ret = 1;
L
Linus Torvalds 已提交
4310
fail:
L
Linus Torvalds 已提交
4311
	double_rq_unlock(rq_src, rq_dest);
4312
	raw_spin_unlock(&p->pi_lock);
4313
	return ret;
L
Linus Torvalds 已提交
4314 4315 4316
}

/*
4317 4318 4319
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4320
 */
4321
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4322
{
4323
	struct migration_arg *arg = data;
4324

4325 4326 4327 4328
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4329
	local_irq_disable();
4330
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4331
	local_irq_enable();
L
Linus Torvalds 已提交
4332
	return 0;
4333 4334
}

L
Linus Torvalds 已提交
4335
#ifdef CONFIG_HOTPLUG_CPU
4336

4337
/*
4338 4339
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4340
 */
4341
void idle_task_exit(void)
L
Linus Torvalds 已提交
4342
{
4343
	struct mm_struct *mm = current->active_mm;
4344

4345
	BUG_ON(cpu_online(smp_processor_id()));
4346

4347 4348 4349
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4350 4351 4352
}

/*
4353 4354 4355 4356 4357
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4358
 */
4359
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4360
{
4361 4362 4363
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4364 4365
}

4366
/*
4367 4368 4369 4370 4371 4372
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4373
 */
4374
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4375
{
4376
	struct rq *rq = cpu_rq(dead_cpu);
4377 4378
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4379 4380

	/*
4381 4382 4383 4384 4385 4386 4387
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4388
	 */
4389
	rq->stop = NULL;
4390

4391 4392 4393 4394 4395 4396 4397
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4398
	for ( ; ; ) {
4399 4400 4401 4402 4403
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4404
			break;
4405

4406
		next = pick_next_task(rq);
4407
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4408
		next->sched_class->put_prev_task(rq, next);
4409

4410 4411 4412 4413 4414 4415 4416
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4417
	}
4418

4419
	rq->stop = stop;
4420
}
4421

L
Linus Torvalds 已提交
4422 4423
#endif /* CONFIG_HOTPLUG_CPU */

4424 4425 4426
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4427 4428
	{
		.procname	= "sched_domain",
4429
		.mode		= 0555,
4430
	},
4431
	{}
4432 4433 4434
};

static struct ctl_table sd_ctl_root[] = {
4435 4436
	{
		.procname	= "kernel",
4437
		.mode		= 0555,
4438 4439
		.child		= sd_ctl_dir,
	},
4440
	{}
4441 4442 4443 4444 4445
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4446
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4447 4448 4449 4450

	return entry;
}

4451 4452
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4453
	struct ctl_table *entry;
4454

4455 4456 4457
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4458
	 * will always be set. In the lowest directory the names are
4459 4460 4461
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4462 4463
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4464 4465 4466
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4467 4468 4469 4470 4471

	kfree(*tablep);
	*tablep = NULL;
}

4472
static int min_load_idx = 0;
4473
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4474

4475
static void
4476
set_table_entry(struct ctl_table *entry,
4477
		const char *procname, void *data, int maxlen,
4478 4479
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4480 4481 4482 4483 4484 4485
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4486 4487 4488 4489 4490

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4491 4492 4493 4494 4495
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4496
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4497

4498 4499 4500
	if (table == NULL)
		return NULL;

4501
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4502
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4503
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4504
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4505
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4506
		sizeof(int), 0644, proc_dointvec_minmax, true);
4507
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4508
		sizeof(int), 0644, proc_dointvec_minmax, true);
4509
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4510
		sizeof(int), 0644, proc_dointvec_minmax, true);
4511
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4512
		sizeof(int), 0644, proc_dointvec_minmax, true);
4513
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4514
		sizeof(int), 0644, proc_dointvec_minmax, true);
4515
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4516
		sizeof(int), 0644, proc_dointvec_minmax, false);
4517
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4518
		sizeof(int), 0644, proc_dointvec_minmax, false);
4519
	set_table_entry(&table[9], "cache_nice_tries",
4520
		&sd->cache_nice_tries,
4521
		sizeof(int), 0644, proc_dointvec_minmax, false);
4522
	set_table_entry(&table[10], "flags", &sd->flags,
4523
		sizeof(int), 0644, proc_dointvec_minmax, false);
4524
	set_table_entry(&table[11], "name", sd->name,
4525
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4526
	/* &table[12] is terminator */
4527 4528 4529 4530

	return table;
}

4531
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4532 4533 4534 4535 4536 4537 4538 4539 4540
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4541 4542
	if (table == NULL)
		return NULL;
4543 4544 4545 4546 4547

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4548
		entry->mode = 0555;
4549 4550 4551 4552 4553 4554 4555 4556
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4557
static void register_sched_domain_sysctl(void)
4558
{
4559
	int i, cpu_num = num_possible_cpus();
4560 4561 4562
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4563 4564 4565
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4566 4567 4568
	if (entry == NULL)
		return;

4569
	for_each_possible_cpu(i) {
4570 4571
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4572
		entry->mode = 0555;
4573
		entry->child = sd_alloc_ctl_cpu_table(i);
4574
		entry++;
4575
	}
4576 4577

	WARN_ON(sd_sysctl_header);
4578 4579
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4580

4581
/* may be called multiple times per register */
4582 4583
static void unregister_sched_domain_sysctl(void)
{
4584 4585
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4586
	sd_sysctl_header = NULL;
4587 4588
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4589
}
4590
#else
4591 4592 4593 4594
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4595 4596 4597 4598
{
}
#endif

