core.c 199.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
517
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
518 519
#endif

520
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
521 522 523
{
	int cpu;

524
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
525

526
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
527 528
		return;

529
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538 539 540

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

541
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
542 543 544 545
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

546
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
547 548
		return;
	resched_task(cpu_curr(cpu));
549
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
550
}
551

552
#ifdef CONFIG_NO_HZ_COMMON
553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

567
	rcu_read_lock();
568
	for_each_domain(cpu, sd) {
569 570 571 572 573 574
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
575
	}
576 577
unlock:
	rcu_read_unlock();
578 579
	return cpu;
}
580 581 582 583 584 585 586 587 588 589
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
590
static void wake_up_idle_cpu(int cpu)
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
606 607

	/*
608 609 610
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
611
	 */
612
	set_tsk_need_resched(rq->idle);
613

614 615 616 617
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
618 619
}

620
static bool wake_up_full_nohz_cpu(int cpu)
621
{
622
	if (tick_nohz_full_cpu(cpu)) {
623 624 625 626 627 628 629 630 631 632 633
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
634
	if (!wake_up_full_nohz_cpu(cpu))
635 636 637
		wake_up_idle_cpu(cpu);
}

638
static inline bool got_nohz_idle_kick(void)
639
{
640 641
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
642 643
}

644
#else /* CONFIG_NO_HZ_COMMON */
645

646
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
647
{
648
	return false;
P
Peter Zijlstra 已提交
649 650
}

651
#endif /* CONFIG_NO_HZ_COMMON */
652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */

671
void sched_avg_update(struct rq *rq)
672
{
673 674 675
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
676 677 678 679 680 681
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
682 683 684
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
685 686
}

687
#else /* !CONFIG_SMP */
688
void resched_task(struct task_struct *p)
689
{
690
	assert_raw_spin_locked(&task_rq(p)->lock);
691
	set_tsk_need_resched(p);
692
}
693
#endif /* CONFIG_SMP */
694

695 696
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
697
/*
698 699 700 701
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
702
 */
703
int walk_tg_tree_from(struct task_group *from,
704
			     tg_visitor down, tg_visitor up, void *data)
705 706
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
707
	int ret;
708

709 710
	parent = from;

711
down:
P
Peter Zijlstra 已提交
712 713
	ret = (*down)(parent, data);
	if (ret)
714
		goto out;
715 716 717 718 719 720 721
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
722
	ret = (*up)(parent, data);
723 724
	if (ret || parent == from)
		goto out;
725 726 727 728 729

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
730
out:
P
Peter Zijlstra 已提交
731
	return ret;
732 733
}

734
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
735
{
736
	return 0;
P
Peter Zijlstra 已提交
737
}
738 739
#endif

740 741
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
742 743 744
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
745 746 747 748
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
749
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
750
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
751 752
		return;
	}
753

754
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
755
	load->inv_weight = prio_to_wmult[prio];
756 757
}

758
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
759
{
760
	update_rq_clock(rq);
I
Ingo Molnar 已提交
761
	sched_info_queued(p);
762
	p->sched_class->enqueue_task(rq, p, flags);
763 764
}

765
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766
{
767
	update_rq_clock(rq);
768
	sched_info_dequeued(p);
769
	p->sched_class->dequeue_task(rq, p, flags);
770 771
}

772
void activate_task(struct rq *rq, struct task_struct *p, int flags)
773 774 775 776
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

777
	enqueue_task(rq, p, flags);
778 779
}

780
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
781 782 783 784
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

785
	dequeue_task(rq, p, flags);
786 787
}

788
static void update_rq_clock_task(struct rq *rq, s64 delta)
789
{
790 791 792 793 794 795 796 797
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
798
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
820 821
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
822
	if (static_key_false((&paravirt_steal_rq_enabled))) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

840 841
	rq->clock_task += delta;

842 843 844 845
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
846 847
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

878
/*
I
Ingo Molnar 已提交
879
 * __normal_prio - return the priority that is based on the static prio
880 881 882
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
883
	return p->static_prio;
884 885
}

886 887 888 889 890 891 892
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
893
static inline int normal_prio(struct task_struct *p)
894 895 896
{
	int prio;

897
	if (task_has_rt_policy(p))
898 899 900 901 902 903 904 905 906 907 908 909 910
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
911
static int effective_prio(struct task_struct *p)
912 913 914 915 916 917 918 919 920 921 922 923
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
924 925 926 927
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
928
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
929 930 931 932
{
	return cpu_curr(task_cpu(p)) == p;
}

933 934
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
935
				       int oldprio)
936 937 938
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
939 940 941 942
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
943 944
}

945
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
966
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
967 968 969
		rq->skip_clock_update = 1;
}

970 971 972 973 974 975 976
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
979
{
980 981 982 983 984
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
985 986
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
987 988

#ifdef CONFIG_LOCKDEP
989 990 991 992 993
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
994
	 * see task_group().
995 996 997 998
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
999 1000 1001
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1002 1003
#endif

1004
	trace_sched_migrate_task(p, new_cpu);
1005

1006
	if (task_cpu(p) != new_cpu) {
1007 1008
		struct task_migration_notifier tmn;

1009 1010
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1011
		p->se.nr_migrations++;
1012
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1013 1014 1015 1016 1017 1018

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1019
	}
I
Ingo Molnar 已提交
1020 1021

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1022 1023
}

1024
struct migration_arg {
1025
	struct task_struct *task;
L
Linus Torvalds 已提交
1026
	int dest_cpu;
1027
};
L
Linus Torvalds 已提交
1028

1029 1030
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1031 1032 1033
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1034 1035 1036 1037 1038 1039 1040
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1041 1042 1043 1044 1045 1046
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1047
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1048 1049
{
	unsigned long flags;
I
Ingo Molnar 已提交
1050
	int running, on_rq;
R
Roland McGrath 已提交
1051
	unsigned long ncsw;
1052
	struct rq *rq;
L
Linus Torvalds 已提交
1053

1054 1055 1056 1057 1058 1059 1060 1061
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1074 1075 1076
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1077
			cpu_relax();
R
Roland McGrath 已提交
1078
		}
1079

1080 1081 1082 1083 1084 1085
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1086
		trace_sched_wait_task(p);
1087
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1088
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1089
		ncsw = 0;
1090
		if (!match_state || p->state == match_state)
1091
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1092
		task_rq_unlock(rq, p, &flags);
1093

R
Roland McGrath 已提交
1094 1095 1096 1097 1098 1099
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1110

1111 1112 1113 1114 1115
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1116
		 * So if it was still runnable (but just not actively
1117 1118 1119 1120
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1121 1122 1123 1124
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1125 1126
			continue;
		}
1127

1128 1129 1130 1131 1132 1133 1134
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1135 1136

	return ncsw;
L
Linus Torvalds 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1146
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1147 1148 1149 1150 1151
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1152
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1162
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1163
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1164

1165
#ifdef CONFIG_SMP
1166
/*
1167
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1168
 */
1169 1170
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1171 1172
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1173 1174
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1193
	}
1194

1195 1196
	for (;;) {
		/* Any allowed, online CPU? */
1197
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1198 1199 1200 1201 1202 1203
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1234 1235 1236 1237 1238
	}

	return dest_cpu;
}

1239
/*
1240
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1241
 */
1242
static inline
1243
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1244
{
1245
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1257
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1258
		     !cpu_online(cpu)))
1259
		cpu = select_fallback_rq(task_cpu(p), p);
1260 1261

	return cpu;
1262
}
1263 1264 1265 1266 1267 1268

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1269 1270
#endif

P
Peter Zijlstra 已提交
1271
static void
1272
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1273
{
P
Peter Zijlstra 已提交
1274
#ifdef CONFIG_SCHEDSTATS
1275 1276
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1287
		rcu_read_lock();
P
Peter Zijlstra 已提交
1288 1289 1290 1291 1292 1293
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1294
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1295
	}
1296 1297 1298 1299

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1300 1301 1302
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1303
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1304 1305

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1306
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1307 1308 1309 1310 1311 1312

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1313
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1314
	p->on_rq = 1;
1315 1316 1317 1318

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1319 1320
}

1321 1322 1323
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1324
static void
1325
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1326 1327
{
	check_preempt_curr(rq, p, wake_flags);
1328
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1329 1330 1331 1332 1333 1334

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1335
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1381
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1382
static void sched_ttwu_pending(void)
1383 1384
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1385 1386
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1387 1388 1389

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1390 1391 1392
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1393 1394 1395 1396 1397 1398 1399 1400
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1401
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1418
	sched_ttwu_pending();
1419 1420 1421 1422

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1423 1424
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1425
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1426
	}
1427
	irq_exit();
1428 1429 1430 1431
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1432
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1433 1434
		smp_send_reschedule(cpu);
}
1435

1436
bool cpus_share_cache(int this_cpu, int that_cpu)
1437 1438 1439
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1440
#endif /* CONFIG_SMP */
1441

1442 1443 1444 1445
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1446
#if defined(CONFIG_SMP)
1447
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1448
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1449 1450 1451 1452 1453
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1454 1455 1456
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1457 1458 1459
}

/**
L
Linus Torvalds 已提交
1460
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1461
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1462
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1463
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1471 1472
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1473
 */
1474 1475
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1476 1477
{
	unsigned long flags;
1478
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1479

1480
	smp_wmb();
1481
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1482
	if (!(p->state & state))
L
Linus Torvalds 已提交
1483 1484
		goto out;

1485
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1486 1487
	cpu = task_cpu(p);

1488 1489
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1490 1491

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1492
	/*
1493 1494
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1495
	 */
1496
	while (p->on_cpu)
1497
		cpu_relax();
1498
	/*
1499
	 * Pairs with the smp_wmb() in finish_lock_switch().
1500
	 */
1501
	smp_rmb();
L
Linus Torvalds 已提交
1502

1503
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1504
	p->state = TASK_WAKING;
1505

1506
	if (p->sched_class->task_waking)
1507
		p->sched_class->task_waking(p);
1508

1509
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1510 1511
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1512
		set_task_cpu(p, cpu);
1513
	}
L
Linus Torvalds 已提交
1514 1515
#endif /* CONFIG_SMP */

1516 1517
	ttwu_queue(p, cpu);
stat:
1518
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1519
out:
1520
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1521 1522 1523 1524

	return success;
}

T
Tejun Heo 已提交
1525 1526 1527 1528
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1529
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1530
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1531
 * the current task.
T
Tejun Heo 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1541 1542 1543 1544 1545 1546
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1547
	if (!(p->state & TASK_NORMAL))
1548
		goto out;
T
Tejun Heo 已提交
1549

P
Peter Zijlstra 已提交
1550
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1551 1552
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1553
	ttwu_do_wakeup(rq, p, 0);
1554
	ttwu_stat(p, smp_processor_id(), 0);
1555 1556
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1557 1558
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1570
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1571
{
1572 1573
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1574 1575 1576
}
EXPORT_SYMBOL(wake_up_process);

1577
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1578 1579 1580 1581 1582 1583 1584
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1585 1586 1587 1588 1589
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1590 1591 1592
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1593 1594
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1595
	p->se.prev_sum_exec_runtime	= 0;
1596
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1597
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1598
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1599

1600 1601 1602 1603 1604 1605
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1606 1607 1608
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1609
#ifdef CONFIG_SCHEDSTATS
1610
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1611
#endif
N
Nick Piggin 已提交
1612

P
Peter Zijlstra 已提交
1613
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1614

1615 1616 1617
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1618 1619 1620 1621

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1622
		p->mm->numa_next_reset = jiffies;
1623 1624 1625 1626 1627 1628
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1629
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1630 1631
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1632 1633
}

1634
#ifdef CONFIG_NUMA_BALANCING
1635
#ifdef CONFIG_SCHED_DEBUG
1636 1637 1638 1639 1640 1641 1642
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1643 1644 1645 1646 1647 1648
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1649
}
1650
#endif /* CONFIG_SCHED_DEBUG */
1651
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1652 1653 1654 1655

/*
 * fork()/clone()-time setup:
 */
1656
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1657
{
1658
	unsigned long flags;
I
Ingo Molnar 已提交
1659 1660 1661
	int cpu = get_cpu();

	__sched_fork(p);
1662
	/*
1663
	 * We mark the process as running here. This guarantees that
1664 1665 1666
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1667
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1668

