core.c 193.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
G
Glauber Costa 已提交
77 78 79
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
80

81
#include "sched.h"
82
#include "../workqueue_sched.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

87
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88
{
89 90
	unsigned long delta;
	ktime_t soft, hard, now;
91

92 93 94 95 96 97
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
98

99 100 101 102 103 104 105 106
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

107 108
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109

110
static void update_rq_clock_task(struct rq *rq, s64 delta);
111

112
void update_rq_clock(struct rq *rq)
113
{
114
	s64 delta;
115

116
	if (rq->skip_clock_update > 0)
117
		return;
118

119 120 121
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
122 123
}

I
Ingo Molnar 已提交
124 125 126
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
127 128 129 130

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
131
const_debug unsigned int sysctl_sched_features =
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136 137 138 139 140
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

141
static __read_mostly char *sched_feat_names[] = {
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
148
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
149 150 151
{
	int i;

152
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
153 154 155
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
156
	}
L
Li Zefan 已提交
157
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
158

L
Li Zefan 已提交
159
	return 0;
P
Peter Zijlstra 已提交
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifdef HAVE_JUMP_LABEL

#define jump_label_key__true  jump_label_key_enabled
#define jump_label_key__false jump_label_key_disabled

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
	if (jump_label_enabled(&sched_feat_keys[i]))
		jump_label_dec(&sched_feat_keys[i]);
}

static void sched_feat_enable(int i)
{
	if (!jump_label_enabled(&sched_feat_keys[i]))
		jump_label_inc(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
192 193 194 195 196
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
197
	char *cmp;
P
Peter Zijlstra 已提交
198 199 200 201 202 203 204 205 206 207
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
208
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
209

H
Hillf Danton 已提交
210
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
211 212 213 214
		neg = 1;
		cmp += 3;
	}

215
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
216
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
217
			if (neg) {
P
Peter Zijlstra 已提交
218
				sysctl_sched_features &= ~(1UL << i);
219 220
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features |= (1UL << i);
222 223
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
224 225 226 227
			break;
		}
	}

228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286 287


L
Linus Torvalds 已提交
288

289
/*
290
 * __task_rq_lock - lock the rq @p resides on.
291
 */
292
static inline struct rq *__task_rq_lock(struct task_struct *p)
293 294
	__acquires(rq->lock)
{
295 296
	struct rq *rq;

297 298
	lockdep_assert_held(&p->pi_lock);

299
	for (;;) {
300
		rq = task_rq(p);
301
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
302
		if (likely(rq == task_rq(p)))
303
			return rq;
304
		raw_spin_unlock(&rq->lock);
305 306 307
	}
}

L
Linus Torvalds 已提交
308
/*
309
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
310
 */
311
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
312
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
313 314
	__acquires(rq->lock)
{
315
	struct rq *rq;
L
Linus Torvalds 已提交
316

317
	for (;;) {
318
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
319
		rq = task_rq(p);
320
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
321
		if (likely(rq == task_rq(p)))
322
			return rq;
323 324
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
325 326 327
	}
}

A
Alexey Dobriyan 已提交
328
static void __task_rq_unlock(struct rq *rq)
329 330
	__releases(rq->lock)
{
331
	raw_spin_unlock(&rq->lock);
332 333
}

334 335
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
336
	__releases(rq->lock)
337
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
338
{
339 340
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
341 342 343
}

/*
344
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
345
 */
A
Alexey Dobriyan 已提交
346
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
347 348
	__acquires(rq->lock)
{
349
	struct rq *rq;
L
Linus Torvalds 已提交
350 351 352

	local_irq_disable();
	rq = this_rq();
353
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
354 355 356 357

	return rq;
}

P
Peter Zijlstra 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

386
	raw_spin_lock(&rq->lock);
387
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
388
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
389
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
390 391 392 393

	return HRTIMER_NORESTART;
}

394
#ifdef CONFIG_SMP
395 396 397 398
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
399
{
400
	struct rq *rq = arg;
401

402
	raw_spin_lock(&rq->lock);
403 404
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
405
	raw_spin_unlock(&rq->lock);
406 407
}

408 409 410 411 412
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
415 416
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
417

418
	hrtimer_set_expires(timer, time);
419 420 421 422

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
423
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
424 425
		rq->hrtick_csd_pending = 1;
	}
426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
440
		hrtick_clear(cpu_rq(cpu));
441 442 443 444 445 446
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

447
static __init void init_hrtick(void)
448 449 450
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
451 452 453 454 455 456
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
457
void hrtick_start(struct rq *rq, u64 delay)
458
{
459
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
460
			HRTIMER_MODE_REL_PINNED, 0);
461
}
462

A
Andrew Morton 已提交
463
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
464 465
{
}
466
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
467

468
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
469
{
470 471
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
472

473 474 475 476
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
477

478 479
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
480
}
A
Andrew Morton 已提交
481
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

490 491 492
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
493
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494

I
Ingo Molnar 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

508
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
509 510 511
{
	int cpu;

512
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
513

514
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
515 516
		return;

517
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
518 519 520 521 522 523 524 525 526 527 528

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

529
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
530 531 532 533
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

534
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
535 536
		return;
	resched_task(cpu_curr(cpu));
537
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
538
}
539 540

#ifdef CONFIG_NO_HZ
541 542 543 544 545 546 547 548 549 550 551 552 553 554
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

555
	rcu_read_lock();
556
	for_each_domain(cpu, sd) {
557 558 559 560 561 562
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
563
	}
564 565
unlock:
	rcu_read_unlock();
566 567
	return cpu;
}
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
594 595

	/*
596 597 598
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
599
	 */
600
	set_tsk_need_resched(rq->idle);
601

602 603 604 605
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
606 607
}

608
static inline bool got_nohz_idle_kick(void)
609
{
610 611
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
612 613
}

614
#else /* CONFIG_NO_HZ */
615

616
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
617
{
618
	return false;
P
Peter Zijlstra 已提交
619 620
}

621
#endif /* CONFIG_NO_HZ */
622

623
void sched_avg_update(struct rq *rq)
624
{
625 626 627
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
628 629 630 631 632 633
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
634 635 636
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
637 638
}

639
#else /* !CONFIG_SMP */
640
void resched_task(struct task_struct *p)
641
{
642
	assert_raw_spin_locked(&task_rq(p)->lock);
643
	set_tsk_need_resched(p);
644
}
645
#endif /* CONFIG_SMP */
646

647 648
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649
/*
650 651 652 653
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
654
 */
655
int walk_tg_tree_from(struct task_group *from,
656
			     tg_visitor down, tg_visitor up, void *data)
657 658
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
659
	int ret;
660

661 662
	parent = from;

663
down:
P
Peter Zijlstra 已提交
664 665
	ret = (*down)(parent, data);
	if (ret)
666
		goto out;
667 668 669 670 671 672 673
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
674
	ret = (*up)(parent, data);
675 676
	if (ret || parent == from)
		goto out;
677 678 679 680 681

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
682
out:
P
Peter Zijlstra 已提交
683
	return ret;
684 685
}

686
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
687
{
688
	return 0;
P
Peter Zijlstra 已提交
689
}
690 691
#endif

692
void update_cpu_load(struct rq *this_rq);
693

694 695
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
696 697 698
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
699 700 701 702
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
703
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
704
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
705 706
		return;
	}
707

708
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
709
	load->inv_weight = prio_to_wmult[prio];
710 711
}

712
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
713
{
714
	update_rq_clock(rq);
I
Ingo Molnar 已提交
715
	sched_info_queued(p);
716
	p->sched_class->enqueue_task(rq, p, flags);
717 718
}

719
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
720
{
721
	update_rq_clock(rq);
722
	sched_info_dequeued(p);
723
	p->sched_class->dequeue_task(rq, p, flags);
724 725
}

726
void activate_task(struct rq *rq, struct task_struct *p, int flags)
727 728 729 730
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

731
	enqueue_task(rq, p, flags);
732 733
}

734
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
735 736 737 738
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

739
	dequeue_task(rq, p, flags);
740 741
}

742 743
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

744 745 746 747 748 749 750
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
751 752 753
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
754
 */
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
809 810 811
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
812
#endif /* CONFIG_64BIT */
813

814 815 816 817
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
818 819 820
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
821
	s64 delta;
822 823 824 825 826 827 828 829
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
830 831 832
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

833
	irq_time_write_begin();
834 835 836 837 838 839 840
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
841
		__this_cpu_add(cpu_hardirq_time, delta);
842
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
843
		__this_cpu_add(cpu_softirq_time, delta);
844

845
	irq_time_write_end();
846 847
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
848
EXPORT_SYMBOL_GPL(account_system_vtime);
849

G
Glauber Costa 已提交
850 851 852 853
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
854
{
G
Glauber Costa 已提交
855 856
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
857

G
Glauber Costa 已提交
858 859 860 861
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

862
static void update_rq_clock_task(struct rq *rq, s64 delta)
863
{
864 865 866 867 868 869 870 871
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
872
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

914 915
	rq->clock_task += delta;

916 917 918 919
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
920 921
}

922
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
923 924
static int irqtime_account_hi_update(void)
{
925
	u64 *cpustat = kcpustat_this_cpu->cpustat;
926 927 928 929 930 931
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
932
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
933 934 935 936 937 938 939
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
940
	u64 *cpustat = kcpustat_this_cpu->cpustat;
941 942 943 944 945 946
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
947
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
948 949 950 951 952
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

953
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
954

955 956
#define sched_clock_irqtime	(0)

957
#endif
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

989
/*
I
Ingo Molnar 已提交
990
 * __normal_prio - return the priority that is based on the static prio
991 992 993
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
994
	return p->static_prio;
995 996
}

997 998 999 1000 1001 1002 1003
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1004
static inline int normal_prio(struct task_struct *p)
1005 1006 1007
{
	int prio;

1008
	if (task_has_rt_policy(p))
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1022
static int effective_prio(struct task_struct *p)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1035 1036 1037 1038
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1039
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1040 1041 1042 1043
{
	return cpu_curr(task_cpu(p)) == p;
}

1044 1045
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1046
				       int oldprio)
1047 1048 1049
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1050 1051 1052 1053
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1054 1055
}

1056
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1077
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1078 1079 1080
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1081
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1082
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1083
{
1084 1085 1086 1087 1088
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1089 1090
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1091 1092

#ifdef CONFIG_LOCKDEP
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1103 1104 1105
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1106 1107
#endif

1108
	trace_sched_migrate_task(p, new_cpu);
1109

1110 1111
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1112
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1113
	}
I
Ingo Molnar 已提交
1114 1115

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1116 1117
}

1118
struct migration_arg {
1119
	struct task_struct *task;
L
Linus Torvalds 已提交
1120
	int dest_cpu;
1121
};
L
Linus Torvalds 已提交
1122

1123 1124
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1125 1126 1127
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1128 1129 1130 1131 1132 1133 1134
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1135 1136 1137 1138 1139 1140
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1141
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1142 1143
{
	unsigned long flags;
I
Ingo Molnar 已提交
1144
	int running, on_rq;
R
Roland McGrath 已提交
1145
	unsigned long ncsw;
1146
	struct rq *rq;
L
Linus Torvalds 已提交
1147

1148 1149 1150 1151 1152 1153 1154 1155
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1168 1169 1170
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1171
			cpu_relax();
R
Roland McGrath 已提交
1172
		}
1173

1174 1175 1176 1177 1178 1179
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1180
		trace_sched_wait_task(p);
1181
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1182
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1183
		ncsw = 0;
1184
		if (!match_state || p->state == match_state)
1185
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186
		task_rq_unlock(rq, p, &flags);
1187

R
Roland McGrath 已提交
1188 1189 1190 1191 1192 1193
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1204

1205 1206 1207 1208 1209
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1210
		 * So if it was still runnable (but just not actively
1211 1212 1213 1214
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1215 1216 1217 1218
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219 1220
			continue;
		}
1221

1222 1223 1224 1225 1226 1227 1228
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1229 1230

	return ncsw;
L
Linus Torvalds 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1240
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1241 1242 1243 1244 1245
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1246
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1256
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1257
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1258

1259
#ifdef CONFIG_SMP
1260
/*
1261
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262
 */
1263 1264 1265 1266 1267 1268 1269
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1270
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1271 1272 1273
			return dest_cpu;

	/* Any allowed, online CPU? */
1274
	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1275 1276 1277 1278
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
1279 1280 1281 1282 1283 1284 1285 1286 1287
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
1288 1289 1290 1291 1292
	}

	return dest_cpu;
}

1293
/*
1294
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1295
 */
1296
static inline
1297
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1298
{
1299
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1311
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1312
		     !cpu_online(cpu)))
1313
		cpu = select_fallback_rq(task_cpu(p), p);
1314 1315

	return cpu;
1316
}
1317 1318 1319 1320 1321 1322

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1323 1324
#endif

P
Peter Zijlstra 已提交
1325
static void
1326
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1327
{
P
Peter Zijlstra 已提交
1328
#ifdef CONFIG_SCHEDSTATS
1329 1330
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1341
		rcu_read_lock();
P
Peter Zijlstra 已提交
1342 1343 1344 1345 1346 1347
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1348
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1349
	}
1350 1351 1352 1353

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1354 1355 1356
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1357
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1358 1359

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1360
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1361 1362 1363 1364 1365 1366

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1367
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1368
	p->on_rq = 1;
1369 1370 1371 1372