4599 4600 4601 4602 4603
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4604
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4624
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4625 4626 4627 4628
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4629 4630 4631 4632
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4633
static int
4634
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4635
{
4636
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4637
	unsigned long flags;
4638
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4639

4640
	switch (action & ~CPU_TASKS_FROZEN) {
4641

L
Linus Torvalds 已提交
4642
	case CPU_UP_PREPARE:
4643
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
4644
		break;
4645

L
Linus Torvalds 已提交
4646
	case CPU_ONLINE:
4647
		/* Update our root-domain */
4648
		raw_spin_lock_irqsave(&rq->lock, flags);
4649
		if (rq->rd) {
4650
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4651 4652

			set_rq_online(rq);
4653
		}
4654
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4655
		break;
4656

L
Linus Torvalds 已提交
4657
#ifdef CONFIG_HOTPLUG_CPU
4658
	case CPU_DYING:
4659
		sched_ttwu_pending();
G
Gregory Haskins 已提交
4660
		/* Update our root-domain */
4661
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4662
		if (rq->rd) {
4663
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4664
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4665
		}
4666 4667
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
4668
		raw_spin_unlock_irqrestore(&rq->lock, flags);
4669
		break;
4670

4671
	case CPU_DEAD:
4672
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
4673
		break;
L
Linus Torvalds 已提交
4674 4675
#endif
	}
4676 4677 4678

	update_max_interval();

L
Linus Torvalds 已提交
4679 4680 4681
	return NOTIFY_OK;
}

4682 4683 4684
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
4685
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
4686
 */
4687
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
4688
	.notifier_call = migration_call,
4689
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
4690 4691
};

4692
static int sched_cpu_active(struct notifier_block *nfb,
4693 4694 4695
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
4696
	case CPU_STARTING:
4697 4698 4699 4700 4701 4702 4703 4704
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4705
static int sched_cpu_inactive(struct notifier_block *nfb,
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4717
static int __init migration_init(void)
L
Linus Torvalds 已提交
4718 4719
{
	void *cpu = (void *)(long)smp_processor_id();
4720
	int err;
4721

4722
	/* Initialize migration for the boot CPU */
4723 4724
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
4725 4726
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
4727

4728 4729 4730 4731
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

4732
	return 0;
L
Linus Torvalds 已提交
4733
}
4734
early_initcall(migration_init);
L
Linus Torvalds 已提交
4735 4736 4737
#endif

#ifdef CONFIG_SMP
4738

4739 4740
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

4741
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
4742

4743
static __read_mostly int sched_debug_enabled;
4744

4745
static int __init sched_debug_setup(char *str)
4746
{
4747
	sched_debug_enabled = 1;
4748 4749 4750

	return 0;
}
4751 4752 4753 4754 4755 4756
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
4757

4758
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4759
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
4760
{
I
Ingo Molnar 已提交
4761
	struct sched_group *group = sd->groups;
4762
	char str[256];
L
Linus Torvalds 已提交
4763

R
Rusty Russell 已提交
4764
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4765
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
4766 4767 4768 4769

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
4770
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
4771
		if (sd->parent)
P
Peter Zijlstra 已提交
4772 4773
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
4774
		return -1;
N
Nick Piggin 已提交
4775 4776
	}

P
Peter Zijlstra 已提交
4777
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
4778

4779
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
4780 4781
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
4782
	}
4783
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4784 4785
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
4786
	}
L
Linus Torvalds 已提交
4787

I
Ingo Molnar 已提交
4788
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
4789
	do {
I
Ingo Molnar 已提交
4790
		if (!group) {
P
Peter Zijlstra 已提交
4791 4792
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
4793 4794 4795
			break;
		}

4796 4797 4798 4799 4800 4801
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
4802 4803 4804
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
4805 4806
			break;
		}
L
Linus Torvalds 已提交
4807

4808
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4809 4810
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
4811 4812
			break;
		}
L
Linus Torvalds 已提交
4813

4814 4815
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4816 4817
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
4818 4819
			break;
		}
L
Linus Torvalds 已提交
4820

4821
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
4822

R
Rusty Russell 已提交
4823
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4824

P
Peter Zijlstra 已提交
4825
		printk(KERN_CONT " %s", str);
4826
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
4827
			printk(KERN_CONT " (cpu_power = %d)",
4828
				group->sgp->power);
4829
		}
L
Linus Torvalds 已提交
4830

I
Ingo Molnar 已提交
4831 4832
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
4833
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4834

4835
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
4836
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
4837

4838 4839
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
4840 4841
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
4842 4843
	return 0;
}
L
Linus Torvalds 已提交
4844

I
Ingo Molnar 已提交
4845 4846 4847
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
4848

4849
	if (!sched_debug_enabled)
4850 4851
		return;

I
Ingo Molnar 已提交
4852 4853 4854 4855
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
4856

I
Ingo Molnar 已提交
4857 4858 4859
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
4860
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
4861
			break;
L
Linus Torvalds 已提交
4862 4863
		level++;
		sd = sd->parent;
4864
		if (!sd)
I
Ingo Molnar 已提交
4865 4866
			break;
	}
L
Linus Torvalds 已提交
4867
}
4868
#else /* !CONFIG_SCHED_DEBUG */
4869
# define sched_domain_debug(sd, cpu) do { } while (0)
4870 4871 4872 4873
static inline bool sched_debug(void)
{
	return false;
}
4874
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
4875