1669 1670 1671 1672 1673
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1674 1675 1676 1677
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1678
		if (task_has_rt_policy(p)) {
1679
			p->policy = SCHED_NORMAL;
1680
			p->static_prio = NICE_TO_PRIO(0);
1681 1682 1683 1684 1685 1686
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1687

1688 1689 1690 1691 1692 1693
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1694

H
Hiroshi Shimamoto 已提交
1695 1696
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1697

P
Peter Zijlstra 已提交
1698 1699 1700
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1701 1702 1703 1704 1705 1706 1707
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1708
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1709
	set_task_cpu(p, cpu);
1710
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1711

1712
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1713
	if (likely(sched_info_on()))
1714
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1715
#endif
P
Peter Zijlstra 已提交
1716 1717
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1718
#endif
1719
#ifdef CONFIG_PREEMPT_COUNT
1720
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1721
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1722
#endif
1723
#ifdef CONFIG_SMP
1724
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1725
#endif
1726

N
Nick Piggin 已提交
1727
	put_cpu();
L
Linus Torvalds 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1737
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1738 1739
{
	unsigned long flags;
I
Ingo Molnar 已提交
1740
	struct rq *rq;
1741

1742
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1743 1744 1745 1746 1747 1748
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1749
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1750 1751
#endif

1752
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1753
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1754
	p->on_rq = 1;
1755
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1756
	check_preempt_curr(rq, p, WF_FORK);
1757
#ifdef CONFIG_SMP
1758 1759
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1760
#endif
1761
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1762 1763
}

1764 1765 1766
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1767
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1768
 * @notifier: notifier struct to register
1769 1770 1771 1772 1773 1774 1775 1776 1777
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1778
 * @notifier: notifier struct to unregister
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1792
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1793 1794 1795 1796 1797 1798 1799 1800 1801
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1802
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1803 1804 1805
		notifier->ops->sched_out(notifier, next);
}

1806
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1818
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1819

1820 1821 1822
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1823
 * @prev: the current task that is being switched out
1824 1825 1826 1827 1828 1829 1830 1831 1832
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1833 1834 1835
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1836
{
1837
	trace_sched_switch(prev, next);
1838 1839
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1840
	fire_sched_out_preempt_notifiers(prev, next);
1841 1842 1843 1844
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1845 1846
/**
 * finish_task_switch - clean up after a task-switch
1847
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1848 1849
 * @prev: the thread we just switched away from.
 *
1850 1851 1852 1853
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1854 1855
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1856
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1857 1858 1859
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1860
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1861 1862 1863
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1864
	long prev_state;
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1870
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1871 1872
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1873
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1879
	prev_state = prev->state;
1880
	vtime_task_switch(prev);
1881
	finish_arch_switch(prev);
1882
	perf_event_task_sched_in(prev, current);
1883
	finish_lock_switch(rq, prev);
1884
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1885

1886
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1887 1888
	if (mm)
		mmdrop(mm);
1889
	if (unlikely(prev_state == TASK_DEAD)) {
1890 1891 1892
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1893
		 */
1894
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1895
		put_task_struct(prev);
1896
	}
L
Linus Torvalds 已提交
1897 1898
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1914
		raw_spin_lock_irqsave(&rq->lock, flags);
1915 1916
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1917
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1918 1919 1920 1921 1922 1923

		rq->post_schedule = 0;
	}
}

#else
1924

1925 1926 1927 1928 1929 1930
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1931 1932
}

1933 1934
#endif

L
Linus Torvalds 已提交
1935 1936 1937 1938
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1939
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1940 1941
	__releases(rq->lock)
{
1942 1943
	struct rq *rq = this_rq();

1944
	finish_task_switch(rq, prev);
1945

1946 1947 1948 1949 1950
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1951

1952 1953 1954 1955
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1956
	if (current->set_child_tid)
1957
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1964
static inline void
1965
context_switch(struct rq *rq, struct task_struct *prev,
1966
	       struct task_struct *next)
L
Linus Torvalds 已提交
1967
{
I
Ingo Molnar 已提交
1968
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1969

1970
	prepare_task_switch(rq, prev, next);
1971

I
Ingo Molnar 已提交
1972 1973
	mm = next->mm;
	oldmm = prev->active_mm;
1974 1975 1976 1977 1978
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1979
	arch_start_context_switch(prev);
1980

1981
	if (!mm) {
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1988
	if (!prev->mm) {
L
Linus Torvalds 已提交
1989 1990 1991
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1992 1993 1994 1995 1996 1997 1998
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1999
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2000
#endif
L
Linus Torvalds 已提交
2001

2002
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2003 2004 2005
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2006 2007 2008 2009 2010 2011 2012
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2013 2014 2015
}

/*
2016
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2017 2018
 *
 * externally visible scheduler statistics: current number of runnable
2019
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2029
}
L
Linus Torvalds 已提交
2030 2031

unsigned long long nr_context_switches(void)
2032
{
2033 2034
	int i;
	unsigned long long sum = 0;
2035

2036
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2037
		sum += cpu_rq(i)->nr_switches;
2038

L
Linus Torvalds 已提交
2039 2040
	return sum;
}
2041

L
Linus Torvalds 已提交
2042 2043 2044
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2045

2046
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2047
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2048

L
Linus Torvalds 已提交
2049 2050
	return sum;
}
2051

2052
unsigned long nr_iowait_cpu(int cpu)
2053
{
2054
	struct rq *this = cpu_rq(cpu);
2055 2056
	return atomic_read(&this->nr_iowait);
}
2057

2058 2059 2060 2061 2062
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2063

2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2112 2113 2114 2115
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2132

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2148 2149 2150
/*
 * a1 = a0 * e + a * (1 - e)
 */
2151 2152 2153 2154 2155 2156 2157 2158 2159
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2160
#ifdef CONFIG_NO_HZ_COMMON
2161
/*
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2200 2201 2202
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2203 2204
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2205

2206
static inline int calc_load_write_idx(void)
2207
{
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2234 2235
	long delta;

2236 2237 2238 2239
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2240
	delta = calc_load_fold_active(this_rq);
2241 2242 2243 2244
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2245 2246
}

2247
void calc_load_exit_idle(void)
2248
{
2249 2250 2251 2252 2253 2254 2255
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2256 2257

	/*
2258 2259 2260
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2261
	 */
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2274 2275 2276

	return delta;
}
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2355
static void calc_global_nohz(void)
2356 2357 2358
{
	long delta, active, n;

2359 2360 2361 2362 2363 2364
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2365

2366 2367
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2368

2369 2370 2371
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2372

2373 2374
		calc_load_update += n * LOAD_FREQ;
	}
2375

2376 2377 2378 2379 2380 2381 2382 2383 2384
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2385
}
2386
#else /* !CONFIG_NO_HZ_COMMON */
2387

2388 2389
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2390

2391
#endif /* CONFIG_NO_HZ_COMMON */
2392 2393

/*
2394 2395
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2396
 */
2397
void calc_global_load(unsigned long ticks)
2398
{
2399
	long active, delta;
L
Linus Torvalds 已提交
2400

2401
	if (time_before(jiffies, calc_load_update + 10))
2402
		return;
L
Linus Torvalds 已提交
2403

2404 2405 2406 2407 2408 2409 2410
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2411 2412
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2413

2414 2415 2416
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2417

2418
	calc_load_update += LOAD_FREQ;
2419 2420

	/*
2421
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2422 2423
	 */
	calc_global_nohz();
2424
}
L
Linus Torvalds 已提交
2425

2426
/*
2427 2428
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2429 2430 2431
 */
static void calc_load_account_active(struct rq *this_rq)
{
2432
	long delta;
2433

2434 2435
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2436

2437 2438
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2439
		atomic_long_add(delta, &calc_load_tasks);
2440 2441

	this_rq->calc_load_update += LOAD_FREQ;
2442 2443
}

2444 2445 2446 2447
/*
 * End of global load-average stuff
 */

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2515
/*
I
Ingo Molnar 已提交
2516
 * Update rq->cpu_load[] statistics. This function is usually called every
2517 2518
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2519
 */
2520 2521
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2522
{
I
Ingo Molnar 已提交
2523
	int i, scale;
2524

I
Ingo Molnar 已提交
2525
	this_rq->nr_load_updates++;
2526

I
Ingo Molnar 已提交
2527
	/* Update our load: */
2528 2529
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2530
		unsigned long old_load, new_load;
2531

I
Ingo Molnar 已提交
2532
		/* scale is effectively 1 << i now, and >> i divides by scale */
2533

I
Ingo Molnar 已提交
2534
		old_load = this_rq->cpu_load[i];
2535
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2536
		new_load = this_load;
I
Ingo Molnar 已提交
2537 2538 2539 2540 2541 2542
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2543 2544 2545
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2546
	}
2547 2548

	sched_avg_update(this_rq);
2549 2550
}

2551
#ifdef CONFIG_NO_HZ_COMMON
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2565 2566 2567 2568 2569 2570
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2571
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2572 2573 2574 2575
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2576
	 * bail if there's load or we're actually up-to-date.
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
2611
#endif /* CONFIG_NO_HZ_COMMON */
2612

2613 2614 2615
/*
 * Called from scheduler_tick()
 */
2616 2617
static void update_cpu_load_active(struct rq *this_rq)
{
2618
	/*
2619
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2620 2621 2622
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2623

2624
	calc_load_account_active(this_rq);
2625 2626
}

I
Ingo Molnar 已提交
2627
#ifdef CONFIG_SMP
2628

2629
/*
P
Peter Zijlstra 已提交
2630 2631
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2632
 */
P
Peter Zijlstra 已提交
2633
void sched_exec(void)
2634
{
P
Peter Zijlstra 已提交
2635
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2636
	unsigned long flags;
2637
	int dest_cpu;
2638

2639
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2640
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2641 2642
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2643

2644
	if (likely(cpu_active(dest_cpu))) {
2645
		struct migration_arg arg = { p, dest_cpu };
2646

2647 2648
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2649 2650
		return;
	}
2651
unlock:
2652
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2653
}
I
Ingo Molnar 已提交
2654

L
Linus Torvalds 已提交
2655 2656 2657
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2658
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2659 2660

EXPORT_PER_CPU_SYMBOL(kstat);
2661
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2662 2663

/*
2664
 * Return any ns on the sched_clock that have not yet been accounted in
2665
 * @p in case that task is currently running.
2666 2667
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2668
 */
2669 2670 2671 2672 2673 2674
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2675
		ns = rq->clock_task - p->se.exec_start;
2676 2677 2678 2679 2680 2681 2682
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2683
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2684 2685
{
	unsigned long flags;
2686
	struct rq *rq;
2687
	u64 ns = 0;
2688

2689
	rq = task_rq_lock(p, &flags);
2690
	ns = do_task_delta_exec(p, rq);
2691
	task_rq_unlock(rq, p, &flags);
2692

2693 2694
	return ns;
}
2695

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2709
	task_rq_unlock(rq, p, &flags);
2710 2711 2712

	return ns;
}
2713

2714 2715 2716 2717 2718 2719 2720 2721
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2722
	struct task_struct *curr = rq->curr;
2723 2724

	sched_clock_tick();
I
Ingo Molnar 已提交
2725

2726
	raw_spin_lock(&rq->lock);
2727
	update_rq_clock(rq);
2728
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2729
	curr->sched_class->task_tick(rq, curr, 0);
2730
	raw_spin_unlock(&rq->lock);
2731

2732
	perf_event_task_tick();
2733

2734
#ifdef CONFIG_SMP
2735
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2736
	trigger_load_balance(rq, cpu);
2737
#endif
L
Linus Torvalds 已提交
2738 2739
}

2740
notrace unsigned long get_parent_ip(unsigned long addr)
2741 2742 2743 2744 2745 2746 2747 2748
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2749

2750 2751 2752
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2753
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2754
{
2755
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2756 2757 2758
	/*
	 * Underflow?
	 */
2759 2760
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2761
#endif
L
Linus Torvalds 已提交
2762
	preempt_count() += val;
2763
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2764 2765 2766
	/*
	 * Spinlock count overflowing soon?
	 */
2767 2768
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2769 2770 2771
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2772 2773 2774
}
EXPORT_SYMBOL(add_preempt_count);

2775
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2776
{
2777
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2778 2779 2780
	/*
	 * Underflow?
	 */
2781
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2782
		return;
L
Linus Torvalds 已提交
2783 2784 2785
	/*
	 * Is the spinlock portion underflowing?
	 */
2786 2787 2788
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2789
#endif
2790