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1373 1374
}

1375 1376 1377
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1378
static void
1379
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1380
{
1381
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1382 1383 1384 1385 1386 1387 1388
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1389
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1435
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1436
static void sched_ttwu_pending(void)
1437 1438
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1439 1440
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1441 1442 1443

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1444 1445 1446
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1447 1448 1449 1450 1451 1452 1453 1454
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1455
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1472
	sched_ttwu_pending();
1473 1474 1475 1476

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1477 1478
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1479
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1480
	}
1481
	irq_exit();
1482 1483 1484 1485
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1486
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1487 1488
		smp_send_reschedule(cpu);
}
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1508 1509 1510 1511 1512

static inline int ttwu_share_cache(int this_cpu, int that_cpu)
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1513
#endif /* CONFIG_SMP */
1514

1515 1516 1517 1518
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1519
#if defined(CONFIG_SMP)
1520
	if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
1521
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1522 1523 1524 1525 1526
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1527 1528 1529
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1530 1531 1532
}

/**
L
Linus Torvalds 已提交
1533
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1534
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1535
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1536
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1544 1545
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1546
 */
1547 1548
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1549 1550
{
	unsigned long flags;
1551
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1552

1553
	smp_wmb();
1554
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1555
	if (!(p->state & state))
L
Linus Torvalds 已提交
1556 1557
		goto out;

1558
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1559 1560
	cpu = task_cpu(p);

1561 1562
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1563 1564

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1565
	/*
1566 1567
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1568
	 */
1569 1570 1571
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1572 1573 1574 1575 1576
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1577
		 */
1578
		if (ttwu_activate_remote(p, wake_flags))
1579
			goto stat;
1580
#else
1581
		cpu_relax();
1582
#endif
1583
	}
1584
	/*
1585
	 * Pairs with the smp_wmb() in finish_lock_switch().
1586
	 */
1587
	smp_rmb();
L
Linus Torvalds 已提交
1588

1589
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1590
	p->state = TASK_WAKING;
1591

1592
	if (p->sched_class->task_waking)
1593
		p->sched_class->task_waking(p);
1594

1595
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1596 1597
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1598
		set_task_cpu(p, cpu);
1599
	}
L
Linus Torvalds 已提交
1600 1601
#endif /* CONFIG_SMP */

1602 1603
	ttwu_queue(p, cpu);
stat:
1604
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1605
out:
1606
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1607 1608 1609 1610

	return success;
}

T
Tejun Heo 已提交
1611 1612 1613 1614
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1615
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1616
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1617
 * the current task.
T
Tejun Heo 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1627 1628 1629 1630 1631 1632
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1633
	if (!(p->state & TASK_NORMAL))
1634
		goto out;
T
Tejun Heo 已提交
1635

P
Peter Zijlstra 已提交
1636
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1637 1638
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1639
	ttwu_do_wakeup(rq, p, 0);
1640
	ttwu_stat(p, smp_processor_id(), 0);
1641 1642
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1643 1644
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1656
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1657
{
1658
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1659 1660 1661
}
EXPORT_SYMBOL(wake_up_process);

1662
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1670 1671 1672 1673 1674
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1675 1676 1677
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1678 1679
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1680
	p->se.prev_sum_exec_runtime	= 0;
1681
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1682
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1683
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1684 1685

#ifdef CONFIG_SCHEDSTATS
1686
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1687
#endif
N
Nick Piggin 已提交
1688

P
Peter Zijlstra 已提交
1689
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1690

1691 1692 1693
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1694 1695 1696 1697 1698
}

/*
 * fork()/clone()-time setup:
 */
1699
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1700
{
1701
	unsigned long flags;
I
Ingo Molnar 已提交
1702 1703 1704
	int cpu = get_cpu();

	__sched_fork(p);
1705
	/*
1706
	 * We mark the process as running here. This guarantees that
1707 1708 1709
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1710
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1711

1712 1713 1714 1715 1716
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1717 1718 1719 1720
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1721
		if (task_has_rt_policy(p)) {
1722
			p->policy = SCHED_NORMAL;
1723
			p->static_prio = NICE_TO_PRIO(0);
1724 1725 1726 1727 1728 1729
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1730

1731 1732 1733 1734 1735 1736
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1737

H
Hiroshi Shimamoto 已提交
1738 1739
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1740

P
Peter Zijlstra 已提交
1741 1742 1743
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1744 1745 1746 1747 1748 1749 1750
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1751
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1752
	set_task_cpu(p, cpu);
1753
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1754

1755
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1756
	if (likely(sched_info_on()))
1757
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1758
#endif
P
Peter Zijlstra 已提交
1759 1760
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1761
#endif
1762
#ifdef CONFIG_PREEMPT_COUNT
1763
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1764
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1765
#endif
1766
#ifdef CONFIG_SMP
1767
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1768
#endif
1769

N
Nick Piggin 已提交
1770
	put_cpu();
L
Linus Torvalds 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1780
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1781 1782
{
	unsigned long flags;
I
Ingo Molnar 已提交
1783
	struct rq *rq;
1784

1785
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1786 1787 1788 1789 1790 1791
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1792
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1793 1794
#endif

1795
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1796
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1797
	p->on_rq = 1;
1798
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1799
	check_preempt_curr(rq, p, WF_FORK);
1800
#ifdef CONFIG_SMP
1801 1802
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1803
#endif
1804
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1805 1806
}

1807 1808 1809
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1810
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1811
 * @notifier: notifier struct to register
1812 1813 1814 1815 1816 1817 1818 1819 1820
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1821
 * @notifier: notifier struct to unregister
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1851
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1863
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1864

1865 1866 1867
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1868
 * @prev: the current task that is being switched out
1869 1870 1871 1872 1873 1874 1875 1876 1877
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1878 1879 1880
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1881
{
1882 1883
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1884
	fire_sched_out_preempt_notifiers(prev, next);
1885 1886
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1887
	trace_sched_switch(prev, next);
1888 1889
}

L
Linus Torvalds 已提交
1890 1891
/**
 * finish_task_switch - clean up after a task-switch
1892
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1893 1894
 * @prev: the thread we just switched away from.
 *
1895 1896 1897 1898
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1899 1900
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1901
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1902 1903 1904
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1905
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1906 1907 1908
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1909
	long prev_state;
L
Linus Torvalds 已提交
1910 1911 1912 1913 1914

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1915
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1916 1917
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1918
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1924
	prev_state = prev->state;
1925
	finish_arch_switch(prev);
1926 1927 1928
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1929
	perf_event_task_sched_in(prev, current);
1930 1931 1932
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1933
	finish_lock_switch(rq, prev);
1934
	trace_sched_stat_sleeptime(current, rq->clock);
S
Steven Rostedt 已提交
1935

1936
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1937 1938
	if (mm)
		mmdrop(mm);
1939
	if (unlikely(prev_state == TASK_DEAD)) {
1940 1941 1942
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1943
		 */
1944
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1945
		put_task_struct(prev);
1946
	}
L
Linus Torvalds 已提交
1947 1948
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1964
		raw_spin_lock_irqsave(&rq->lock, flags);
1965 1966
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1967
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1968 1969 1970 1971 1972 1973

		rq->post_schedule = 0;
	}
}

#else
1974

1975 1976 1977 1978 1979 1980
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1981 1982
}

1983 1984
#endif

L
Linus Torvalds 已提交
1985 1986 1987 1988
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1989
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1990 1991
	__releases(rq->lock)
{
1992 1993
	struct rq *rq = this_rq();

1994
	finish_task_switch(rq, prev);
1995

1996 1997 1998 1999 2000
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2001

2002 2003 2004 2005
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2006
	if (current->set_child_tid)
2007
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012 2013
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2014
static inline void
2015
context_switch(struct rq *rq, struct task_struct *prev,
2016
	       struct task_struct *next)
L
Linus Torvalds 已提交
2017
{
I
Ingo Molnar 已提交
2018
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2019

2020
	prepare_task_switch(rq, prev, next);
2021

I
Ingo Molnar 已提交
2022 2023
	mm = next->mm;
	oldmm = prev->active_mm;
2024 2025 2026 2027 2028
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2029
	arch_start_context_switch(prev);
2030

2031
	if (!mm) {
L
Linus Torvalds 已提交
2032 2033 2034 2035 2036 2037
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2038
	if (!prev->mm) {
L
Linus Torvalds 已提交
2039 2040 2041
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2042 2043 2044 2045 2046 2047 2048
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050
#endif
L
Linus Torvalds 已提交
2051 2052 2053 2054

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2055 2056 2057 2058 2059 2060 2061
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2079
}
L
Linus Torvalds 已提交
2080 2081

unsigned long nr_uninterruptible(void)
2082
{
L
Linus Torvalds 已提交
2083
	unsigned long i, sum = 0;
2084

2085
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2086
		sum += cpu_rq(i)->nr_uninterruptible;
2087 2088

	/*
L
Linus Torvalds 已提交
2089 2090
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2091
	 */
L
Linus Torvalds 已提交
2092 2093
	if (unlikely((long)sum < 0))
		sum = 0;
2094

L
Linus Torvalds 已提交
2095
	return sum;
2096 2097
}

L
Linus Torvalds 已提交
2098
unsigned long long nr_context_switches(void)
2099
{
2100 2101
	int i;
	unsigned long long sum = 0;
2102

2103
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2104
		sum += cpu_rq(i)->nr_switches;
2105

L
Linus Torvalds 已提交
2106 2107
	return sum;
}
2108

L
Linus Torvalds 已提交
2109 2110 2111
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2112

2113
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2114
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115

L
Linus Torvalds 已提交
2116 2117
	return sum;
}
2118

2119
unsigned long nr_iowait_cpu(int cpu)
2120
{
2121
	struct rq *this = cpu_rq(cpu);
2122 2123
	return atomic_read(&this->nr_iowait);
}
2124

2125 2126 2127 2128 2129
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2130

2131

2132 2133 2134 2135 2136
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2137

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2153 2154 2155 2156 2157 2158 2159 2160 2161
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2162 2163 2164 2165 2166 2167 2168 2169
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2170
void calc_load_account_idle(struct rq *this_rq)
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
2313
#else
2314
void calc_load_account_idle(struct rq *this_rq)
2315 2316 2317 2318 2319 2320 2321
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2322 2323 2324 2325

static void calc_global_nohz(unsigned long ticks)
{
}
2326 2327
#endif

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2341 2342 2343
}

/*
2344 2345
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2346
 */
2347
void calc_global_load(unsigned long ticks)
2348
{
2349
	long active;
L
Linus Torvalds 已提交
2350

2351 2352 2353
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
2354
		return;
L
Linus Torvalds 已提交
2355

2356 2357
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2358

2359 2360 2361
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2362

2363 2364
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2365

2366
/*
2367 2368
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2369 2370 2371
 */
static void calc_load_account_active(struct rq *this_rq)
{
2372
	long delta;
2373

2374 2375
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2376

2377 2378 2379
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2380
		atomic_long_add(delta, &calc_load_tasks);
2381 2382

	this_rq->calc_load_update += LOAD_FREQ;
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2452
/*
I
Ingo Molnar 已提交
2453
 * Update rq->cpu_load[] statistics. This function is usually called every
2454 2455
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2456
 */
2457
void update_cpu_load(struct rq *this_rq)
2458
{
2459
	unsigned long this_load = this_rq->load.weight;
2460 2461
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
2462
	int i, scale;
2463

I
Ingo Molnar 已提交
2464
	this_rq->nr_load_updates++;
2465

2466 2467 2468 2469 2470 2471 2472
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
2473
	/* Update our load: */
2474 2475
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2476
		unsigned long old_load, new_load;
2477

I
Ingo Molnar 已提交
2478
		/* scale is effectively 1 << i now, and >> i divides by scale */
2479

I
Ingo Molnar 已提交
2480
		old_load = this_rq->cpu_load[i];
2481
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2482
		new_load = this_load;
I
Ingo Molnar 已提交
2483 2484 2485 2486 2487 2488
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2489 2490 2491
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2492
	}
2493 2494

	sched_avg_update(this_rq);
2495 2496 2497 2498 2499
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
2500

2501
	calc_load_account_active(this_rq);
2502 2503
}

I
Ingo Molnar 已提交
2504
#ifdef CONFIG_SMP
2505

2506
/*
P
Peter Zijlstra 已提交
2507 2508
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2509
 */
P
Peter Zijlstra 已提交
2510
void sched_exec(void)
2511
{
P
Peter Zijlstra 已提交
2512
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2513
	unsigned long flags;
2514
	int dest_cpu;
2515

2516
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2517
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518 2519
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2520

2521
	if (likely(cpu_active(dest_cpu))) {
2522
		struct migration_arg arg = { p, dest_cpu };
2523

2524 2525
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2526 2527
		return;
	}
2528
unlock:
2529
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2530
}
I
Ingo Molnar 已提交
2531

L
Linus Torvalds 已提交
2532 2533 2534
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2535
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2536 2537

EXPORT_PER_CPU_SYMBOL(kstat);
2538
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2539 2540

/*
2541
 * Return any ns on the sched_clock that have not yet been accounted in
2542
 * @p in case that task is currently running.
2543 2544
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2545
 */
2546 2547 2548 2549 2550 2551
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2552
		ns = rq->clock_task - p->se.exec_start;
2553 2554 2555 2556 2557 2558 2559
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2560
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2561 2562
{
	unsigned long flags;
2563
	struct rq *rq;
2564
	u64 ns = 0;
2565