4876
static int sd_degenerate(struct sched_domain *sd)
4877
{
4878
	if (cpumask_weight(sched_domain_span(sd)) == 1)
4879 4880 4881 4882 4883 4884
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
4885 4886 4887
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
4888 4889 4890 4891 4892
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
4893
	if (sd->flags & (SD_WAKE_AFFINE))
4894 4895 4896 4897 4898
		return 0;

	return 1;
}

4899 4900
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4901 4902 4903 4904 4905 4906
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

4907
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4908 4909 4910 4911 4912 4913 4914
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
4915 4916 4917
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
4918 4919
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
4920 4921 4922 4923 4924 4925 4926
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

4927
static void free_rootdomain(struct rcu_head *rcu)
4928
{
4929
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4930

4931
	cpupri_cleanup(&rd->cpupri);
4932 4933 4934 4935 4936 4937
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
4938 4939
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
4940
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
4941 4942
	unsigned long flags;

4943
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4944 4945

	if (rq->rd) {
I
Ingo Molnar 已提交
4946
		old_rd = rq->rd;
G
Gregory Haskins 已提交
4947

4948
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4949
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4950

4951
		cpumask_clear_cpu(rq->cpu, old_rd->span);
4952

I
Ingo Molnar 已提交
4953 4954 4955 4956 4957 4958 4959
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
4960 4961 4962 4963 4964
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

4965
	cpumask_set_cpu(rq->cpu, rd->span);
4966
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4967
		set_rq_online(rq);
G
Gregory Haskins 已提交
4968

4969
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
4970 4971

	if (old_rd)
4972
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
4973 4974
}

4975
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
4976 4977 4978
{
	memset(rd, 0, sizeof(*rd));

4979
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4980
		goto out;
4981
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4982
		goto free_span;
4983
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4984
		goto free_online;
4985

4986
	if (cpupri_init(&rd->cpupri) != 0)
4987
		goto free_rto_mask;
4988
	return 0;
4989

4990 4991
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
4992 4993 4994 4995
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
4996
out:
4997
	return -ENOMEM;
G
Gregory Haskins 已提交
4998 4999
}

5000 5001 5002 5003 5004 5005
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5006 5007
static void init_defrootdomain(void)
{
5008
	init_rootdomain(&def_root_domain);
5009

G
Gregory Haskins 已提交
5010 5011 5012
	atomic_set(&def_root_domain.refcount, 1);
}

5013
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5014 5015 5016 5017 5018 5019 5020
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5021
	if (init_rootdomain(rd) != 0) {
5022 5023 5024
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5025 5026 5027 5028

	return rd;
}

5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5048 5049 5050
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5051 5052 5053 5054 5055 5056 5057 5058

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5059
		kfree(sd->groups->sgp);
5060
		kfree(sd->groups);
5061
	}
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5076 5077 5078 5079 5080 5081 5082
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5083
 * two cpus are in the same cache domain, see cpus_share_cache().
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5094
	if (sd)
5095 5096 5097 5098 5099 5100
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5101
/*
I
Ingo Molnar 已提交
5102
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5103 5104
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5105 5106
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5107
{
5108
	struct rq *rq = cpu_rq(cpu);
5109 5110 5111
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5112
	for (tmp = sd; tmp; ) {
5113 5114 5115
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5116

5117
		if (sd_parent_degenerate(tmp, parent)) {
5118
			tmp->parent = parent->parent;
5119 5120
			if (parent->parent)
				parent->parent->child = tmp;
5121
			destroy_sched_domain(parent, cpu);
5122 5123
		} else
			tmp = tmp->parent;
5124 5125
	}

5126
	if (sd && sd_degenerate(sd)) {
5127
		tmp = sd;
5128
		sd = sd->parent;
5129
		destroy_sched_domain(tmp, cpu);
5130 5131 5132
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5133

5134
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5135

G
Gregory Haskins 已提交
5136
	rq_attach_root(rq, rd);
5137
	tmp = rq->sd;
N
Nick Piggin 已提交
5138
	rcu_assign_pointer(rq->sd, sd);
5139
	destroy_sched_domains(tmp, cpu);
5140 5141

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5142 5143 5144
}

/* cpus with isolated domains */
5145
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5146 5147 5148 5149

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5150
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5151
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5152 5153 5154
	return 1;
}

I
Ingo Molnar 已提交
5155
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5156

5157 5158 5159 5160 5161
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5162 5163 5164
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5165
	struct sched_group_power **__percpu sgp;
5166 5167
};

5168
struct s_data {
5169
	struct sched_domain ** __percpu sd;
5170 5171 5172
	struct root_domain	*rd;
};

5173 5174
enum s_alloc {
	sa_rootdomain,
5175
	sa_sd,
5176
	sa_sd_storage,
5177 5178 5179
	sa_none,
};

5180 5181 5182
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5183 5184
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5185 5186
#define SDTL_OVERLAP	0x01

5187
struct sched_domain_topology_level {
5188 5189
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5190
	int		    flags;
5191
	int		    numa_level;
5192
	struct sd_data      data;
5193 5194
};

P
Peter Zijlstra 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5251 5252 5253 5254 5255 5256
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5257
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5258
				GFP_KERNEL, cpu_to_node(cpu));
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5272
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5273 5274 5275
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5276 5277 5278 5279 5280 5281
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5282

P
Peter Zijlstra 已提交
5283 5284 5285 5286 5287
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5288
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5289
		    group_balance_cpu(sg) == cpu)
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5309
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5310
{
5311 5312
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5313

5314 5315
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5316

5317
	if (sg) {
5318
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5319
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5320
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5321
	}
5322 5323

	return cpu;
5324 5325
}

5326
/*
5327 5328 5329
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5330 5331
 *
 * Assumes the sched_domain tree is fully constructed
5332
 */
5333 5334
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5335
{
5336 5337 5338
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5339
	struct cpumask *covered;
5340
	int i;
5341