2791 2792
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798 2799
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2800
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2801
 */
I
Ingo Molnar 已提交
2802
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2803
{
2804 2805 2806
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2807 2808
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2809

I
Ingo Molnar 已提交
2810
	debug_show_held_locks(prev);
2811
	print_modules();
I
Ingo Molnar 已提交
2812 2813
	if (irqs_disabled())
		print_irqtrace_events(prev);
2814
	dump_stack();
2815
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2816
}
L
Linus Torvalds 已提交
2817

I
Ingo Molnar 已提交
2818 2819 2820 2821 2822
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2823
	/*
I
Ingo Molnar 已提交
2824
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2825 2826 2827
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2828
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2829
		__schedule_bug(prev);
2830
	rcu_sleep_check();
I
Ingo Molnar 已提交
2831

L
Linus Torvalds 已提交
2832 2833
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2834
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2835 2836
}

P
Peter Zijlstra 已提交
2837
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2838
{
2839
	if (prev->on_rq || rq->skip_clock_update < 0)
2840
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2841
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2842 2843
}

I
Ingo Molnar 已提交
2844 2845 2846 2847
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2848
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2849
{
2850
	const struct sched_class *class;
I
Ingo Molnar 已提交
2851
	struct task_struct *p;
L
Linus Torvalds 已提交
2852 2853

	/*
I
Ingo Molnar 已提交
2854 2855
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2856
	 */
2857
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2858
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2859 2860
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2861 2862
	}

2863
	for_each_class(class) {
2864
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2865 2866 2867
		if (p)
			return p;
	}
2868 2869

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2870
}
L
Linus Torvalds 已提交
2871

I
Ingo Molnar 已提交
2872
/*
2873
 * __schedule() is the main scheduler function.
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2908
 */
2909
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2910 2911
{
	struct task_struct *prev, *next;
2912
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2913
	struct rq *rq;
2914
	int cpu;
I
Ingo Molnar 已提交
2915

2916 2917
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2918 2919
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2920
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2921 2922 2923
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2924

2925
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2926
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2927

2928
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2929

2930
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2931
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2932
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2933
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2934
		} else {
2935 2936 2937
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2938
			/*
2939 2940 2941
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2951
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2952 2953
	}

2954
	pre_schedule(rq, prev);
2955

I
Ingo Molnar 已提交
2956
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2957 2958
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2959
	put_prev_task(rq, prev);
2960
	next = pick_next_task(rq);
2961 2962
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2963 2964 2965 2966 2967 2968

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2969
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2970
		/*
2971 2972 2973 2974
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2975 2976 2977
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2978
	} else
2979
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2980

2981
	post_schedule(rq);
L
Linus Torvalds 已提交
2982

2983
	sched_preempt_enable_no_resched();
2984
	if (need_resched())
L
Linus Torvalds 已提交
2985 2986
		goto need_resched;
}
2987

2988 2989
static inline void sched_submit_work(struct task_struct *tsk)
{
2990
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2991 2992 2993 2994 2995 2996 2997 2998 2999
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3000
asmlinkage void __sched schedule(void)
3001
{
3002 3003 3004
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3005 3006
	__schedule();
}
L
Linus Torvalds 已提交
3007 3008
EXPORT_SYMBOL(schedule);

3009
#ifdef CONFIG_CONTEXT_TRACKING
3010 3011 3012 3013 3014 3015 3016 3017
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
3018
	user_exit();
3019
	schedule();
3020
	user_enter();
3021 3022 3023
}
#endif

3024 3025 3026 3027 3028 3029 3030
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3031
	sched_preempt_enable_no_resched();
3032 3033 3034 3035
	schedule();
	preempt_disable();
}

3036
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3037

3038 3039 3040
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3041
		return false;
3042 3043

	/*
3044 3045 3046 3047
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3048
	 */
3049
	barrier();
3050

3051
	return owner->on_cpu;
3052
}
3053

3054 3055 3056 3057 3058 3059 3060 3061
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3062

3063
	rcu_read_lock();
3064 3065
	while (owner_running(lock, owner)) {
		if (need_resched())
3066
			break;
3067

3068
		arch_mutex_cpu_relax();
3069
	}
3070
	rcu_read_unlock();
3071

3072
	/*
3073 3074 3075
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3076
	 */
3077
	return lock->owner == NULL;
3078 3079 3080
}
#endif

L
Linus Torvalds 已提交
3081 3082
#ifdef CONFIG_PREEMPT
/*
3083
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3084
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3085 3086
 * occur there and call schedule directly.
 */
3087
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3088 3089
{
	struct thread_info *ti = current_thread_info();
3090

L
Linus Torvalds 已提交
3091 3092
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3093
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3094
	 */
N
Nick Piggin 已提交
3095
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3096 3097
		return;

3098
	do {
3099
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3100
		__schedule();
3101
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3102

3103 3104 3105 3106 3107
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3108
	} while (need_resched());
L
Linus Torvalds 已提交
3109 3110 3111 3112
}
EXPORT_SYMBOL(preempt_schedule);

/*
3113
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3114 3115 3116 3117 3118 3119 3120
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3121
	enum ctx_state prev_state;
3122

3123
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3124 3125
	BUG_ON(ti->preempt_count || !irqs_disabled());

3126 3127
	prev_state = exception_enter();

3128 3129 3130
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3131
		__schedule();
3132 3133
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3134

3135 3136 3137 3138 3139
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3140
	} while (need_resched());
3141 3142

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3143 3144 3145 3146
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3147
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3148
			  void *key)
L
Linus Torvalds 已提交
3149
{
P
Peter Zijlstra 已提交
3150
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3151 3152 3153 3154
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3155 3156
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3157 3158 3159
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3160
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3161 3162
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3163
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3164
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3165
{
3166
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3167

3168
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3169 3170
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3171
		if (curr->func(curr, mode, wake_flags, key) &&
3172
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3182
 * @key: is directly passed to the wakeup function
3183 3184 3185
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3186
 */
3187
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3188
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3201
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3202
{
3203
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3204
}
3205
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3206

3207 3208 3209 3210
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3211
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3212

L
Linus Torvalds 已提交
3213
/**
3214
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3215 3216 3217
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3218
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3219 3220 3221 3222 3223 3224 3225
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3226 3227 3228
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3229
 */
3230 3231
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3232 3233
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3234
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3235 3236 3237 3238 3239

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3240
		wake_flags = 0;
L
Linus Torvalds 已提交
3241 3242

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3243
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3244 3245
	spin_unlock_irqrestore(&q->lock, flags);
}
3246 3247 3248 3249 3250 3251 3252 3253 3254
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3255 3256
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3257 3258 3259 3260 3261 3262 3263 3264
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3265 3266 3267
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3268
 */
3269
void complete(struct completion *x)
L
Linus Torvalds 已提交
3270 3271 3272 3273 3274
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3275
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3276 3277 3278 3279
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3280 3281 3282 3283 3284
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3285 3286 3287
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3288
 */
3289
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3290 3291 3292 3293 3294
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3295
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3296 3297 3298 3299
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3300
static inline long __sched
3301 3302
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3303 3304 3305 3306
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3307
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3308
		do {
3309
			if (signal_pending_state(state, current)) {
3310 3311
				timeout = -ERESTARTSYS;
				break;
3312 3313
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3314
			spin_unlock_irq(&x->wait.lock);
3315
			timeout = action(timeout);
L
Linus Torvalds 已提交
3316
			spin_lock_irq(&x->wait.lock);
3317
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3318
		__remove_wait_queue(&x->wait, &wait);
3319 3320
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3321 3322
	}
	x->done--;
3323
	return timeout ?: 1;
L
Linus Torvalds 已提交
3324 3325
}

3326 3327 3328
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3329 3330 3331 3332
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3333
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
3334
	spin_unlock_irq(&x->wait.lock);
3335 3336
	return timeout;
}
L
Linus Torvalds 已提交
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3360
void __sched wait_for_completion(struct completion *x)
3361 3362
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3363
}
3364
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3365

3366 3367 3368 3369 3370 3371 3372 3373
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3374 3375 3376
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3377
 */
3378
unsigned long __sched
3379
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3380
{
3381
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3382
}
3383
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3384

3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

3418 3419 3420 3421 3422 3423
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3424 3425
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3426
 */
3427
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3428
{
3429 3430 3431 3432
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3433
}
3434
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3435

3436 3437 3438 3439 3440 3441 3442
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3443 3444 3445
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3446
 */
3447
long __sched
3448 3449
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3450
{
3451
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3452
}
3453
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3454

3455 3456 3457 3458 3459 3460
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3461 3462
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3463
 */
M
Matthew Wilcox 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3473 3474 3475 3476 3477 3478 3479 3480
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3481 3482 3483
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3484
 */
3485
long __sched
3486 3487 3488 3489 3490 3491 3492
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3507
	unsigned long flags;
3508 3509
	int ret = 1;

3510
	spin_lock_irqsave(&x->wait.lock, flags);
3511 3512 3513 3514
	if (!x->done)
		ret = 0;
	else
		x->done--;
3515
	spin_unlock_irqrestore(&x->wait.lock, flags);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3530
	unsigned long flags;
3531 3532
	int ret = 1;

3533
	spin_lock_irqsave(&x->wait.lock, flags);
3534 3535
	if (!x->done)
		ret = 0;
3536
	spin_unlock_irqrestore(&x->wait.lock, flags);
3537 3538 3539 3540
	return ret;
}
EXPORT_SYMBOL(completion_done);

3541 3542
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3543
{
I
Ingo Molnar 已提交
3544 3545 3546 3547
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3548

3549
	__set_current_state(state);
L
Linus Torvalds 已提交
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3565 3566 3567
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3568
long __sched
I
Ingo Molnar 已提交
3569
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3570
{
3571
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3572 3573 3574
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3575
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3576
{
3577
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3578 3579 3580
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3581
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3582
{
3583
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3584 3585 3586
}
EXPORT_SYMBOL(sleep_on_timeout);

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3599
void rt_mutex_setprio(struct task_struct *p, int prio)
3600
{
3601
	int oldprio, on_rq, running;
3602
	struct rq *rq;
3603
	const struct sched_class *prev_class;
3604 3605 3606

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3607
	rq = __task_rq_lock(p);
3608

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3627
	trace_sched_pi_setprio(p, prio);
3628
	oldprio = p->prio;
3629
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3630
	on_rq = p->on_rq;
3631
	running = task_current(rq, p);
3632
	if (on_rq)
3633
		dequeue_task(rq, p, 0);
3634 3635
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3636 3637 3638 3639 3640 3641

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3642 3643
	p->prio = prio;

3644 3645
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3646
	if (on_rq)
3647
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3648

P
Peter Zijlstra 已提交
3649
	check_class_changed(rq, p, prev_class, oldprio);
3650
out_unlock:
3651
	__task_rq_unlock(rq);
3652 3653
}
#endif
3654
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3655
{
I
Ingo Molnar 已提交
3656
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3657
	unsigned long flags;
3658
	struct rq *rq;
L
Linus Torvalds 已提交
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3671
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3672
	 */
3673
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3674 3675 3676
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3677
	on_rq = p->on_rq;
3678
	if (on_rq)
3679
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3680 3681

	p->static_prio = NICE_TO_PRIO(nice);
3682
	set_load_weight(p);
3683 3684 3685
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3686

I
Ingo Molnar 已提交
3687
	if (on_rq) {
3688
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3689
		/*
3690 3691
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3692
		 */
3693
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3694 3695 3696
			resched_task(rq->curr);
	}
out_unlock:
3697
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3698 3699 3700
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3701 3702 3703 3704 3705
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3706
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3707
{
3708 3709
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3710

3711
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3712 3713 3714
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3724
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3725
{
3726
	long nice, retval;
L
Linus Torvalds 已提交
3727 3728 3729 3730 3731 3732

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3733 3734
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3735 3736 3737
	if (increment > 40)
		increment = 40;

3738
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3739 3740 3741 3742 3743
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3744 3745 3746
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3765
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770 3771 3772 3773
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3774
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3775 3776 3777
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3778
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3779 3780 3781 3782 3783 3784 3785

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3800 3801 3802 3803 3804 3805
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3806
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3807 3808 3809 3810 3811 3812 3813 3814
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3815
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3816
{
3817
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3818 3819 3820
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3821 3822
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3823 3824 3825
{
	p->policy = policy;
	p->rt_priority = prio;
3826 3827 3828
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3829 3830 3831 3832
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3833
	set_load_weight(p);
L
Linus Torvalds 已提交
3834 3835
}