2566
	rq = task_rq_lock(p, &flags);
2567
	ns = do_task_delta_exec(p, rq);
2568
	task_rq_unlock(rq, p, &flags);
2569

2570 2571
	return ns;
}
2572

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586
	task_rq_unlock(rq, p, &flags);
2587 2588 2589

	return ns;
}
2590

2591 2592 2593 2594 2595
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2596 2597
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2627 2628 2629 2630
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2631
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2632
 */
2633 2634
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2635
{
2636
	int index;
L
Linus Torvalds 已提交
2637

2638
	/* Add user time to process. */
2639 2640
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2641
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2642

2643
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644

L
Linus Torvalds 已提交
2645
	/* Add user time to cpustat. */
2646
	task_group_account_field(p, index, (__force u64) cputime);
2647

2648 2649
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2650 2651
}

2652 2653 2654 2655
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2656
 * @cputime_scaled: cputime scaled by cpu frequency
2657
 */
2658 2659
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2660
{
2661
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2662

2663
	/* Add guest time to process. */
2664 2665
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2666
	account_group_user_time(p, cputime);
2667
	p->gtime += cputime;
2668

2669
	/* Add guest time to cpustat. */
2670
	if (TASK_NICE(p) > 0) {
2671 2672
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2673
	} else {
2674 2675
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2676
	}
2677 2678
}

2679 2680 2681 2682 2683 2684 2685 2686 2687
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2688
			cputime_t cputime_scaled, int index)
2689 2690
{
	/* Add system time to process. */
2691 2692
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2693 2694 2695
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2696
	task_group_account_field(p, index, (__force u64) cputime);
2697 2698 2699 2700 2701

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2702 2703 2704 2705 2706
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2707
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2708 2709
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2710
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2711
{
2712
	int index;
L
Linus Torvalds 已提交
2713

2714
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2715
		account_guest_time(p, cputime, cputime_scaled);
2716 2717
		return;
	}
2718

L
Linus Torvalds 已提交
2719
	if (hardirq_count() - hardirq_offset)
2720
		index = CPUTIME_IRQ;
2721
	else if (in_serving_softirq())
2722
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2723
	else
2724
		index = CPUTIME_SYSTEM;
2725

2726
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2727 2728
}

2729
/*
L
Linus Torvalds 已提交
2730
 * Account for involuntary wait time.
2731
 * @cputime: the cpu time spent in involuntary wait
2732
 */
2733
void account_steal_time(cputime_t cputime)
2734
{
2735
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2736

2737
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2738 2739
}

L
Linus Torvalds 已提交
2740
/*
2741 2742
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2743
 */
2744
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2745
{
2746
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2747
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2748

2749
	if (atomic_read(&rq->nr_iowait) > 0)
2750
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2751
	else
2752
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2753 2754
}

G
Glauber Costa 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2774 2775
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2802
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2803

G
Glauber Costa 已提交
2804 2805 2806
	if (steal_account_process_tick())
		return;

2807
	if (irqtime_account_hi_update()) {
2808
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2809
	} else if (irqtime_account_si_update()) {
2810
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2811 2812 2813 2814 2815 2816 2817
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2818
					CPUTIME_SOFTIRQ);
2819 2820 2821 2822 2823 2824 2825 2826
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2827
					CPUTIME_SYSTEM);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2839
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2840 2841 2842
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2843
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2844 2845 2846 2847 2848 2849 2850 2851

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2852
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2853 2854
	struct rq *rq = this_rq();

2855 2856 2857 2858 2859
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2860 2861 2862
	if (steal_account_process_tick())
		return;

2863
	if (user_tick)
2864
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2865
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2866
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2867 2868
				    one_jiffy_scaled);
	else
2869
		account_idle_time(cputime_one_jiffy);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2888 2889 2890 2891 2892 2893

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2894
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2895 2896
}

2897 2898
#endif

2899 2900 2901 2902
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2903
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904
{
2905 2906
	*ut = p->utime;
	*st = p->stime;
2907 2908
}

2909
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910
{
2911 2912 2913 2914 2915 2916
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
2917 2918
}
#else
2919 2920

#ifndef nsecs_to_cputime
2921
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2922 2923
#endif

2924
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925
{
2926
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2927 2928 2929 2930

	/*
	 * Use CFS's precise accounting:
	 */
2931
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932 2933

	if (total) {
2934
		u64 temp = (__force u64) rtime;
2935

2936 2937 2938
		temp *= (__force u64) utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2939 2940
	} else
		utime = rtime;
2941

2942 2943 2944
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
2945
	p->prev_utime = max(p->prev_utime, utime);
2946
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947

2948 2949
	*ut = p->prev_utime;
	*st = p->prev_stime;
2950 2951
}

2952 2953 2954 2955
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956
{
2957 2958 2959
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
2960

2961
	thread_group_cputime(p, &cputime);
2962

2963
	total = cputime.utime + cputime.stime;
2964
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965

2966
	if (total) {
2967
		u64 temp = (__force u64) rtime;
2968

2969 2970 2971
		temp *= (__force u64) cputime.utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2972 2973 2974 2975
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
2976
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977 2978 2979

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
2980 2981 2982
}
#endif

2983 2984 2985 2986 2987 2988 2989 2990
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2991
	struct task_struct *curr = rq->curr;
2992 2993

	sched_clock_tick();
I
Ingo Molnar 已提交
2994

2995
	raw_spin_lock(&rq->lock);
2996
	update_rq_clock(rq);
2997
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2998
	curr->sched_class->task_tick(rq, curr, 0);
2999
	raw_spin_unlock(&rq->lock);
3000

3001
	perf_event_task_tick();
3002

3003
#ifdef CONFIG_SMP
3004
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3005
	trigger_load_balance(rq, cpu);
3006
#endif
L
Linus Torvalds 已提交
3007 3008
}

3009
notrace unsigned long get_parent_ip(unsigned long addr)
3010 3011 3012 3013 3014 3015 3016 3017
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3018

3019 3020 3021
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3022
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3023
{
3024
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3025 3026 3027
	/*
	 * Underflow?
	 */
3028 3029
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3030
#endif
L
Linus Torvalds 已提交
3031
	preempt_count() += val;
3032
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3033 3034 3035
	/*
	 * Spinlock count overflowing soon?
	 */
3036 3037
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3038 3039 3040
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3041 3042 3043
}
EXPORT_SYMBOL(add_preempt_count);

3044
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3045
{
3046
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3047 3048 3049
	/*
	 * Underflow?
	 */
3050
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3051
		return;
L
Linus Torvalds 已提交
3052 3053 3054
	/*
	 * Is the spinlock portion underflowing?
	 */
3055 3056 3057
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3058
#endif
3059

3060 3061
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3062 3063 3064 3065 3066 3067 3068
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3069
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3070
 */
I
Ingo Molnar 已提交
3071
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3072
{
3073 3074
	struct pt_regs *regs = get_irq_regs();

3075 3076 3077
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3078 3079
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3080

I
Ingo Molnar 已提交
3081
	debug_show_held_locks(prev);
3082
	print_modules();
I
Ingo Molnar 已提交
3083 3084
	if (irqs_disabled())
		print_irqtrace_events(prev);
3085 3086 3087 3088 3089

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3090
}
L
Linus Torvalds 已提交
3091

I
Ingo Molnar 已提交
3092 3093 3094 3095 3096
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3097
	/*
I
Ingo Molnar 已提交
3098
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3099 3100 3101
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3102
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3103
		__schedule_bug(prev);
3104
	rcu_sleep_check();
I
Ingo Molnar 已提交
3105

L
Linus Torvalds 已提交
3106 3107
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3108
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3109 3110
}

P
Peter Zijlstra 已提交
3111
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3112
{
3113
	if (prev->on_rq || rq->skip_clock_update < 0)
3114
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3115
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3116 3117
}

I
Ingo Molnar 已提交
3118 3119 3120 3121
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3122
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3123
{
3124
	const struct sched_class *class;
I
Ingo Molnar 已提交
3125
	struct task_struct *p;
L
Linus Torvalds 已提交
3126 3127

	/*
I
Ingo Molnar 已提交
3128 3129
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3130
	 */
3131
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3132
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3133 3134
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3135 3136
	}

3137
	for_each_class(class) {
3138
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3139 3140 3141
		if (p)
			return p;
	}
3142 3143

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3144
}
L
Linus Torvalds 已提交
3145

I
Ingo Molnar 已提交
3146
/*
3147
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3148
 */
3149
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3150 3151
{
	struct task_struct *prev, *next;
3152
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3153
	struct rq *rq;
3154
	int cpu;
I
Ingo Molnar 已提交
3155

3156 3157
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3158 3159
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3160
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3161 3162 3163
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3164

3165
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3166
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3167

3168
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3169

3170
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3171
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3172
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3173
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3174
		} else {
3175 3176 3177
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3178
			/*
3179 3180 3181
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3191
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3192 3193
	}

3194
	pre_schedule(rq, prev);
3195

I
Ingo Molnar 已提交
3196
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3197 3198
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3199
	put_prev_task(rq, prev);
3200
	next = pick_next_task(rq);
3201 3202
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207 3208

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3209
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3210
		/*
3211 3212 3213 3214
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3215 3216 3217
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3218
	} else
3219
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3220

3221
	post_schedule(rq);
L
Linus Torvalds 已提交
3222 3223

	preempt_enable_no_resched();
3224
	if (need_resched())
L
Linus Torvalds 已提交
3225 3226
		goto need_resched;
}
3227

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
static inline void sched_submit_work(struct task_struct *tsk)
{
	if (!tsk->state)
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3240
asmlinkage void __sched schedule(void)
3241
{
3242 3243 3244
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3245 3246
	__schedule();
}
L
Linus Torvalds 已提交
3247 3248
EXPORT_SYMBOL(schedule);

3249
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3250

3251 3252 3253
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3254
		return false;
3255 3256

	/*
3257 3258 3259 3260
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3261
	 */
3262
	barrier();
3263

3264
	return owner->on_cpu;
3265
}
3266

3267 3268 3269 3270 3271 3272 3273 3274
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3275

3276
	rcu_read_lock();
3277 3278
	while (owner_running(lock, owner)) {
		if (need_resched())
3279
			break;
3280

3281
		arch_mutex_cpu_relax();
3282
	}
3283
	rcu_read_unlock();
3284

3285
	/*
3286 3287 3288
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3289
	 */
3290
	return lock->owner == NULL;
3291 3292 3293
}
#endif

L
Linus Torvalds 已提交
3294 3295
#ifdef CONFIG_PREEMPT
/*
3296
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3297
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3298 3299
 * occur there and call schedule directly.
 */
3300
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3301 3302
{
	struct thread_info *ti = current_thread_info();
3303

L
Linus Torvalds 已提交
3304 3305
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3306
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3307
	 */
N
Nick Piggin 已提交
3308
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3309 3310
		return;

3311
	do {
3312
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3313
		__schedule();
3314
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3315

3316 3317 3318 3319 3320
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3321
	} while (need_resched());
L
Linus Torvalds 已提交
3322 3323 3324 3325
}
EXPORT_SYMBOL(preempt_schedule);

/*
3326
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3327 3328 3329 3330 3331 3332 3333
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3334

3335
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3336 3337
	BUG_ON(ti->preempt_count || !irqs_disabled());

3338 3339 3340
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3341
		__schedule();
3342 3343
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3344

3345 3346 3347 3348 3349
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3350
	} while (need_resched());
L
Linus Torvalds 已提交
3351 3352 3353 3354
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3355
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3356
			  void *key)
L
Linus Torvalds 已提交
3357
{
P
Peter Zijlstra 已提交
3358
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3359 3360 3361 3362
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3363 3364
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3365 3366 3367
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3368
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3369 3370
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3371
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3372
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3373
{
3374
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3375

3376
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3377 3378
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3379
		if (curr->func(curr, mode, wake_flags, key) &&
3380
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3390
 * @key: is directly passed to the wakeup function
3391 3392 3393
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3394
 */
3395
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3396
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3409
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3410 3411 3412
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3413
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3414

3415 3416 3417 3418
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3419
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3420

L
Linus Torvalds 已提交
3421
/**
3422
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3423 3424 3425
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3426
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3427 3428 3429 3430 3431 3432 3433
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3434 3435 3436
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3437
 */
3438 3439
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3440 3441
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3442
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3443 3444 3445 3446 3447

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3448
		wake_flags = 0;
L
Linus Torvalds 已提交
3449 3450

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3451
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3452 3453
	spin_unlock_irqrestore(&q->lock, flags);
}
3454 3455 3456 3457 3458 3459 3460 3461 3462
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3463 3464
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3465 3466 3467 3468 3469 3470 3471 3472
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3473 3474 3475
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3476
 */
3477
void complete(struct completion *x)
L
Linus Torvalds 已提交
3478 3479 3480 3481 3482
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3483
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3484 3485 3486 3487
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3488 3489 3490 3491 3492
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3493 3494 3495
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3496
 */
3497
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3503
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3504 3505 3506 3507
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3508 3509
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3510 3511 3512 3513
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3514
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3515
		do {
3516
			if (signal_pending_state(state, current)) {
3517 3518
				timeout = -ERESTARTSYS;
				break;
3519 3520
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3521 3522 3523
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3524
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3525
		__remove_wait_queue(&x->wait, &wait);
3526 3527
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3528 3529
	}
	x->done--;
3530
	return timeout ?: 1;
L
Linus Torvalds 已提交
3531 3532
}