5342 5343 5344
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5345
	if (cpu != cpumask_first(span))
5346 5347
		return 0;

5348 5349 5350
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5351
	cpumask_clear(covered);
5352

5353 5354
	for_each_cpu(i, span) {
		struct sched_group *sg;
5355
		int group, j;
5356

5357 5358
		if (cpumask_test_cpu(i, covered))
			continue;
5359

5360
		group = get_group(i, sdd, &sg);
5361
		cpumask_clear(sched_group_cpus(sg));
5362
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5363
		cpumask_setall(sched_group_mask(sg));
5364

5365 5366 5367
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5368

5369 5370 5371
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5372

5373 5374 5375 5376 5377 5378 5379
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5380 5381

	return 0;
5382
}
5383

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5396
	struct sched_group *sg = sd->groups;
5397

5398
	WARN_ON(!sg);
5399 5400 5401 5402 5403

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5404

P
Peter Zijlstra 已提交
5405
	if (cpu != group_balance_cpu(sg))
5406
		return;
5407

5408
	update_group_power(sd, cpu);
5409
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5410 5411
}

5412 5413 5414
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5415 5416
}

5417 5418 5419 5420 5421
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5422 5423 5424 5425 5426 5427
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5428 5429 5430 5431 5432 5433 5434 5435 5436
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5437 5438 5439 5440 5441 5442 5443 5444 5445
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5446 5447 5448
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5449

5450
static int default_relax_domain_level = -1;
5451
int sched_domain_level_max;
5452 5453 5454

static int __init setup_relax_domain_level(char *str)
{
5455 5456
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5457

5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5476
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5477 5478
	} else {
		/* turn on idle balance on this domain */
5479
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5480 5481 5482
	}
}

5483 5484 5485
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5486 5487 5488 5489 5490
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5491 5492
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5493 5494
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5495
	case sa_sd_storage:
5496
		__sdt_free(cpu_map); /* fall through */
5497 5498 5499 5500
	case sa_none:
		break;
	}
}
5501

5502 5503 5504
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5505 5506
	memset(d, 0, sizeof(*d));

5507 5508
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5509 5510 5511
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5512
	d->rd = alloc_rootdomain();
5513
	if (!d->rd)
5514
		return sa_sd;
5515 5516
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5517

5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5530
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5531
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5532 5533

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5534
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5535 5536
}

5537 5538
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5539
{
5540
	return topology_thread_cpumask(cpu);
5541
}
5542
#endif
5543

5544 5545 5546
/*
 * Topology list, bottom-up.
 */
5547
static struct sched_domain_topology_level default_topology[] = {
5548 5549
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5550
#endif
5551
#ifdef CONFIG_SCHED_MC
5552
	{ sd_init_MC, cpu_coregroup_mask, },
5553
#endif
5554 5555 5556 5557
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5558 5559 5560 5561 5562
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5563 5564 5565
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5566 5567 5568 5569 5570 5571 5572 5573 5574
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5575
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5593
		.imbalance_pct		= 125,
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
5713
		}
5714 5715 5716 5717 5718 5719

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
5720 5721 5722 5723 5724
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
5725
	 * The sched_domains_numa_distance[] array includes the actual distance
5726 5727 5728
	 * numbers.
	 */

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
5755
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5756 5757 5758 5759 5760 5761
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
5762
				if (node_distance(j, k) > sched_domains_numa_distance[i])
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
5794 5795

	sched_domains_numa_levels = level;
5796
}
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
5844 5845 5846 5847 5848
}
#else
static inline void sched_init_numa(void)
{
}
5849 5850 5851 5852 5853 5854 5855

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
5856 5857
#endif /* CONFIG_NUMA */

5858 5859 5860 5861 5862
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5863
	for_each_sd_topology(tl) {
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

5874 5875 5876 5877
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

5878 5879 5880
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
5881
			struct sched_group_power *sgp;
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

5895 5896
			sg->next = sg;

5897
			*per_cpu_ptr(sdd->sg, j) = sg;
5898

P
Peter Zijlstra 已提交
5899
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5900 5901 5902 5903 5904
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

5916
	for_each_sd_topology(tl) {
5917 5918 5919
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
5933 5934
		}
		free_percpu(sdd->sd);
5935
		sdd->sd = NULL;
5936
		free_percpu(sdd->sg);
5937
		sdd->sg = NULL;
5938
		free_percpu(sdd->sgp);
5939
		sdd->sgp = NULL;
5940 5941 5942
	}
}

5943
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5944 5945
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
5946
{
5947
	struct sched_domain *sd = tl->init(tl, cpu);
5948
	if (!sd)
5949
		return child;
5950 5951

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5952 5953 5954
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5955
		child->parent = sd;
5956
		sd->child = child;
5957
	}
5958
	set_domain_attribute(sd, attr);
5959 5960 5961 5962

	return sd;
}

5963 5964 5965 5966
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
5967 5968
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
5969
{
5970
	enum s_alloc alloc_state;
5971
	struct sched_domain *sd;
5972
	struct s_data d;
5973
	int i, ret = -ENOMEM;
5974

5975 5976 5977
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
5978

5979
	/* Set up domains for cpus specified by the cpu_map. */
5980
	for_each_cpu(i, cpu_map) {
5981 5982
		struct sched_domain_topology_level *tl;