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3846 3847
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3848 3849 3850 3851
	rcu_read_unlock();
	return match;
}

3852
static int __sched_setscheduler(struct task_struct *p, int policy,
3853
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3854
{
3855
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3856
	unsigned long flags;
3857
	const struct sched_class *prev_class;
3858
	struct rq *rq;
3859
	int reset_on_fork;
L
Linus Torvalds 已提交
3860

3861 3862
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3863 3864
recheck:
	/* double check policy once rq lock held */
3865 3866
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3867
		policy = oldpolicy = p->policy;
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3878 3879
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3880 3881
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3882 3883
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3884
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3885
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3886
		return -EINVAL;
3887
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3888 3889
		return -EINVAL;

3890 3891 3892
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3893
	if (user && !capable(CAP_SYS_NICE)) {
3894
		if (rt_policy(policy)) {
3895 3896
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3907

I
Ingo Molnar 已提交
3908
		/*
3909 3910
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3911
		 */
3912 3913 3914 3915
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3916

3917
		/* can't change other user's priorities */
3918
		if (!check_same_owner(p))
3919
			return -EPERM;
3920 3921 3922 3923

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3924
	}
L
Linus Torvalds 已提交
3925

3926
	if (user) {
3927
		retval = security_task_setscheduler(p);
3928 3929 3930 3931
		if (retval)
			return retval;
	}

3932 3933 3934
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3935
	 *
L
Lucas De Marchi 已提交
3936
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3937 3938
	 * runqueue lock must be held.
	 */
3939
	rq = task_rq_lock(p, &flags);
3940

3941 3942 3943 3944
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3945
		task_rq_unlock(rq, p, &flags);
3946 3947 3948
		return -EINVAL;
	}

3949 3950 3951 3952 3953
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3954
		task_rq_unlock(rq, p, &flags);
3955 3956 3957
		return 0;
	}

3958 3959 3960 3961 3962 3963 3964
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3965 3966
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3967
			task_rq_unlock(rq, p, &flags);
3968 3969 3970 3971 3972
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3973 3974 3975
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3976
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3977 3978
		goto recheck;
	}
P
Peter Zijlstra 已提交
3979
	on_rq = p->on_rq;
3980
	running = task_current(rq, p);
3981
	if (on_rq)
3982
		dequeue_task(rq, p, 0);
3983 3984
	if (running)
		p->sched_class->put_prev_task(rq, p);
3985

3986 3987
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3988
	oldprio = p->prio;
3989
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3990
	__setscheduler(rq, p, policy, param->sched_priority);
3991

3992 3993
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3994
	if (on_rq)
3995
		enqueue_task(rq, p, 0);
3996

P
Peter Zijlstra 已提交
3997
	check_class_changed(rq, p, prev_class, oldprio);
3998
	task_rq_unlock(rq, p, &flags);
3999

4000 4001
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4002 4003
	return 0;
}
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4014
		       const struct sched_param *param)
4015 4016 4017
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4018 4019
EXPORT_SYMBOL_GPL(sched_setscheduler);

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4032
			       const struct sched_param *param)
4033 4034 4035 4036
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4037 4038
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4039 4040 4041
{
	struct sched_param lparam;
	struct task_struct *p;
4042
	int retval;
L
Linus Torvalds 已提交
4043 4044 4045 4046 4047

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4048 4049 4050

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4051
	p = find_process_by_pid(pid);
4052 4053 4054
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4055

L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4065 4066
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4067
{
4068 4069 4070 4071
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4080
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087 4088
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4089
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4090
{
4091
	struct task_struct *p;
4092
	int retval;
L
Linus Torvalds 已提交
4093 4094

	if (pid < 0)
4095
		return -EINVAL;
L
Linus Torvalds 已提交
4096 4097

	retval = -ESRCH;
4098
	rcu_read_lock();
L
Linus Torvalds 已提交
4099 4100 4101 4102
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4103 4104
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4105
	}
4106
	rcu_read_unlock();
L
Linus Torvalds 已提交
4107 4108 4109 4110
	return retval;
}

/**
4111
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4112 4113 4114
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4115
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4116 4117
{
	struct sched_param lp;
4118
	struct task_struct *p;
4119
	int retval;
L
Linus Torvalds 已提交
4120 4121

	if (!param || pid < 0)
4122
		return -EINVAL;
L
Linus Torvalds 已提交
4123

4124
	rcu_read_lock();
L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4135
	rcu_read_unlock();
L
Linus Torvalds 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4145
	rcu_read_unlock();
L
Linus Torvalds 已提交
4146 4147 4148
	return retval;
}

4149
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4150
{
4151
	cpumask_var_t cpus_allowed, new_mask;
4152 4153
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4154

4155
	get_online_cpus();
4156
	rcu_read_lock();
L
Linus Torvalds 已提交
4157 4158 4159

	p = find_process_by_pid(pid);
	if (!p) {
4160
		rcu_read_unlock();
4161
		put_online_cpus();
L
Linus Torvalds 已提交
4162 4163 4164
		return -ESRCH;
	}

4165
	/* Prevent p going away */
L
Linus Torvalds 已提交
4166
	get_task_struct(p);
4167
	rcu_read_unlock();
L
Linus Torvalds 已提交
4168

4169 4170 4171 4172 4173 4174 4175 4176
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4177
	retval = -EPERM;
E
Eric W. Biederman 已提交
4178 4179 4180 4181 4182 4183 4184 4185
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4186

4187
	retval = security_task_setscheduler(p);
4188 4189 4190
	if (retval)
		goto out_unlock;

4191 4192
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4193
again:
4194
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4195

P
Paul Menage 已提交
4196
	if (!retval) {
4197 4198
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4199 4200 4201 4202 4203
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4204
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4205 4206 4207
			goto again;
		}
	}
L
Linus Torvalds 已提交
4208
out_unlock:
4209 4210 4211 4212
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4213
	put_task_struct(p);
4214
	put_online_cpus();
L
Linus Torvalds 已提交
4215 4216 4217 4218
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4219
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4220
{
4221 4222 4223 4224 4225
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4235 4236
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4237
{
4238
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4239 4240
	int retval;

4241 4242
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4243

4244 4245 4246 4247 4248
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4249 4250
}

4251
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4252
{
4253
	struct task_struct *p;
4254
	unsigned long flags;
L
Linus Torvalds 已提交
4255 4256
	int retval;

4257
	get_online_cpus();
4258
	rcu_read_lock();
L
Linus Torvalds 已提交
4259 4260 4261 4262 4263 4264

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4265 4266 4267 4268
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4269
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4270
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4271
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4272 4273

out_unlock:
4274
	rcu_read_unlock();
4275
	put_online_cpus();
L
Linus Torvalds 已提交
4276

4277
	return retval;
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283 4284 4285
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4286 4287
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4288 4289
{
	int ret;
4290
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4291

A
Anton Blanchard 已提交
4292
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4293 4294
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4295 4296
		return -EINVAL;

4297 4298
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4299

4300 4301
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4302
		size_t retlen = min_t(size_t, len, cpumask_size());
4303 4304

		if (copy_to_user(user_mask_ptr, mask, retlen))
4305 4306
			ret = -EFAULT;
		else
4307
			ret = retlen;
4308 4309
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4310

4311
	return ret;
L
Linus Torvalds 已提交
4312 4313 4314 4315 4316
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4317 4318
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4319
 */
4320
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4321
{
4322
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4323

4324
	schedstat_inc(rq, yld_count);
4325
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4332
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4333
	do_raw_spin_unlock(&rq->lock);
4334
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4335 4336 4337 4338 4339 4340

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4341 4342 4343 4344 4345
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4346
static void __cond_resched(void)
L
Linus Torvalds 已提交
4347
{
4348
	add_preempt_count(PREEMPT_ACTIVE);
4349
	__schedule();
4350
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4351 4352
}

4353
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4354
{
P
Peter Zijlstra 已提交
4355
	if (should_resched()) {
L
Linus Torvalds 已提交
4356 4357 4358 4359 4360
		__cond_resched();
		return 1;
	}
	return 0;
}
4361
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4362 4363

/*
4364
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4365 4366
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4367
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4368 4369 4370
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4371
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4372
{
P
Peter Zijlstra 已提交
4373
	int resched = should_resched();
J
Jan Kara 已提交
4374 4375
	int ret = 0;

4376 4377
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4378
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4379
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4380
		if (resched)
N
Nick Piggin 已提交
4381 4382 4383
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4384
		ret = 1;
L
Linus Torvalds 已提交
4385 4386
		spin_lock(lock);
	}
J
Jan Kara 已提交
4387
	return ret;
L
Linus Torvalds 已提交
4388
}
4389
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4390

4391
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4392 4393 4394
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4395
	if (should_resched()) {
4396
		local_bh_enable();
L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4403
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4404 4405 4406 4407

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4426 4427 4428 4429 4430 4431 4432 4433
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4434 4435 4436 4437
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4438 4439
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4440 4441 4442 4443
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4444 4445 4446 4447
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4448 4449 4450 4451 4452 4453
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4454
	int yielded = 0;
4455 4456 4457 4458 4459 4460

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4461 4462 4463 4464 4465 4466 4467 4468 4469
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4470 4471 4472 4473 4474 4475 4476
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4477
		goto out_unlock;
4478 4479

	if (curr->sched_class != p->sched_class)
4480
		goto out_unlock;
4481 4482

	if (task_running(p_rq, p) || p->state)
4483
		goto out_unlock;
4484 4485

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4486
	if (yielded) {
4487
		schedstat_inc(rq, yld_count);
4488 4489 4490 4491 4492 4493 4494
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4495

4496
out_unlock:
4497
	double_rq_unlock(rq, p_rq);
4498
out_irq:
4499 4500
	local_irq_restore(flags);

4501
	if (yielded > 0)
4502 4503 4504 4505 4506 4507
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4508
/*
I
Ingo Molnar 已提交
4509
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4510 4511 4512 4513
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4514
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4515

4516
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4517
	atomic_inc(&rq->nr_iowait);
4518
	blk_flush_plug(current);
4519
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4520
	schedule();
4521
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4522
	atomic_dec(&rq->nr_iowait);
4523
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4524 4525 4526 4527 4528
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4529
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4530 4531
	long ret;

4532
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4533
	atomic_inc(&rq->nr_iowait);
4534
	blk_flush_plug(current);
4535
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4536
	ret = schedule_timeout(timeout);
4537
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4538
	atomic_dec(&rq->nr_iowait);
4539
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4550
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4560
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4561
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4575
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4576 4577 4578 4579 4580 4581 4582 4583 4584
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4585
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4586
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4600
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4601
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4602
{
4603
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4604
	unsigned int time_slice;
4605 4606
	unsigned long flags;
	struct rq *rq;
4607
	int retval;
L
Linus Torvalds 已提交
4608 4609 4610
	struct timespec t;

	if (pid < 0)
4611
		return -EINVAL;
L
Linus Torvalds 已提交
4612 4613

	retval = -ESRCH;
4614
	rcu_read_lock();
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621 4622
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4623 4624
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4625
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4626

4627
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4628
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4629 4630
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4631

L
Linus Torvalds 已提交
4632
out_unlock:
4633
	rcu_read_unlock();
L
Linus Torvalds 已提交
4634 4635 4636
	return retval;
}

4637
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4638

4639
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4640 4641
{
	unsigned long free = 0;
4642
	int ppid;
4643
	unsigned state;
L
Linus Torvalds 已提交
4644 4645

	state = p->state ? __ffs(p->state) + 1 : 0;
4646
	printk(KERN_INFO "%-15.15s %c", p->comm,
4647
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4648
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4649
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4650
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4651
	else
P
Peter Zijlstra 已提交
4652
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4653 4654
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4655
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4656
	else
P
Peter Zijlstra 已提交
4657
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4658 4659
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4660
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4661
#endif
4662 4663 4664
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4665
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4666
		task_pid_nr(p), ppid,
4667
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4668

4669
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4670 4671
}

I
Ingo Molnar 已提交
4672
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4673
{
4674
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4675

4676
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4677 4678
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4679
#else
P
Peter Zijlstra 已提交
4680 4681
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4682
#endif
4683
	rcu_read_lock();
L
Linus Torvalds 已提交
4684 4685 4686
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4687
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4688 4689
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4690
		if (!state_filter || (p->state & state_filter))
4691
			sched_show_task(p);
L
Linus Torvalds 已提交
4692 4693
	} while_each_thread(g, p);