3533 3534
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3535 3536 3537 3538
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3539
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3540
	spin_unlock_irq(&x->wait.lock);
3541 3542
	return timeout;
}
L
Linus Torvalds 已提交
3543

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3554
void __sched wait_for_completion(struct completion *x)
3555 3556
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3557
}
3558
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3559

3560 3561 3562 3563 3564 3565 3566 3567
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3568 3569 3570
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3571
 */
3572
unsigned long __sched
3573
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3574
{
3575
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3576
}
3577
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3578

3579 3580 3581 3582 3583 3584
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3585 3586
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3587
 */
3588
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3589
{
3590 3591 3592 3593
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3594
}
3595
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3596

3597 3598 3599 3600 3601 3602 3603
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3604 3605 3606
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3607
 */
3608
long __sched
3609 3610
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3611
{
3612
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3613
}
3614
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3615

3616 3617 3618 3619 3620 3621
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3622 3623
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3624
 */
M
Matthew Wilcox 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3634 3635 3636 3637 3638 3639 3640 3641
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3642 3643 3644
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3645
 */
3646
long __sched
3647 3648 3649 3650 3651 3652 3653
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3668
	unsigned long flags;
3669 3670
	int ret = 1;

3671
	spin_lock_irqsave(&x->wait.lock, flags);
3672 3673 3674 3675
	if (!x->done)
		ret = 0;
	else
		x->done--;
3676
	spin_unlock_irqrestore(&x->wait.lock, flags);
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3691
	unsigned long flags;
3692 3693
	int ret = 1;

3694
	spin_lock_irqsave(&x->wait.lock, flags);
3695 3696
	if (!x->done)
		ret = 0;
3697
	spin_unlock_irqrestore(&x->wait.lock, flags);
3698 3699 3700 3701
	return ret;
}
EXPORT_SYMBOL(completion_done);

3702 3703
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3704
{
I
Ingo Molnar 已提交
3705 3706 3707 3708
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3709

3710
	__set_current_state(state);
L
Linus Torvalds 已提交
3711

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3726 3727 3728
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3729
long __sched
I
Ingo Molnar 已提交
3730
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3731
{
3732
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3733 3734 3735
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3736
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3737
{
3738
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3739 3740 3741
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3742
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3743
{
3744
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3745 3746 3747
}
EXPORT_SYMBOL(sleep_on_timeout);

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3760
void rt_mutex_setprio(struct task_struct *p, int prio)
3761
{
3762
	int oldprio, on_rq, running;
3763
	struct rq *rq;
3764
	const struct sched_class *prev_class;
3765 3766 3767

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3768
	rq = __task_rq_lock(p);
3769

3770
	trace_sched_pi_setprio(p, prio);
3771
	oldprio = p->prio;
3772
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3773
	on_rq = p->on_rq;
3774
	running = task_current(rq, p);
3775
	if (on_rq)
3776
		dequeue_task(rq, p, 0);
3777 3778
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3779 3780 3781 3782 3783 3784

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3785 3786
	p->prio = prio;

3787 3788
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3789
	if (on_rq)
3790
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3791

P
Peter Zijlstra 已提交
3792
	check_class_changed(rq, p, prev_class, oldprio);
3793
	__task_rq_unlock(rq);
3794 3795 3796 3797
}

#endif

3798
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3799
{
I
Ingo Molnar 已提交
3800
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3801
	unsigned long flags;
3802
	struct rq *rq;
L
Linus Torvalds 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3815
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3816
	 */
3817
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3818 3819 3820
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3821
	on_rq = p->on_rq;
3822
	if (on_rq)
3823
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3824 3825

	p->static_prio = NICE_TO_PRIO(nice);
3826
	set_load_weight(p);
3827 3828 3829
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3830

I
Ingo Molnar 已提交
3831
	if (on_rq) {
3832
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3833
		/*
3834 3835
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3836
		 */
3837
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3838 3839 3840
			resched_task(rq->curr);
	}
out_unlock:
3841
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3842 3843 3844
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3845 3846 3847 3848 3849
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3850
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3851
{
3852 3853
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3854

3855
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3856 3857 3858
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3868
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3869
{
3870
	long nice, retval;
L
Linus Torvalds 已提交
3871 3872 3873 3874 3875 3876

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3877 3878
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3879 3880 3881
	if (increment > 40)
		increment = 40;

3882
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3883 3884 3885 3886 3887
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3888 3889 3890
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3909
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3910 3911 3912 3913 3914 3915 3916 3917
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3918
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3919 3920 3921
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3922
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3923 3924 3925 3926 3927 3928 3929

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3944 3945 3946 3947 3948 3949
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3950
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3951 3952 3953 3954 3955 3956 3957 3958
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3959
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3960
{
3961
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3962 3963 3964
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3965 3966
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3967 3968 3969
{
	p->policy = policy;
	p->rt_priority = prio;
3970 3971 3972
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3973 3974 3975 3976
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3977
	set_load_weight(p);
L
Linus Torvalds 已提交
3978 3979
}

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3990 3991 3992 3993 3994
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
3995 3996 3997 3998
	rcu_read_unlock();
	return match;
}

3999
static int __sched_setscheduler(struct task_struct *p, int policy,
4000
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4001
{
4002
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4003
	unsigned long flags;
4004
	const struct sched_class *prev_class;
4005
	struct rq *rq;
4006
	int reset_on_fork;
L
Linus Torvalds 已提交
4007

4008 4009
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4010 4011
recheck:
	/* double check policy once rq lock held */
4012 4013
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4014
		policy = oldpolicy = p->policy;
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4025 4026
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4027 4028
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4029 4030
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4031
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4032
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4033
		return -EINVAL;
4034
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4035 4036
		return -EINVAL;

4037 4038 4039
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4040
	if (user && !capable(CAP_SYS_NICE)) {
4041
		if (rt_policy(policy)) {
4042 4043
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4054

I
Ingo Molnar 已提交
4055
		/*
4056 4057
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4058
		 */
4059 4060 4061 4062
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4063

4064
		/* can't change other user's priorities */
4065
		if (!check_same_owner(p))
4066
			return -EPERM;
4067 4068 4069 4070

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4071
	}
L
Linus Torvalds 已提交
4072

4073
	if (user) {
4074
		retval = security_task_setscheduler(p);
4075 4076 4077 4078
		if (retval)
			return retval;
	}

4079 4080 4081
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4082
	 *
L
Lucas De Marchi 已提交
4083
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4084 4085
	 * runqueue lock must be held.
	 */
4086
	rq = task_rq_lock(p, &flags);
4087

4088 4089 4090 4091
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4092
		task_rq_unlock(rq, p, &flags);
4093 4094 4095
		return -EINVAL;
	}

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4107 4108 4109 4110 4111 4112 4113
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4114 4115
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4116
			task_rq_unlock(rq, p, &flags);
4117 4118 4119 4120 4121
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4122 4123 4124
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4125
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4126 4127
		goto recheck;
	}
P
Peter Zijlstra 已提交
4128
	on_rq = p->on_rq;
4129
	running = task_current(rq, p);
4130
	if (on_rq)
4131
		dequeue_task(rq, p, 0);
4132 4133
	if (running)
		p->sched_class->put_prev_task(rq, p);
4134

4135 4136
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4137
	oldprio = p->prio;
4138
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4139
	__setscheduler(rq, p, policy, param->sched_priority);
4140

4141 4142
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4143
	if (on_rq)
4144
		enqueue_task(rq, p, 0);
4145

P
Peter Zijlstra 已提交
4146
	check_class_changed(rq, p, prev_class, oldprio);
4147
	task_rq_unlock(rq, p, &flags);
4148

4149 4150
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4151 4152
	return 0;
}
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4163
		       const struct sched_param *param)
4164 4165 4166
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4167 4168
EXPORT_SYMBOL_GPL(sched_setscheduler);

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4181
			       const struct sched_param *param)
4182 4183 4184 4185
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4186 4187
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4188 4189 4190
{
	struct sched_param lparam;
	struct task_struct *p;
4191
	int retval;
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4197 4198 4199

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4200
	p = find_process_by_pid(pid);
4201 4202 4203
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4204

L
Linus Torvalds 已提交
4205 4206 4207 4208 4209 4210 4211 4212 4213
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4214 4215
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4216
{
4217 4218 4219 4220
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4221 4222 4223 4224 4225 4226 4227 4228
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4229
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4230 4231 4232 4233 4234 4235 4236 4237
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4238
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4239
{
4240
	struct task_struct *p;
4241
	int retval;
L
Linus Torvalds 已提交
4242 4243

	if (pid < 0)
4244
		return -EINVAL;
L
Linus Torvalds 已提交
4245 4246

	retval = -ESRCH;
4247
	rcu_read_lock();
L
Linus Torvalds 已提交
4248 4249 4250 4251
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4252 4253
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4254
	}
4255
	rcu_read_unlock();
L
Linus Torvalds 已提交
4256 4257 4258 4259
	return retval;
}

/**
4260
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4261 4262 4263
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4264
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4265 4266
{
	struct sched_param lp;
4267
	struct task_struct *p;
4268
	int retval;
L
Linus Torvalds 已提交
4269 4270

	if (!param || pid < 0)
4271
		return -EINVAL;
L
Linus Torvalds 已提交
4272

4273
	rcu_read_lock();
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4284
	rcu_read_unlock();
L
Linus Torvalds 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4294
	rcu_read_unlock();
L
Linus Torvalds 已提交
4295 4296 4297
	return retval;
}

4298
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4299
{
4300
	cpumask_var_t cpus_allowed, new_mask;
4301 4302
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4303

4304
	get_online_cpus();
4305
	rcu_read_lock();
L
Linus Torvalds 已提交
4306 4307 4308

	p = find_process_by_pid(pid);
	if (!p) {
4309
		rcu_read_unlock();
4310
		put_online_cpus();
L
Linus Torvalds 已提交
4311 4312 4313
		return -ESRCH;
	}

4314
	/* Prevent p going away */
L
Linus Torvalds 已提交
4315
	get_task_struct(p);
4316
	rcu_read_unlock();
L
Linus Torvalds 已提交
4317

4318 4319 4320 4321 4322 4323 4324 4325
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4326
	retval = -EPERM;
4327
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4328 4329
		goto out_unlock;

4330
	retval = security_task_setscheduler(p);
4331 4332 4333
	if (retval)
		goto out_unlock;

4334 4335
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4336
again:
4337
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4338

P
Paul Menage 已提交
4339
	if (!retval) {
4340 4341
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4342 4343 4344 4345 4346
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4347
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4348 4349 4350
			goto again;
		}
	}
L
Linus Torvalds 已提交
4351
out_unlock:
4352 4353 4354 4355
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4356
	put_task_struct(p);
4357
	put_online_cpus();
L
Linus Torvalds 已提交
4358 4359 4360 4361
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4362
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4363
{
4364 4365 4366 4367 4368
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4378 4379
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4380
{
4381
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4382 4383
	int retval;

4384 4385
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4386

4387 4388 4389 4390 4391
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4392 4393
}

4394
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4395
{
4396
	struct task_struct *p;
4397
	unsigned long flags;
L
Linus Torvalds 已提交
4398 4399
	int retval;

4400
	get_online_cpus();
4401
	rcu_read_lock();
L
Linus Torvalds 已提交
4402 4403 4404 4405 4406 4407

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4408 4409 4410 4411
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4412
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4413
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4414
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4415 4416

out_unlock:
4417
	rcu_read_unlock();
4418
	put_online_cpus();
L
Linus Torvalds 已提交
4419

4420
	return retval;
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426 4427 4428
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4429 4430
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4431 4432
{
	int ret;
4433
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4434

A
Anton Blanchard 已提交
4435
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4436 4437
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4438 4439
		return -EINVAL;

4440 4441
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4442

4443 4444
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4445
		size_t retlen = min_t(size_t, len, cpumask_size());
4446 4447

		if (copy_to_user(user_mask_ptr, mask, retlen))
4448 4449
			ret = -EFAULT;
		else
4450
			ret = retlen;
4451 4452
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4453

4454
	return ret;
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4460 4461
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4462
 */
4463
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4464
{
4465
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4466

4467
	schedstat_inc(rq, yld_count);
4468
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4469 4470 4471 4472 4473 4474

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4475
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4476
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4477 4478 4479 4480 4481 4482 4483
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4484 4485 4486 4487 4488
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4489
static void __cond_resched(void)
L
Linus Torvalds 已提交
4490
{
4491
	add_preempt_count(PREEMPT_ACTIVE);
4492
	__schedule();
4493
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4494 4495
}

4496
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4497
{
P
Peter Zijlstra 已提交
4498
	if (should_resched()) {
L
Linus Torvalds 已提交
4499 4500 4501 4502 4503
		__cond_resched();
		return 1;
	}
	return 0;
}
4504
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4505 4506

/*
4507
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4508 4509
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4510
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4511 4512 4513
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4514
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4515
{
P
Peter Zijlstra 已提交
4516
	int resched = should_resched();
J
Jan Kara 已提交
4517 4518
	int ret = 0;

4519 4520
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4521
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4522
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4523
		if (resched)
N
Nick Piggin 已提交
4524 4525 4526
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4527
		ret = 1;
L
Linus Torvalds 已提交
4528 4529
		spin_lock(lock);
	}
J
Jan Kara 已提交
4530
	return ret;
L
Linus Torvalds 已提交
4531
}
4532
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4533