5983
		sd = NULL;
5984
		for_each_sd_topology(tl) {
5985
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5986 5987
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
5988 5989
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
5990 5991
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
5992
		}
5993 5994 5995 5996 5997 5998
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5999 6000 6001 6002 6003 6004 6005
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6006
		}
6007
	}
6008

L
Linus Torvalds 已提交
6009
	/* Calculate CPU power for physical packages and nodes */
6010 6011 6012
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6013

6014 6015
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6016
			init_sched_groups_power(i, sd);
6017
		}
6018
	}
6019

L
Linus Torvalds 已提交
6020
	/* Attach the domains */
6021
	rcu_read_lock();
6022
	for_each_cpu(i, cpu_map) {
6023
		sd = *per_cpu_ptr(d.sd, i);
6024
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6025
	}
6026
	rcu_read_unlock();
6027

6028
	ret = 0;
6029
error:
6030
	__free_domain_allocs(&d, alloc_state, cpu_map);
6031
	return ret;
L
Linus Torvalds 已提交
6032
}
P
Paul Jackson 已提交
6033

6034
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6035
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6036 6037
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6038 6039 6040

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6041 6042
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6043
 */
6044
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6045

6046 6047 6048 6049 6050 6051
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6052
{
6053
	return 0;
6054 6055
}

6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6081
/*
I
Ingo Molnar 已提交
6082
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6083 6084
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6085
 */
6086
static int init_sched_domains(const struct cpumask *cpu_map)
6087
{
6088 6089
	int err;

6090
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6091
	ndoms_cur = 1;
6092
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6093
	if (!doms_cur)
6094 6095
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6096
	err = build_sched_domains(doms_cur[0], NULL);
6097
	register_sched_domain_sysctl();
6098 6099

	return err;
6100 6101 6102 6103 6104 6105
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6106
static void detach_destroy_domains(const struct cpumask *cpu_map)
6107 6108 6109
{
	int i;

6110
	rcu_read_lock();
6111
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6112
		cpu_attach_domain(NULL, &def_root_domain, i);
6113
	rcu_read_unlock();
6114 6115
}

6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6132 6133
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6134
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6135 6136 6137
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6138
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6139 6140 6141
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6142 6143 6144
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6145 6146 6147 6148 6149 6150
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6151
 *
6152
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6153 6154
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6155
 *
P
Paul Jackson 已提交
6156 6157
 * Call with hotplug lock held
 */
6158
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6159
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6160
{
6161
	int i, j, n;
6162
	int new_topology;
P
Paul Jackson 已提交
6163

6164
	mutex_lock(&sched_domains_mutex);
6165

6166 6167 6168
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6169 6170 6171
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6172
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6173 6174 6175

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6176
		for (j = 0; j < n && !new_topology; j++) {
6177
			if (cpumask_equal(doms_cur[i], doms_new[j])
6178
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6179 6180 6181
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6182
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6183 6184 6185 6186
match1:
		;
	}

6187 6188
	if (doms_new == NULL) {
		ndoms_cur = 0;
6189
		doms_new = &fallback_doms;
6190
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6191
		WARN_ON_ONCE(dattr_new);
6192 6193
	}

P
Paul Jackson 已提交
6194 6195
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6196
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6197
			if (cpumask_equal(doms_new[i], doms_cur[j])
6198
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6199 6200 6201
				goto match2;
		}
		/* no match - add a new doms_new */
6202
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6203 6204 6205 6206 6207
match2:
		;
	}

	/* Remember the new sched domains */
6208 6209
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6210
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6211
	doms_cur = doms_new;
6212
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6213
	ndoms_cur = ndoms_new;
6214 6215

	register_sched_domain_sysctl();
6216

6217
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6218 6219
}

6220 6221
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6222
/*
6223 6224 6225
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6226 6227 6228
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6229
 */
6230 6231
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6232
{
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6255
	case CPU_ONLINE:
6256
	case CPU_DOWN_FAILED:
6257
		cpuset_update_active_cpus(true);
6258
		break;
6259 6260 6261
	default:
		return NOTIFY_DONE;
	}
6262
	return NOTIFY_OK;
6263
}
6264

6265 6266
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6267
{
6268
	switch (action) {
6269
	case CPU_DOWN_PREPARE:
6270
		cpuset_update_active_cpus(false);
6271 6272 6273 6274 6275
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6276 6277 6278
	default:
		return NOTIFY_DONE;
	}
6279
	return NOTIFY_OK;
6280 6281
}

L
Linus Torvalds 已提交
6282 6283
void __init sched_init_smp(void)
{
6284 6285 6286
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6287
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6288

6289 6290
	sched_init_numa();

6291
	get_online_cpus();
6292
	mutex_lock(&sched_domains_mutex);
6293
	init_sched_domains(cpu_active_mask);
6294 6295 6296
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6297
	mutex_unlock(&sched_domains_mutex);
6298
	put_online_cpus();
6299

6300
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6301 6302
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6303

6304
	init_hrtick();
6305 6306

	/* Move init over to a non-isolated CPU */
6307
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6308
		BUG();
I
Ingo Molnar 已提交
6309
	sched_init_granularity();
6310
	free_cpumask_var(non_isolated_cpus);
6311

6312
	init_sched_rt_class();
L
Linus Torvalds 已提交
6313 6314 6315 6316
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6317
	sched_init_granularity();
L
Linus Torvalds 已提交
6318 6319 6320
}
#endif /* CONFIG_SMP */

6321 6322
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6323 6324 6325 6326 6327 6328 6329
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6330
#ifdef CONFIG_CGROUP_SCHED
6331 6332 6333 6334
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6335
struct task_group root_task_group;
6336
LIST_HEAD(task_groups);
6337
#endif
P
Peter Zijlstra 已提交
6338