4694 4695
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4696 4697 4698
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4699
	rcu_read_unlock();
I
Ingo Molnar 已提交
4700 4701 4702
	/*
	 * Only show locks if all tasks are dumped:
	 */
4703
	if (!state_filter)
I
Ingo Molnar 已提交
4704
		debug_show_all_locks();
L
Linus Torvalds 已提交
4705 4706
}

I
Ingo Molnar 已提交
4707 4708
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4709
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4710 4711
}

4712 4713 4714 4715 4716 4717 4718 4719
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4720
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4721
{
4722
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4723 4724
	unsigned long flags;

4725
	raw_spin_lock_irqsave(&rq->lock, flags);
4726

I
Ingo Molnar 已提交
4727
	__sched_fork(idle);
4728
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4729 4730
	idle->se.exec_start = sched_clock();

4731
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4743
	__set_task_cpu(idle, cpu);
4744
	rcu_read_unlock();
L
Linus Torvalds 已提交
4745 4746

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4747 4748
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4749
#endif
4750
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4751 4752

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4753
	task_thread_info(idle)->preempt_count = 0;
4754

I
Ingo Molnar 已提交
4755 4756 4757 4758
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4759
	ftrace_graph_init_idle_task(idle, cpu);
4760
	vtime_init_idle(idle);
4761 4762 4763
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4764 4765
}

L
Linus Torvalds 已提交
4766
#ifdef CONFIG_SMP
4767 4768 4769 4770
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4771 4772

	cpumask_copy(&p->cpus_allowed, new_mask);
4773
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4774 4775
}

L
Linus Torvalds 已提交
4776 4777 4778
/*
 * This is how migration works:
 *
4779 4780 4781 4782 4783 4784
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4785
 *    it and puts it into the right queue.
4786 4787
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4788 4789 4790 4791 4792 4793 4794 4795
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4796
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4797 4798
 * call is not atomic; no spinlocks may be held.
 */
4799
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4800 4801
{
	unsigned long flags;
4802
	struct rq *rq;
4803
	unsigned int dest_cpu;
4804
	int ret = 0;
L
Linus Torvalds 已提交
4805 4806

	rq = task_rq_lock(p, &flags);
4807

4808 4809 4810
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4811
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4812 4813 4814 4815
		ret = -EINVAL;
		goto out;
	}

4816
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4817 4818 4819 4820
		ret = -EINVAL;
		goto out;
	}

4821
	do_set_cpus_allowed(p, new_mask);
4822

L
Linus Torvalds 已提交
4823
	/* Can the task run on the task's current CPU? If so, we're done */
4824
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4825 4826
		goto out;

4827
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4828
	if (p->on_rq) {
4829
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4830
		/* Need help from migration thread: drop lock and wait. */
4831
		task_rq_unlock(rq, p, &flags);
4832
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4833 4834 4835 4836
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4837
	task_rq_unlock(rq, p, &flags);
4838

L
Linus Torvalds 已提交
4839 4840
	return ret;
}
4841
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4842 4843

/*
I
Ingo Molnar 已提交
4844
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4845 4846 4847 4848 4849 4850
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4851 4852
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4853
 */
4854
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4855
{
4856
	struct rq *rq_dest, *rq_src;
4857
	int ret = 0;
L
Linus Torvalds 已提交
4858

4859
	if (unlikely(!cpu_active(dest_cpu)))
4860
		return ret;
L
Linus Torvalds 已提交
4861 4862 4863 4864

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4865
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4866 4867 4868
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4869
		goto done;
L
Linus Torvalds 已提交
4870
	/* Affinity changed (again). */
4871
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4872
		goto fail;
L
Linus Torvalds 已提交
4873

4874 4875 4876 4877
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4878
	if (p->on_rq) {
4879
		dequeue_task(rq_src, p, 0);
4880
		set_task_cpu(p, dest_cpu);
4881
		enqueue_task(rq_dest, p, 0);
4882
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4883
	}
L
Linus Torvalds 已提交
4884
done:
4885
	ret = 1;
L
Linus Torvalds 已提交
4886
fail:
L
Linus Torvalds 已提交
4887
	double_rq_unlock(rq_src, rq_dest);
4888
	raw_spin_unlock(&p->pi_lock);
4889
	return ret;
L
Linus Torvalds 已提交
4890 4891 4892
}

/*
4893 4894 4895
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4896
 */
4897
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4898
{
4899
	struct migration_arg *arg = data;
4900

4901 4902 4903 4904
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4905
	local_irq_disable();
4906
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4907
	local_irq_enable();
L
Linus Torvalds 已提交
4908
	return 0;
4909 4910
}

L
Linus Torvalds 已提交
4911
#ifdef CONFIG_HOTPLUG_CPU
4912

4913
/*
4914 4915
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4916
 */
4917
void idle_task_exit(void)
L
Linus Torvalds 已提交
4918
{
4919
	struct mm_struct *mm = current->active_mm;
4920

4921
	BUG_ON(cpu_online(smp_processor_id()));
4922

4923 4924 4925
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4926 4927 4928
}

/*
4929 4930 4931 4932 4933
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4934
 */
4935
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4936
{
4937 4938 4939
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4940 4941
}

4942
/*
4943 4944 4945 4946 4947 4948
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4949
 */
4950
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4951
{
4952
	struct rq *rq = cpu_rq(dead_cpu);
4953 4954
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4955 4956

	/*
4957 4958 4959 4960 4961 4962 4963
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4964
	 */
4965
	rq->stop = NULL;
4966

I
Ingo Molnar 已提交
4967
	for ( ; ; ) {
4968 4969 4970 4971 4972
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4973
			break;
4974

4975
		next = pick_next_task(rq);
4976
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4977
		next->sched_class->put_prev_task(rq, next);
4978

4979 4980 4981 4982 4983 4984 4985
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4986
	}
4987

4988
	rq->stop = stop;
4989
}
4990

L
Linus Torvalds 已提交
4991 4992
#endif /* CONFIG_HOTPLUG_CPU */

4993 4994 4995
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4996 4997
	{
		.procname	= "sched_domain",
4998
		.mode		= 0555,
4999
	},
5000
	{}
5001 5002 5003
};

static struct ctl_table sd_ctl_root[] = {
5004 5005
	{
		.procname	= "kernel",
5006
		.mode		= 0555,
5007 5008
		.child		= sd_ctl_dir,
	},
5009
	{}
5010 5011 5012 5013 5014
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5015
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5016 5017 5018 5019

	return entry;
}

5020 5021
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5022
	struct ctl_table *entry;
5023

5024 5025 5026
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5027
	 * will always be set. In the lowest directory the names are
5028 5029 5030
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5031 5032
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5033 5034 5035
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5036 5037 5038 5039 5040

	kfree(*tablep);
	*tablep = NULL;
}

5041 5042 5043
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

5044
static void
5045
set_table_entry(struct ctl_table *entry,
5046
		const char *procname, void *data, int maxlen,
5047 5048
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5049 5050 5051 5052 5053 5054
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5055 5056 5057 5058 5059

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5060 5061 5062 5063 5064
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5065
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5066

5067 5068 5069
	if (table == NULL)
		return NULL;

5070
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5071
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5072
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5073
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5074
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5075
		sizeof(int), 0644, proc_dointvec_minmax, true);
5076
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5077
		sizeof(int), 0644, proc_dointvec_minmax, true);
5078
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5079
		sizeof(int), 0644, proc_dointvec_minmax, true);
5080
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5081
		sizeof(int), 0644, proc_dointvec_minmax, true);
5082
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5083
		sizeof(int), 0644, proc_dointvec_minmax, true);
5084
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5085
		sizeof(int), 0644, proc_dointvec_minmax, false);
5086
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5087
		sizeof(int), 0644, proc_dointvec_minmax, false);
5088
	set_table_entry(&table[9], "cache_nice_tries",
5089
		&sd->cache_nice_tries,
5090
		sizeof(int), 0644, proc_dointvec_minmax, false);
5091
	set_table_entry(&table[10], "flags", &sd->flags,
5092
		sizeof(int), 0644, proc_dointvec_minmax, false);
5093
	set_table_entry(&table[11], "name", sd->name,
5094
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5095
	/* &table[12] is terminator */
5096 5097 5098 5099

	return table;
}

5100
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5101 5102 5103 5104 5105 5106 5107 5108 5109
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5110 5111
	if (table == NULL)
		return NULL;
5112 5113 5114 5115 5116

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5117
		entry->mode = 0555;
5118 5119 5120 5121 5122 5123 5124 5125
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5126
static void register_sched_domain_sysctl(void)
5127
{
5128
	int i, cpu_num = num_possible_cpus();
5129 5130 5131
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5132 5133 5134
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5135 5136 5137
	if (entry == NULL)
		return;

5138
	for_each_possible_cpu(i) {
5139 5140
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5141
		entry->mode = 0555;
5142
		entry->child = sd_alloc_ctl_cpu_table(i);
5143
		entry++;
5144
	}
5145 5146

	WARN_ON(sd_sysctl_header);
5147 5148
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5149

5150
/* may be called multiple times per register */
5151 5152
static void unregister_sched_domain_sysctl(void)
{
5153 5154
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5155
	sd_sysctl_header = NULL;
5156 5157
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5158
}
5159
#else
5160 5161 5162 5163
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5164 5165 5166 5167
{
}
#endif

5168 5169 5170 5171 5172
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5173
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5193
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5194 5195 5196 5197
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5198 5199 5200 5201
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5202 5203
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5204
{
5205
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5206
	unsigned long flags;
5207
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5208

5209
	switch (action & ~CPU_TASKS_FROZEN) {
5210

L
Linus Torvalds 已提交
5211
	case CPU_UP_PREPARE:
5212
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5213
		break;
5214

L
Linus Torvalds 已提交
5215
	case CPU_ONLINE:
5216
		/* Update our root-domain */
5217
		raw_spin_lock_irqsave(&rq->lock, flags);
5218
		if (rq->rd) {
5219
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5220 5221

			set_rq_online(rq);
5222
		}
5223
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5224
		break;
5225

L
Linus Torvalds 已提交
5226
#ifdef CONFIG_HOTPLUG_CPU
5227
	case CPU_DYING:
5228
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5229
		/* Update our root-domain */
5230
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5231
		if (rq->rd) {
5232
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5233
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5234
		}
5235 5236
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5237
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5238
		break;
5239

5240
	case CPU_DEAD:
5241
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5242
		break;
L
Linus Torvalds 已提交
5243 5244
#endif
	}
5245 5246 5247

	update_max_interval();

L
Linus Torvalds 已提交
5248 5249 5250
	return NOTIFY_OK;
}

5251 5252 5253
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5254
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5255
 */
5256
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5257
	.notifier_call = migration_call,
5258
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5259 5260
};

5261 5262 5263 5264
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5265
	case CPU_STARTING:
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5286
static int __init migration_init(void)
L
Linus Torvalds 已提交
5287 5288
{
	void *cpu = (void *)(long)smp_processor_id();
5289
	int err;
5290

5291
	/* Initialize migration for the boot CPU */
5292 5293
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5294 5295
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5296

5297 5298 5299 5300
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5301
	return 0;
L
Linus Torvalds 已提交
5302
}
5303
early_initcall(migration_init);
L
Linus Torvalds 已提交
5304 5305 5306
#endif

#ifdef CONFIG_SMP
5307

5308 5309
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5310
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5311

5312
static __read_mostly int sched_debug_enabled;
5313

5314
static int __init sched_debug_setup(char *str)
5315
{
5316
	sched_debug_enabled = 1;
5317 5318 5319

	return 0;
}
5320 5321 5322 5323 5324 5325
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5326

5327
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5328
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5329
{
I
Ingo Molnar 已提交
5330
	struct sched_group *group = sd->groups;
5331
	char str[256];
L
Linus Torvalds 已提交
5332

R
Rusty Russell 已提交
5333
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5334
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5335 5336 5337 5338

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5339
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5340
		if (sd->parent)
P
Peter Zijlstra 已提交
5341 5342
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5343
		return -1;
N
Nick Piggin 已提交
5344 5345
	}

P
Peter Zijlstra 已提交
5346
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5347

5348
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5349 5350
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5351
	}
5352
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5353 5354
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5355
	}
L
Linus Torvalds 已提交
5356