4534
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4535 4536 4537
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4538
	if (should_resched()) {
4539
		local_bh_enable();
L
Linus Torvalds 已提交
4540 4541 4542 4543 4544 4545
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4546
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4547 4548 4549 4550

/**
 * yield - yield the current processor to other threads.
 *
4551
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4552 4553 4554 4555 4556 4557 4558 4559 4560
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4561 4562 4563 4564
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4565 4566
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4601
	if (yielded) {
4602
		schedstat_inc(rq, yld_count);
4603 4604 4605 4606 4607 4608
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4609 4610 4611 4612 4613 4614 4615
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4616
	}
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4629
/*
I
Ingo Molnar 已提交
4630
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4631 4632 4633 4634
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4635
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4636

4637
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4638
	atomic_inc(&rq->nr_iowait);
4639
	blk_flush_plug(current);
4640
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4641
	schedule();
4642
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4643
	atomic_dec(&rq->nr_iowait);
4644
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4645 4646 4647 4648 4649
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4650
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4651 4652
	long ret;

4653
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4654
	atomic_inc(&rq->nr_iowait);
4655
	blk_flush_plug(current);
4656
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4657
	ret = schedule_timeout(timeout);
4658
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4659
	atomic_dec(&rq->nr_iowait);
4660
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4671
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4681
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4682
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4696
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4706
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4707
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4721
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4722
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4723
{
4724
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4725
	unsigned int time_slice;
4726 4727
	unsigned long flags;
	struct rq *rq;
4728
	int retval;
L
Linus Torvalds 已提交
4729 4730 4731
	struct timespec t;

	if (pid < 0)
4732
		return -EINVAL;
L
Linus Torvalds 已提交
4733 4734

	retval = -ESRCH;
4735
	rcu_read_lock();
L
Linus Torvalds 已提交
4736 4737 4738 4739 4740 4741 4742 4743
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4744 4745
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4746
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4747

4748
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4749
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4750 4751
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4752

L
Linus Torvalds 已提交
4753
out_unlock:
4754
	rcu_read_unlock();
L
Linus Torvalds 已提交
4755 4756 4757
	return retval;
}

4758
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4759

4760
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4761 4762
{
	unsigned long free = 0;
4763
	unsigned state;
L
Linus Torvalds 已提交
4764 4765

	state = p->state ? __ffs(p->state) + 1 : 0;
4766
	printk(KERN_INFO "%-15.15s %c", p->comm,
4767
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4768
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4769
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4770
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4771
	else
P
Peter Zijlstra 已提交
4772
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4773 4774
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4775
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4776
	else
P
Peter Zijlstra 已提交
4777
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4778 4779
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4780
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4781
#endif
P
Peter Zijlstra 已提交
4782
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4783
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4784
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4785

4786
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4787 4788
}

I
Ingo Molnar 已提交
4789
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4790
{
4791
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4792

4793
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4794 4795
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4796
#else
P
Peter Zijlstra 已提交
4797 4798
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4799
#endif
4800
	rcu_read_lock();
L
Linus Torvalds 已提交
4801 4802 4803
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4804
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4805 4806
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4807
		if (!state_filter || (p->state & state_filter))
4808
			sched_show_task(p);
L
Linus Torvalds 已提交
4809 4810
	} while_each_thread(g, p);

4811 4812
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4813 4814 4815
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4816
	rcu_read_unlock();
I
Ingo Molnar 已提交
4817 4818 4819
	/*
	 * Only show locks if all tasks are dumped:
	 */
4820
	if (!state_filter)
I
Ingo Molnar 已提交
4821
		debug_show_all_locks();
L
Linus Torvalds 已提交
4822 4823
}

I
Ingo Molnar 已提交
4824 4825
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4826
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4827 4828
}

4829 4830 4831 4832 4833 4834 4835 4836
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4837
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4838
{
4839
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4840 4841
	unsigned long flags;

4842
	raw_spin_lock_irqsave(&rq->lock, flags);
4843

I
Ingo Molnar 已提交
4844
	__sched_fork(idle);
4845
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4846 4847
	idle->se.exec_start = sched_clock();

4848
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4860
	__set_task_cpu(idle, cpu);
4861
	rcu_read_unlock();
L
Linus Torvalds 已提交
4862 4863

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4864 4865
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4866
#endif
4867
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4868 4869

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4870
	task_thread_info(idle)->preempt_count = 0;
4871

I
Ingo Molnar 已提交
4872 4873 4874 4875
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4876
	ftrace_graph_init_idle_task(idle, cpu);
4877 4878 4879
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4880 4881
}

L
Linus Torvalds 已提交
4882
#ifdef CONFIG_SMP
4883 4884 4885 4886
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4887 4888 4889

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4890 4891
}

L
Linus Torvalds 已提交
4892 4893 4894
/*
 * This is how migration works:
 *
4895 4896 4897 4898 4899 4900
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4901
 *    it and puts it into the right queue.
4902 4903
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4904 4905 4906 4907 4908 4909 4910 4911
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4912
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4913 4914
 * call is not atomic; no spinlocks may be held.
 */
4915
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4916 4917
{
	unsigned long flags;
4918
	struct rq *rq;
4919
	unsigned int dest_cpu;
4920
	int ret = 0;
L
Linus Torvalds 已提交
4921 4922

	rq = task_rq_lock(p, &flags);
4923

4924 4925 4926
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4927
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4928 4929 4930 4931
		ret = -EINVAL;
		goto out;
	}

4932
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4933 4934 4935 4936
		ret = -EINVAL;
		goto out;
	}

4937
	do_set_cpus_allowed(p, new_mask);
4938

L
Linus Torvalds 已提交
4939
	/* Can the task run on the task's current CPU? If so, we're done */
4940
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4941 4942
		goto out;

4943
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4944
	if (p->on_rq) {
4945
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4946
		/* Need help from migration thread: drop lock and wait. */
4947
		task_rq_unlock(rq, p, &flags);
4948
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4949 4950 4951 4952
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4953
	task_rq_unlock(rq, p, &flags);
4954

L
Linus Torvalds 已提交
4955 4956
	return ret;
}
4957
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4958 4959

/*
I
Ingo Molnar 已提交
4960
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4961 4962 4963 4964 4965 4966
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4967 4968
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4969
 */
4970
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4971
{
4972
	struct rq *rq_dest, *rq_src;
4973
	int ret = 0;
L
Linus Torvalds 已提交
4974

4975
	if (unlikely(!cpu_active(dest_cpu)))
4976
		return ret;
L
Linus Torvalds 已提交
4977 4978 4979 4980

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4981
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4982 4983 4984
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4985
		goto done;
L
Linus Torvalds 已提交
4986
	/* Affinity changed (again). */
4987
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4988
		goto fail;
L
Linus Torvalds 已提交
4989

4990 4991 4992 4993
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4994
	if (p->on_rq) {
4995
		dequeue_task(rq_src, p, 0);
4996
		set_task_cpu(p, dest_cpu);
4997
		enqueue_task(rq_dest, p, 0);
4998
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4999
	}
L
Linus Torvalds 已提交
5000
done:
5001
	ret = 1;
L
Linus Torvalds 已提交
5002
fail:
L
Linus Torvalds 已提交
5003
	double_rq_unlock(rq_src, rq_dest);
5004
	raw_spin_unlock(&p->pi_lock);
5005
	return ret;
L
Linus Torvalds 已提交
5006 5007 5008
}

/*
5009 5010 5011
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5012
 */
5013
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5014
{
5015
	struct migration_arg *arg = data;
5016

5017 5018 5019 5020
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5021
	local_irq_disable();
5022
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5023
	local_irq_enable();
L
Linus Torvalds 已提交
5024
	return 0;
5025 5026
}

L
Linus Torvalds 已提交
5027
#ifdef CONFIG_HOTPLUG_CPU
5028

5029
/*
5030 5031
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5032
 */
5033
void idle_task_exit(void)
L
Linus Torvalds 已提交
5034
{
5035
	struct mm_struct *mm = current->active_mm;
5036

5037
	BUG_ON(cpu_online(smp_processor_id()));
5038

5039 5040 5041
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5051
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5052
{
5053
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5059
/*
5060
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5061
 */
5062
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5063
{
5064 5065
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5066 5067
}

5068
/*
5069 5070 5071 5072 5073 5074
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5075
 */
5076
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5077
{
5078
	struct rq *rq = cpu_rq(dead_cpu);
5079 5080
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5081 5082

	/*
5083 5084 5085 5086 5087 5088 5089
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5090
	 */
5091
	rq->stop = NULL;
5092

5093 5094 5095
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5096
	for ( ; ; ) {
5097 5098 5099 5100 5101
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5102
			break;
5103

5104
		next = pick_next_task(rq);
5105
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5106
		next->sched_class->put_prev_task(rq, next);
5107

5108 5109 5110 5111 5112 5113 5114
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5115
	}
5116

5117
	rq->stop = stop;
5118
}
5119

L
Linus Torvalds 已提交
5120 5121
#endif /* CONFIG_HOTPLUG_CPU */

5122 5123 5124
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5125 5126
	{
		.procname	= "sched_domain",
5127
		.mode		= 0555,
5128
	},
5129
	{}
5130 5131 5132
};

static struct ctl_table sd_ctl_root[] = {
5133 5134
	{
		.procname	= "kernel",
5135
		.mode		= 0555,
5136 5137
		.child		= sd_ctl_dir,
	},
5138
	{}
5139 5140 5141 5142 5143
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5144
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5145 5146 5147 5148

	return entry;
}

5149 5150
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5151
	struct ctl_table *entry;
5152

5153 5154 5155
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5156
	 * will always be set. In the lowest directory the names are
5157 5158 5159
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5160 5161
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5162 5163 5164
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5165 5166 5167 5168 5169

	kfree(*tablep);
	*tablep = NULL;
}

5170
static void
5171
set_table_entry(struct ctl_table *entry,
5172
		const char *procname, void *data, int maxlen,
5173
		umode_t mode, proc_handler *proc_handler)
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5185
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5186

5187 5188 5189
	if (table == NULL)
		return NULL;

5190
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5191
		sizeof(long), 0644, proc_doulongvec_minmax);
5192
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5193
		sizeof(long), 0644, proc_doulongvec_minmax);
5194
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5195
		sizeof(int), 0644, proc_dointvec_minmax);
5196
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5197
		sizeof(int), 0644, proc_dointvec_minmax);
5198
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5199
		sizeof(int), 0644, proc_dointvec_minmax);
5200
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5201
		sizeof(int), 0644, proc_dointvec_minmax);
5202
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5203
		sizeof(int), 0644, proc_dointvec_minmax);
5204
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5205
		sizeof(int), 0644, proc_dointvec_minmax);
5206
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5207
		sizeof(int), 0644, proc_dointvec_minmax);
5208
	set_table_entry(&table[9], "cache_nice_tries",
5209 5210
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5211
	set_table_entry(&table[10], "flags", &sd->flags,
5212
		sizeof(int), 0644, proc_dointvec_minmax);
5213 5214 5215
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5216 5217 5218 5219

	return table;
}

5220
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5221 5222 5223 5224 5225 5226 5227 5228 5229
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5230 5231
	if (table == NULL)
		return NULL;
5232 5233 5234 5235 5236

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5237
		entry->mode = 0555;
5238 5239 5240 5241 5242 5243 5244 5245
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5246
static void register_sched_domain_sysctl(void)
5247
{
5248
	int i, cpu_num = num_possible_cpus();
5249 5250 5251
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5252 5253 5254
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5255 5256 5257
	if (entry == NULL)
		return;

5258
	for_each_possible_cpu(i) {
5259 5260
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5261
		entry->mode = 0555;
5262
		entry->child = sd_alloc_ctl_cpu_table(i);
5263
		entry++;
5264
	}
5265 5266

	WARN_ON(sd_sysctl_header);
5267 5268
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5269

5270
/* may be called multiple times per register */
5271 5272
static void unregister_sched_domain_sysctl(void)
{
5273 5274
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5275
	sd_sysctl_header = NULL;
5276 5277
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5278
}
5279
#else
5280 5281 5282 5283
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5284 5285 5286 5287
{
}
#endif

5288 5289 5290 5291 5292
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5293
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5313
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5314 5315 5316 5317
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5318 5319 5320 5321
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5322 5323
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5324
{
5325
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5326
	unsigned long flags;
5327
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5328

5329
	switch (action & ~CPU_TASKS_FROZEN) {
5330

L
Linus Torvalds 已提交
5331
	case CPU_UP_PREPARE:
5332
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5333
		break;
5334

L
Linus Torvalds 已提交
5335
	case CPU_ONLINE:
5336
		/* Update our root-domain */
5337
		raw_spin_lock_irqsave(&rq->lock, flags);
5338
		if (rq->rd) {
5339
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5340 5341

			set_rq_online(rq);
5342
		}
5343
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5344
		break;
5345

L
Linus Torvalds 已提交
5346
#ifdef CONFIG_HOTPLUG_CPU
5347
	case CPU_DYING:
5348
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5349
		/* Update our root-domain */
5350
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5351
		if (rq->rd) {
5352
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5353
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5354
		}
5355 5356
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5357
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5358 5359 5360

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5361
		break;
L
Linus Torvalds 已提交
5362 5363
#endif
	}
5364 5365 5366

	update_max_interval();