6339
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6340

L
Linus Torvalds 已提交
6341 6342
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6343
	int i, j;
6344 6345 6346 6347 6348 6349 6350
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6351
#endif
6352
#ifdef CONFIG_CPUMASK_OFFSTACK
6353
	alloc_size += num_possible_cpus() * cpumask_size();
6354 6355
#endif
	if (alloc_size) {
6356
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6357 6358

#ifdef CONFIG_FAIR_GROUP_SCHED
6359
		root_task_group.se = (struct sched_entity **)ptr;
6360 6361
		ptr += nr_cpu_ids * sizeof(void **);

6362
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6363
		ptr += nr_cpu_ids * sizeof(void **);
6364

6365
#endif /* CONFIG_FAIR_GROUP_SCHED */
6366
#ifdef CONFIG_RT_GROUP_SCHED
6367
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6368 6369
		ptr += nr_cpu_ids * sizeof(void **);

6370
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6371 6372
		ptr += nr_cpu_ids * sizeof(void **);

6373
#endif /* CONFIG_RT_GROUP_SCHED */
6374 6375
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6376
			per_cpu(load_balance_mask, i) = (void *)ptr;
6377 6378 6379
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6380
	}
I
Ingo Molnar 已提交
6381

G
Gregory Haskins 已提交
6382 6383 6384 6385
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6386 6387 6388 6389
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6390
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6391
			global_rt_period(), global_rt_runtime());
6392
#endif /* CONFIG_RT_GROUP_SCHED */
6393

D
Dhaval Giani 已提交
6394
#ifdef CONFIG_CGROUP_SCHED
6395 6396
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6397
	INIT_LIST_HEAD(&root_task_group.siblings);
6398
	autogroup_init(&init_task);
6399

D
Dhaval Giani 已提交
6400
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6401

6402
	for_each_possible_cpu(i) {
6403
		struct rq *rq;
L
Linus Torvalds 已提交
6404 6405

		rq = cpu_rq(i);
6406
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6407
		rq->nr_running = 0;
6408 6409
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6410
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6411
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6412
#ifdef CONFIG_FAIR_GROUP_SCHED
6413
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6414
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6415
		/*
6416
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6417 6418 6419 6420
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6421
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6422 6423 6424
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6425
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6426 6427 6428
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6429
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6430
		 *
6431 6432
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6433
		 */
6434
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6435
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6436 6437 6438
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6439
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6440
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6441
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6442
#endif
L
Linus Torvalds 已提交
6443

I
Ingo Molnar 已提交
6444 6445
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6446 6447 6448

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6449
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6450
		rq->sd = NULL;
G
Gregory Haskins 已提交
6451
		rq->rd = NULL;
6452
		rq->cpu_power = SCHED_POWER_SCALE;
6453
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6454
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6455
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6456
		rq->push_cpu = 0;
6457
		rq->cpu = i;
6458
		rq->online = 0;
6459 6460
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6461 6462 6463

		INIT_LIST_HEAD(&rq->cfs_tasks);

6464
		rq_attach_root(rq, &def_root_domain);
6465
#ifdef CONFIG_NO_HZ_COMMON
6466
		rq->nohz_flags = 0;
6467
#endif
6468 6469 6470
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6471
#endif
P
Peter Zijlstra 已提交
6472
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6473 6474 6475
		atomic_set(&rq->nr_iowait, 0);
	}

6476
	set_load_weight(&init_task);
6477

6478 6479 6480 6481
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6482
#ifdef CONFIG_RT_MUTEXES
6483
	plist_head_init(&init_task.pi_waiters);
6484 6485
#endif

L
Linus Torvalds 已提交
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6499 6500 6501

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6502 6503 6504 6505
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6506

6507
#ifdef CONFIG_SMP
6508
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6509 6510 6511
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6512
	idle_thread_set_boot_cpu();
6513 6514
#endif
	init_sched_fair_class();
6515

6516
	scheduler_running = 1;
L
Linus Torvalds 已提交
6517 6518
}

6519
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6520 6521
static inline int preempt_count_equals(int preempt_offset)
{
6522
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6523

A
Arnd Bergmann 已提交
6524
	return (nested == preempt_offset);
6525 6526
}

6527
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6528 6529 6530
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6531
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6532 6533
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6534 6535 6536 6537 6538
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6539 6540 6541 6542 6543 6544 6545
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6546 6547 6548 6549 6550

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6551 6552 6553 6554 6555
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6556 6557
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6558 6559
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6560
	int on_rq;
6561

P
Peter Zijlstra 已提交
6562
	on_rq = p->on_rq;
6563
	if (on_rq)
6564
		dequeue_task(rq, p, 0);
6565 6566
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6567
		enqueue_task(rq, p, 0);
6568 6569
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6570 6571

	check_class_changed(rq, p, prev_class, old_prio);
6572 6573
}

L
Linus Torvalds 已提交
6574 6575
void normalize_rt_tasks(void)
{
6576
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6577
	unsigned long flags;
6578
	struct rq *rq;
L
Linus Torvalds 已提交
6579

6580
	read_lock_irqsave(&tasklist_lock, flags);
6581
	do_each_thread(g, p) {
6582 6583 6584 6585 6586 6587
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6588 6589
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6590 6591 6592
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6593
#endif
I
Ingo Molnar 已提交
6594 6595 6596 6597 6598 6599 6600 6601

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6602
			continue;
I
Ingo Molnar 已提交
6603
		}
L
Linus Torvalds 已提交
6604

6605
		raw_spin_lock(&p->pi_lock);
6606
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6607

6608
		normalize_task(rq, p);
6609

6610
		__task_rq_unlock(rq);
6611
		raw_spin_unlock(&p->pi_lock);
6612 6613
	} while_each_thread(g, p);

6614
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
6615 6616 6617
}

#endif /* CONFIG_MAGIC_SYSRQ */
6618

6619
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6620
/*
6621
 * These functions are only useful for the IA64 MCA handling, or kdb.
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6636
struct task_struct *curr_task(int cpu)
6637 6638 6639 6640
{
	return cpu_curr(cpu);
}

6641 6642 6643
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6644 6645 6646 6647 6648 6649
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6650 6651
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6652 6653 6654 6655 6656 6657 6658
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6659
void set_curr_task(int cpu, struct task_struct *p)
6660 6661 6662 6663 6664
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6665

D
Dhaval Giani 已提交
6666
#ifdef CONFIG_CGROUP_SCHED
6667 6668 6669
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6670 6671 6672 6673
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6674
	autogroup_free(tg);
6675 6676 6677 6678
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
6679
struct task_group *sched_create_group(struct task_group *parent)
6680 6681 6682 6683 6684 6685 6686
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6687
	if (!alloc_fair_sched_group(tg, parent))
6688 6689
		goto err;

6690
	if (!alloc_rt_sched_group(tg, parent))
6691 6692
		goto err;

6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6704
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6705
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6706 6707 6708 6709 6710

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6711
	list_add_rcu(&tg->siblings, &parent->children);
6712
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6713 6714
}

6715
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
6716
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6717 6718
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
6719
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6720 6721
}

6722
/* Destroy runqueue etc associated with a task group */
6723
void sched_destroy_group(struct task_group *tg)
6724 6725 6726 6727 6728 6729
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6730
{
6731
	unsigned long flags;
6732
	int i;
S
Srivatsa Vaddagiri 已提交
6733

6734 6735
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
6736
		unregister_fair_sched_group(tg, i);
6737 6738

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6739
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6740
	list_del_rcu(&tg->siblings);
6741
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6742 6743
}

6744
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6745 6746 6747
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6748 6749
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6750
{
P
Peter Zijlstra 已提交
6751
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6752 6753 6754 6755 6756 6757
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

6758
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
6759
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
6760

6761
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
6762
		dequeue_task(rq, tsk, 0);
6763 6764
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6765

P
Peter Zijlstra 已提交
6766 6767 6768 6769 6770 6771
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6772
#ifdef CONFIG_FAIR_GROUP_SCHED
6773 6774 6775
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
6776
#endif
6777
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
6778

6779 6780 6781
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
6782
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
6783

6784
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
6785
}
D
Dhaval Giani 已提交
6786
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6787

6788
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
6789 6790 6791
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6792
		return 1ULL << 20;
P
Peter Zijlstra 已提交
6793

P
Peter Zijlstra 已提交
6794
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
6795
}
6796 6797 6798 6799 6800 6801 6802
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6803

P
Peter Zijlstra 已提交
6804 6805
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6806
{
P
Peter Zijlstra 已提交
6807
	struct task_struct *g, *p;
6808

P
Peter Zijlstra 已提交
6809
	do_each_thread(g, p) {
6810
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
6811 6812
			return 1;
	} while_each_thread(g, p);
6813

P
Peter Zijlstra 已提交
6814 6815
	return 0;
}
6816

P
Peter Zijlstra 已提交
6817 6818 6819 6820 6821
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6822

6823
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6824 6825 6826 6827 6828
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6829

P
Peter Zijlstra 已提交
6830 6831
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6832

P
Peter Zijlstra 已提交
6833 6834 6835
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6836 6837
	}

6838 6839 6840 6841 6842
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6843

6844 6845 6846
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6847 6848
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6849

P
Peter Zijlstra 已提交
6850
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6851

6852 6853 6854 6855 6856
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6857

6858 6859 6860
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6861 6862 6863
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6864

P
Peter Zijlstra 已提交
6865 6866 6867 6868
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6869

P
Peter Zijlstra 已提交
6870
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6871
	}
P
Peter Zijlstra 已提交
6872

P
Peter Zijlstra 已提交
6873 6874 6875 6876
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6877 6878
}

P
Peter Zijlstra 已提交
6879
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6880
{
6881 6882
	int ret;

P
Peter Zijlstra 已提交
6883 6884 6885 6886 6887 6888
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6889 6890 6891 6892 6893
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6894 6895
}

6896
static int tg_set_rt_bandwidth(struct task_group *tg,
6897
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6898
{
P
Peter Zijlstra 已提交
6899
	int i, err = 0;
P
Peter Zijlstra 已提交
6900 6901

	mutex_lock(&rt_constraints_mutex);
6902
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6903 6904
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6905
		goto unlock;
P
Peter Zijlstra 已提交
6906

6907
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6908 6909
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6910 6911 6912 6913

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6914
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6915
		rt_rq->rt_runtime = rt_runtime;
6916
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6917
	}
6918
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6919
unlock:
6920
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6921 6922 6923
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6924 6925
}

6926
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6927 6928 6929 6930 6931 6932 6933 6934
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6935
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6936 6937
}

6938
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6939 6940 6941
{
	u64 rt_runtime_us;

6942
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6943 6944
		return -1;

6945
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6946 6947 6948
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
6949

6950
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6951 6952 6953 6954 6955 6956
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

6957 6958 6959
	if (rt_period == 0)
		return -EINVAL;

6960
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6961 6962
}

6963
static long sched_group_rt_period(struct task_group *tg)
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
6974
	u64 runtime, period;
6975 6976
	int ret = 0;

6977 6978 6979
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

6980 6981 6982 6983 6984 6985 6986 6987
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
6988

6989
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
6990
	read_lock(&tasklist_lock);
6991
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
6992
	read_unlock(&tasklist_lock);
6993 6994 6995 6996
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
6997

6998
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6999 7000 7001 7002 7003 7004 7005 7006
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7007
#else /* !CONFIG_RT_GROUP_SCHED */
7008 7009
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7010 7011 7012
	unsigned long flags;
	int i;

7013 7014 7015
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7016 7017 7018 7019 7020 7021 7022
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7023
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7024 7025 7026
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7027
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7028
		rt_rq->rt_runtime = global_rt_runtime();
7029
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7030
	}
7031
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7032

7033 7034
	return 0;
}
7035
#endif /* CONFIG_RT_GROUP_SCHED */
7036

7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7056
int sched_rt_handler(struct ctl_table *table, int write,
7057
		void __user *buffer, size_t *lenp,
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7068
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7085

7086
#ifdef CONFIG_CGROUP_SCHED
7087 7088

/* return corresponding task_group object of a cgroup */
7089
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7090
{
7091 7092
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7093 7094
}

7095
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7096
{
7097
	struct task_group *tg, *parent;
7098

7099
	if (!cgrp->parent) {
7100
		/* This is early initialization for the top cgroup */
7101
		return &root_task_group.css;
7102 7103
	}

7104 7105
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7106 7107 7108 7109 7110 7111
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7125
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7126
{
7127
	struct task_group *tg = cgroup_tg(cgrp);
7128 7129 7130 7131

	sched_destroy_group(tg);
}

7132 7133 7134 7135 7136 7137 7138
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7139
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7140
				 struct cgroup_taskset *tset)
7141
{
7142 7143 7144
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7145
#ifdef CONFIG_RT_GROUP_SCHED
7146 7147
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7148
#else
7149 7150 7151
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7152
#endif
7153
	}
7154 7155
	return 0;
}
7156

7157
static void cpu_cgroup_attach(struct cgroup *cgrp,
7158
			      struct cgroup_taskset *tset)
7159
{
7160 7161 7162 7163
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7164 7165
}

7166
static void
7167 7168
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7181
#ifdef CONFIG_FAIR_GROUP_SCHED
7182
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7183
				u64 shareval)
7184
{
7185
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7186 7187
}

7188
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7189
{
7190
	struct task_group *tg = cgroup_tg(cgrp);
7191

7192
	return (u64) scale_load_down(tg->shares);
7193
}
7194 7195

#ifdef CONFIG_CFS_BANDWIDTH
7196 7197
static DEFINE_MUTEX(cfs_constraints_mutex);

7198 7199 7200
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7201 7202
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7203 7204
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7205
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7206
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7227 7228 7229 7230 7231
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7232
	runtime_enabled = quota != RUNTIME_INF;
7233 7234
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7235 7236 7237
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7238

P
Paul Turner 已提交
7239
	__refill_cfs_bandwidth_runtime(cfs_b);
7240 7241 7242 7243 7244 7245
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7246 7247 7248 7249
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7250
		struct rq *rq = cfs_rq->rq;
7251 7252

		raw_spin_lock_irq(&rq->lock);
7253
		cfs_rq->runtime_enabled = runtime_enabled;
7254
		cfs_rq->runtime_remaining = 0;
7255

7256
		if (cfs_rq->throttled)
7257
			unthrottle_cfs_rq(cfs_rq);
7258 7259
		raw_spin_unlock_irq(&rq->lock);
	}
7260 7261
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7262

7263
	return ret;
7264 7265 7266 7267 7268 7269
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7270
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7283
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7284 7285
		return -1;

7286
	quota_us = tg->cfs_bandwidth.quota;
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7297
	quota = tg->cfs_bandwidth.quota;
7298 7299 7300 7301 7302 7303 7304 7305

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7306
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7366
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7367 7368 7369 7370 7371
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7372
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7393
	int ret;
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7405 7406 7407 7408 7409
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7410
}
7411 7412 7413 7414 7415

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7416
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7417 7418 7419 7420 7421 7422 7423

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7424
#endif /* CONFIG_CFS_BANDWIDTH */
7425
#endif /* CONFIG_FAIR_GROUP_SCHED */
7426

7427
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7428
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7429
				s64 val)
P
Peter Zijlstra 已提交
7430
{
7431
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7432 7433
}

7434
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7435
{
7436
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7437
}
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7449
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7450

7451
static struct cftype cpu_files[] = {
7452
#ifdef CONFIG_FAIR_GROUP_SCHED
7453 7454
	{
		.name = "shares",
7455 7456
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7457
	},
7458
#endif
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7470 7471 7472 7473
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7474
#endif
7475
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7476
	{
P
Peter Zijlstra 已提交
7477
		.name = "rt_runtime_us",
7478 7479
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7480
	},
7481 7482
	{
		.name = "rt_period_us",
7483 7484
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7485
	},
7486
#endif
7487
	{ }	/* terminate */
7488 7489 7490
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7491
	.name		= "cpu",
7492 7493
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7494 7495
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
7496 7497
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7498
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7499
	.subsys_id	= cpu_cgroup_subsys_id,
7500
	.base_cftypes	= cpu_files,
7501 7502 7503
	.early_init	= 1,
};

7504
#endif	/* CONFIG_CGROUP_SCHED */
7505

7506 7507 7508 7509 7510
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}