I
Ingo Molnar 已提交
5357
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5358
	do {
I
Ingo Molnar 已提交
5359
		if (!group) {
P
Peter Zijlstra 已提交
5360 5361
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5362 5363 5364
			break;
		}

5365 5366 5367 5368 5369 5370
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5371 5372 5373
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5374 5375
			break;
		}
L
Linus Torvalds 已提交
5376

5377
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5378 5379
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5380 5381
			break;
		}
L
Linus Torvalds 已提交
5382

5383 5384
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5385 5386
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5387 5388
			break;
		}
L
Linus Torvalds 已提交
5389

5390
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5391

R
Rusty Russell 已提交
5392
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5393

P
Peter Zijlstra 已提交
5394
		printk(KERN_CONT " %s", str);
5395
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5396
			printk(KERN_CONT " (cpu_power = %d)",
5397
				group->sgp->power);
5398
		}
L
Linus Torvalds 已提交
5399

I
Ingo Molnar 已提交
5400 5401
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5402
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5403

5404
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5405
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5406

5407 5408
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5409 5410
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5411 5412
	return 0;
}
L
Linus Torvalds 已提交
5413

I
Ingo Molnar 已提交
5414 5415 5416
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5417

5418
	if (!sched_debug_enabled)
5419 5420
		return;

I
Ingo Molnar 已提交
5421 5422 5423 5424
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5425

I
Ingo Molnar 已提交
5426 5427 5428
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5429
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5430
			break;
L
Linus Torvalds 已提交
5431 5432
		level++;
		sd = sd->parent;
5433
		if (!sd)
I
Ingo Molnar 已提交
5434 5435
			break;
	}
L
Linus Torvalds 已提交
5436
}
5437
#else /* !CONFIG_SCHED_DEBUG */
5438
# define sched_domain_debug(sd, cpu) do { } while (0)
5439 5440 5441 5442
static inline bool sched_debug(void)
{
	return false;
}
5443
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5444

5445
static int sd_degenerate(struct sched_domain *sd)
5446
{
5447
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5448 5449 5450 5451 5452 5453
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5454 5455 5456
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5457 5458 5459 5460 5461
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5462
	if (sd->flags & (SD_WAKE_AFFINE))
5463 5464 5465 5466 5467
		return 0;

	return 1;
}

5468 5469
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5470 5471 5472 5473 5474 5475
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5476
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5477 5478 5479 5480 5481 5482 5483
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5484 5485 5486
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5487 5488
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5489 5490 5491 5492 5493 5494 5495
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5496
static void free_rootdomain(struct rcu_head *rcu)
5497
{
5498
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5499

5500
	cpupri_cleanup(&rd->cpupri);
5501 5502 5503 5504 5505 5506
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5507 5508
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5509
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5510 5511
	unsigned long flags;

5512
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5513 5514

	if (rq->rd) {
I
Ingo Molnar 已提交
5515
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5516

5517
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5518
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5519

5520
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5521

I
Ingo Molnar 已提交
5522 5523 5524 5525 5526 5527 5528
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5529 5530 5531 5532 5533
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5534
	cpumask_set_cpu(rq->cpu, rd->span);
5535
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5536
		set_rq_online(rq);
G
Gregory Haskins 已提交
5537

5538
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5539 5540

	if (old_rd)
5541
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5542 5543
}

5544
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5545 5546 5547
{
	memset(rd, 0, sizeof(*rd));

5548
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5549
		goto out;
5550
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5551
		goto free_span;
5552
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5553
		goto free_online;
5554

5555
	if (cpupri_init(&rd->cpupri) != 0)
5556
		goto free_rto_mask;
5557
	return 0;
5558

5559 5560
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5561 5562 5563 5564
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5565
out:
5566
	return -ENOMEM;
G
Gregory Haskins 已提交
5567 5568
}

5569 5570 5571 5572 5573 5574
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5575 5576
static void init_defrootdomain(void)
{
5577
	init_rootdomain(&def_root_domain);
5578

G
Gregory Haskins 已提交
5579 5580 5581
	atomic_set(&def_root_domain.refcount, 1);
}

5582
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5583 5584 5585 5586 5587 5588 5589
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5590
	if (init_rootdomain(rd) != 0) {
5591 5592 5593
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5594 5595 5596 5597

	return rd;
}

5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5617 5618 5619
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5620 5621 5622 5623 5624 5625 5626 5627

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5628
		kfree(sd->groups->sgp);
5629
		kfree(sd->groups);
5630
	}
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5645 5646 5647 5648 5649 5650 5651
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5652
 * two cpus are in the same cache domain, see cpus_share_cache().
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5663
	if (sd)
5664 5665 5666 5667 5668 5669
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5670
/*
I
Ingo Molnar 已提交
5671
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5672 5673
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5674 5675
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5676
{
5677
	struct rq *rq = cpu_rq(cpu);
5678 5679 5680
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5681
	for (tmp = sd; tmp; ) {
5682 5683 5684
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5685

5686
		if (sd_parent_degenerate(tmp, parent)) {
5687
			tmp->parent = parent->parent;
5688 5689
			if (parent->parent)
				parent->parent->child = tmp;
5690
			destroy_sched_domain(parent, cpu);
5691 5692
		} else
			tmp = tmp->parent;
5693 5694
	}

5695
	if (sd && sd_degenerate(sd)) {
5696
		tmp = sd;
5697
		sd = sd->parent;
5698
		destroy_sched_domain(tmp, cpu);
5699 5700 5701
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5702

5703
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5704

G
Gregory Haskins 已提交
5705
	rq_attach_root(rq, rd);
5706
	tmp = rq->sd;
N
Nick Piggin 已提交
5707
	rcu_assign_pointer(rq->sd, sd);
5708
	destroy_sched_domains(tmp, cpu);
5709 5710

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5711 5712 5713
}

/* cpus with isolated domains */
5714
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5715 5716 5717 5718

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5719
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5720
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5721 5722 5723
	return 1;
}

I
Ingo Molnar 已提交
5724
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5725

5726 5727 5728 5729 5730
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5731 5732 5733
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5734
	struct sched_group_power **__percpu sgp;
5735 5736
};

5737
struct s_data {
5738
	struct sched_domain ** __percpu sd;
5739 5740 5741
	struct root_domain	*rd;
};

5742 5743
enum s_alloc {
	sa_rootdomain,
5744
	sa_sd,
5745
	sa_sd_storage,
5746 5747 5748
	sa_none,
};

5749 5750 5751
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5752 5753
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5754 5755
#define SDTL_OVERLAP	0x01

5756
struct sched_domain_topology_level {
5757 5758
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5759
	int		    flags;
5760
	int		    numa_level;
5761
	struct sd_data      data;
5762 5763
};

P
Peter Zijlstra 已提交
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5820 5821 5822 5823 5824 5825
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5826
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5827
				GFP_KERNEL, cpu_to_node(cpu));
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5841
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5842 5843 5844
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5845 5846 5847 5848 5849 5850
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5851

P
Peter Zijlstra 已提交
5852 5853 5854 5855 5856
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5857
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5858
		    group_balance_cpu(sg) == cpu)
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5878
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5879
{
5880 5881
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5882

5883 5884
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5885

5886
	if (sg) {
5887
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5888
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5889
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5890
	}
5891 5892

	return cpu;
5893 5894
}

5895
/*
5896 5897 5898
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5899 5900
 *
 * Assumes the sched_domain tree is fully constructed
5901
 */
5902 5903
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5904
{
5905 5906 5907
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5908
	struct cpumask *covered;
5909
	int i;
5910

5911 5912 5913 5914 5915 5916
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5917 5918 5919
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5920
	cpumask_clear(covered);
5921

5922 5923 5924 5925
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5926

5927 5928
		if (cpumask_test_cpu(i, covered))
			continue;
5929

5930
		cpumask_clear(sched_group_cpus(sg));
5931
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5932
		cpumask_setall(sched_group_mask(sg));
5933

5934 5935 5936
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5937

5938 5939 5940
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5941

5942 5943 5944 5945 5946 5947 5948
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5949 5950

	return 0;
5951
}
5952

5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5965
	struct sched_group *sg = sd->groups;
5966

5967 5968 5969 5970 5971 5972
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5973

P
Peter Zijlstra 已提交
5974
	if (cpu != group_balance_cpu(sg))
5975
		return;
5976

5977
	update_group_power(sd, cpu);
5978
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5979 5980
}

5981 5982 5983
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5984 5985
}

5986 5987 5988 5989 5990
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5991 5992 5993 5994 5995 5996
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5997 5998 5999 6000 6001 6002 6003 6004 6005
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6006 6007 6008 6009 6010 6011 6012 6013 6014
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6015 6016 6017
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6018

6019
static int default_relax_domain_level = -1;
6020
int sched_domain_level_max;
6021 6022 6023

static int __init setup_relax_domain_level(char *str)
{
6024 6025
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6026

6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6045
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6046 6047
	} else {
		/* turn on idle balance on this domain */
6048
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6049 6050 6051
	}
}

6052 6053 6054
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6055 6056 6057 6058 6059
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6060 6061
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6062 6063
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6064
	case sa_sd_storage:
6065
		__sdt_free(cpu_map); /* fall through */
6066 6067 6068 6069
	case sa_none:
		break;
	}
}
6070

6071 6072 6073
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6074 6075
	memset(d, 0, sizeof(*d));

6076 6077
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6078 6079 6080
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6081
	d->rd = alloc_rootdomain();
6082
	if (!d->rd)
6083
		return sa_sd;
6084 6085
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6086

6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6099
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6100
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6101 6102

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6103
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6104 6105
}

6106 6107
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6108
{
6109
	return topology_thread_cpumask(cpu);
6110
}
6111
#endif
6112

6113 6114 6115
/*
 * Topology list, bottom-up.
 */
6116
static struct sched_domain_topology_level default_topology[] = {
6117 6118
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6119
#endif
6120
#ifdef CONFIG_SCHED_MC
6121
	{ sd_init_MC, cpu_coregroup_mask, },
6122
#endif
6123 6124 6125 6126
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6127 6128 6129 6130 6131
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6132 6133 6134 6135 6136 6137 6138 6139 6140
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6141
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6159
		.imbalance_pct		= 125,
6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6279
		}
6280 6281 6282 6283 6284 6285

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6286 6287 6288 6289 6290 6291 6292 6293 6294
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6321
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6322 6323 6324 6325 6326 6327
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6328
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6360 6361

	sched_domains_numa_levels = level;
6362
}
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6410 6411 6412 6413 6414
}
#else
static inline void sched_init_numa(void)
{
}
6415 6416 6417 6418 6419 6420 6421

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6422 6423
#endif /* CONFIG_NUMA */

6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6440 6441 6442 6443
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6444 6445 6446
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6447
			struct sched_group_power *sgp;
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6461 6462
			sg->next = sg;

6463
			*per_cpu_ptr(sdd->sg, j) = sg;
6464

P
Peter Zijlstra 已提交
6465
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6466 6467 6468 6469 6470
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6499 6500
		}
		free_percpu(sdd->sd);
6501
		sdd->sd = NULL;
6502
		free_percpu(sdd->sg);
6503
		sdd->sg = NULL;
6504
		free_percpu(sdd->sgp);
6505
		sdd->sgp = NULL;
6506 6507 6508
	}
}

6509 6510
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6511
		struct sched_domain_attr *attr, struct sched_domain *child,
6512 6513
		int cpu)
{
6514
	struct sched_domain *sd = tl->init(tl, cpu);
6515
	if (!sd)
6516
		return child;
6517 6518

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6519 6520 6521
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6522
		child->parent = sd;
6523
	}
6524
	sd->child = child;
6525
	set_domain_attribute(sd, attr);
6526 6527 6528 6529

	return sd;
}

6530 6531 6532 6533
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6534 6535
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6536 6537
{
	enum s_alloc alloc_state = sa_none;
6538
	struct sched_domain *sd;
6539
	struct s_data d;
6540
	int i, ret = -ENOMEM;
6541

6542 6543 6544
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6545

6546
	/* Set up domains for cpus specified by the cpu_map. */
6547
	for_each_cpu(i, cpu_map) {
6548 6549
		struct sched_domain_topology_level *tl;

6550
		sd = NULL;
6551
		for (tl = sched_domain_topology; tl->init; tl++) {
6552
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6553 6554
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6555 6556
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6557
		}
6558

6559 6560 6561
		while (sd->child)
			sd = sd->child;

6562
		*per_cpu_ptr(d.sd, i) = sd;
6563 6564 6565 6566 6567 6568
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6569 6570 6571 6572 6573 6574 6575
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6576
		}
6577
	}
6578

L
Linus Torvalds 已提交
6579
	/* Calculate CPU power for physical packages and nodes */
6580 6581 6582
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6583

6584 6585
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6586
			init_sched_groups_power(i, sd);
6587
		}
6588
	}
6589

L
Linus Torvalds 已提交
6590
	/* Attach the domains */
6591
	rcu_read_lock();
6592
	for_each_cpu(i, cpu_map) {
6593
		sd = *per_cpu_ptr(d.sd, i);
6594
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6595
	}
6596
	rcu_read_unlock();
6597

6598
	ret = 0;
6599
error:
6600
	__free_domain_allocs(&d, alloc_state, cpu_map);
6601
	return ret;
L
Linus Torvalds 已提交
6602
}
P
Paul Jackson 已提交
6603

6604
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6605
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6606 6607
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6608 6609 6610

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6611 6612
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6613
 */
6614
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6615

6616 6617 6618 6619 6620 6621
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6622
{
6623
	return 0;
6624 6625
}

6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6651
/*
I
Ingo Molnar 已提交
6652
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6653 6654
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6655
 */
6656
static int init_sched_domains(const struct cpumask *cpu_map)
6657
{
6658 6659
	int err;

6660
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6661
	ndoms_cur = 1;
6662
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6663
	if (!doms_cur)
6664 6665
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6666
	err = build_sched_domains(doms_cur[0], NULL);
6667
	register_sched_domain_sysctl();
6668 6669

	return err;
6670 6671 6672 6673 6674 6675
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6676
static void detach_destroy_domains(const struct cpumask *cpu_map)
6677 6678 6679
{
	int i;

6680
	rcu_read_lock();
6681
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6682
		cpu_attach_domain(NULL, &def_root_domain, i);
6683
	rcu_read_unlock();
6684 6685
}

6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6702 6703
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6704
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6705 6706 6707
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6708
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6709 6710 6711
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6712 6713 6714
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6715 6716 6717 6718 6719 6720
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6721
 *
6722
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6723 6724
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6725
 *
P
Paul Jackson 已提交
6726 6727
 * Call with hotplug lock held
 */
6728
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6729
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6730
{
6731
	int i, j, n;
6732
	int new_topology;
P
Paul Jackson 已提交
6733

6734
	mutex_lock(&sched_domains_mutex);
6735

6736 6737 6738
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6739 6740 6741
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6742
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6743 6744 6745

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6746
		for (j = 0; j < n && !new_topology; j++) {
6747
			if (cpumask_equal(doms_cur[i], doms_new[j])
6748
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6749 6750 6751
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6752
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6753 6754 6755 6756
match1:
		;
	}

6757 6758
	if (doms_new == NULL) {
		ndoms_cur = 0;
6759
		doms_new = &fallback_doms;
6760
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6761
		WARN_ON_ONCE(dattr_new);
6762 6763
	}

P
Paul Jackson 已提交
6764 6765
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6766
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6767
			if (cpumask_equal(doms_new[i], doms_cur[j])
6768
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6769 6770 6771
				goto match2;
		}
		/* no match - add a new doms_new */
6772
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6773 6774 6775 6776 6777
match2:
		;
	}

	/* Remember the new sched domains */
6778 6779
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6780
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6781
	doms_cur = doms_new;
6782
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6783
	ndoms_cur = ndoms_new;
6784 6785

	register_sched_domain_sysctl();
6786

6787
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6788 6789
}

6790 6791
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6792
/*
6793 6794 6795
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6796 6797 6798
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6799
 */
6800 6801
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6802
{
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6825
	case CPU_ONLINE:
6826
	case CPU_DOWN_FAILED:
6827
		cpuset_update_active_cpus(true);
6828
		break;
6829 6830 6831
	default:
		return NOTIFY_DONE;
	}
6832
	return NOTIFY_OK;
6833
}
6834

6835 6836
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6837
{
6838
	switch (action) {
6839
	case CPU_DOWN_PREPARE:
6840
		cpuset_update_active_cpus(false);
6841 6842 6843 6844 6845
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6846 6847 6848
	default:
		return NOTIFY_DONE;
	}
6849
	return NOTIFY_OK;
6850 6851
}

L
Linus Torvalds 已提交
6852 6853
void __init sched_init_smp(void)
{
6854 6855 6856
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6857
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6858

6859 6860
	sched_init_numa();

6861
	get_online_cpus();
6862
	mutex_lock(&sched_domains_mutex);
6863
	init_sched_domains(cpu_active_mask);
6864 6865 6866
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6867
	mutex_unlock(&sched_domains_mutex);
6868
	put_online_cpus();
6869

6870
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6871 6872
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6873 6874 6875 6876

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6877
	init_hrtick();
6878 6879

	/* Move init over to a non-isolated CPU */
6880
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6881
		BUG();
I
Ingo Molnar 已提交
6882
	sched_init_granularity();
6883
	free_cpumask_var(non_isolated_cpus);
6884

6885
	init_sched_rt_class();
L
Linus Torvalds 已提交
6886 6887 6888 6889
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6890
	sched_init_granularity();
L
Linus Torvalds 已提交
6891 6892 6893
}
#endif /* CONFIG_SMP */

6894 6895
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6896 6897 6898 6899 6900 6901 6902
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6903
#ifdef CONFIG_CGROUP_SCHED
6904 6905 6906 6907
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6908
struct task_group root_task_group;
6909
LIST_HEAD(task_groups);
6910
#endif
P
Peter Zijlstra 已提交
6911

6912
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6913

L
Linus Torvalds 已提交
6914 6915
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6916
	int i, j;
6917 6918 6919 6920 6921 6922 6923
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6924
#endif
6925
#ifdef CONFIG_CPUMASK_OFFSTACK
6926
	alloc_size += num_possible_cpus() * cpumask_size();
6927 6928
#endif
	if (alloc_size) {
6929
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6930 6931

#ifdef CONFIG_FAIR_GROUP_SCHED
6932
		root_task_group.se = (struct sched_entity **)ptr;
6933 6934
		ptr += nr_cpu_ids * sizeof(void **);

6935
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6936
		ptr += nr_cpu_ids * sizeof(void **);
6937

6938
#endif /* CONFIG_FAIR_GROUP_SCHED */
6939
#ifdef CONFIG_RT_GROUP_SCHED
6940
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6941 6942
		ptr += nr_cpu_ids * sizeof(void **);

6943
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6944 6945
		ptr += nr_cpu_ids * sizeof(void **);

6946
#endif /* CONFIG_RT_GROUP_SCHED */
6947 6948 6949 6950 6951 6952
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6953
	}
I
Ingo Molnar 已提交
6954

G
Gregory Haskins 已提交
6955 6956 6957 6958
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6959 6960 6961 6962
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6963
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6964
			global_rt_period(), global_rt_runtime());
6965
#endif /* CONFIG_RT_GROUP_SCHED */
6966

D
Dhaval Giani 已提交
6967
#ifdef CONFIG_CGROUP_SCHED
6968 6969
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6970
	INIT_LIST_HEAD(&root_task_group.siblings);
6971
	autogroup_init(&init_task);
6972

D
Dhaval Giani 已提交
6973
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6974

6975 6976 6977 6978 6979 6980
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6981
	for_each_possible_cpu(i) {
6982
		struct rq *rq;
L
Linus Torvalds 已提交
6983 6984

		rq = cpu_rq(i);
6985
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6986
		rq->nr_running = 0;
6987 6988
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6989
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6990
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6991
#ifdef CONFIG_FAIR_GROUP_SCHED
6992
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6993
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6994
		/*
6995
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6996 6997 6998 6999
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7000
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7001 7002 7003
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7004
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7005 7006 7007
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7008
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7009
		 *
7010 7011
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7012
		 */
7013
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7014
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7015 7016 7017
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7018
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7019
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7020
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7021
#endif
L
Linus Torvalds 已提交
7022

I
Ingo Molnar 已提交
7023 7024
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7025 7026 7027

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7028
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7029
		rq->sd = NULL;
G
Gregory Haskins 已提交
7030
		rq->rd = NULL;
7031
		rq->cpu_power = SCHED_POWER_SCALE;
7032
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7033
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7034
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7035
		rq->push_cpu = 0;
7036
		rq->cpu = i;
7037
		rq->online = 0;
7038 7039
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7040 7041 7042

		INIT_LIST_HEAD(&rq->cfs_tasks);

7043
		rq_attach_root(rq, &def_root_domain);
7044
#ifdef CONFIG_NO_HZ_COMMON
7045
		rq->nohz_flags = 0;
7046
#endif
L
Linus Torvalds 已提交
7047
#endif
P
Peter Zijlstra 已提交
7048
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7049 7050 7051
		atomic_set(&rq->nr_iowait, 0);
	}

7052
	set_load_weight(&init_task);
7053

7054 7055 7056 7057
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7058
#ifdef CONFIG_RT_MUTEXES
7059
	plist_head_init(&init_task.pi_waiters);
7060 7061
#endif

L
Linus Torvalds 已提交
7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7075 7076 7077

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7078 7079 7080 7081
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7082

7083
#ifdef CONFIG_SMP
7084
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7085 7086 7087
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7088
	idle_thread_set_boot_cpu();
7089 7090
#endif
	init_sched_fair_class();
7091

7092
	scheduler_running = 1;
L
Linus Torvalds 已提交
7093 7094
}

7095
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7096 7097
static inline int preempt_count_equals(int preempt_offset)
{
7098
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7099

A
Arnd Bergmann 已提交
7100
	return (nested == preempt_offset);
7101 7102
}

7103
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7104 7105 7106
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7107
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7108 7109
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7110 7111 7112 7113 7114
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7115 7116 7117 7118 7119 7120 7121
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7122 7123 7124 7125 7126

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7127 7128 7129 7130 7131
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7132 7133
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7134 7135
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7136
	int on_rq;
7137

P
Peter Zijlstra 已提交
7138
	on_rq = p->on_rq;
7139
	if (on_rq)
7140
		dequeue_task(rq, p, 0);
7141 7142
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7143
		enqueue_task(rq, p, 0);
7144 7145
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7146 7147

	check_class_changed(rq, p, prev_class, old_prio);
7148 7149
}

L
Linus Torvalds 已提交
7150 7151
void normalize_rt_tasks(void)
{
7152
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7153
	unsigned long flags;
7154
	struct rq *rq;
L
Linus Torvalds 已提交
7155

7156
	read_lock_irqsave(&tasklist_lock, flags);
7157
	do_each_thread(g, p) {
7158 7159 7160 7161 7162 7163
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7164 7165
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7166 7167 7168
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7169
#endif
I
Ingo Molnar 已提交
7170 7171 7172 7173 7174 7175 7176 7177

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7178
			continue;
I
Ingo Molnar 已提交
7179
		}
L
Linus Torvalds 已提交
7180

7181
		raw_spin_lock(&p->pi_lock);
7182
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7183

7184
		normalize_task(rq, p);
7185

7186
		__task_rq_unlock(rq);
7187
		raw_spin_unlock(&p->pi_lock);
7188 7189
	} while_each_thread(g, p);

7190
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7191 7192 7193
}

#endif /* CONFIG_MAGIC_SYSRQ */
7194

7195
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7196
/*
7197
 * These functions are only useful for the IA64 MCA handling, or kdb.
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7212
struct task_struct *curr_task(int cpu)
7213 7214 7215 7216
{
	return cpu_curr(cpu);
}

7217 7218 7219
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7220 7221 7222 7223 7224 7225
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7226 7227
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7228 7229 7230 7231 7232 7233 7234
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7235
void set_curr_task(int cpu, struct task_struct *p)
7236 7237 7238 7239 7240
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7241

D
Dhaval Giani 已提交
7242
#ifdef CONFIG_CGROUP_SCHED
7243 7244 7245
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7246 7247 7248 7249
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7250
	autogroup_free(tg);
7251 7252 7253 7254
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7255
struct task_group *sched_create_group(struct task_group *parent)
7256 7257 7258 7259 7260 7261 7262
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7263
	if (!alloc_fair_sched_group(tg, parent))
7264 7265
		goto err;

7266
	if (!alloc_rt_sched_group(tg, parent))
7267 7268
		goto err;

7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7280
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7281
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7282 7283 7284 7285 7286

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7287
	list_add_rcu(&tg->siblings, &parent->children);
7288
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7289 7290
}

7291
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7292
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7293 7294
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7295
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7296 7297
}

7298
/* Destroy runqueue etc associated with a task group */
7299
void sched_destroy_group(struct task_group *tg)
7300 7301 7302 7303 7304 7305
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7306
{
7307
	unsigned long flags;
7308
	int i;
S
Srivatsa Vaddagiri 已提交
7309

7310 7311
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7312
		unregister_fair_sched_group(tg, i);
7313 7314

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7315
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7316
	list_del_rcu(&tg->siblings);
7317
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7318 7319
}

7320
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7321 7322 7323
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7324 7325
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7326
{
P
Peter Zijlstra 已提交
7327
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7328 7329 7330 7331 7332 7333
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7334
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7335
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7336

7337
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7338
		dequeue_task(rq, tsk, 0);
7339 7340
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7341

P
Peter Zijlstra 已提交
7342 7343 7344 7345 7346 7347
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7348
#ifdef CONFIG_FAIR_GROUP_SCHED
7349 7350 7351
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7352
#endif
7353
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7354

7355 7356 7357
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7358
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7359

7360
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7361
}
D
Dhaval Giani 已提交
7362
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7363

7364
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7365 7366 7367
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7368
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7369

P
Peter Zijlstra 已提交
7370
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7371
}
7372 7373 7374 7375 7376 7377 7378
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7379

P
Peter Zijlstra 已提交
7380 7381
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7382
{
P
Peter Zijlstra 已提交
7383
	struct task_struct *g, *p;
7384

P
Peter Zijlstra 已提交
7385
	do_each_thread(g, p) {
7386
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7387 7388
			return 1;
	} while_each_thread(g, p);
7389

P
Peter Zijlstra 已提交
7390 7391
	return 0;
}
7392

P
Peter Zijlstra 已提交
7393 7394 7395 7396 7397
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7398

7399
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7400 7401 7402 7403 7404
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7405

P
Peter Zijlstra 已提交
7406 7407
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7408

P
Peter Zijlstra 已提交
7409 7410 7411
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7412 7413
	}

7414 7415 7416 7417 7418
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7419

7420 7421 7422
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7423 7424
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7425

P
Peter Zijlstra 已提交
7426
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7427

7428 7429 7430 7431 7432
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7433

7434 7435 7436
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7437 7438 7439
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7440

P
Peter Zijlstra 已提交
7441 7442 7443 7444
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7445

P
Peter Zijlstra 已提交
7446
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7447
	}
P
Peter Zijlstra 已提交
7448

P
Peter Zijlstra 已提交
7449 7450 7451 7452
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7453 7454
}

P
Peter Zijlstra 已提交
7455
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7456
{
7457 7458
	int ret;

P
Peter Zijlstra 已提交
7459 7460 7461 7462 7463 7464
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7465 7466 7467 7468 7469
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7470 7471
}

7472
static int tg_set_rt_bandwidth(struct task_group *tg,
7473
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7474
{
P
Peter Zijlstra 已提交
7475
	int i, err = 0;
P
Peter Zijlstra 已提交
7476 7477

	mutex_lock(&rt_constraints_mutex);
7478
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7479 7480
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7481
		goto unlock;
P
Peter Zijlstra 已提交
7482

7483
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7484 7485
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7486 7487 7488 7489

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7490
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7491
		rt_rq->rt_runtime = rt_runtime;
7492
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7493
	}
7494
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7495
unlock:
7496
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7497 7498 7499
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7500 7501
}

7502
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7503 7504 7505 7506 7507 7508 7509 7510
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7511
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7512 7513
}

7514
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7515 7516 7517
{
	u64 rt_runtime_us;

7518
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7519 7520
		return -1;

7521
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7522 7523 7524
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7525

7526
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7527 7528 7529 7530 7531 7532
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7533 7534 7535
	if (rt_period == 0)
		return -EINVAL;

7536
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7537 7538
}

7539
static long sched_group_rt_period(struct task_group *tg)
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7550
	u64 runtime, period;
7551 7552
	int ret = 0;

7553 7554 7555
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7556 7557 7558 7559 7560 7561 7562 7563
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7564

7565
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7566
	read_lock(&tasklist_lock);
7567
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7568
	read_unlock(&tasklist_lock);
7569 7570 7571 7572
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7573

7574
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7575 7576 7577 7578 7579 7580 7581 7582
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7583
#else /* !CONFIG_RT_GROUP_SCHED */
7584 7585
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7586 7587 7588
	unsigned long flags;
	int i;

7589 7590 7591
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7592 7593 7594 7595 7596 7597 7598
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7599
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7600 7601 7602
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7603
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7604
		rt_rq->rt_runtime = global_rt_runtime();
7605
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7606
	}
7607
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7608

7609 7610
	return 0;
}
7611
#endif /* CONFIG_RT_GROUP_SCHED */
7612

7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7632
int sched_rt_handler(struct ctl_table *table, int write,
7633
		void __user *buffer, size_t *lenp,
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7644
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7661

7662
#ifdef CONFIG_CGROUP_SCHED
7663 7664

/* return corresponding task_group object of a cgroup */
7665
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7666
{
7667 7668
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7669 7670
}

7671
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7672
{
7673
	struct task_group *tg, *parent;
7674

7675
	if (!cgrp->parent) {
7676
		/* This is early initialization for the top cgroup */
7677
		return &root_task_group.css;
7678 7679
	}

7680 7681
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7682 7683 7684 7685 7686 7687
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7701
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7702
{
7703
	struct task_group *tg = cgroup_tg(cgrp);
7704 7705 7706 7707

	sched_destroy_group(tg);
}

7708 7709 7710 7711 7712 7713 7714
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7715
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7716
				 struct cgroup_taskset *tset)
7717
{
7718 7719 7720
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7721
#ifdef CONFIG_RT_GROUP_SCHED
7722 7723
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7724
#else
7725 7726 7727
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7728
#endif
7729
	}
7730 7731
	return 0;
}
7732

7733
static void cpu_cgroup_attach(struct cgroup *cgrp,
7734
			      struct cgroup_taskset *tset)
7735
{
7736 7737 7738 7739
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7740 7741
}

7742
static void
7743 7744
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7757
#ifdef CONFIG_FAIR_GROUP_SCHED
7758
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7759
				u64 shareval)
7760
{
7761
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7762 7763
}

7764
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7765
{
7766
	struct task_group *tg = cgroup_tg(cgrp);
7767

7768
	return (u64) scale_load_down(tg->shares);
7769
}
7770 7771

#ifdef CONFIG_CFS_BANDWIDTH
7772 7773
static DEFINE_MUTEX(cfs_constraints_mutex);

7774 7775 7776
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7777 7778
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7779 7780
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7781
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7782
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7803 7804 7805 7806 7807
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7808
	runtime_enabled = quota != RUNTIME_INF;
7809 7810
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7811 7812 7813
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7814

P
Paul Turner 已提交
7815
	__refill_cfs_bandwidth_runtime(cfs_b);
7816 7817 7818 7819 7820 7821
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7822 7823 7824 7825
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7826
		struct rq *rq = cfs_rq->rq;
7827 7828

		raw_spin_lock_irq(&rq->lock);
7829
		cfs_rq->runtime_enabled = runtime_enabled;
7830
		cfs_rq->runtime_remaining = 0;
7831

7832
		if (cfs_rq->throttled)
7833
			unthrottle_cfs_rq(cfs_rq);
7834 7835
		raw_spin_unlock_irq(&rq->lock);
	}
7836 7837
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7838

7839
	return ret;
7840 7841 7842 7843 7844 7845
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7846
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7859
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7860 7861
		return -1;

7862
	quota_us = tg->cfs_bandwidth.quota;
7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7873
	quota = tg->cfs_bandwidth.quota;
7874 7875 7876 7877 7878 7879 7880 7881

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7882
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7942
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7943 7944 7945 7946 7947
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7948
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7969
	int ret;
7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7981 7982 7983 7984 7985
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7986
}
7987 7988 7989 7990 7991

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7992
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7993 7994 7995 7996 7997 7998 7999

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
8000
#endif /* CONFIG_CFS_BANDWIDTH */
8001
#endif /* CONFIG_FAIR_GROUP_SCHED */
8002

8003
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8004
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8005
				s64 val)
P
Peter Zijlstra 已提交
8006
{
8007
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8008 8009
}

8010
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8011
{
8012
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8013
}
8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8025
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8026

8027
static struct cftype cpu_files[] = {
8028
#ifdef CONFIG_FAIR_GROUP_SCHED
8029 8030
	{
		.name = "shares",
8031 8032
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8033
	},
8034
#endif
8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8046 8047 8048 8049
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8050
#endif
8051
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8052
	{
P
Peter Zijlstra 已提交
8053
		.name = "rt_runtime_us",
8054 8055
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8056
	},
8057 8058
	{
		.name = "rt_period_us",
8059 8060
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8061
	},
8062
#endif
8063
	{ }	/* terminate */
8064 8065 8066
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8067
	.name		= "cpu",
8068 8069
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8070 8071
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8072 8073
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8074
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8075
	.subsys_id	= cpu_cgroup_subsys_id,
8076
	.base_cftypes	= cpu_files,
8077 8078 8079
	.early_init	= 1,
};

8080
#endif	/* CONFIG_CGROUP_SCHED */
8081 8082 8083 8084 8085 8086 8087 8088 8089 8090

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8091 8092
struct cpuacct root_cpuacct;

8093
/* create a new cpu accounting group */
8094
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8095
{
8096
	struct cpuacct *ca;
8097

8098 8099 8100 8101
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8102
	if (!ca)
8103
		goto out;
8104 8105

	ca->cpuusage = alloc_percpu(u64);
8106 8107 8108
	if (!ca->cpuusage)
		goto out_free_ca;

8109 8110 8111
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8112

8113
	return &ca->css;
8114

8115
out_free_cpuusage:
8116 8117 8118 8119 8120
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8121 8122 8123
}

/* destroy an existing cpu accounting group */
8124
static void cpuacct_css_free(struct cgroup *cgrp)
8125
{
8126
	struct cpuacct *ca = cgroup_ca(cgrp);
8127

8128
	free_percpu(ca->cpustat);
8129 8130 8131 8132
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8133 8134
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8135
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8136 8137 8138 8139 8140 8141
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8142
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8143
	data = *cpuusage;
8144
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8145 8146 8147 8148 8149 8150 8151 8152 8153
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8154
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8155 8156 8157 8158 8159

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8160
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8161
	*cpuusage = val;
8162
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8163 8164 8165 8166 8167
#else
	*cpuusage = val;
#endif
}

8168
/* return total cpu usage (in nanoseconds) of a group */
8169
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8170
{
8171
	struct cpuacct *ca = cgroup_ca(cgrp);
8172 8173 8174
	u64 totalcpuusage = 0;
	int i;

8175 8176
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8177 8178 8179 8180

	return totalcpuusage;
}

8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8193 8194
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8195 8196 8197 8198 8199

out:
	return err;
}

8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8215 8216 8217 8218 8219 8220
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8221
			      struct cgroup_map_cb *cb)
8222 8223
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8224 8225
	int cpu;
	s64 val = 0;
8226

8227 8228 8229 8230
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8231
	}
8232 8233
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8234

8235 8236 8237 8238 8239 8240
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8241
	}
8242 8243 8244 8245

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8246 8247 8248
	return 0;
}

8249 8250 8251
static struct cftype files[] = {
	{
		.name = "usage",
8252 8253
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8254
	},
8255 8256 8257 8258
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8259 8260 8261 8262
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8263
	{ }	/* terminate */
8264 8265 8266 8267 8268 8269 8270
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8271
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8272 8273
{
	struct cpuacct *ca;
8274
	int cpu;
8275

L
Li Zefan 已提交
8276
	if (unlikely(!cpuacct_subsys.active))
8277 8278
		return;

8279
	cpu = task_cpu(tsk);
8280 8281 8282

	rcu_read_lock();

8283 8284
	ca = task_ca(tsk);

8285
	for (; ca; ca = parent_ca(ca)) {
8286
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8287 8288
		*cpuusage += cputime;
	}
8289 8290

	rcu_read_unlock();
8291 8292 8293 8294
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8295 8296
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8297
	.subsys_id = cpuacct_subsys_id,
8298
	.base_cftypes = files,
8299 8300
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8301 8302 8303 8304 8305 8306

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}