L
Linus Torvalds 已提交
5367 5368 5369
	return NOTIFY_OK;
}

5370 5371 5372
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5373
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5374
 */
5375
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5376
	.notifier_call = migration_call,
5377
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5378 5379
};

5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5405
static int __init migration_init(void)
L
Linus Torvalds 已提交
5406 5407
{
	void *cpu = (void *)(long)smp_processor_id();
5408
	int err;
5409

5410
	/* Initialize migration for the boot CPU */
5411 5412
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5413 5414
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5415

5416 5417 5418 5419
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5420
	return 0;
L
Linus Torvalds 已提交
5421
}
5422
early_initcall(migration_init);
L
Linus Torvalds 已提交
5423 5424 5425
#endif

#ifdef CONFIG_SMP
5426

5427 5428
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5429
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5430

5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5441
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5442
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5443
{
I
Ingo Molnar 已提交
5444
	struct sched_group *group = sd->groups;
5445
	char str[256];
L
Linus Torvalds 已提交
5446

R
Rusty Russell 已提交
5447
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5448
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5449 5450 5451 5452

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5453
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5454
		if (sd->parent)
P
Peter Zijlstra 已提交
5455 5456
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5457
		return -1;
N
Nick Piggin 已提交
5458 5459
	}

P
Peter Zijlstra 已提交
5460
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5461

5462
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5463 5464
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5465
	}
5466
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5467 5468
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5469
	}
L
Linus Torvalds 已提交
5470

I
Ingo Molnar 已提交
5471
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5472
	do {
I
Ingo Molnar 已提交
5473
		if (!group) {
P
Peter Zijlstra 已提交
5474 5475
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5476 5477 5478
			break;
		}

5479
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5480 5481 5482
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5483 5484
			break;
		}
L
Linus Torvalds 已提交
5485

5486
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5487 5488
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5489 5490
			break;
		}
L
Linus Torvalds 已提交
5491

5492
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5493 5494
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5495 5496
			break;
		}
L
Linus Torvalds 已提交
5497

5498
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5499

R
Rusty Russell 已提交
5500
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5501

P
Peter Zijlstra 已提交
5502
		printk(KERN_CONT " %s", str);
5503
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5504
			printk(KERN_CONT " (cpu_power = %d)",
5505
				group->sgp->power);
5506
		}
L
Linus Torvalds 已提交
5507

I
Ingo Molnar 已提交
5508 5509
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5510
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5511

5512
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5513
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5514

5515 5516
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5517 5518
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5519 5520
	return 0;
}
L
Linus Torvalds 已提交
5521

I
Ingo Molnar 已提交
5522 5523 5524
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5525

5526 5527 5528
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5529 5530 5531 5532
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5533

I
Ingo Molnar 已提交
5534 5535 5536
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5537
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5538
			break;
L
Linus Torvalds 已提交
5539 5540
		level++;
		sd = sd->parent;
5541
		if (!sd)
I
Ingo Molnar 已提交
5542 5543
			break;
	}
L
Linus Torvalds 已提交
5544
}
5545
#else /* !CONFIG_SCHED_DEBUG */
5546
# define sched_domain_debug(sd, cpu) do { } while (0)
5547
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5548

5549
static int sd_degenerate(struct sched_domain *sd)
5550
{
5551
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5552 5553 5554 5555 5556 5557
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5558 5559 5560
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5561 5562 5563 5564 5565
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5566
	if (sd->flags & (SD_WAKE_AFFINE))
5567 5568 5569 5570 5571
		return 0;

	return 1;
}

5572 5573
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5574 5575 5576 5577 5578 5579
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5580
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5581 5582 5583 5584 5585 5586 5587
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5588 5589 5590
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5591 5592
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5593 5594 5595 5596 5597 5598 5599
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5600
static void free_rootdomain(struct rcu_head *rcu)
5601
{
5602
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5603

5604
	cpupri_cleanup(&rd->cpupri);
5605 5606 5607 5608 5609 5610
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5611 5612
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5613
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5614 5615
	unsigned long flags;

5616
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5617 5618

	if (rq->rd) {
I
Ingo Molnar 已提交
5619
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5620

5621
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5622
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5623

5624
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5625

I
Ingo Molnar 已提交
5626 5627 5628 5629 5630 5631 5632
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5633 5634 5635 5636 5637
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5638
	cpumask_set_cpu(rq->cpu, rd->span);
5639
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5640
		set_rq_online(rq);
G
Gregory Haskins 已提交
5641

5642
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5643 5644

	if (old_rd)
5645
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5646 5647
}

5648
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5649 5650 5651
{
	memset(rd, 0, sizeof(*rd));

5652
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5653
		goto out;
5654
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5655
		goto free_span;
5656
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5657
		goto free_online;
5658

5659
	if (cpupri_init(&rd->cpupri) != 0)
5660
		goto free_rto_mask;
5661
	return 0;
5662

5663 5664
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5665 5666 5667 5668
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5669
out:
5670
	return -ENOMEM;
G
Gregory Haskins 已提交
5671 5672
}

5673 5674 5675 5676 5677 5678
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5679 5680
static void init_defrootdomain(void)
{
5681
	init_rootdomain(&def_root_domain);
5682

G
Gregory Haskins 已提交
5683 5684 5685
	atomic_set(&def_root_domain.refcount, 1);
}

5686
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5687 5688 5689 5690 5691 5692 5693
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5694
	if (init_rootdomain(rd) != 0) {
5695 5696 5697
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5698 5699 5700 5701

	return rd;
}

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5721 5722 5723
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5724 5725 5726 5727 5728 5729 5730 5731

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5732
		kfree(sd->groups->sgp);
5733
		kfree(sd->groups);
5734
	}
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
 * two cpus are in the same cache domain, see ttwu_share_cache().
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
	if (sd)
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5774
/*
I
Ingo Molnar 已提交
5775
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5776 5777
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5778 5779
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5780
{
5781
	struct rq *rq = cpu_rq(cpu);
5782 5783 5784
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5785
	for (tmp = sd; tmp; ) {
5786 5787 5788
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5789

5790
		if (sd_parent_degenerate(tmp, parent)) {
5791
			tmp->parent = parent->parent;
5792 5793
			if (parent->parent)
				parent->parent->child = tmp;
5794
			destroy_sched_domain(parent, cpu);
5795 5796
		} else
			tmp = tmp->parent;
5797 5798
	}

5799
	if (sd && sd_degenerate(sd)) {
5800
		tmp = sd;
5801
		sd = sd->parent;
5802
		destroy_sched_domain(tmp, cpu);
5803 5804 5805
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5806

5807
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5808

G
Gregory Haskins 已提交
5809
	rq_attach_root(rq, rd);
5810
	tmp = rq->sd;
N
Nick Piggin 已提交
5811
	rcu_assign_pointer(rq->sd, sd);
5812
	destroy_sched_domains(tmp, cpu);
5813 5814

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5815 5816 5817
}

/* cpus with isolated domains */
5818
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5819 5820 5821 5822

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5823
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5824
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5825 5826 5827
	return 1;
}

I
Ingo Molnar 已提交
5828
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5829

5830
#ifdef CONFIG_NUMA
5831

5832 5833 5834 5835 5836
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5837
 * Find the next node to include in a given scheduling domain. Simply
5838 5839 5840 5841
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
5842
static int find_next_best_node(int node, nodemask_t *used_nodes)
5843
{
5844
	int i, n, val, min_val, best_node = -1;
5845 5846 5847

	min_val = INT_MAX;

5848
	for (i = 0; i < nr_node_ids; i++) {
5849
		/* Start at @node */
5850
		n = (node + i) % nr_node_ids;
5851 5852 5853 5854 5855

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
5856
		if (node_isset(n, *used_nodes))
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

5868 5869
	if (best_node != -1)
		node_set(best_node, *used_nodes);
5870 5871 5872 5873 5874 5875
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
5876
 * @span: resulting cpumask
5877
 *
I
Ingo Molnar 已提交
5878
 * Given a node, construct a good cpumask for its sched_domain to span. It
5879 5880 5881
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
5882
static void sched_domain_node_span(int node, struct cpumask *span)
5883
{
5884
	nodemask_t used_nodes;
5885
	int i;
5886

5887
	cpumask_clear(span);
5888
	nodes_clear(used_nodes);
5889

5890
	cpumask_or(span, span, cpumask_of_node(node));
5891
	node_set(node, used_nodes);
5892 5893

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5894
		int next_node = find_next_best_node(node, &used_nodes);
5895 5896
		if (next_node < 0)
			break;
5897
		cpumask_or(span, span, cpumask_of_node(next_node));
5898 5899
	}
}
5900 5901 5902 5903 5904 5905 5906 5907 5908

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
5909 5910 5911 5912 5913

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
5914
#endif /* CONFIG_NUMA */
5915

5916 5917 5918 5919 5920
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5921
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5922

5923 5924 5925
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5926
	struct sched_group_power **__percpu sgp;
5927 5928
};

5929
struct s_data {
5930
	struct sched_domain ** __percpu sd;
5931 5932 5933
	struct root_domain	*rd;
};

5934 5935
enum s_alloc {
	sa_rootdomain,
5936
	sa_sd,
5937
	sa_sd_storage,
5938 5939 5940
	sa_none,
};

5941 5942 5943
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5944 5945
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5946 5947
#define SDTL_OVERLAP	0x01

5948
struct sched_domain_topology_level {
5949 5950
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5951
	int		    flags;
5952
	struct sd_data      data;
5953 5954
};

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5974
				GFP_KERNEL, cpu_to_node(cpu));
5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6013
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6014
{
6015 6016
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6017

6018 6019
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6020

6021
	if (sg) {
6022
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6023
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6024
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6025
	}
6026 6027

	return cpu;
6028 6029
}

6030
/*
6031 6032 6033
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6034 6035
 *
 * Assumes the sched_domain tree is fully constructed
6036
 */
6037 6038
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6039
{
6040 6041 6042
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6043
	struct cpumask *covered;
6044
	int i;
6045

6046 6047 6048 6049 6050 6051
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6052 6053 6054
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6055
	cpumask_clear(covered);
6056

6057 6058 6059 6060
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6061

6062 6063
		if (cpumask_test_cpu(i, covered))
			continue;
6064

6065
		cpumask_clear(sched_group_cpus(sg));
6066
		sg->sgp->power = 0;
6067

6068 6069 6070
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6071

6072 6073 6074
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6075

6076 6077 6078 6079 6080 6081 6082
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6083 6084

	return 0;
6085
}
6086

6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6099
	struct sched_group *sg = sd->groups;
6100

6101 6102 6103 6104 6105 6106
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6107

6108 6109
	if (cpu != group_first_cpu(sg))
		return;
6110

6111
	update_group_power(sd, cpu);
6112
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6113 6114
}

6115 6116 6117
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6118 6119
}

6120 6121 6122 6123 6124
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6125 6126 6127 6128 6129 6130
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6131 6132 6133 6134 6135 6136 6137 6138 6139
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6153 6154 6155
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6156

6157
static int default_relax_domain_level = -1;
6158
int sched_domain_level_max;
6159 6160 6161

static int __init setup_relax_domain_level(char *str)
{
6162 6163 6164
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6165
	if (val < sched_domain_level_max)
6166 6167
		default_relax_domain_level = val;

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6186
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6187 6188
	} else {
		/* turn on idle balance on this domain */
6189
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6190 6191 6192
	}
}

6193 6194 6195
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6196 6197 6198 6199 6200
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6201 6202
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6203 6204
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6205
	case sa_sd_storage:
6206
		__sdt_free(cpu_map); /* fall through */
6207 6208 6209 6210
	case sa_none:
		break;
	}
}
6211

6212 6213 6214
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6215 6216
	memset(d, 0, sizeof(*d));

6217 6218
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6219 6220 6221
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6222
	d->rd = alloc_rootdomain();
6223
	if (!d->rd)
6224
		return sa_sd;
6225 6226
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6227

6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6240
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6241
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6242 6243

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6244
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6245 6246
}

6247 6248
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6249
{
6250
	return topology_thread_cpumask(cpu);
6251
}
6252
#endif
6253

6254 6255 6256
/*
 * Topology list, bottom-up.
 */
6257
static struct sched_domain_topology_level default_topology[] = {
6258 6259
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6260
#endif
6261
#ifdef CONFIG_SCHED_MC
6262
	{ sd_init_MC, cpu_coregroup_mask, },
6263
#endif
6264 6265 6266 6267 6268
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
6269
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6270
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
6271
#endif
6272 6273 6274 6275 6276
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6293 6294 6295 6296
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6297 6298 6299
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6300
			struct sched_group_power *sgp;
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
6315 6316 6317 6318 6319 6320 6321

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6337 6338 6339
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
6340
			kfree(*per_cpu_ptr(sdd->sd, j));
6341
			kfree(*per_cpu_ptr(sdd->sg, j));
6342
			kfree(*per_cpu_ptr(sdd->sgp, j));
6343 6344 6345
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
6346
		free_percpu(sdd->sgp);
6347 6348 6349
	}
}

6350 6351
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6352
		struct sched_domain_attr *attr, struct sched_domain *child,
6353 6354
		int cpu)
{
6355
	struct sched_domain *sd = tl->init(tl, cpu);
6356
	if (!sd)
6357
		return child;
6358 6359 6360

