core.c 192.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743
static void update_rq_clock_task(struct rq *rq, s64 delta)
744
{
745 746 747 748 749 750 751 752
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
775 776
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777
	if (static_key_false((&paravirt_steal_rq_enabled))) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

795 796
	rq->clock_task += delta;

797 798 799 800
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

833
/*
I
Ingo Molnar 已提交
834
 * __normal_prio - return the priority that is based on the static prio
835 836 837
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
838
	return p->static_prio;
839 840
}

841 842 843 844 845 846 847
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
848
static inline int normal_prio(struct task_struct *p)
849 850 851
{
	int prio;

852
	if (task_has_rt_policy(p))
853 854 855 856 857 858 859 860 861 862 863 864 865
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
866
static int effective_prio(struct task_struct *p)
867 868 869 870 871 872 873 874 875 876 877 878
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
879 880 881 882
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
883
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
884 885 886 887
{
	return cpu_curr(task_cpu(p)) == p;
}

888 889
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
890
				       int oldprio)
891 892 893
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
894 895 896 897
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
921
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 923 924
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
926
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
927
{
928 929 930 931 932
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
933 934
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935 936

#ifdef CONFIG_LOCKDEP
937 938 939 940 941
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
942
	 * see task_group().
943 944 945 946
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
947 948 949
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
950 951
#endif

952
	trace_sched_migrate_task(p, new_cpu);
953

954 955
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
956
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957
	}
I
Ingo Molnar 已提交
958 959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
960 961
}

962
struct migration_arg {
963
	struct task_struct *task;
L
Linus Torvalds 已提交
964
	int dest_cpu;
965
};
L
Linus Torvalds 已提交
966

967 968
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
969 970 971
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
972 973 974 975 976 977 978
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
979 980 981 982 983 984
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
985
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
986 987
{
	unsigned long flags;
I
Ingo Molnar 已提交
988
	int running, on_rq;
R
Roland McGrath 已提交
989
	unsigned long ncsw;
990
	struct rq *rq;
L
Linus Torvalds 已提交
991

992 993 994 995 996 997 998 999
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1012 1013 1014
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1015
			cpu_relax();
R
Roland McGrath 已提交
1016
		}
1017

1018 1019 1020 1021 1022 1023
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1024
		trace_sched_wait_task(p);
1025
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1026
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1027
		ncsw = 0;
1028
		if (!match_state || p->state == match_state)
1029
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030
		task_rq_unlock(rq, p, &flags);
1031

R
Roland McGrath 已提交
1032 1033 1034 1035 1036 1037
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1048

1049 1050 1051 1052 1053
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1054
		 * So if it was still runnable (but just not actively
1055 1056 1057 1058
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1059 1060 1061 1062
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 1064
			continue;
		}
1065

1066 1067 1068 1069 1070 1071 1072
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1073 1074

	return ncsw;
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1084
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1085 1086 1087 1088 1089
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1090
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1100
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1101
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1102

1103
#ifdef CONFIG_SMP
1104
/*
1105
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106
 */
1107 1108 1109
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 1111
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1112 1113

	/* Look for allowed, online CPU in same node. */
1114
	for_each_cpu(dest_cpu, nodemask) {
1115 1116 1117 1118
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1119
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120
			return dest_cpu;
1121
	}
1122

1123 1124
	for (;;) {
		/* Any allowed, online CPU? */
1125
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 1127 1128 1129 1130 1131
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1162 1163 1164 1165 1166
	}

	return dest_cpu;
}

1167
/*
1168
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169
 */
1170
static inline
1171
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172
{
1173
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1185
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1186
		     !cpu_online(cpu)))
1187
		cpu = select_fallback_rq(task_cpu(p), p);
1188 1189

	return cpu;
1190
}
1191 1192 1193 1194 1195 1196

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1197 1198
#endif

P
Peter Zijlstra 已提交
1199
static void
1200
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1201
{
P
Peter Zijlstra 已提交
1202
#ifdef CONFIG_SCHEDSTATS
1203 1204
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215
		rcu_read_lock();
P
Peter Zijlstra 已提交
1216 1217 1218 1219 1220 1221
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1222
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1223
	}
1224 1225 1226 1227

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1228 1229 1230
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1231
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1232 1233

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1234
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1241
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1242
	p->on_rq = 1;
1243 1244 1245 1246

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1247 1248
}

1249 1250 1251
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1252
static void
1253
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1254
{
1255
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1256 1257 1258 1259 1260 1261 1262
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1263
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1309
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1310
static void sched_ttwu_pending(void)
1311 1312
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1313 1314
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1315 1316 1317

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1318 1319 1320
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1321 1322 1323 1324 1325 1326 1327 1328
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1329
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1346
	sched_ttwu_pending();
1347 1348 1349 1350

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1351 1352
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1353
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354
	}
1355
	irq_exit();
1356 1357 1358 1359
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1360
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 1362
		smp_send_reschedule(cpu);
}
1363

1364
bool cpus_share_cache(int this_cpu, int that_cpu)
1365 1366 1367
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1368
#endif /* CONFIG_SMP */
1369

1370 1371 1372 1373
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1374
#if defined(CONFIG_SMP)
1375
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377 1378 1379 1380 1381
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1382 1383 1384
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1385 1386 1387
}

/**
L
Linus Torvalds 已提交
1388
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1389
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1390
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1391
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396 1397 1398
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1399 1400
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1401
 */
1402 1403
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1404 1405
{
	unsigned long flags;
1406
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1407

1408
	smp_wmb();
1409
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1410
	if (!(p->state & state))
L
Linus Torvalds 已提交
1411 1412
		goto out;

1413
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1414 1415
	cpu = task_cpu(p);

1416 1417
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1418 1419

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1420
	/*
1421 1422
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1423
	 */
1424
	while (p->on_cpu)
1425
		cpu_relax();
1426
	/*
1427
	 * Pairs with the smp_wmb() in finish_lock_switch().
1428
	 */
1429
	smp_rmb();
L
Linus Torvalds 已提交
1430

1431
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1432
	p->state = TASK_WAKING;
1433

1434
	if (p->sched_class->task_waking)
1435
		p->sched_class->task_waking(p);
1436

1437
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438 1439
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1440
		set_task_cpu(p, cpu);
1441
	}
L
Linus Torvalds 已提交
1442 1443
#endif /* CONFIG_SMP */

1444 1445
	ttwu_queue(p, cpu);
stat:
1446
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1447
out:
1448
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1449 1450 1451 1452

	return success;
}

T
Tejun Heo 已提交
1453 1454 1455 1456
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1457
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1458
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459
 * the current task.
T
Tejun Heo 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1469 1470 1471 1472 1473 1474
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1475
	if (!(p->state & TASK_NORMAL))
1476
		goto out;
T
Tejun Heo 已提交
1477

P
Peter Zijlstra 已提交
1478
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1479 1480
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1481
	ttwu_do_wakeup(rq, p, 0);
1482
	ttwu_stat(p, smp_processor_id(), 0);
1483 1484
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1498
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1499
{
1500
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1501 1502 1503
}
EXPORT_SYMBOL(wake_up_process);

1504
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1512 1513 1514 1515 1516
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1517 1518 1519
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1520 1521
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1522
	p->se.prev_sum_exec_runtime	= 0;
1523
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1524
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1525
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1526 1527

#ifdef CONFIG_SCHEDSTATS
1528
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1529
#endif
N
Nick Piggin 已提交
1530

P
Peter Zijlstra 已提交
1531
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1532

1533 1534 1535
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1536 1537 1538 1539 1540
}

/*
 * fork()/clone()-time setup:
 */
1541
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1542
{
1543
	unsigned long flags;
I
Ingo Molnar 已提交
1544 1545 1546
	int cpu = get_cpu();

	__sched_fork(p);
1547
	/*
1548
	 * We mark the process as running here. This guarantees that
1549 1550 1551
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1552
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1553

1554 1555 1556 1557 1558
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1559 1560 1561 1562
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1563
		if (task_has_rt_policy(p)) {
1564
			p->policy = SCHED_NORMAL;
1565
			p->static_prio = NICE_TO_PRIO(0);
1566 1567 1568 1569 1570 1571
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1572

1573 1574 1575 1576 1577 1578
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1579

H
Hiroshi Shimamoto 已提交
1580 1581
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1582

P
Peter Zijlstra 已提交
1583 1584 1585
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1586 1587 1588 1589 1590 1591 1592
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1593
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1594
	set_task_cpu(p, cpu);
1595
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1596

1597
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1598
	if (likely(sched_info_on()))
1599
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1600
#endif
P
Peter Zijlstra 已提交
1601 1602
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1603
#endif
1604
#ifdef CONFIG_PREEMPT_COUNT
1605
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1606
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1607
#endif
1608
#ifdef CONFIG_SMP
1609
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1610
#endif
1611

N
Nick Piggin 已提交
1612
	put_cpu();
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1622
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1623 1624
{
	unsigned long flags;
I
Ingo Molnar 已提交
1625
	struct rq *rq;
1626

1627
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1628 1629 1630 1631 1632 1633
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1634
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1635 1636
#endif

1637
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1638
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1639
	p->on_rq = 1;
1640
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1641
	check_preempt_curr(rq, p, WF_FORK);
1642
#ifdef CONFIG_SMP
1643 1644
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1645
#endif
1646
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1647 1648
}

1649 1650 1651
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1652
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1653
 * @notifier: notifier struct to register
1654 1655 1656 1657 1658 1659 1660 1661 1662
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1663
 * @notifier: notifier struct to unregister
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1693
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1705
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1706

1707 1708 1709
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1710
 * @prev: the current task that is being switched out
1711 1712 1713 1714 1715 1716 1717 1718 1719
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1720 1721 1722
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1723
{
1724
	trace_sched_switch(prev, next);
1725 1726
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1727
	fire_sched_out_preempt_notifiers(prev, next);
1728 1729 1730 1731
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1732 1733
/**
 * finish_task_switch - clean up after a task-switch
1734
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1735 1736
 * @prev: the thread we just switched away from.
 *
1737 1738 1739 1740
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1741 1742
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1743
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1744 1745 1746
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1747
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1748 1749 1750
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1751
	long prev_state;
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1757
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1758 1759
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1760
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1761 1762 1763 1764 1765
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1766
	prev_state = prev->state;
1767
	account_switch_vtime(prev);
1768
	finish_arch_switch(prev);
1769
	perf_event_task_sched_in(prev, current);
1770
	finish_lock_switch(rq, prev);
1771
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1772

1773
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1774 1775
	if (mm)
		mmdrop(mm);
1776
	if (unlikely(prev_state == TASK_DEAD)) {
1777 1778 1779
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1780
		 */
1781
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1782
		put_task_struct(prev);
1783
	}
L
Linus Torvalds 已提交
1784 1785
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1801
		raw_spin_lock_irqsave(&rq->lock, flags);
1802 1803
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1804
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1805 1806 1807 1808 1809 1810

		rq->post_schedule = 0;
	}
}

#else
1811

1812 1813 1814 1815 1816 1817
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1818 1819
}

1820 1821
#endif

L
Linus Torvalds 已提交
1822 1823 1824 1825
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1826
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1827 1828
	__releases(rq->lock)
{
1829 1830
	struct rq *rq = this_rq();

1831
	finish_task_switch(rq, prev);
1832

1833 1834 1835 1836 1837
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1838

1839 1840 1841 1842
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1843
	if (current->set_child_tid)
1844
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1851
static inline void
1852
context_switch(struct rq *rq, struct task_struct *prev,
1853
	       struct task_struct *next)
L
Linus Torvalds 已提交
1854
{
I
Ingo Molnar 已提交
1855
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1856

1857
	prepare_task_switch(rq, prev, next);
1858

I
Ingo Molnar 已提交
1859 1860
	mm = next->mm;
	oldmm = prev->active_mm;
1861 1862 1863 1864 1865
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1866
	arch_start_context_switch(prev);
1867

1868
	if (!mm) {
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873 1874
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1875
	if (!prev->mm) {
L
Linus Torvalds 已提交
1876 1877 1878
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1879 1880 1881 1882 1883 1884 1885
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1886
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1887
#endif
L
Linus Torvalds 已提交
1888 1889 1890 1891

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1892 1893 1894 1895 1896 1897 1898
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1916
}
L
Linus Torvalds 已提交
1917 1918

unsigned long nr_uninterruptible(void)
1919
{
L
Linus Torvalds 已提交
1920
	unsigned long i, sum = 0;
1921

1922
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1923
		sum += cpu_rq(i)->nr_uninterruptible;
1924 1925

	/*
L
Linus Torvalds 已提交
1926 1927
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1928
	 */
L
Linus Torvalds 已提交
1929 1930
	if (unlikely((long)sum < 0))
		sum = 0;
1931

L
Linus Torvalds 已提交
1932
	return sum;
1933 1934
}

L
Linus Torvalds 已提交
1935
unsigned long long nr_context_switches(void)
1936
{
1937 1938
	int i;
	unsigned long long sum = 0;
1939

1940
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1941
		sum += cpu_rq(i)->nr_switches;
1942

L
Linus Torvalds 已提交
1943 1944
	return sum;
}
1945

L
Linus Torvalds 已提交
1946 1947 1948
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1949

1950
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1951
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1952

L
Linus Torvalds 已提交
1953 1954
	return sum;
}
1955

1956
unsigned long nr_iowait_cpu(int cpu)
1957
{
1958
	struct rq *this = cpu_rq(cpu);
1959 1960
	return atomic_read(&this->nr_iowait);
}
1961

1962 1963 1964 1965 1966
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
1967

1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2016 2017 2018 2019
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2052 2053 2054
/*
 * a1 = a0 * e + a * (1 - e)
 */
2055 2056 2057 2058 2059 2060 2061 2062 2063
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2064 2065
#ifdef CONFIG_NO_HZ
/*
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2104 2105 2106
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2107 2108
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2109

2110
static inline int calc_load_write_idx(void)
2111
{
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2138 2139
	long delta;

2140 2141 2142 2143
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2144
	delta = calc_load_fold_active(this_rq);
2145 2146 2147 2148
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2149 2150
}

2151
void calc_load_exit_idle(void)
2152
{
2153 2154 2155 2156 2157 2158 2159
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2160 2161

	/*
2162 2163 2164
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2165
	 */
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2178 2179 2180

	return delta;
}
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2259
static void calc_global_nohz(void)
2260 2261 2262
{
	long delta, active, n;

2263 2264 2265 2266 2267 2268
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2269

2270 2271
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2272

2273 2274 2275
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2276

2277 2278
		calc_load_update += n * LOAD_FREQ;
	}
2279

2280 2281 2282 2283 2284 2285 2286 2287 2288
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2289
}
2290
#else /* !CONFIG_NO_HZ */
2291

2292 2293
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2294

2295
#endif /* CONFIG_NO_HZ */
2296 2297

/*
2298 2299
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2300
 */
2301
void calc_global_load(unsigned long ticks)
2302
{
2303
	long active, delta;
L
Linus Torvalds 已提交
2304

2305
	if (time_before(jiffies, calc_load_update + 10))
2306
		return;
L
Linus Torvalds 已提交
2307

2308 2309 2310 2311 2312 2313 2314
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2315 2316
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2317

2318 2319 2320
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2321

2322
	calc_load_update += LOAD_FREQ;
2323 2324

	/*
2325
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2326 2327
	 */
	calc_global_nohz();
2328
}
L
Linus Torvalds 已提交
2329

2330
/*
2331 2332
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2333 2334 2335
 */
static void calc_load_account_active(struct rq *this_rq)
{
2336
	long delta;
2337

2338 2339
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2340

2341 2342
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2343
		atomic_long_add(delta, &calc_load_tasks);
2344 2345

	this_rq->calc_load_update += LOAD_FREQ;
2346 2347
}

2348 2349 2350 2351
/*
 * End of global load-average stuff
 */

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2419
/*
I
Ingo Molnar 已提交
2420
 * Update rq->cpu_load[] statistics. This function is usually called every
2421 2422
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2423
 */
2424 2425
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2426
{
I
Ingo Molnar 已提交
2427
	int i, scale;
2428

I
Ingo Molnar 已提交
2429
	this_rq->nr_load_updates++;
2430

I
Ingo Molnar 已提交
2431
	/* Update our load: */
2432 2433
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2434
		unsigned long old_load, new_load;
2435

I
Ingo Molnar 已提交
2436
		/* scale is effectively 1 << i now, and >> i divides by scale */
2437

I
Ingo Molnar 已提交
2438
		old_load = this_rq->cpu_load[i];
2439
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2440
		new_load = this_load;
I
Ingo Molnar 已提交
2441 2442 2443 2444 2445 2446
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2447 2448 2449
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2450
	}
2451 2452

	sched_avg_update(this_rq);
2453 2454
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2469 2470 2471 2472 2473 2474
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2475
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2476 2477 2478 2479
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2480
	 * bail if there's load or we're actually up-to-date.
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2517 2518 2519
/*
 * Called from scheduler_tick()
 */
2520 2521
static void update_cpu_load_active(struct rq *this_rq)
{
2522
	/*
2523
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2524 2525 2526
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2527

2528
	calc_load_account_active(this_rq);
2529 2530
}

I
Ingo Molnar 已提交
2531
#ifdef CONFIG_SMP
2532

2533
/*
P
Peter Zijlstra 已提交
2534 2535
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2536
 */
P
Peter Zijlstra 已提交
2537
void sched_exec(void)
2538
{
P
Peter Zijlstra 已提交
2539
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2540
	unsigned long flags;
2541
	int dest_cpu;
2542

2543
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2544
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2545 2546
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2547

2548
	if (likely(cpu_active(dest_cpu))) {
2549
		struct migration_arg arg = { p, dest_cpu };
2550

2551 2552
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2553 2554
		return;
	}
2555
unlock:
2556
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2557
}
I
Ingo Molnar 已提交
2558

L
Linus Torvalds 已提交
2559 2560 2561
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2562
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2563 2564

EXPORT_PER_CPU_SYMBOL(kstat);
2565
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2566 2567

/*
2568
 * Return any ns on the sched_clock that have not yet been accounted in
2569
 * @p in case that task is currently running.
2570 2571
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2572
 */
2573 2574 2575 2576 2577 2578
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2579
		ns = rq->clock_task - p->se.exec_start;
2580 2581 2582 2583 2584 2585 2586
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2587
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2588 2589
{
	unsigned long flags;
2590
	struct rq *rq;
2591
	u64 ns = 0;
2592

2593
	rq = task_rq_lock(p, &flags);
2594
	ns = do_task_delta_exec(p, rq);
2595
	task_rq_unlock(rq, p, &flags);
2596

2597 2598
	return ns;
}
2599

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2613
	task_rq_unlock(rq, p, &flags);
2614 2615 2616

	return ns;
}
2617

2618 2619 2620 2621 2622 2623 2624 2625
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2626
	struct task_struct *curr = rq->curr;
2627 2628

	sched_clock_tick();
I
Ingo Molnar 已提交
2629

2630
	raw_spin_lock(&rq->lock);
2631
	update_rq_clock(rq);
2632
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2633
	curr->sched_class->task_tick(rq, curr, 0);
2634
	raw_spin_unlock(&rq->lock);
2635

2636
	perf_event_task_tick();
2637

2638
#ifdef CONFIG_SMP
2639
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2640
	trigger_load_balance(rq, cpu);
2641
#endif
L
Linus Torvalds 已提交
2642 2643
}

2644
notrace unsigned long get_parent_ip(unsigned long addr)
2645 2646 2647 2648 2649 2650 2651 2652
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2653

2654 2655 2656
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2657
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2658
{
2659
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2660 2661 2662
	/*
	 * Underflow?
	 */
2663 2664
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2665
#endif
L
Linus Torvalds 已提交
2666
	preempt_count() += val;
2667
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2668 2669 2670
	/*
	 * Spinlock count overflowing soon?
	 */
2671 2672
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2673 2674 2675
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2676 2677 2678
}
EXPORT_SYMBOL(add_preempt_count);

2679
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2680
{
2681
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2682 2683 2684
	/*
	 * Underflow?
	 */
2685
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2686
		return;
L
Linus Torvalds 已提交
2687 2688 2689
	/*
	 * Is the spinlock portion underflowing?
	 */
2690 2691 2692
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2693
#endif
2694

2695 2696
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2704
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2705
 */
I
Ingo Molnar 已提交
2706
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2707
{
2708 2709 2710
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2711 2712
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2713

I
Ingo Molnar 已提交
2714
	debug_show_held_locks(prev);
2715
	print_modules();
I
Ingo Molnar 已提交
2716 2717
	if (irqs_disabled())
		print_irqtrace_events(prev);
2718
	dump_stack();
2719
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2720
}
L
Linus Torvalds 已提交
2721

I
Ingo Molnar 已提交
2722 2723 2724 2725 2726
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2727
	/*
I
Ingo Molnar 已提交
2728
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2729 2730 2731
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2732
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2733
		__schedule_bug(prev);
2734
	rcu_sleep_check();
I
Ingo Molnar 已提交
2735

L
Linus Torvalds 已提交
2736 2737
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2738
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2739 2740
}

P
Peter Zijlstra 已提交
2741
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2742
{
2743
	if (prev->on_rq || rq->skip_clock_update < 0)
2744
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2745
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2746 2747
}

I
Ingo Molnar 已提交
2748 2749 2750 2751
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2752
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2753
{
2754
	const struct sched_class *class;
I
Ingo Molnar 已提交
2755
	struct task_struct *p;
L
Linus Torvalds 已提交
2756 2757

	/*
I
Ingo Molnar 已提交
2758 2759
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2760
	 */
2761
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2762
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2763 2764
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2765 2766
	}

2767
	for_each_class(class) {
2768
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2769 2770 2771
		if (p)
			return p;
	}
2772 2773

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2774
}
L
Linus Torvalds 已提交
2775

I
Ingo Molnar 已提交
2776
/*
2777
 * __schedule() is the main scheduler function.
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2812
 */
2813
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2814 2815
{
	struct task_struct *prev, *next;
2816
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2817
	struct rq *rq;
2818
	int cpu;
I
Ingo Molnar 已提交
2819

2820 2821
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2822 2823
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2824
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2825 2826 2827
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2828

2829
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2830
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2831

2832
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2833

2834
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2835
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2836
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2837
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2838
		} else {
2839 2840 2841
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2842
			/*
2843 2844 2845
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2855
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2856 2857
	}

2858
	pre_schedule(rq, prev);
2859

I
Ingo Molnar 已提交
2860
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2861 2862
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2863
	put_prev_task(rq, prev);
2864
	next = pick_next_task(rq);
2865 2866
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2873
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2874
		/*
2875 2876 2877 2878
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2879 2880 2881
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2882
	} else
2883
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2884

2885
	post_schedule(rq);
L
Linus Torvalds 已提交
2886

2887
	sched_preempt_enable_no_resched();
2888
	if (need_resched())
L
Linus Torvalds 已提交
2889 2890
		goto need_resched;
}
2891

2892 2893
static inline void sched_submit_work(struct task_struct *tsk)
{
2894
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2895 2896 2897 2898 2899 2900 2901 2902 2903
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2904
asmlinkage void __sched schedule(void)
2905
{
2906 2907 2908
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2909 2910
	__schedule();
}
L
Linus Torvalds 已提交
2911 2912
EXPORT_SYMBOL(schedule);

2913 2914 2915 2916 2917 2918 2919
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2920
	sched_preempt_enable_no_resched();
2921 2922 2923 2924
	schedule();
	preempt_disable();
}

2925
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2926

2927 2928 2929
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2930
		return false;
2931 2932

	/*
2933 2934 2935 2936
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2937
	 */
2938
	barrier();
2939

2940
	return owner->on_cpu;
2941
}
2942

2943 2944 2945 2946 2947 2948 2949 2950
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2951

2952
	rcu_read_lock();
2953 2954
	while (owner_running(lock, owner)) {
		if (need_resched())
2955
			break;
2956

2957
		arch_mutex_cpu_relax();
2958
	}
2959
	rcu_read_unlock();
2960

2961
	/*
2962 2963 2964
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
2965
	 */
2966
	return lock->owner == NULL;
2967 2968 2969
}
#endif

L
Linus Torvalds 已提交
2970 2971
#ifdef CONFIG_PREEMPT
/*
2972
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2973
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2974 2975
 * occur there and call schedule directly.
 */
2976
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2977 2978
{
	struct thread_info *ti = current_thread_info();
2979

L
Linus Torvalds 已提交
2980 2981
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2982
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2983
	 */
N
Nick Piggin 已提交
2984
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
2985 2986
		return;

2987
	do {
2988
		add_preempt_count_notrace(PREEMPT_ACTIVE);
2989
		__schedule();
2990
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2991

2992 2993 2994 2995 2996
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2997
	} while (need_resched());
L
Linus Torvalds 已提交
2998 2999 3000 3001
}
EXPORT_SYMBOL(preempt_schedule);

/*
3002
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007 3008 3009
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3010

3011
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3012 3013
	BUG_ON(ti->preempt_count || !irqs_disabled());

3014 3015 3016
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3017
		__schedule();
3018 3019
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3020

3021 3022 3023 3024 3025
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3026
	} while (need_resched());
L
Linus Torvalds 已提交
3027 3028 3029 3030
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3031
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3032
			  void *key)
L
Linus Torvalds 已提交
3033
{
P
Peter Zijlstra 已提交
3034
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3035 3036 3037 3038
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3039 3040
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3041 3042 3043
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3044
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3045 3046
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3047
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3048
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3049
{
3050
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3051

3052
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3053 3054
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3055
		if (curr->func(curr, mode, wake_flags, key) &&
3056
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3066
 * @key: is directly passed to the wakeup function
3067 3068 3069
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3070
 */
3071
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3072
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3085
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3086
{
3087
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3088
}
3089
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3090

3091 3092 3093 3094
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3095
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3096

L
Linus Torvalds 已提交
3097
/**
3098
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3099 3100 3101
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3102
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108 3109
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3110 3111 3112
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3113
 */
3114 3115
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3116 3117
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3118
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3119 3120 3121 3122 3123

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3124
		wake_flags = 0;
L
Linus Torvalds 已提交
3125 3126

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3127
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3128 3129
	spin_unlock_irqrestore(&q->lock, flags);
}
3130 3131 3132 3133 3134 3135 3136 3137 3138
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3139 3140
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3141 3142 3143 3144 3145 3146 3147 3148
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3149 3150 3151
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3152
 */
3153
void complete(struct completion *x)
L
Linus Torvalds 已提交
3154 3155 3156 3157 3158
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3159
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3160 3161 3162 3163
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3164 3165 3166 3167 3168
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3169 3170 3171
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3172
 */
3173
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3174 3175 3176 3177 3178
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3179
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3180 3181 3182 3183
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3184 3185
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3186 3187 3188 3189
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3190
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3191
		do {
3192
			if (signal_pending_state(state, current)) {
3193 3194
				timeout = -ERESTARTSYS;
				break;
3195 3196
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3197 3198 3199
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3200
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3201
		__remove_wait_queue(&x->wait, &wait);
3202 3203
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3204 3205
	}
	x->done--;
3206
	return timeout ?: 1;
L
Linus Torvalds 已提交
3207 3208
}

3209 3210
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3211 3212 3213 3214
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3215
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3216
	spin_unlock_irq(&x->wait.lock);
3217 3218
	return timeout;
}
L
Linus Torvalds 已提交
3219

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3230
void __sched wait_for_completion(struct completion *x)
3231 3232
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3233
}
3234
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3235

3236 3237 3238 3239 3240 3241 3242 3243
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3244 3245 3246
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3247
 */
3248
unsigned long __sched
3249
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3250
{
3251
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3252
}
3253
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3254

3255 3256 3257 3258 3259 3260
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3261 3262
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3263
 */
3264
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3265
{
3266 3267 3268 3269
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3270
}
3271
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3272

3273 3274 3275 3276 3277 3278 3279
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3280 3281 3282
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3283
 */
3284
long __sched
3285 3286
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3287
{
3288
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3289
}
3290
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3291

3292 3293 3294 3295 3296 3297
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3298 3299
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3300
 */
M
Matthew Wilcox 已提交
3301 3302 3303 3304 3305 3306 3307 3308 3309
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3310 3311 3312 3313 3314 3315 3316 3317
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3318 3319 3320
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3321
 */
3322
long __sched
3323 3324 3325 3326 3327 3328 3329
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3344
	unsigned long flags;
3345 3346
	int ret = 1;

3347
	spin_lock_irqsave(&x->wait.lock, flags);
3348 3349 3350 3351
	if (!x->done)
		ret = 0;
	else
		x->done--;
3352
	spin_unlock_irqrestore(&x->wait.lock, flags);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3367
	unsigned long flags;
3368 3369
	int ret = 1;

3370
	spin_lock_irqsave(&x->wait.lock, flags);
3371 3372
	if (!x->done)
		ret = 0;
3373
	spin_unlock_irqrestore(&x->wait.lock, flags);
3374 3375 3376 3377
	return ret;
}
EXPORT_SYMBOL(completion_done);

3378 3379
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3380
{
I
Ingo Molnar 已提交
3381 3382 3383 3384
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3385

3386
	__set_current_state(state);
L
Linus Torvalds 已提交
3387

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3402 3403 3404
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3405
long __sched
I
Ingo Molnar 已提交
3406
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3407
{
3408
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3409 3410 3411
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3412
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3413
{
3414
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3415 3416 3417
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3418
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3419
{
3420
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3421 3422 3423
}
EXPORT_SYMBOL(sleep_on_timeout);

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3436
void rt_mutex_setprio(struct task_struct *p, int prio)
3437
{
3438
	int oldprio, on_rq, running;
3439
	struct rq *rq;
3440
	const struct sched_class *prev_class;
3441 3442 3443

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3444
	rq = __task_rq_lock(p);
3445

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3464
	trace_sched_pi_setprio(p, prio);
3465
	oldprio = p->prio;
3466
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3467
	on_rq = p->on_rq;
3468
	running = task_current(rq, p);
3469
	if (on_rq)
3470
		dequeue_task(rq, p, 0);
3471 3472
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3473 3474 3475 3476 3477 3478

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3479 3480
	p->prio = prio;

3481 3482
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3483
	if (on_rq)
3484
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3485

P
Peter Zijlstra 已提交
3486
	check_class_changed(rq, p, prev_class, oldprio);
3487
out_unlock:
3488
	__task_rq_unlock(rq);
3489 3490
}
#endif
3491
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3492
{
I
Ingo Molnar 已提交
3493
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3494
	unsigned long flags;
3495
	struct rq *rq;
L
Linus Torvalds 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3508
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3509
	 */
3510
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3511 3512 3513
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3514
	on_rq = p->on_rq;
3515
	if (on_rq)
3516
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3517 3518

	p->static_prio = NICE_TO_PRIO(nice);
3519
	set_load_weight(p);
3520 3521 3522
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3523

I
Ingo Molnar 已提交
3524
	if (on_rq) {
3525
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3526
		/*
3527 3528
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3529
		 */
3530
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3531 3532 3533
			resched_task(rq->curr);
	}
out_unlock:
3534
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3535 3536 3537
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3538 3539 3540 3541 3542
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3543
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3544
{
3545 3546
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3547

3548
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3549 3550 3551
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3552 3553 3554 3555 3556 3557 3558 3559 3560
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3561
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3562
{
3563
	long nice, retval;
L
Linus Torvalds 已提交
3564 3565 3566 3567 3568 3569

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3570 3571
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3572 3573 3574
	if (increment > 40)
		increment = 40;

3575
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3576 3577 3578 3579 3580
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3581 3582 3583
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3602
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3603 3604 3605 3606 3607 3608 3609 3610
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3611
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3612 3613 3614
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3615
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3616 3617 3618 3619 3620 3621 3622

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3643
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3644 3645 3646 3647 3648 3649 3650 3651
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3652
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3653
{
3654
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3655 3656 3657
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3658 3659
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3660 3661 3662
{
	p->policy = policy;
	p->rt_priority = prio;
3663 3664 3665
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3666 3667 3668 3669
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3670
	set_load_weight(p);
L
Linus Torvalds 已提交
3671 3672
}

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3683 3684
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3685 3686 3687 3688
	rcu_read_unlock();
	return match;
}

3689
static int __sched_setscheduler(struct task_struct *p, int policy,
3690
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3691
{
3692
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3693
	unsigned long flags;
3694
	const struct sched_class *prev_class;
3695
	struct rq *rq;
3696
	int reset_on_fork;
L
Linus Torvalds 已提交
3697

3698 3699
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3700 3701
recheck:
	/* double check policy once rq lock held */
3702 3703
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3704
		policy = oldpolicy = p->policy;
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3715 3716
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3717 3718
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3719 3720
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3721
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3722
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3723
		return -EINVAL;
3724
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3725 3726
		return -EINVAL;

3727 3728 3729
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3730
	if (user && !capable(CAP_SYS_NICE)) {
3731
		if (rt_policy(policy)) {
3732 3733
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3744

I
Ingo Molnar 已提交
3745
		/*
3746 3747
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3748
		 */
3749 3750 3751 3752
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3753

3754
		/* can't change other user's priorities */
3755
		if (!check_same_owner(p))
3756
			return -EPERM;
3757 3758 3759 3760

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3761
	}
L
Linus Torvalds 已提交
3762

3763
	if (user) {
3764
		retval = security_task_setscheduler(p);
3765 3766 3767 3768
		if (retval)
			return retval;
	}

3769 3770 3771
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3772
	 *
L
Lucas De Marchi 已提交
3773
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3774 3775
	 * runqueue lock must be held.
	 */
3776
	rq = task_rq_lock(p, &flags);
3777

3778 3779 3780 3781
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3782
		task_rq_unlock(rq, p, &flags);
3783 3784 3785
		return -EINVAL;
	}

3786 3787 3788 3789 3790
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3791
		task_rq_unlock(rq, p, &flags);
3792 3793 3794
		return 0;
	}

3795 3796 3797 3798 3799 3800 3801
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3802 3803
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3804
			task_rq_unlock(rq, p, &flags);
3805 3806 3807 3808 3809
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3810 3811 3812
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3813
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3814 3815
		goto recheck;
	}
P
Peter Zijlstra 已提交
3816
	on_rq = p->on_rq;
3817
	running = task_current(rq, p);
3818
	if (on_rq)
3819
		dequeue_task(rq, p, 0);
3820 3821
	if (running)
		p->sched_class->put_prev_task(rq, p);
3822

3823 3824
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3825
	oldprio = p->prio;
3826
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3827
	__setscheduler(rq, p, policy, param->sched_priority);
3828

3829 3830
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3831
	if (on_rq)
3832
		enqueue_task(rq, p, 0);
3833

P
Peter Zijlstra 已提交
3834
	check_class_changed(rq, p, prev_class, oldprio);
3835
	task_rq_unlock(rq, p, &flags);
3836

3837 3838
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3839 3840
	return 0;
}
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3851
		       const struct sched_param *param)
3852 3853 3854
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3855 3856
EXPORT_SYMBOL_GPL(sched_setscheduler);

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3869
			       const struct sched_param *param)
3870 3871 3872 3873
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3874 3875
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3876 3877 3878
{
	struct sched_param lparam;
	struct task_struct *p;
3879
	int retval;
L
Linus Torvalds 已提交
3880 3881 3882 3883 3884

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3885 3886 3887

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3888
	p = find_process_by_pid(pid);
3889 3890 3891
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3892

L
Linus Torvalds 已提交
3893 3894 3895 3896 3897 3898 3899 3900 3901
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3902 3903
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3904
{
3905 3906 3907 3908
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3909 3910 3911 3912 3913 3914 3915 3916
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3917
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3918 3919 3920 3921 3922 3923 3924 3925
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3926
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3927
{
3928
	struct task_struct *p;
3929
	int retval;
L
Linus Torvalds 已提交
3930 3931

	if (pid < 0)
3932
		return -EINVAL;
L
Linus Torvalds 已提交
3933 3934

	retval = -ESRCH;
3935
	rcu_read_lock();
L
Linus Torvalds 已提交
3936 3937 3938 3939
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3940 3941
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3942
	}
3943
	rcu_read_unlock();
L
Linus Torvalds 已提交
3944 3945 3946 3947
	return retval;
}

/**
3948
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3949 3950 3951
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3952
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3953 3954
{
	struct sched_param lp;
3955
	struct task_struct *p;
3956
	int retval;
L
Linus Torvalds 已提交
3957 3958

	if (!param || pid < 0)
3959
		return -EINVAL;
L
Linus Torvalds 已提交
3960

3961
	rcu_read_lock();
L
Linus Torvalds 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3972
	rcu_read_unlock();
L
Linus Torvalds 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3982
	rcu_read_unlock();
L
Linus Torvalds 已提交
3983 3984 3985
	return retval;
}

3986
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3987
{
3988
	cpumask_var_t cpus_allowed, new_mask;
3989 3990
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3991

3992
	get_online_cpus();
3993
	rcu_read_lock();
L
Linus Torvalds 已提交
3994 3995 3996

	p = find_process_by_pid(pid);
	if (!p) {
3997
		rcu_read_unlock();
3998
		put_online_cpus();
L
Linus Torvalds 已提交
3999 4000 4001
		return -ESRCH;
	}

4002
	/* Prevent p going away */
L
Linus Torvalds 已提交
4003
	get_task_struct(p);
4004
	rcu_read_unlock();
L
Linus Torvalds 已提交
4005

4006 4007 4008 4009 4010 4011 4012 4013
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4014
	retval = -EPERM;
4015
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4016 4017
		goto out_unlock;

4018
	retval = security_task_setscheduler(p);
4019 4020 4021
	if (retval)
		goto out_unlock;

4022 4023
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4024
again:
4025
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4026

P
Paul Menage 已提交
4027
	if (!retval) {
4028 4029
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4030 4031 4032 4033 4034
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4035
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4036 4037 4038
			goto again;
		}
	}
L
Linus Torvalds 已提交
4039
out_unlock:
4040 4041 4042 4043
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4044
	put_task_struct(p);
4045
	put_online_cpus();
L
Linus Torvalds 已提交
4046 4047 4048 4049
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4050
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4051
{
4052 4053 4054 4055 4056
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4057 4058 4059 4060 4061 4062 4063 4064 4065
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4066 4067
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4068
{
4069
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4070 4071
	int retval;

4072 4073
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4074

4075 4076 4077 4078 4079
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4080 4081
}

4082
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4083
{
4084
	struct task_struct *p;
4085
	unsigned long flags;
L
Linus Torvalds 已提交
4086 4087
	int retval;

4088
	get_online_cpus();
4089
	rcu_read_lock();
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4096 4097 4098 4099
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4100
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4101
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4102
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4103 4104

out_unlock:
4105
	rcu_read_unlock();
4106
	put_online_cpus();
L
Linus Torvalds 已提交
4107

4108
	return retval;
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113 4114 4115 4116
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4117 4118
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4119 4120
{
	int ret;
4121
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4122

A
Anton Blanchard 已提交
4123
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4124 4125
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4126 4127
		return -EINVAL;

4128 4129
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4130

4131 4132
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4133
		size_t retlen = min_t(size_t, len, cpumask_size());
4134 4135

		if (copy_to_user(user_mask_ptr, mask, retlen))
4136 4137
			ret = -EFAULT;
		else
4138
			ret = retlen;
4139 4140
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4141

4142
	return ret;
L
Linus Torvalds 已提交
4143 4144 4145 4146 4147
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4148 4149
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4150
 */
4151
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4152
{
4153
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4154

4155
	schedstat_inc(rq, yld_count);
4156
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161 4162

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4163
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4164
	do_raw_spin_unlock(&rq->lock);
4165
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4172 4173 4174 4175 4176
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4177
static void __cond_resched(void)
L
Linus Torvalds 已提交
4178
{
4179
	add_preempt_count(PREEMPT_ACTIVE);
4180
	__schedule();
4181
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4182 4183
}

4184
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4185
{
P
Peter Zijlstra 已提交
4186
	if (should_resched()) {
L
Linus Torvalds 已提交
4187 4188 4189 4190 4191
		__cond_resched();
		return 1;
	}
	return 0;
}
4192
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4193 4194

/*
4195
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4196 4197
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4198
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4199 4200 4201
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4202
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4203
{
P
Peter Zijlstra 已提交
4204
	int resched = should_resched();
J
Jan Kara 已提交
4205 4206
	int ret = 0;

4207 4208
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4209
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4210
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4211
		if (resched)
N
Nick Piggin 已提交
4212 4213 4214
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4215
		ret = 1;
L
Linus Torvalds 已提交
4216 4217
		spin_lock(lock);
	}
J
Jan Kara 已提交
4218
	return ret;
L
Linus Torvalds 已提交
4219
}
4220
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4221

4222
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4223 4224 4225
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4226
	if (should_resched()) {
4227
		local_bh_enable();
L
Linus Torvalds 已提交
4228 4229 4230 4231 4232 4233
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4234
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4235 4236 4237 4238

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262 4263 4264
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4265 4266 4267 4268
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4269 4270
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4305
	if (yielded) {
4306
		schedstat_inc(rq, yld_count);
4307 4308 4309 4310 4311 4312 4313
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4326
/*
I
Ingo Molnar 已提交
4327
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4328 4329 4330 4331
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4332
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4333

4334
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4335
	atomic_inc(&rq->nr_iowait);
4336
	blk_flush_plug(current);
4337
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4338
	schedule();
4339
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4340
	atomic_dec(&rq->nr_iowait);
4341
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4342 4343 4344 4345 4346
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4347
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4348 4349
	long ret;

4350
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4351
	atomic_inc(&rq->nr_iowait);
4352
	blk_flush_plug(current);
4353
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4354
	ret = schedule_timeout(timeout);
4355
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4356
	atomic_dec(&rq->nr_iowait);
4357
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4368
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4378
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4379
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4393
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4403
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4404
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4418
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4419
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4420
{
4421
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4422
	unsigned int time_slice;
4423 4424
	unsigned long flags;
	struct rq *rq;
4425
	int retval;
L
Linus Torvalds 已提交
4426 4427 4428
	struct timespec t;

	if (pid < 0)
4429
		return -EINVAL;
L
Linus Torvalds 已提交
4430 4431

	retval = -ESRCH;
4432
	rcu_read_lock();
L
Linus Torvalds 已提交
4433 4434 4435 4436 4437 4438 4439 4440
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4441 4442
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4443
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4444

4445
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4446
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4447 4448
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4449

L
Linus Torvalds 已提交
4450
out_unlock:
4451
	rcu_read_unlock();
L
Linus Torvalds 已提交
4452 4453 4454
	return retval;
}

4455
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4456

4457
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4458 4459
{
	unsigned long free = 0;
4460
	unsigned state;
L
Linus Torvalds 已提交
4461 4462

	state = p->state ? __ffs(p->state) + 1 : 0;
4463
	printk(KERN_INFO "%-15.15s %c", p->comm,
4464
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4465
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4466
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4467
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4468
	else
P
Peter Zijlstra 已提交
4469
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4470 4471
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4472
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4473
	else
P
Peter Zijlstra 已提交
4474
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4475 4476
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4477
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4478
#endif
P
Peter Zijlstra 已提交
4479
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4480
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4481
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4482

4483
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4484 4485
}

I
Ingo Molnar 已提交
4486
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4487
{
4488
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4489

4490
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4491 4492
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4493
#else
P
Peter Zijlstra 已提交
4494 4495
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4496
#endif
4497
	rcu_read_lock();
L
Linus Torvalds 已提交
4498 4499 4500
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4501
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4502 4503
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4504
		if (!state_filter || (p->state & state_filter))
4505
			sched_show_task(p);
L
Linus Torvalds 已提交
4506 4507
	} while_each_thread(g, p);

4508 4509
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4510 4511 4512
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4513
	rcu_read_unlock();
I
Ingo Molnar 已提交
4514 4515 4516
	/*
	 * Only show locks if all tasks are dumped:
	 */
4517
	if (!state_filter)
I
Ingo Molnar 已提交
4518
		debug_show_all_locks();
L
Linus Torvalds 已提交
4519 4520
}

I
Ingo Molnar 已提交
4521 4522
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4523
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4524 4525
}

4526 4527 4528 4529 4530 4531 4532 4533
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4534
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4535
{
4536
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4537 4538
	unsigned long flags;

4539
	raw_spin_lock_irqsave(&rq->lock, flags);
4540

I
Ingo Molnar 已提交
4541
	__sched_fork(idle);
4542
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4543 4544
	idle->se.exec_start = sched_clock();

4545
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4557
	__set_task_cpu(idle, cpu);
4558
	rcu_read_unlock();
L
Linus Torvalds 已提交
4559 4560

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4561 4562
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4563
#endif
4564
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4565 4566

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4567
	task_thread_info(idle)->preempt_count = 0;
4568

I
Ingo Molnar 已提交
4569 4570 4571 4572
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4573
	ftrace_graph_init_idle_task(idle, cpu);
4574 4575 4576
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4577 4578
}

L
Linus Torvalds 已提交
4579
#ifdef CONFIG_SMP
4580 4581 4582 4583
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4584 4585

	cpumask_copy(&p->cpus_allowed, new_mask);
4586
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4587 4588
}

L
Linus Torvalds 已提交
4589 4590 4591
/*
 * This is how migration works:
 *
4592 4593 4594 4595 4596 4597
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4598
 *    it and puts it into the right queue.
4599 4600
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4601 4602 4603 4604 4605 4606 4607 4608
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4609
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4610 4611
 * call is not atomic; no spinlocks may be held.
 */
4612
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4613 4614
{
	unsigned long flags;
4615
	struct rq *rq;
4616
	unsigned int dest_cpu;
4617
	int ret = 0;
L
Linus Torvalds 已提交
4618 4619

	rq = task_rq_lock(p, &flags);
4620

4621 4622 4623
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4624
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4625 4626 4627 4628
		ret = -EINVAL;
		goto out;
	}

4629
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4630 4631 4632 4633
		ret = -EINVAL;
		goto out;
	}

4634
	do_set_cpus_allowed(p, new_mask);
4635

L
Linus Torvalds 已提交
4636
	/* Can the task run on the task's current CPU? If so, we're done */
4637
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4638 4639
		goto out;

4640
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4641
	if (p->on_rq) {
4642
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4643
		/* Need help from migration thread: drop lock and wait. */
4644
		task_rq_unlock(rq, p, &flags);
4645
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4646 4647 4648 4649
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4650
	task_rq_unlock(rq, p, &flags);
4651

L
Linus Torvalds 已提交
4652 4653
	return ret;
}
4654
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4655 4656

/*
I
Ingo Molnar 已提交
4657
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662 4663
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4664 4665
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4666
 */
4667
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4668
{
4669
	struct rq *rq_dest, *rq_src;
4670
	int ret = 0;
L
Linus Torvalds 已提交
4671

4672
	if (unlikely(!cpu_active(dest_cpu)))
4673
		return ret;
L
Linus Torvalds 已提交
4674 4675 4676 4677

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4678
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4679 4680 4681
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4682
		goto done;
L
Linus Torvalds 已提交
4683
	/* Affinity changed (again). */
4684
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4685
		goto fail;
L
Linus Torvalds 已提交
4686

4687 4688 4689 4690
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4691
	if (p->on_rq) {
4692
		dequeue_task(rq_src, p, 0);
4693
		set_task_cpu(p, dest_cpu);
4694
		enqueue_task(rq_dest, p, 0);
4695
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4696
	}
L
Linus Torvalds 已提交
4697
done:
4698
	ret = 1;
L
Linus Torvalds 已提交
4699
fail:
L
Linus Torvalds 已提交
4700
	double_rq_unlock(rq_src, rq_dest);
4701
	raw_spin_unlock(&p->pi_lock);
4702
	return ret;
L
Linus Torvalds 已提交
4703 4704 4705
}

/*
4706 4707 4708
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4709
 */
4710
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4711
{
4712
	struct migration_arg *arg = data;
4713

4714 4715 4716 4717
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4718
	local_irq_disable();
4719
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4720
	local_irq_enable();
L
Linus Torvalds 已提交
4721
	return 0;
4722 4723
}

L
Linus Torvalds 已提交
4724
#ifdef CONFIG_HOTPLUG_CPU
4725

4726
/*
4727 4728
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4729
 */
4730
void idle_task_exit(void)
L
Linus Torvalds 已提交
4731
{
4732
	struct mm_struct *mm = current->active_mm;
4733

4734
	BUG_ON(cpu_online(smp_processor_id()));
4735

4736 4737 4738
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4739 4740 4741
}

/*
4742 4743 4744 4745 4746
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4747
 */
4748
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4749
{
4750 4751 4752
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4753 4754
}

4755
/*
4756 4757 4758 4759 4760 4761
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4762
 */
4763
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4764
{
4765
	struct rq *rq = cpu_rq(dead_cpu);
4766 4767
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4768 4769

	/*
4770 4771 4772 4773 4774 4775 4776
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4777
	 */
4778
	rq->stop = NULL;
4779

I
Ingo Molnar 已提交
4780
	for ( ; ; ) {
4781 4782 4783 4784 4785
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4786
			break;
4787

4788
		next = pick_next_task(rq);
4789
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4790
		next->sched_class->put_prev_task(rq, next);
4791

4792 4793 4794 4795 4796 4797 4798
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4799
	}
4800

4801
	rq->stop = stop;
4802
}
4803

L
Linus Torvalds 已提交
4804 4805
#endif /* CONFIG_HOTPLUG_CPU */

4806 4807 4808
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4809 4810
	{
		.procname	= "sched_domain",
4811
		.mode		= 0555,
4812
	},
4813
	{}
4814 4815 4816
};

static struct ctl_table sd_ctl_root[] = {
4817 4818
	{
		.procname	= "kernel",
4819
		.mode		= 0555,
4820 4821
		.child		= sd_ctl_dir,
	},
4822
	{}
4823 4824 4825 4826 4827
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4828
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4829 4830 4831 4832

	return entry;
}

4833 4834
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4835
	struct ctl_table *entry;
4836

4837 4838 4839
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4840
	 * will always be set. In the lowest directory the names are
4841 4842 4843
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4844 4845
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4846 4847 4848
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4849 4850 4851 4852 4853

	kfree(*tablep);
	*tablep = NULL;
}

4854 4855 4856
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4857
static void
4858
set_table_entry(struct ctl_table *entry,
4859
		const char *procname, void *data, int maxlen,
4860 4861
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4862 4863 4864 4865 4866 4867
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4868 4869 4870 4871 4872

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4873 4874 4875 4876 4877
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4878
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4879

4880 4881 4882
	if (table == NULL)
		return NULL;

4883
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4884
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4885
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4886
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4887
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4888
		sizeof(int), 0644, proc_dointvec_minmax, true);
4889
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4890
		sizeof(int), 0644, proc_dointvec_minmax, true);
4891
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4892
		sizeof(int), 0644, proc_dointvec_minmax, true);
4893
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4894
		sizeof(int), 0644, proc_dointvec_minmax, true);
4895
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4896
		sizeof(int), 0644, proc_dointvec_minmax, true);
4897
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4898
		sizeof(int), 0644, proc_dointvec_minmax, false);
4899
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4900
		sizeof(int), 0644, proc_dointvec_minmax, false);
4901
	set_table_entry(&table[9], "cache_nice_tries",
4902
		&sd->cache_nice_tries,
4903
		sizeof(int), 0644, proc_dointvec_minmax, false);
4904
	set_table_entry(&table[10], "flags", &sd->flags,
4905
		sizeof(int), 0644, proc_dointvec_minmax, false);
4906
	set_table_entry(&table[11], "name", sd->name,
4907
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4908
	/* &table[12] is terminator */
4909 4910 4911 4912

	return table;
}

4913
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4914 4915 4916 4917 4918 4919 4920 4921 4922
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4923 4924
	if (table == NULL)
		return NULL;
4925 4926 4927 4928 4929

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4930
		entry->mode = 0555;
4931 4932 4933 4934 4935 4936 4937 4938
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4939
static void register_sched_domain_sysctl(void)
4940
{
4941
	int i, cpu_num = num_possible_cpus();
4942 4943 4944
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4945 4946 4947
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4948 4949 4950
	if (entry == NULL)
		return;

4951
	for_each_possible_cpu(i) {
4952 4953
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4954
		entry->mode = 0555;
4955
		entry->child = sd_alloc_ctl_cpu_table(i);
4956
		entry++;
4957
	}
4958 4959

	WARN_ON(sd_sysctl_header);
4960 4961
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4962

4963
/* may be called multiple times per register */
4964 4965
static void unregister_sched_domain_sysctl(void)
{
4966 4967
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4968
	sd_sysctl_header = NULL;
4969 4970
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4971
}
4972
#else
4973 4974 4975 4976
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4977 4978 4979 4980
{
}
#endif

4981 4982 4983 4984 4985
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4986
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5006
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5007 5008 5009 5010
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5011 5012 5013 5014
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5015 5016
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5017
{
5018
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5019
	unsigned long flags;
5020
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5021

5022
	switch (action & ~CPU_TASKS_FROZEN) {
5023

L
Linus Torvalds 已提交
5024
	case CPU_UP_PREPARE:
5025
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5026
		break;
5027

L
Linus Torvalds 已提交
5028
	case CPU_ONLINE:
5029
		/* Update our root-domain */
5030
		raw_spin_lock_irqsave(&rq->lock, flags);
5031
		if (rq->rd) {
5032
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5033 5034

			set_rq_online(rq);
5035
		}
5036
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5037
		break;
5038

L
Linus Torvalds 已提交
5039
#ifdef CONFIG_HOTPLUG_CPU
5040
	case CPU_DYING:
5041
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5042
		/* Update our root-domain */
5043
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5044
		if (rq->rd) {
5045
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5046
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5047
		}
5048 5049
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5050
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5051
		break;
5052

5053
	case CPU_DEAD:
5054
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5055
		break;
L
Linus Torvalds 已提交
5056 5057
#endif
	}
5058 5059 5060

	update_max_interval();

L
Linus Torvalds 已提交
5061 5062 5063
	return NOTIFY_OK;
}

5064 5065 5066
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5067
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5068
 */
5069
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5070
	.notifier_call = migration_call,
5071
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5072 5073
};

5074 5075 5076 5077
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5078
	case CPU_STARTING:
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5099
static int __init migration_init(void)
L
Linus Torvalds 已提交
5100 5101
{
	void *cpu = (void *)(long)smp_processor_id();
5102
	int err;
5103

5104
	/* Initialize migration for the boot CPU */
5105 5106
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5107 5108
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5109

5110 5111 5112 5113
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5114
	return 0;
L
Linus Torvalds 已提交
5115
}
5116
early_initcall(migration_init);
L
Linus Torvalds 已提交
5117 5118 5119
#endif

#ifdef CONFIG_SMP
5120

5121 5122
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5123
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5124

5125
static __read_mostly int sched_debug_enabled;
5126

5127
static int __init sched_debug_setup(char *str)
5128
{
5129
	sched_debug_enabled = 1;
5130 5131 5132

	return 0;
}
5133 5134 5135 5136 5137 5138
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5139

5140
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5141
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5142
{
I
Ingo Molnar 已提交
5143
	struct sched_group *group = sd->groups;
5144
	char str[256];
L
Linus Torvalds 已提交
5145

R
Rusty Russell 已提交
5146
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5147
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5148 5149 5150 5151

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5152
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5153
		if (sd->parent)
P
Peter Zijlstra 已提交
5154 5155
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5156
		return -1;
N
Nick Piggin 已提交
5157 5158
	}

P
Peter Zijlstra 已提交
5159
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5160

5161
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5162 5163
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5164
	}
5165
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5166 5167
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5168
	}
L
Linus Torvalds 已提交
5169

I
Ingo Molnar 已提交
5170
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5171
	do {
I
Ingo Molnar 已提交
5172
		if (!group) {
P
Peter Zijlstra 已提交
5173 5174
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5175 5176 5177
			break;
		}

5178 5179 5180 5181 5182 5183
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5184 5185 5186
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5187 5188
			break;
		}
L
Linus Torvalds 已提交
5189

5190
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5191 5192
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5193 5194
			break;
		}
L
Linus Torvalds 已提交
5195

5196 5197
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5198 5199
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5200 5201
			break;
		}
L
Linus Torvalds 已提交
5202

5203
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5204

R
Rusty Russell 已提交
5205
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5206

P
Peter Zijlstra 已提交
5207
		printk(KERN_CONT " %s", str);
5208
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5209
			printk(KERN_CONT " (cpu_power = %d)",
5210
				group->sgp->power);
5211
		}
L
Linus Torvalds 已提交
5212

I
Ingo Molnar 已提交
5213 5214
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5215
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5216

5217
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5218
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5219

5220 5221
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5222 5223
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5224 5225
	return 0;
}
L
Linus Torvalds 已提交
5226

I
Ingo Molnar 已提交
5227 5228 5229
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5230

5231
	if (!sched_debug_enabled)
5232 5233
		return;

I
Ingo Molnar 已提交
5234 5235 5236 5237
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5238

I
Ingo Molnar 已提交
5239 5240 5241
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5242
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5243
			break;
L
Linus Torvalds 已提交
5244 5245
		level++;
		sd = sd->parent;
5246
		if (!sd)
I
Ingo Molnar 已提交
5247 5248
			break;
	}
L
Linus Torvalds 已提交
5249
}
5250
#else /* !CONFIG_SCHED_DEBUG */
5251
# define sched_domain_debug(sd, cpu) do { } while (0)
5252 5253 5254 5255
static inline bool sched_debug(void)
{
	return false;
}
5256
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5257

5258
static int sd_degenerate(struct sched_domain *sd)
5259
{
5260
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5261 5262 5263 5264 5265 5266
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5267 5268 5269
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5270 5271 5272 5273 5274
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5275
	if (sd->flags & (SD_WAKE_AFFINE))
5276 5277 5278 5279 5280
		return 0;

	return 1;
}

5281 5282
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5283 5284 5285 5286 5287 5288
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5289
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5290 5291 5292 5293 5294 5295 5296
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5297 5298 5299
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5300 5301
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5302 5303 5304 5305 5306 5307 5308
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5309
static void free_rootdomain(struct rcu_head *rcu)
5310
{
5311
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5312

5313
	cpupri_cleanup(&rd->cpupri);
5314 5315 5316 5317 5318 5319
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5320 5321
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5322
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5323 5324
	unsigned long flags;

5325
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5326 5327

	if (rq->rd) {
I
Ingo Molnar 已提交
5328
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5329

5330
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5331
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5332

5333
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5334

I
Ingo Molnar 已提交
5335 5336 5337 5338 5339 5340 5341
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5342 5343 5344 5345 5346
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5347
	cpumask_set_cpu(rq->cpu, rd->span);
5348
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5349
		set_rq_online(rq);
G
Gregory Haskins 已提交
5350

5351
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5352 5353

	if (old_rd)
5354
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5355 5356
}

5357
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5358 5359 5360
{
	memset(rd, 0, sizeof(*rd));

5361
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5362
		goto out;
5363
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5364
		goto free_span;
5365
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5366
		goto free_online;
5367

5368
	if (cpupri_init(&rd->cpupri) != 0)
5369
		goto free_rto_mask;
5370
	return 0;
5371

5372 5373
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5374 5375 5376 5377
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5378
out:
5379
	return -ENOMEM;
G
Gregory Haskins 已提交
5380 5381
}

5382 5383 5384 5385 5386 5387
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5388 5389
static void init_defrootdomain(void)
{
5390
	init_rootdomain(&def_root_domain);
5391

G
Gregory Haskins 已提交
5392 5393 5394
	atomic_set(&def_root_domain.refcount, 1);
}

5395
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5396 5397 5398 5399 5400 5401 5402
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5403
	if (init_rootdomain(rd) != 0) {
5404 5405 5406
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5407 5408 5409 5410

	return rd;
}

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5430 5431 5432
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5433 5434 5435 5436 5437 5438 5439 5440

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5441
		kfree(sd->groups->sgp);
5442
		kfree(sd->groups);
5443
	}
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5458 5459 5460 5461 5462
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
5463 5464 5465 5466 5467
 * Iterate domains and sched_groups downward, assigning CPUs to be
 * select_idle_sibling() hw buddy.  Cross-wiring hw makes bouncing
 * due to random perturbation self canceling, ie sw buddies pull
 * their counterpart to their CPU's hw counterpart.
 *
5468 5469
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5470
 * two cpus are in the same cache domain, see cpus_share_cache().
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
	if (sd) {
		struct sched_domain *tmp = sd;
		struct sched_group *sg, *prev;
		bool right;

		/*
		 * Traverse to first CPU in group, and count hops
		 * to cpu from there, switching direction on each
		 * hop, never ever pointing the last CPU rightward.
		 */
		do {
			id = cpumask_first(sched_domain_span(tmp));
			prev = sg = tmp->groups;
			right = 1;

			while (cpumask_first(sched_group_cpus(sg)) != id)
				sg = sg->next;

			while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
				prev = sg;
				sg = sg->next;
				right = !right;
			}

			/* A CPU went down, never point back to domain start. */
			if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
				right = false;

			sg = right ? sg->next : prev;
			tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
		} while ((tmp = tmp->child));

5513
		id = cpumask_first(sched_domain_span(sd));
5514
	}
5515 5516 5517 5518 5519

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5520
/*
I
Ingo Molnar 已提交
5521
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5522 5523
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5524 5525
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5526
{
5527
	struct rq *rq = cpu_rq(cpu);
5528 5529 5530
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5531
	for (tmp = sd; tmp; ) {
5532 5533 5534
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5535

5536
		if (sd_parent_degenerate(tmp, parent)) {
5537
			tmp->parent = parent->parent;
5538 5539
			if (parent->parent)
				parent->parent->child = tmp;
5540
			destroy_sched_domain(parent, cpu);
5541 5542
		} else
			tmp = tmp->parent;
5543 5544
	}

5545
	if (sd && sd_degenerate(sd)) {
5546
		tmp = sd;
5547
		sd = sd->parent;
5548
		destroy_sched_domain(tmp, cpu);
5549 5550 5551
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5552

5553
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5554

G
Gregory Haskins 已提交
5555
	rq_attach_root(rq, rd);
5556
	tmp = rq->sd;
N
Nick Piggin 已提交
5557
	rcu_assign_pointer(rq->sd, sd);
5558
	destroy_sched_domains(tmp, cpu);
5559 5560

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5561 5562 5563
}

/* cpus with isolated domains */
5564
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5565 5566 5567 5568

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5569
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5570
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5571 5572 5573
	return 1;
}

I
Ingo Molnar 已提交
5574
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5575

5576 5577 5578 5579 5580
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5581 5582 5583
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5584
	struct sched_group_power **__percpu sgp;
5585 5586
};

5587
struct s_data {
5588
	struct sched_domain ** __percpu sd;
5589 5590 5591
	struct root_domain	*rd;
};

5592 5593
enum s_alloc {
	sa_rootdomain,
5594
	sa_sd,
5595
	sa_sd_storage,
5596 5597 5598
	sa_none,
};

5599 5600 5601
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5602 5603
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5604 5605
#define SDTL_OVERLAP	0x01

5606
struct sched_domain_topology_level {
5607 5608
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5609
	int		    flags;
5610
	int		    numa_level;
5611
	struct sd_data      data;
5612 5613
};

P
Peter Zijlstra 已提交
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5670 5671 5672 5673 5674 5675
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5676
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5677
				GFP_KERNEL, cpu_to_node(cpu));
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5691
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5692 5693 5694
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5695 5696 5697 5698 5699 5700
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5701

P
Peter Zijlstra 已提交
5702 5703 5704 5705 5706
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5707
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5708
		    group_balance_cpu(sg) == cpu)
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5728
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5729
{
5730 5731
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5732

5733 5734
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5735

5736
	if (sg) {
5737
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5738
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5739
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5740
	}
5741 5742

	return cpu;
5743 5744
}

5745
/*
5746 5747 5748
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5749 5750
 *
 * Assumes the sched_domain tree is fully constructed
5751
 */
5752 5753
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5754
{
5755 5756 5757
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5758
	struct cpumask *covered;
5759
	int i;
5760

5761 5762 5763 5764 5765 5766
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5767 5768 5769
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5770
	cpumask_clear(covered);
5771

5772 5773 5774 5775
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5776

5777 5778
		if (cpumask_test_cpu(i, covered))
			continue;
5779

5780
		cpumask_clear(sched_group_cpus(sg));
5781
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5782
		cpumask_setall(sched_group_mask(sg));
5783

5784 5785 5786
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5787

5788 5789 5790
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5791

5792 5793 5794 5795 5796 5797 5798
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5799 5800

	return 0;
5801
}
5802

5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5815
	struct sched_group *sg = sd->groups;
5816

5817 5818 5819 5820 5821 5822
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5823

P
Peter Zijlstra 已提交
5824
	if (cpu != group_balance_cpu(sg))
5825
		return;
5826

5827
	update_group_power(sd, cpu);
5828
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5829 5830
}

5831 5832 5833
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5834 5835
}

5836 5837 5838 5839 5840
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5841 5842 5843 5844 5845 5846
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5847 5848 5849 5850 5851 5852 5853 5854 5855
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5856 5857 5858 5859 5860 5861 5862 5863 5864
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5865 5866 5867
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5868

5869
static int default_relax_domain_level = -1;
5870
int sched_domain_level_max;
5871 5872 5873

static int __init setup_relax_domain_level(char *str)
{
5874 5875
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5876

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5895
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5896 5897
	} else {
		/* turn on idle balance on this domain */
5898
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5899 5900 5901
	}
}

5902 5903 5904
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5905 5906 5907 5908 5909
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5910 5911
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5912 5913
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5914
	case sa_sd_storage:
5915
		__sdt_free(cpu_map); /* fall through */
5916 5917 5918 5919
	case sa_none:
		break;
	}
}
5920

5921 5922 5923
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5924 5925
	memset(d, 0, sizeof(*d));

5926 5927
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5928 5929 5930
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5931
	d->rd = alloc_rootdomain();
5932
	if (!d->rd)
5933
		return sa_sd;
5934 5935
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5936

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5949
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5950
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5951 5952

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5953
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5954 5955
}

5956 5957
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5958
{
5959
	return topology_thread_cpumask(cpu);
5960
}
5961
#endif
5962

5963 5964 5965
/*
 * Topology list, bottom-up.
 */
5966
static struct sched_domain_topology_level default_topology[] = {
5967 5968
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5969
#endif
5970
#ifdef CONFIG_SCHED_MC
5971
	{ sd_init_MC, cpu_coregroup_mask, },
5972
#endif
5973 5974 5975 5976
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5977 5978 5979 5980 5981
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5982 5983 5984 5985 5986 5987 5988 5989 5990
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5991
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6009
		.imbalance_pct		= 125,
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6129
		}
6130 6131 6132 6133 6134 6135

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6160
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6161 6162 6163 6164 6165 6166
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6167
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
}
#else
static inline void sched_init_numa(void)
{
}
#endif /* CONFIG_NUMA */

6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6222 6223 6224 6225
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6226 6227 6228
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6229
			struct sched_group_power *sgp;
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6243 6244
			sg->next = sg;

6245
			*per_cpu_ptr(sdd->sg, j) = sg;
6246

P
Peter Zijlstra 已提交
6247
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6248 6249 6250 6251 6252
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6281 6282
		}
		free_percpu(sdd->sd);
6283
		sdd->sd = NULL;
6284
		free_percpu(sdd->sg);
6285
		sdd->sg = NULL;
6286
		free_percpu(sdd->sgp);
6287
		sdd->sgp = NULL;
6288 6289 6290
	}
}

6291 6292
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6293
		struct sched_domain_attr *attr, struct sched_domain *child,
6294 6295
		int cpu)
{
6296
	struct sched_domain *sd = tl->init(tl, cpu);
6297
	if (!sd)
6298
		return child;
6299 6300

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6301 6302 6303
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6304
		child->parent = sd;
6305
	}
6306
	sd->child = child;
6307
	set_domain_attribute(sd, attr);
6308 6309 6310 6311

	return sd;
}

6312 6313 6314 6315
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6316 6317
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6318 6319
{
	enum s_alloc alloc_state = sa_none;
6320
	struct sched_domain *sd;
6321
	struct s_data d;
6322
	int i, ret = -ENOMEM;
6323

6324 6325 6326
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6327

6328
	/* Set up domains for cpus specified by the cpu_map. */
6329
	for_each_cpu(i, cpu_map) {
6330 6331
		struct sched_domain_topology_level *tl;

6332
		sd = NULL;
6333
		for (tl = sched_domain_topology; tl->init; tl++) {
6334
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6335 6336
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6337 6338
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6339
		}
6340

6341 6342 6343
		while (sd->child)
			sd = sd->child;

6344
		*per_cpu_ptr(d.sd, i) = sd;
6345 6346 6347 6348 6349 6350
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6351 6352 6353 6354 6355 6356 6357
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6358
		}
6359
	}
6360

L
Linus Torvalds 已提交
6361
	/* Calculate CPU power for physical packages and nodes */
6362 6363 6364
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6365

6366 6367
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6368
			init_sched_groups_power(i, sd);
6369
		}
6370
	}
6371

L
Linus Torvalds 已提交
6372
	/* Attach the domains */
6373
	rcu_read_lock();
6374
	for_each_cpu(i, cpu_map) {
6375
		sd = *per_cpu_ptr(d.sd, i);
6376
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6377
	}
6378
	rcu_read_unlock();
6379

6380
	ret = 0;
6381
error:
6382
	__free_domain_allocs(&d, alloc_state, cpu_map);
6383
	return ret;
L
Linus Torvalds 已提交
6384
}
P
Paul Jackson 已提交
6385

6386
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6387
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6388 6389
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6390 6391 6392

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6393 6394
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6395
 */
6396
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6397

6398 6399 6400 6401 6402 6403
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6404
{
6405
	return 0;
6406 6407
}

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6433
/*
I
Ingo Molnar 已提交
6434
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6435 6436
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6437
 */
6438
static int init_sched_domains(const struct cpumask *cpu_map)
6439
{
6440 6441
	int err;

6442
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6443
	ndoms_cur = 1;
6444
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6445
	if (!doms_cur)
6446 6447
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6448
	err = build_sched_domains(doms_cur[0], NULL);
6449
	register_sched_domain_sysctl();
6450 6451

	return err;
6452 6453 6454 6455 6456 6457
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6458
static void detach_destroy_domains(const struct cpumask *cpu_map)
6459 6460 6461
{
	int i;

6462
	rcu_read_lock();
6463
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6464
		cpu_attach_domain(NULL, &def_root_domain, i);
6465
	rcu_read_unlock();
6466 6467
}

6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6484 6485
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6486
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6487 6488 6489
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6490
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6491 6492 6493
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6494 6495 6496
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6497 6498 6499 6500 6501 6502
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6503
 *
6504
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6505 6506
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6507
 *
P
Paul Jackson 已提交
6508 6509
 * Call with hotplug lock held
 */
6510
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6511
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6512
{
6513
	int i, j, n;
6514
	int new_topology;
P
Paul Jackson 已提交
6515

6516
	mutex_lock(&sched_domains_mutex);
6517

6518 6519 6520
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6521 6522 6523
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6524
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6525 6526 6527

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6528
		for (j = 0; j < n && !new_topology; j++) {
6529
			if (cpumask_equal(doms_cur[i], doms_new[j])
6530
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6531 6532 6533
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6534
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6535 6536 6537 6538
match1:
		;
	}

6539 6540
	if (doms_new == NULL) {
		ndoms_cur = 0;
6541
		doms_new = &fallback_doms;
6542
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6543
		WARN_ON_ONCE(dattr_new);
6544 6545
	}

P
Paul Jackson 已提交
6546 6547
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6548
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6549
			if (cpumask_equal(doms_new[i], doms_cur[j])
6550
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6551 6552 6553
				goto match2;
		}
		/* no match - add a new doms_new */
6554
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6555 6556 6557 6558 6559
match2:
		;
	}

	/* Remember the new sched domains */
6560 6561
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6562
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6563
	doms_cur = doms_new;
6564
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6565
	ndoms_cur = ndoms_new;
6566 6567

	register_sched_domain_sysctl();
6568

6569
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6570 6571
}

6572 6573
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6574
/*
6575 6576 6577
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6578 6579 6580
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6581
 */
6582 6583
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6584
{
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6607
	case CPU_ONLINE:
6608
	case CPU_DOWN_FAILED:
6609
		cpuset_update_active_cpus(true);
6610
		break;
6611 6612 6613
	default:
		return NOTIFY_DONE;
	}
6614
	return NOTIFY_OK;
6615
}
6616

6617 6618
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6619
{
6620
	switch (action) {
6621
	case CPU_DOWN_PREPARE:
6622
		cpuset_update_active_cpus(false);
6623 6624 6625 6626 6627
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6628 6629 6630
	default:
		return NOTIFY_DONE;
	}
6631
	return NOTIFY_OK;
6632 6633
}

L
Linus Torvalds 已提交
6634 6635
void __init sched_init_smp(void)
{
6636 6637 6638
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6639
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6640

6641 6642
	sched_init_numa();

6643
	get_online_cpus();
6644
	mutex_lock(&sched_domains_mutex);
6645
	init_sched_domains(cpu_active_mask);
6646 6647 6648
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6649
	mutex_unlock(&sched_domains_mutex);
6650
	put_online_cpus();
6651

6652 6653
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6654 6655 6656 6657

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6658
	init_hrtick();
6659 6660

	/* Move init over to a non-isolated CPU */
6661
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6662
		BUG();
I
Ingo Molnar 已提交
6663
	sched_init_granularity();
6664
	free_cpumask_var(non_isolated_cpus);
6665

6666
	init_sched_rt_class();
L
Linus Torvalds 已提交
6667 6668 6669 6670
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6671
	sched_init_granularity();
L
Linus Torvalds 已提交
6672 6673 6674
}
#endif /* CONFIG_SMP */

6675 6676
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6677 6678 6679 6680 6681 6682 6683
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6684 6685
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6686
LIST_HEAD(task_groups);
6687
#endif
P
Peter Zijlstra 已提交
6688

6689
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6690

L
Linus Torvalds 已提交
6691 6692
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6693
	int i, j;
6694 6695 6696 6697 6698 6699 6700
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6701
#endif
6702
#ifdef CONFIG_CPUMASK_OFFSTACK
6703
	alloc_size += num_possible_cpus() * cpumask_size();
6704 6705
#endif
	if (alloc_size) {
6706
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6707 6708

#ifdef CONFIG_FAIR_GROUP_SCHED
6709
		root_task_group.se = (struct sched_entity **)ptr;
6710 6711
		ptr += nr_cpu_ids * sizeof(void **);

6712
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6713
		ptr += nr_cpu_ids * sizeof(void **);
6714

6715
#endif /* CONFIG_FAIR_GROUP_SCHED */
6716
#ifdef CONFIG_RT_GROUP_SCHED
6717
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6718 6719
		ptr += nr_cpu_ids * sizeof(void **);

6720
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6721 6722
		ptr += nr_cpu_ids * sizeof(void **);

6723
#endif /* CONFIG_RT_GROUP_SCHED */
6724 6725 6726 6727 6728 6729
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6730
	}
I
Ingo Molnar 已提交
6731

G
Gregory Haskins 已提交
6732 6733 6734 6735
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6736 6737 6738 6739
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6740
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6741
			global_rt_period(), global_rt_runtime());
6742
#endif /* CONFIG_RT_GROUP_SCHED */
6743

D
Dhaval Giani 已提交
6744
#ifdef CONFIG_CGROUP_SCHED
6745 6746
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6747
	INIT_LIST_HEAD(&root_task_group.siblings);
6748
	autogroup_init(&init_task);
6749

D
Dhaval Giani 已提交
6750
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6751

6752 6753 6754 6755 6756 6757
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6758
	for_each_possible_cpu(i) {
6759
		struct rq *rq;
L
Linus Torvalds 已提交
6760 6761

		rq = cpu_rq(i);
6762
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6763
		rq->nr_running = 0;
6764 6765
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6766
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6767
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6768
#ifdef CONFIG_FAIR_GROUP_SCHED
6769
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6770
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6771
		/*
6772
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6773 6774 6775 6776
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6777
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6778 6779 6780
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6781
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6782 6783 6784
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6785
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6786
		 *
6787 6788
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6789
		 */
6790
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6791
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6792 6793 6794
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6795
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6796
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6797
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6798
#endif
L
Linus Torvalds 已提交
6799

I
Ingo Molnar 已提交
6800 6801
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6802 6803 6804

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6805
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6806
		rq->sd = NULL;
G
Gregory Haskins 已提交
6807
		rq->rd = NULL;
6808
		rq->cpu_power = SCHED_POWER_SCALE;
6809
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6810
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6811
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6812
		rq->push_cpu = 0;
6813
		rq->cpu = i;
6814
		rq->online = 0;
6815 6816
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6817 6818 6819

		INIT_LIST_HEAD(&rq->cfs_tasks);

6820
		rq_attach_root(rq, &def_root_domain);
6821
#ifdef CONFIG_NO_HZ
6822
		rq->nohz_flags = 0;
6823
#endif
L
Linus Torvalds 已提交
6824
#endif
P
Peter Zijlstra 已提交
6825
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6826 6827 6828
		atomic_set(&rq->nr_iowait, 0);
	}

6829
	set_load_weight(&init_task);
6830

6831 6832 6833 6834
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6835
#ifdef CONFIG_RT_MUTEXES
6836
	plist_head_init(&init_task.pi_waiters);
6837 6838
#endif

L
Linus Torvalds 已提交
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6852 6853 6854

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6855 6856 6857 6858
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6859

6860
#ifdef CONFIG_SMP
6861
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6862 6863 6864
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6865
	idle_thread_set_boot_cpu();
6866 6867
#endif
	init_sched_fair_class();
6868

6869
	scheduler_running = 1;
L
Linus Torvalds 已提交
6870 6871
}

6872
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6873 6874
static inline int preempt_count_equals(int preempt_offset)
{
6875
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6876

A
Arnd Bergmann 已提交
6877
	return (nested == preempt_offset);
6878 6879
}

6880
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6881 6882 6883
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6884
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6885 6886
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6887 6888 6889 6890 6891
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6892 6893 6894 6895 6896 6897 6898
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6899 6900 6901 6902 6903

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6904 6905 6906 6907 6908
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6909 6910
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6911 6912
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6913
	int on_rq;
6914

P
Peter Zijlstra 已提交
6915
	on_rq = p->on_rq;
6916
	if (on_rq)
6917
		dequeue_task(rq, p, 0);
6918 6919
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6920
		enqueue_task(rq, p, 0);
6921 6922
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6923 6924

	check_class_changed(rq, p, prev_class, old_prio);
6925 6926
}

L
Linus Torvalds 已提交
6927 6928
void normalize_rt_tasks(void)
{
6929
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6930
	unsigned long flags;
6931
	struct rq *rq;
L
Linus Torvalds 已提交
6932

6933
	read_lock_irqsave(&tasklist_lock, flags);
6934
	do_each_thread(g, p) {
6935 6936 6937 6938 6939 6940
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6941 6942
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6943 6944 6945
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6946
#endif
I
Ingo Molnar 已提交
6947 6948 6949 6950 6951 6952 6953 6954

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6955
			continue;
I
Ingo Molnar 已提交
6956
		}
L
Linus Torvalds 已提交
6957

6958
		raw_spin_lock(&p->pi_lock);
6959
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6960

6961
		normalize_task(rq, p);
6962

6963
		__task_rq_unlock(rq);
6964
		raw_spin_unlock(&p->pi_lock);
6965 6966
	} while_each_thread(g, p);

6967
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
6968 6969 6970
}

#endif /* CONFIG_MAGIC_SYSRQ */
6971

6972
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6973
/*
6974
 * These functions are only useful for the IA64 MCA handling, or kdb.
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6989
struct task_struct *curr_task(int cpu)
6990 6991 6992 6993
{
	return cpu_curr(cpu);
}

6994 6995 6996
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6997 6998 6999 7000 7001 7002
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7003 7004
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7005 7006 7007 7008 7009 7010 7011
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7012
void set_curr_task(int cpu, struct task_struct *p)
7013 7014 7015 7016 7017
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7018

D
Dhaval Giani 已提交
7019
#ifdef CONFIG_CGROUP_SCHED
7020 7021 7022
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7023 7024 7025 7026
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7027
	autogroup_free(tg);
7028 7029 7030 7031
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7032
struct task_group *sched_create_group(struct task_group *parent)
7033 7034 7035 7036 7037 7038 7039 7040
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7041
	if (!alloc_fair_sched_group(tg, parent))
7042 7043
		goto err;

7044
	if (!alloc_rt_sched_group(tg, parent))
7045 7046
		goto err;

7047
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7048
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7049 7050 7051 7052 7053

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7054
	list_add_rcu(&tg->siblings, &parent->children);
7055
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7056

7057
	return tg;
S
Srivatsa Vaddagiri 已提交
7058 7059

err:
P
Peter Zijlstra 已提交
7060
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7061 7062 7063
	return ERR_PTR(-ENOMEM);
}

7064
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7065
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7066 7067
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7068
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7069 7070
}

7071
/* Destroy runqueue etc associated with a task group */
7072
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7073
{
7074
	unsigned long flags;
7075
	int i;
S
Srivatsa Vaddagiri 已提交
7076

7077 7078
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7079
		unregister_fair_sched_group(tg, i);
7080 7081

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7082
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7083
	list_del_rcu(&tg->siblings);
7084
	spin_unlock_irqrestore(&task_group_lock, flags);
7085 7086

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7087
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7088 7089
}

7090
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7091 7092 7093
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7094 7095
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7096
{
P
Peter Zijlstra 已提交
7097
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7098 7099 7100 7101 7102 7103
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7104
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7105
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7106

7107
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7108
		dequeue_task(rq, tsk, 0);
7109 7110
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7111

P
Peter Zijlstra 已提交
7112 7113 7114 7115 7116 7117
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7118
#ifdef CONFIG_FAIR_GROUP_SCHED
7119 7120 7121
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7122
#endif
7123
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7124

7125 7126 7127
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7128
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7129

7130
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7131
}
D
Dhaval Giani 已提交
7132
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7133

7134
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7135 7136 7137
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7138
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7139

P
Peter Zijlstra 已提交
7140
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7141
}
7142 7143 7144 7145 7146 7147 7148
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7149

P
Peter Zijlstra 已提交
7150 7151
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7152
{
P
Peter Zijlstra 已提交
7153
	struct task_struct *g, *p;
7154

P
Peter Zijlstra 已提交
7155
	do_each_thread(g, p) {
7156
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7157 7158
			return 1;
	} while_each_thread(g, p);
7159

P
Peter Zijlstra 已提交
7160 7161
	return 0;
}
7162

P
Peter Zijlstra 已提交
7163 7164 7165 7166 7167
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7168

7169
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7170 7171 7172 7173 7174
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7175

P
Peter Zijlstra 已提交
7176 7177
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7178

P
Peter Zijlstra 已提交
7179 7180 7181
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7182 7183
	}

7184 7185 7186 7187 7188
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7189

7190 7191 7192
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7193 7194
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7195

P
Peter Zijlstra 已提交
7196
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7197

7198 7199 7200 7201 7202
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7203

7204 7205 7206
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7207 7208 7209
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7210

P
Peter Zijlstra 已提交
7211 7212 7213 7214
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7215

P
Peter Zijlstra 已提交
7216
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7217
	}
P
Peter Zijlstra 已提交
7218

P
Peter Zijlstra 已提交
7219 7220 7221 7222
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7223 7224
}

P
Peter Zijlstra 已提交
7225
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7226
{
7227 7228
	int ret;

P
Peter Zijlstra 已提交
7229 7230 7231 7232 7233 7234
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7235 7236 7237 7238 7239
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7240 7241
}

7242
static int tg_set_rt_bandwidth(struct task_group *tg,
7243
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7244
{
P
Peter Zijlstra 已提交
7245
	int i, err = 0;
P
Peter Zijlstra 已提交
7246 7247

	mutex_lock(&rt_constraints_mutex);
7248
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7249 7250
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7251
		goto unlock;
P
Peter Zijlstra 已提交
7252

7253
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7254 7255
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7256 7257 7258 7259

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7260
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7261
		rt_rq->rt_runtime = rt_runtime;
7262
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7263
	}
7264
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7265
unlock:
7266
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7267 7268 7269
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7270 7271
}

7272 7273 7274 7275 7276 7277 7278 7279 7280
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7281
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7282 7283
}

P
Peter Zijlstra 已提交
7284 7285 7286 7287
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7288
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7289 7290
		return -1;

7291
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7292 7293 7294
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7295 7296 7297 7298 7299 7300 7301 7302

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7303 7304 7305
	if (rt_period == 0)
		return -EINVAL;

7306
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7320
	u64 runtime, period;
7321 7322
	int ret = 0;

7323 7324 7325
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7326 7327 7328 7329 7330 7331 7332 7333
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7334

7335
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7336
	read_lock(&tasklist_lock);
7337
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7338
	read_unlock(&tasklist_lock);
7339 7340 7341 7342
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7353
#else /* !CONFIG_RT_GROUP_SCHED */
7354 7355
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7356 7357 7358
	unsigned long flags;
	int i;

7359 7360 7361
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7362 7363 7364 7365 7366 7367 7368
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7369
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7370 7371 7372
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7373
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7374
		rt_rq->rt_runtime = global_rt_runtime();
7375
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7376
	}
7377
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7378

7379 7380
	return 0;
}
7381
#endif /* CONFIG_RT_GROUP_SCHED */
7382 7383

int sched_rt_handler(struct ctl_table *table, int write,
7384
		void __user *buffer, size_t *lenp,
7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7395
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7412

7413
#ifdef CONFIG_CGROUP_SCHED
7414 7415

/* return corresponding task_group object of a cgroup */
7416
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7417
{
7418 7419
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7420 7421
}

7422
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7423
{
7424
	struct task_group *tg, *parent;
7425

7426
	if (!cgrp->parent) {
7427
		/* This is early initialization for the top cgroup */
7428
		return &root_task_group.css;
7429 7430
	}

7431 7432
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7433 7434 7435 7436 7437 7438
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7439
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7440
{
7441
	struct task_group *tg = cgroup_tg(cgrp);
7442 7443 7444 7445

	sched_destroy_group(tg);
}

7446
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7447
				 struct cgroup_taskset *tset)
7448
{
7449 7450 7451
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7452
#ifdef CONFIG_RT_GROUP_SCHED
7453 7454
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7455
#else
7456 7457 7458
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7459
#endif
7460
	}
7461 7462
	return 0;
}
7463

7464
static void cpu_cgroup_attach(struct cgroup *cgrp,
7465
			      struct cgroup_taskset *tset)
7466
{
7467 7468 7469 7470
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7471 7472
}

7473
static void
7474 7475
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7488
#ifdef CONFIG_FAIR_GROUP_SCHED
7489
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7490
				u64 shareval)
7491
{
7492
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7493 7494
}

7495
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7496
{
7497
	struct task_group *tg = cgroup_tg(cgrp);
7498

7499
	return (u64) scale_load_down(tg->shares);
7500
}
7501 7502

#ifdef CONFIG_CFS_BANDWIDTH
7503 7504
static DEFINE_MUTEX(cfs_constraints_mutex);

7505 7506 7507
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7508 7509
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7510 7511
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7512
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7513
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7534 7535 7536 7537 7538
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7539
	runtime_enabled = quota != RUNTIME_INF;
7540 7541
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7542 7543 7544
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7545

P
Paul Turner 已提交
7546
	__refill_cfs_bandwidth_runtime(cfs_b);
7547 7548 7549 7550 7551 7552
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7553 7554 7555 7556
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7557
		struct rq *rq = cfs_rq->rq;
7558 7559

		raw_spin_lock_irq(&rq->lock);
7560
		cfs_rq->runtime_enabled = runtime_enabled;
7561
		cfs_rq->runtime_remaining = 0;
7562

7563
		if (cfs_rq->throttled)
7564
			unthrottle_cfs_rq(cfs_rq);
7565 7566
		raw_spin_unlock_irq(&rq->lock);
	}
7567 7568
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7569

7570
	return ret;
7571 7572 7573 7574 7575 7576
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7577
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7590
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7591 7592
		return -1;

7593
	quota_us = tg->cfs_bandwidth.quota;
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7604
	quota = tg->cfs_bandwidth.quota;
7605 7606 7607 7608 7609 7610 7611 7612

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7613
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7673
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7674 7675 7676 7677 7678
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7679
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7700
	int ret;
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7712 7713 7714 7715 7716
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7717
}
7718 7719 7720 7721 7722

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7723
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7724 7725 7726 7727 7728 7729 7730

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7731
#endif /* CONFIG_CFS_BANDWIDTH */
7732
#endif /* CONFIG_FAIR_GROUP_SCHED */
7733

7734
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7735
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7736
				s64 val)
P
Peter Zijlstra 已提交
7737
{
7738
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7739 7740
}

7741
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7742
{
7743
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7744
}
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7756
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7757

7758
static struct cftype cpu_files[] = {
7759
#ifdef CONFIG_FAIR_GROUP_SCHED
7760 7761
	{
		.name = "shares",
7762 7763
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7764
	},
7765
#endif
7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7777 7778 7779 7780
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7781
#endif
7782
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7783
	{
P
Peter Zijlstra 已提交
7784
		.name = "rt_runtime_us",
7785 7786
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7787
	},
7788 7789
	{
		.name = "rt_period_us",
7790 7791
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7792
	},
7793
#endif
7794
	{ }	/* terminate */
7795 7796 7797
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7798 7799 7800
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7801 7802
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7803
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7804
	.subsys_id	= cpu_cgroup_subsys_id,
7805
	.base_cftypes	= cpu_files,
7806 7807 7808
	.early_init	= 1,
};

7809
#endif	/* CONFIG_CGROUP_SCHED */
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7820 7821
struct cpuacct root_cpuacct;

7822
/* create a new cpu accounting group */
7823
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7824
{
7825
	struct cpuacct *ca;
7826

7827 7828 7829 7830
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7831
	if (!ca)
7832
		goto out;
7833 7834

	ca->cpuusage = alloc_percpu(u64);
7835 7836 7837
	if (!ca->cpuusage)
		goto out_free_ca;

7838 7839 7840
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7841

7842
	return &ca->css;
7843

7844
out_free_cpuusage:
7845 7846 7847 7848 7849
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7850 7851 7852
}

/* destroy an existing cpu accounting group */
7853
static void cpuacct_destroy(struct cgroup *cgrp)
7854
{
7855
	struct cpuacct *ca = cgroup_ca(cgrp);
7856

7857
	free_percpu(ca->cpustat);
7858 7859 7860 7861
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7862 7863
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7864
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7865 7866 7867 7868 7869 7870
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7871
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7872
	data = *cpuusage;
7873
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7874 7875 7876 7877 7878 7879 7880 7881 7882
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7883
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7884 7885 7886 7887 7888

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7889
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7890
	*cpuusage = val;
7891
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7892 7893 7894 7895 7896
#else
	*cpuusage = val;
#endif
}

7897
/* return total cpu usage (in nanoseconds) of a group */
7898
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7899
{
7900
	struct cpuacct *ca = cgroup_ca(cgrp);
7901 7902 7903
	u64 totalcpuusage = 0;
	int i;

7904 7905
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7906 7907 7908 7909

	return totalcpuusage;
}

7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

7922 7923
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
7924 7925 7926 7927 7928

out:
	return err;
}

7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

7944 7945 7946 7947 7948 7949
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7950
			      struct cgroup_map_cb *cb)
7951 7952
{
	struct cpuacct *ca = cgroup_ca(cgrp);
7953 7954
	int cpu;
	s64 val = 0;
7955

7956 7957 7958 7959
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
7960
	}
7961 7962
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
7963

7964 7965 7966 7967 7968 7969
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
7970
	}
7971 7972 7973 7974

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

7975 7976 7977
	return 0;
}

7978 7979 7980
static struct cftype files[] = {
	{
		.name = "usage",
7981 7982
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
7983
	},
7984 7985 7986 7987
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
7988 7989 7990 7991
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
7992
	{ }	/* terminate */
7993 7994 7995 7996 7997 7998 7999
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8000
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8001 8002
{
	struct cpuacct *ca;
8003
	int cpu;
8004

L
Li Zefan 已提交
8005
	if (unlikely(!cpuacct_subsys.active))
8006 8007
		return;

8008
	cpu = task_cpu(tsk);
8009 8010 8011

	rcu_read_lock();

8012 8013
	ca = task_ca(tsk);

8014
	for (; ca; ca = parent_ca(ca)) {
8015
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8016 8017
		*cpuusage += cputime;
	}
8018 8019

	rcu_read_unlock();
8020 8021 8022 8023 8024 8025 8026
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8027
	.base_cftypes = files,
8028 8029
};
#endif	/* CONFIG_CGROUP_CPUACCT */