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6361 6362 6363
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6364
		child->parent = sd;
6365
	}
6366
	sd->child = child;
6367 6368 6369 6370

	return sd;
}

6371 6372 6373 6374
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6375 6376
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6377 6378
{
	enum s_alloc alloc_state = sa_none;
6379
	struct sched_domain *sd;
6380
	struct s_data d;
6381
	int i, ret = -ENOMEM;
6382

6383 6384 6385
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6386

6387
	/* Set up domains for cpus specified by the cpu_map. */
6388
	for_each_cpu(i, cpu_map) {
6389 6390
		struct sched_domain_topology_level *tl;

6391
		sd = NULL;
6392
		for (tl = sched_domain_topology; tl->init; tl++) {
6393
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6394 6395
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6396 6397
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6398
		}
6399

6400 6401 6402
		while (sd->child)
			sd = sd->child;

6403
		*per_cpu_ptr(d.sd, i) = sd;
6404 6405 6406 6407 6408 6409
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6410 6411 6412 6413 6414 6415 6416
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6417
		}
6418
	}
6419

L
Linus Torvalds 已提交
6420
	/* Calculate CPU power for physical packages and nodes */
6421 6422 6423
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6424

6425 6426
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6427
			init_sched_groups_power(i, sd);
6428
		}
6429
	}
6430

L
Linus Torvalds 已提交
6431
	/* Attach the domains */
6432
	rcu_read_lock();
6433
	for_each_cpu(i, cpu_map) {
6434
		sd = *per_cpu_ptr(d.sd, i);
6435
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6436
	}
6437
	rcu_read_unlock();
6438

6439
	ret = 0;
6440
error:
6441
	__free_domain_allocs(&d, alloc_state, cpu_map);
6442
	return ret;
L
Linus Torvalds 已提交
6443
}
P
Paul Jackson 已提交
6444

6445
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6446
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6447 6448
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6449 6450 6451

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6452 6453
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6454
 */
6455
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6456

6457 6458 6459 6460 6461 6462
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6463
{
6464
	return 0;
6465 6466
}

6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6492
/*
I
Ingo Molnar 已提交
6493
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6494 6495
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6496
 */
6497
static int init_sched_domains(const struct cpumask *cpu_map)
6498
{
6499 6500
	int err;

6501
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6502
	ndoms_cur = 1;
6503
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6504
	if (!doms_cur)
6505 6506
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6507
	dattr_cur = NULL;
6508
	err = build_sched_domains(doms_cur[0], NULL);
6509
	register_sched_domain_sysctl();
6510 6511

	return err;
6512 6513 6514 6515 6516 6517
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6518
static void detach_destroy_domains(const struct cpumask *cpu_map)
6519 6520 6521
{
	int i;

6522
	rcu_read_lock();
6523
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6524
		cpu_attach_domain(NULL, &def_root_domain, i);
6525
	rcu_read_unlock();
6526 6527
}

6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6544 6545
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6546
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6547 6548 6549
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6550
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6551 6552 6553
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6554 6555 6556
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6557 6558 6559 6560 6561 6562
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6563
 *
6564
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6565 6566
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6567
 *
P
Paul Jackson 已提交
6568 6569
 * Call with hotplug lock held
 */
6570
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6571
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6572
{
6573
	int i, j, n;
6574
	int new_topology;
P
Paul Jackson 已提交
6575

6576
	mutex_lock(&sched_domains_mutex);
6577

6578 6579 6580
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6581 6582 6583
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6584
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6585 6586 6587

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6588
		for (j = 0; j < n && !new_topology; j++) {
6589
			if (cpumask_equal(doms_cur[i], doms_new[j])
6590
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6591 6592 6593
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6594
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6595 6596 6597 6598
match1:
		;
	}

6599 6600
	if (doms_new == NULL) {
		ndoms_cur = 0;
6601
		doms_new = &fallback_doms;
6602
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6603
		WARN_ON_ONCE(dattr_new);
6604 6605
	}

P
Paul Jackson 已提交
6606 6607
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6608
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6609
			if (cpumask_equal(doms_new[i], doms_cur[j])
6610
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6611 6612 6613
				goto match2;
		}
		/* no match - add a new doms_new */
6614
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6615 6616 6617 6618 6619
match2:
		;
	}

	/* Remember the new sched domains */
6620 6621
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6622
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6623
	doms_cur = doms_new;
6624
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6625
	ndoms_cur = ndoms_new;
6626 6627

	register_sched_domain_sysctl();
6628

6629
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6630 6631
}

6632
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6633
static void reinit_sched_domains(void)
6634
{
6635
	get_online_cpus();
6636 6637 6638 6639

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

6640
	rebuild_sched_domains();
6641
	put_online_cpus();
6642 6643 6644 6645
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
6646
	unsigned int level = 0;
6647

6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6659 6660 6661
		return -EINVAL;

	if (smt)
6662
		sched_smt_power_savings = level;
6663
	else
6664
		sched_mc_power_savings = level;
6665

6666
	reinit_sched_domains();
6667

6668
	return count;
6669 6670 6671
}

#ifdef CONFIG_SCHED_MC
6672 6673 6674
static ssize_t sched_mc_power_savings_show(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
6675
{
6676
	return sprintf(buf, "%u\n", sched_mc_power_savings);
6677
}
6678 6679
static ssize_t sched_mc_power_savings_store(struct device *dev,
					    struct device_attribute *attr,
6680
					    const char *buf, size_t count)
6681 6682 6683
{
	return sched_power_savings_store(buf, count, 0);
}
6684 6685 6686
static DEVICE_ATTR(sched_mc_power_savings, 0644,
		   sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6687 6688 6689
#endif

#ifdef CONFIG_SCHED_SMT
6690 6691 6692
static ssize_t sched_smt_power_savings_show(struct device *dev,
					    struct device_attribute *attr,
					    char *buf)
6693
{
6694
	return sprintf(buf, "%u\n", sched_smt_power_savings);
6695
}
6696 6697
static ssize_t sched_smt_power_savings_store(struct device *dev,
					    struct device_attribute *attr,
6698
					     const char *buf, size_t count)
6699 6700 6701
{
	return sched_power_savings_store(buf, count, 1);
}
6702
static DEVICE_ATTR(sched_smt_power_savings, 0644,
6703
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
6704 6705 6706
		   sched_smt_power_savings_store);
#endif

6707
int __init sched_create_sysfs_power_savings_entries(struct device *dev)
A
Adrian Bunk 已提交
6708 6709 6710 6711 6712
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
6713
		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
A
Adrian Bunk 已提交
6714 6715 6716
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
6717
		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
A
Adrian Bunk 已提交
6718 6719 6720
#endif
	return err;
}
6721
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6722

L
Linus Torvalds 已提交
6723
/*
6724 6725 6726
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6727
 */
6728 6729
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6730
{
6731
	switch (action & ~CPU_TASKS_FROZEN) {
6732
	case CPU_ONLINE:
6733
	case CPU_DOWN_FAILED:
6734
		cpuset_update_active_cpus();
6735
		return NOTIFY_OK;
6736 6737 6738 6739
	default:
		return NOTIFY_DONE;
	}
}
6740

6741 6742
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6743 6744 6745 6746 6747
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6748 6749 6750 6751 6752
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6753 6754
void __init sched_init_smp(void)
{
6755 6756 6757
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6758
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6759

6760
	get_online_cpus();
6761
	mutex_lock(&sched_domains_mutex);
6762
	init_sched_domains(cpu_active_mask);
6763 6764 6765
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6766
	mutex_unlock(&sched_domains_mutex);
6767
	put_online_cpus();
6768

6769 6770
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6771 6772 6773 6774

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6775
	init_hrtick();
6776 6777

	/* Move init over to a non-isolated CPU */
6778
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6779
		BUG();
I
Ingo Molnar 已提交
6780
	sched_init_granularity();
6781
	free_cpumask_var(non_isolated_cpus);
6782

6783
	init_sched_rt_class();
L
Linus Torvalds 已提交
6784 6785 6786 6787
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6788
	sched_init_granularity();
L
Linus Torvalds 已提交
6789 6790 6791
}
#endif /* CONFIG_SMP */

6792 6793
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6794 6795 6796 6797 6798 6799 6800
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6801 6802
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6803
#endif
P
Peter Zijlstra 已提交
6804

6805
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6806

L
Linus Torvalds 已提交
6807 6808
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6809
	int i, j;
6810 6811 6812 6813 6814 6815 6816
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6817
#endif
6818
#ifdef CONFIG_CPUMASK_OFFSTACK
6819
	alloc_size += num_possible_cpus() * cpumask_size();
6820 6821
#endif
	if (alloc_size) {
6822
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6823 6824

#ifdef CONFIG_FAIR_GROUP_SCHED
6825
		root_task_group.se = (struct sched_entity **)ptr;
6826 6827
		ptr += nr_cpu_ids * sizeof(void **);

6828
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6829
		ptr += nr_cpu_ids * sizeof(void **);
6830

6831
#endif /* CONFIG_FAIR_GROUP_SCHED */
6832
#ifdef CONFIG_RT_GROUP_SCHED
6833
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6834 6835
		ptr += nr_cpu_ids * sizeof(void **);

6836
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6837 6838
		ptr += nr_cpu_ids * sizeof(void **);

6839
#endif /* CONFIG_RT_GROUP_SCHED */
6840 6841 6842 6843 6844 6845
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6846
	}
I
Ingo Molnar 已提交
6847

G
Gregory Haskins 已提交
6848 6849 6850 6851
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6852 6853 6854 6855
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6856
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6857
			global_rt_period(), global_rt_runtime());
6858
#endif /* CONFIG_RT_GROUP_SCHED */
6859

D
Dhaval Giani 已提交
6860
#ifdef CONFIG_CGROUP_SCHED
6861 6862
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6863
	INIT_LIST_HEAD(&root_task_group.siblings);
6864
	autogroup_init(&init_task);
6865

D
Dhaval Giani 已提交
6866
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6867

6868 6869 6870 6871 6872 6873
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6874
	for_each_possible_cpu(i) {
6875
		struct rq *rq;
L
Linus Torvalds 已提交
6876 6877

		rq = cpu_rq(i);
6878
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6879
		rq->nr_running = 0;
6880 6881
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6882
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6883
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6884
#ifdef CONFIG_FAIR_GROUP_SCHED
6885
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6886
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6887
		/*
6888
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6889 6890 6891 6892
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6893
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6894 6895 6896
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6897
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6898 6899 6900
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6901
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6902
		 *
6903 6904
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6905
		 */
6906
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6907
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6908 6909 6910
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6911
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6912
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6913
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6914
#endif
L
Linus Torvalds 已提交
6915

I
Ingo Molnar 已提交
6916 6917
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6918 6919 6920

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6921
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6922
		rq->sd = NULL;
G
Gregory Haskins 已提交
6923
		rq->rd = NULL;
6924
		rq->cpu_power = SCHED_POWER_SCALE;
6925
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6926
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6927
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6928
		rq->push_cpu = 0;
6929
		rq->cpu = i;
6930
		rq->online = 0;
6931 6932
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6933
		rq_attach_root(rq, &def_root_domain);
6934
#ifdef CONFIG_NO_HZ
6935
		rq->nohz_flags = 0;
6936
#endif
L
Linus Torvalds 已提交
6937
#endif
P
Peter Zijlstra 已提交
6938
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6939 6940 6941
		atomic_set(&rq->nr_iowait, 0);
	}

6942
	set_load_weight(&init_task);
6943

6944 6945 6946 6947
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6948
#ifdef CONFIG_RT_MUTEXES
6949
	plist_head_init(&init_task.pi_waiters);
6950 6951
#endif

L
Linus Torvalds 已提交
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6965 6966 6967

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6968 6969 6970 6971
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6972

6973
#ifdef CONFIG_SMP
6974
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6975 6976 6977
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6978 6979
#endif
	init_sched_fair_class();
6980

6981
	scheduler_running = 1;
L
Linus Torvalds 已提交
6982 6983
}

6984
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6985 6986
static inline int preempt_count_equals(int preempt_offset)
{
6987
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6988

A
Arnd Bergmann 已提交
6989
	return (nested == preempt_offset);
6990 6991
}

6992
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6993 6994 6995
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6996
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6997 6998
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6999 7000 7001 7002 7003
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7004 7005 7006 7007 7008 7009 7010
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7011 7012 7013 7014 7015

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7016 7017 7018 7019 7020
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7021 7022
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7023 7024
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7025
	int on_rq;
7026

P
Peter Zijlstra 已提交
7027
	on_rq = p->on_rq;
7028
	if (on_rq)
7029
		dequeue_task(rq, p, 0);
7030 7031
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7032
		enqueue_task(rq, p, 0);
7033 7034
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7035 7036

	check_class_changed(rq, p, prev_class, old_prio);
7037 7038
}

L
Linus Torvalds 已提交
7039 7040
void normalize_rt_tasks(void)
{
7041
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7042
	unsigned long flags;
7043
	struct rq *rq;
L
Linus Torvalds 已提交
7044

7045
	read_lock_irqsave(&tasklist_lock, flags);
7046
	do_each_thread(g, p) {
7047 7048 7049 7050 7051 7052
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7053 7054
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7055 7056 7057
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7058
#endif
I
Ingo Molnar 已提交
7059 7060 7061 7062 7063 7064 7065 7066

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7067
			continue;
I
Ingo Molnar 已提交
7068
		}
L
Linus Torvalds 已提交
7069

7070
		raw_spin_lock(&p->pi_lock);
7071
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7072

7073
		normalize_task(rq, p);
7074

7075
		__task_rq_unlock(rq);
7076
		raw_spin_unlock(&p->pi_lock);
7077 7078
	} while_each_thread(g, p);

7079
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7080 7081 7082
}

#endif /* CONFIG_MAGIC_SYSRQ */
7083

7084
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7085
/*
7086
 * These functions are only useful for the IA64 MCA handling, or kdb.
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7101
struct task_struct *curr_task(int cpu)
7102 7103 7104 7105
{
	return cpu_curr(cpu);
}

7106 7107 7108
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7109 7110 7111 7112 7113 7114
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7115 7116
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7117 7118 7119 7120 7121 7122 7123
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7124
void set_curr_task(int cpu, struct task_struct *p)
7125 7126 7127 7128 7129
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7130

D
Dhaval Giani 已提交
7131
#ifdef CONFIG_CGROUP_SCHED
7132 7133 7134
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7135 7136 7137 7138
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7139
	autogroup_free(tg);
7140 7141 7142 7143
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7144
struct task_group *sched_create_group(struct task_group *parent)
7145 7146 7147 7148 7149 7150 7151 7152
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7153
	if (!alloc_fair_sched_group(tg, parent))
7154 7155
		goto err;

7156
	if (!alloc_rt_sched_group(tg, parent))
7157 7158
		goto err;

7159
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7160
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7161 7162 7163 7164 7165

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7166
	list_add_rcu(&tg->siblings, &parent->children);
7167
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7168

7169
	return tg;
S
Srivatsa Vaddagiri 已提交
7170 7171

err:
P
Peter Zijlstra 已提交
7172
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7173 7174 7175
	return ERR_PTR(-ENOMEM);
}

7176
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7177
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7178 7179
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7180
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7181 7182
}

7183
/* Destroy runqueue etc associated with a task group */
7184
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7185
{
7186
	unsigned long flags;
7187
	int i;
S
Srivatsa Vaddagiri 已提交
7188

7189 7190
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7191
		unregister_fair_sched_group(tg, i);
7192 7193

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7194
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7195
	list_del_rcu(&tg->siblings);
7196
	spin_unlock_irqrestore(&task_group_lock, flags);
7197 7198

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7199
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7200 7201
}

7202
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7203 7204 7205
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7206 7207
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7208 7209 7210 7211 7212 7213 7214
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7215
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7216
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7217

7218
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7219
		dequeue_task(rq, tsk, 0);
7220 7221
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7222

P
Peter Zijlstra 已提交
7223
#ifdef CONFIG_FAIR_GROUP_SCHED
7224 7225 7226
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7227
#endif
7228
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7229

7230 7231 7232
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7233
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7234

7235
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7236
}
D
Dhaval Giani 已提交
7237
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7238

7239
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7240 7241 7242
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7243
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7244

P
Peter Zijlstra 已提交
7245
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7246
}
7247 7248 7249 7250 7251 7252 7253
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7254

P
Peter Zijlstra 已提交
7255 7256
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7257
{
P
Peter Zijlstra 已提交
7258
	struct task_struct *g, *p;
7259

P
Peter Zijlstra 已提交
7260
	do_each_thread(g, p) {
7261
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7262 7263
			return 1;
	} while_each_thread(g, p);
7264

P
Peter Zijlstra 已提交
7265 7266
	return 0;
}
7267

P
Peter Zijlstra 已提交
7268 7269 7270 7271 7272
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7273

7274
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7275 7276 7277 7278 7279
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7280

P
Peter Zijlstra 已提交
7281 7282
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7283

P
Peter Zijlstra 已提交
7284 7285 7286
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7287 7288
	}

7289 7290 7291 7292 7293
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7294

7295 7296 7297
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7298 7299
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7300

P
Peter Zijlstra 已提交
7301
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7302

7303 7304 7305 7306 7307
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7308

7309 7310 7311
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7312 7313 7314
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7315

P
Peter Zijlstra 已提交
7316 7317 7318 7319
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7320

P
Peter Zijlstra 已提交
7321
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7322
	}
P
Peter Zijlstra 已提交
7323

P
Peter Zijlstra 已提交
7324 7325 7326 7327
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7328 7329
}

P
Peter Zijlstra 已提交
7330
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7331
{
7332 7333
	int ret;

P
Peter Zijlstra 已提交
7334 7335 7336 7337 7338 7339
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7340 7341 7342 7343 7344
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7345 7346
}

7347
static int tg_set_rt_bandwidth(struct task_group *tg,
7348
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7349
{
P
Peter Zijlstra 已提交
7350
	int i, err = 0;
P
Peter Zijlstra 已提交
7351 7352

	mutex_lock(&rt_constraints_mutex);
7353
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7354 7355
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7356
		goto unlock;
P
Peter Zijlstra 已提交
7357

7358
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7359 7360
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7361 7362 7363 7364

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7365
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7366
		rt_rq->rt_runtime = rt_runtime;
7367
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7368
	}
7369
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7370
unlock:
7371
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7372 7373 7374
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7375 7376
}

7377 7378 7379 7380 7381 7382 7383 7384 7385
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7386
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7387 7388
}

P
Peter Zijlstra 已提交
7389 7390 7391 7392
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7393
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7394 7395
		return -1;

7396
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7397 7398 7399
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7400 7401 7402 7403 7404 7405 7406 7407

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7408 7409 7410
	if (rt_period == 0)
		return -EINVAL;

7411
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7425
	u64 runtime, period;
7426 7427
	int ret = 0;

7428 7429 7430
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7431 7432 7433 7434 7435 7436 7437 7438
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7439

7440
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7441
	read_lock(&tasklist_lock);
7442
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7443
	read_unlock(&tasklist_lock);
7444 7445 7446 7447
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7448 7449 7450 7451 7452 7453 7454 7455 7456 7457

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7458
#else /* !CONFIG_RT_GROUP_SCHED */
7459 7460
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7461 7462 7463
	unsigned long flags;
	int i;

7464 7465 7466
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7467 7468 7469 7470 7471 7472 7473
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7474
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7475 7476 7477
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7478
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7479
		rt_rq->rt_runtime = global_rt_runtime();
7480
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7481
	}
7482
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7483

7484 7485
	return 0;
}
7486
#endif /* CONFIG_RT_GROUP_SCHED */
7487 7488

int sched_rt_handler(struct ctl_table *table, int write,
7489
		void __user *buffer, size_t *lenp,
7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7500
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7517

7518
#ifdef CONFIG_CGROUP_SCHED
7519 7520

/* return corresponding task_group object of a cgroup */
7521
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7522
{
7523 7524
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7525 7526 7527
}

static struct cgroup_subsys_state *
7528
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7529
{
7530
	struct task_group *tg, *parent;
7531

7532
	if (!cgrp->parent) {
7533
		/* This is early initialization for the top cgroup */
7534
		return &root_task_group.css;
7535 7536
	}

7537 7538
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7539 7540 7541 7542 7543 7544
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
7545 7546
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7547
{
7548
	struct task_group *tg = cgroup_tg(cgrp);
7549 7550 7551 7552

	sched_destroy_group(tg);
}

7553 7554
static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
7555
{
7556 7557 7558
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7559
#ifdef CONFIG_RT_GROUP_SCHED
7560 7561
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7562
#else
7563 7564 7565
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7566
#endif
7567
	}
7568 7569
	return 0;
}
7570

7571 7572
static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
			      struct cgroup_taskset *tset)
7573
{
7574 7575 7576 7577
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7578 7579
}

7580
static void
7581 7582
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7595
#ifdef CONFIG_FAIR_GROUP_SCHED
7596
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7597
				u64 shareval)
7598
{
7599
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7600 7601
}

7602
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7603
{
7604
	struct task_group *tg = cgroup_tg(cgrp);
7605

7606
	return (u64) scale_load_down(tg->shares);
7607
}
7608 7609

#ifdef CONFIG_CFS_BANDWIDTH
7610 7611
static DEFINE_MUTEX(cfs_constraints_mutex);

7612 7613 7614
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7615 7616
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7617 7618
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7619
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7620
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7641 7642 7643 7644 7645
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7646
	runtime_enabled = quota != RUNTIME_INF;
7647 7648
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7649 7650 7651
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7652

P
Paul Turner 已提交
7653
	__refill_cfs_bandwidth_runtime(cfs_b);
7654 7655 7656 7657 7658 7659
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7660 7661 7662 7663
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7664
		struct rq *rq = cfs_rq->rq;
7665 7666

		raw_spin_lock_irq(&rq->lock);
7667
		cfs_rq->runtime_enabled = runtime_enabled;
7668
		cfs_rq->runtime_remaining = 0;
7669

7670
		if (cfs_rq->throttled)
7671
			unthrottle_cfs_rq(cfs_rq);
7672 7673
		raw_spin_unlock_irq(&rq->lock);
	}
7674 7675
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7676

7677
	return ret;
7678 7679 7680 7681 7682 7683
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7684
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7697
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7698 7699
		return -1;

7700
	quota_us = tg->cfs_bandwidth.quota;
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7711
	quota = tg->cfs_bandwidth.quota;
7712 7713 7714 7715 7716 7717 7718 7719

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7720
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7780
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7781 7782 7783 7784 7785
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7786
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7807
	int ret;
7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7819 7820 7821 7822 7823
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7824
}
7825 7826 7827 7828 7829

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7830
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7831 7832 7833 7834 7835 7836 7837

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7838
#endif /* CONFIG_CFS_BANDWIDTH */
7839
#endif /* CONFIG_FAIR_GROUP_SCHED */
7840

7841
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7842
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7843
				s64 val)
P
Peter Zijlstra 已提交
7844
{
7845
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7846 7847
}

7848
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7849
{
7850
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7851
}
7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7863
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7864

7865
static struct cftype cpu_files[] = {
7866
#ifdef CONFIG_FAIR_GROUP_SCHED
7867 7868
	{
		.name = "shares",
7869 7870
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7871
	},
7872
#endif
7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7884 7885 7886 7887
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7888
#endif
7889
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7890
	{
P
Peter Zijlstra 已提交
7891
		.name = "rt_runtime_us",
7892 7893
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7894
	},
7895 7896
	{
		.name = "rt_period_us",
7897 7898
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7899
	},
7900
#endif
7901 7902 7903 7904
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7905
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7906 7907 7908
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7909 7910 7911
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7912 7913
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7914
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7915 7916
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7917 7918 7919
	.early_init	= 1,
};

7920
#endif	/* CONFIG_CGROUP_SCHED */
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
7933
	struct cgroup_subsys *ss, struct cgroup *cgrp)
7934
{
7935
	struct cpuacct *ca;
7936

7937 7938 7939 7940
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7941
	if (!ca)
7942
		goto out;
7943 7944

	ca->cpuusage = alloc_percpu(u64);
7945 7946 7947
	if (!ca->cpuusage)
		goto out_free_ca;

7948 7949 7950
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7951

7952
	return &ca->css;
7953

7954
out_free_cpuusage:
7955 7956 7957 7958 7959
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7960 7961 7962
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7963
static void
7964
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7965
{
7966
	struct cpuacct *ca = cgroup_ca(cgrp);
7967

7968
	free_percpu(ca->cpustat);
7969 7970 7971 7972
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7973 7974
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7975
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7976 7977 7978 7979 7980 7981
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7982
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7983
	data = *cpuusage;
7984
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7985 7986 7987 7988 7989 7990 7991 7992 7993
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7994
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7995 7996 7997 7998 7999

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8000
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8001
	*cpuusage = val;
8002
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8003 8004 8005 8006 8007
#else
	*cpuusage = val;
#endif
}

8008
/* return total cpu usage (in nanoseconds) of a group */
8009
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8010
{
8011
	struct cpuacct *ca = cgroup_ca(cgrp);
8012 8013 8014
	u64 totalcpuusage = 0;
	int i;

8015 8016
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8017 8018 8019 8020

	return totalcpuusage;
}

8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8033 8034
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8035 8036 8037 8038 8039

out:
	return err;
}

8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8055 8056 8057 8058 8059 8060
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8061
			      struct cgroup_map_cb *cb)
8062 8063
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8064 8065
	int cpu;
	s64 val = 0;
8066

8067 8068 8069 8070
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8071
	}
8072 8073
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8074

8075 8076 8077 8078 8079 8080
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8081
	}
8082 8083 8084 8085

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8086 8087 8088
	return 0;
}

8089 8090 8091
static struct cftype files[] = {
	{
		.name = "usage",
8092 8093
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8094
	},
8095 8096 8097 8098
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8099 8100 8101 8102
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8103 8104
};

8105
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8106
{
8107
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8108 8109 8110 8111 8112 8113 8114
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8115
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8116 8117
{
	struct cpuacct *ca;
8118
	int cpu;
8119

L
Li Zefan 已提交
8120
	if (unlikely(!cpuacct_subsys.active))
8121 8122
		return;

8123
	cpu = task_cpu(tsk);
8124 8125 8126

	rcu_read_lock();

8127 8128
	ca = task_ca(tsk);

8129
	for (; ca; ca = parent_ca(ca)) {
8130
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8131 8132
		*cpuusage += cputime;
	}
8133 8134

	rcu_read_unlock();
8135 8136 8137 8138 8139 8140 8141 8142 8143 8144
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */