core.c 193.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
508
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
509 510
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743
static void update_rq_clock_task(struct rq *rq, s64 delta)
744
{
745 746 747 748 749 750 751 752
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
775 776
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777
	if (static_key_false((&paravirt_steal_rq_enabled))) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

795 796
	rq->clock_task += delta;

797 798 799 800
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

833
/*
I
Ingo Molnar 已提交
834
 * __normal_prio - return the priority that is based on the static prio
835 836 837
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
838
	return p->static_prio;
839 840
}

841 842 843 844 845 846 847
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
848
static inline int normal_prio(struct task_struct *p)
849 850 851
{
	int prio;

852
	if (task_has_rt_policy(p))
853 854 855 856 857 858 859 860 861 862 863 864 865
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
866
static int effective_prio(struct task_struct *p)
867 868 869 870 871 872 873 874 875 876 877 878
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
879 880 881 882
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
883
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
884 885 886 887
{
	return cpu_curr(task_cpu(p)) == p;
}

888 889
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
890
				       int oldprio)
891 892 893
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
894 895 896 897
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
921
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 923 924
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
926
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
927
{
928 929 930 931 932
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
933 934
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935 936

#ifdef CONFIG_LOCKDEP
937 938 939 940 941
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
942
	 * see task_group().
943 944 945 946
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
947 948 949
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
950 951
#endif

952
	trace_sched_migrate_task(p, new_cpu);
953

954 955
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
956
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957
	}
I
Ingo Molnar 已提交
958 959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
960 961
}

962
struct migration_arg {
963
	struct task_struct *task;
L
Linus Torvalds 已提交
964
	int dest_cpu;
965
};
L
Linus Torvalds 已提交
966

967 968
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
969 970 971
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
972 973 974 975 976 977 978
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
979 980 981 982 983 984
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
985
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
986 987
{
	unsigned long flags;
I
Ingo Molnar 已提交
988
	int running, on_rq;
R
Roland McGrath 已提交
989
	unsigned long ncsw;
990
	struct rq *rq;
L
Linus Torvalds 已提交
991

992 993 994 995 996 997 998 999
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1012 1013 1014
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1015
			cpu_relax();
R
Roland McGrath 已提交
1016
		}
1017

1018 1019 1020 1021 1022 1023
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1024
		trace_sched_wait_task(p);
1025
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1026
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1027
		ncsw = 0;
1028
		if (!match_state || p->state == match_state)
1029
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030
		task_rq_unlock(rq, p, &flags);
1031

R
Roland McGrath 已提交
1032 1033 1034 1035 1036 1037
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1048

1049 1050 1051 1052 1053
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1054
		 * So if it was still runnable (but just not actively
1055 1056 1057 1058
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1059 1060 1061 1062
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 1064
			continue;
		}
1065

1066 1067 1068 1069 1070 1071 1072
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1073 1074

	return ncsw;
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1084
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1085 1086 1087 1088 1089
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1090
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1100
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1101
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1102

1103
#ifdef CONFIG_SMP
1104
/*
1105
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106
 */
1107 1108 1109
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 1111
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1112 1113

	/* Look for allowed, online CPU in same node. */
1114
	for_each_cpu(dest_cpu, nodemask) {
1115 1116 1117 1118
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1119
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120
			return dest_cpu;
1121
	}
1122

1123 1124
	for (;;) {
		/* Any allowed, online CPU? */
1125
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 1127 1128 1129 1130 1131
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1162 1163 1164 1165 1166
	}

	return dest_cpu;
}

1167
/*
1168
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169
 */
1170
static inline
1171
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172
{
1173
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1185
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1186
		     !cpu_online(cpu)))
1187
		cpu = select_fallback_rq(task_cpu(p), p);
1188 1189

	return cpu;
1190
}
1191 1192 1193 1194 1195 1196

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1197 1198
#endif

P
Peter Zijlstra 已提交
1199
static void
1200
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1201
{
P
Peter Zijlstra 已提交
1202
#ifdef CONFIG_SCHEDSTATS
1203 1204
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215
		rcu_read_lock();
P
Peter Zijlstra 已提交
1216 1217 1218 1219 1220 1221
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1222
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1223
	}
1224 1225 1226 1227

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1228 1229 1230
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1231
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1232 1233

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1234
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1241
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1242
	p->on_rq = 1;
1243 1244 1245 1246

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1247 1248
}

1249 1250 1251
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1252
static void
1253
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1254
{
1255
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1256 1257 1258 1259 1260 1261 1262
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1263
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1309
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1310
static void sched_ttwu_pending(void)
1311 1312
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1313 1314
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1315 1316 1317

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1318 1319 1320
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1321 1322 1323 1324 1325 1326 1327 1328
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1329
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1346
	sched_ttwu_pending();
1347 1348 1349 1350

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1351 1352
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1353
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354
	}
1355
	irq_exit();
1356 1357 1358 1359
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1360
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 1362
		smp_send_reschedule(cpu);
}
1363

1364
bool cpus_share_cache(int this_cpu, int that_cpu)
1365 1366 1367
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1368
#endif /* CONFIG_SMP */
1369

1370 1371 1372 1373
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1374
#if defined(CONFIG_SMP)
1375
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377 1378 1379 1380 1381
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1382 1383 1384
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1385 1386 1387
}

/**
L
Linus Torvalds 已提交
1388
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1389
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1390
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1391
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396 1397 1398
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1399 1400
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1401
 */
1402 1403
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1404 1405
{
	unsigned long flags;
1406
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1407

1408
	smp_wmb();
1409
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1410
	if (!(p->state & state))
L
Linus Torvalds 已提交
1411 1412
		goto out;

1413
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1414 1415
	cpu = task_cpu(p);

1416 1417
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1418 1419

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1420
	/*
1421 1422
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1423
	 */
1424
	while (p->on_cpu)
1425
		cpu_relax();
1426
	/*
1427
	 * Pairs with the smp_wmb() in finish_lock_switch().
1428
	 */
1429
	smp_rmb();
L
Linus Torvalds 已提交
1430

1431
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1432
	p->state = TASK_WAKING;
1433

1434
	if (p->sched_class->task_waking)
1435
		p->sched_class->task_waking(p);
1436

1437
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438 1439
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1440
		set_task_cpu(p, cpu);
1441
	}
L
Linus Torvalds 已提交
1442 1443
#endif /* CONFIG_SMP */

1444 1445
	ttwu_queue(p, cpu);
stat:
1446
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1447
out:
1448
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1449 1450 1451 1452

	return success;
}

T
Tejun Heo 已提交
1453 1454 1455 1456
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1457
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1458
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459
 * the current task.
T
Tejun Heo 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1469 1470 1471 1472 1473 1474
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1475
	if (!(p->state & TASK_NORMAL))
1476
		goto out;
T
Tejun Heo 已提交
1477

P
Peter Zijlstra 已提交
1478
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1479 1480
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1481
	ttwu_do_wakeup(rq, p, 0);
1482
	ttwu_stat(p, smp_processor_id(), 0);
1483 1484
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1498
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1499
{
1500
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1501 1502 1503
}
EXPORT_SYMBOL(wake_up_process);

1504
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1512 1513 1514 1515 1516
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1517 1518 1519
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1520 1521
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1522
	p->se.prev_sum_exec_runtime	= 0;
1523
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1524
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1525
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1526 1527

#ifdef CONFIG_SCHEDSTATS
1528
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1529
#endif
N
Nick Piggin 已提交
1530

P
Peter Zijlstra 已提交
1531
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1532

1533 1534 1535
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1536 1537 1538 1539 1540
}

/*
 * fork()/clone()-time setup:
 */
1541
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1542
{
1543
	unsigned long flags;
I
Ingo Molnar 已提交
1544 1545 1546
	int cpu = get_cpu();

	__sched_fork(p);
1547
	/*
1548
	 * We mark the process as running here. This guarantees that
1549 1550 1551
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1552
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1553

1554 1555 1556 1557 1558
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1559 1560 1561 1562
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1563
		if (task_has_rt_policy(p)) {
1564
			p->policy = SCHED_NORMAL;
1565
			p->static_prio = NICE_TO_PRIO(0);
1566 1567 1568 1569 1570 1571
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1572

1573 1574 1575 1576 1577 1578
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1579

H
Hiroshi Shimamoto 已提交
1580 1581
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1582

P
Peter Zijlstra 已提交
1583 1584 1585
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1586 1587 1588 1589 1590 1591 1592
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1593
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1594
	set_task_cpu(p, cpu);
1595
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1596

1597
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1598
	if (likely(sched_info_on()))
1599
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1600
#endif
P
Peter Zijlstra 已提交
1601 1602
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1603
#endif
1604
#ifdef CONFIG_PREEMPT_COUNT
1605
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1606
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1607
#endif
1608
#ifdef CONFIG_SMP
1609
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1610
#endif
1611

N
Nick Piggin 已提交
1612
	put_cpu();
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1622
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1623 1624
{
	unsigned long flags;
I
Ingo Molnar 已提交
1625
	struct rq *rq;
1626

1627
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1628 1629 1630 1631 1632 1633
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1634
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1635 1636
#endif

1637
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1638
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1639
	p->on_rq = 1;
1640
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1641
	check_preempt_curr(rq, p, WF_FORK);
1642
#ifdef CONFIG_SMP
1643 1644
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1645
#endif
1646
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1647 1648
}

1649 1650 1651
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1652
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1653
 * @notifier: notifier struct to register
1654 1655 1656 1657 1658 1659 1660 1661 1662
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1663
 * @notifier: notifier struct to unregister
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1693
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1705
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1706

1707 1708 1709
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1710
 * @prev: the current task that is being switched out
1711 1712 1713 1714 1715 1716 1717 1718 1719
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1720 1721 1722
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1723
{
1724
	trace_sched_switch(prev, next);
1725 1726
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1727
	fire_sched_out_preempt_notifiers(prev, next);
1728 1729 1730 1731
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1732 1733
/**
 * finish_task_switch - clean up after a task-switch
1734
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1735 1736
 * @prev: the thread we just switched away from.
 *
1737 1738 1739 1740
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1741 1742
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1743
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1744 1745 1746
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1747
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1748 1749 1750
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1751
	long prev_state;
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1757
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1758 1759
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1760
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1761 1762 1763 1764 1765
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1766
	prev_state = prev->state;
1767
	vtime_task_switch(prev);
1768
	finish_arch_switch(prev);
1769
	perf_event_task_sched_in(prev, current);
1770
	finish_lock_switch(rq, prev);
1771
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1772

1773
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1774 1775
	if (mm)
		mmdrop(mm);
1776
	if (unlikely(prev_state == TASK_DEAD)) {
1777 1778 1779
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1780
		 */
1781
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1782
		put_task_struct(prev);
1783
	}
L
Linus Torvalds 已提交
1784 1785
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1801
		raw_spin_lock_irqsave(&rq->lock, flags);
1802 1803
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1804
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1805 1806 1807 1808 1809 1810

		rq->post_schedule = 0;
	}
}

#else
1811

1812 1813 1814 1815 1816 1817
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1818 1819
}

1820 1821
#endif

L
Linus Torvalds 已提交
1822 1823 1824 1825
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1826
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1827 1828
	__releases(rq->lock)
{
1829 1830
	struct rq *rq = this_rq();

1831
	finish_task_switch(rq, prev);
1832

1833 1834 1835 1836 1837
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1838

1839 1840 1841 1842
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1843
	if (current->set_child_tid)
1844
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1851
static inline void
1852
context_switch(struct rq *rq, struct task_struct *prev,
1853
	       struct task_struct *next)
L
Linus Torvalds 已提交
1854
{
I
Ingo Molnar 已提交
1855
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1856

1857
	prepare_task_switch(rq, prev, next);
1858

I
Ingo Molnar 已提交
1859 1860
	mm = next->mm;
	oldmm = prev->active_mm;
1861 1862 1863 1864 1865
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1866
	arch_start_context_switch(prev);
1867

1868
	if (!mm) {
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873 1874
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1875
	if (!prev->mm) {
L
Linus Torvalds 已提交
1876 1877 1878
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1879 1880 1881 1882 1883 1884 1885
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1886
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1887
#endif
L
Linus Torvalds 已提交
1888 1889

	/* Here we just switch the register state and the stack. */
1890
	rcu_switch(prev, next);
L
Linus Torvalds 已提交
1891 1892
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1893 1894 1895 1896 1897 1898 1899
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1917
}
L
Linus Torvalds 已提交
1918 1919

unsigned long nr_uninterruptible(void)
1920
{
L
Linus Torvalds 已提交
1921
	unsigned long i, sum = 0;
1922

1923
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1924
		sum += cpu_rq(i)->nr_uninterruptible;
1925 1926

	/*
L
Linus Torvalds 已提交
1927 1928
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1929
	 */
L
Linus Torvalds 已提交
1930 1931
	if (unlikely((long)sum < 0))
		sum = 0;
1932

L
Linus Torvalds 已提交
1933
	return sum;
1934 1935
}

L
Linus Torvalds 已提交
1936
unsigned long long nr_context_switches(void)
1937
{
1938 1939
	int i;
	unsigned long long sum = 0;
1940

1941
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1942
		sum += cpu_rq(i)->nr_switches;
1943

L
Linus Torvalds 已提交
1944 1945
	return sum;
}
1946

L
Linus Torvalds 已提交
1947 1948 1949
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1950

1951
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1952
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1953

L
Linus Torvalds 已提交
1954 1955
	return sum;
}
1956

1957
unsigned long nr_iowait_cpu(int cpu)
1958
{
1959
	struct rq *this = cpu_rq(cpu);
1960 1961
	return atomic_read(&this->nr_iowait);
}
1962

1963 1964 1965 1966 1967
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
1968

1969

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2017 2018 2019 2020
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2037

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2053 2054 2055
/*
 * a1 = a0 * e + a * (1 - e)
 */
2056 2057 2058 2059 2060 2061 2062 2063 2064
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2065 2066
#ifdef CONFIG_NO_HZ
/*
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2105 2106 2107
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2108 2109
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2110

2111
static inline int calc_load_write_idx(void)
2112
{
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2139 2140
	long delta;

2141 2142 2143 2144
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2145
	delta = calc_load_fold_active(this_rq);
2146 2147 2148 2149
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2150 2151
}

2152
void calc_load_exit_idle(void)
2153
{
2154 2155 2156 2157 2158 2159 2160
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2161 2162

	/*
2163 2164 2165
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2166
	 */
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2179 2180 2181

	return delta;
}
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2260
static void calc_global_nohz(void)
2261 2262 2263
{
	long delta, active, n;

2264 2265 2266 2267 2268 2269
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2270

2271 2272
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2273

2274 2275 2276
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2277

2278 2279
		calc_load_update += n * LOAD_FREQ;
	}
2280

2281 2282 2283 2284 2285 2286 2287 2288 2289
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2290
}
2291
#else /* !CONFIG_NO_HZ */
2292

2293 2294
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2295

2296
#endif /* CONFIG_NO_HZ */
2297 2298

/*
2299 2300
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2301
 */
2302
void calc_global_load(unsigned long ticks)
2303
{
2304
	long active, delta;
L
Linus Torvalds 已提交
2305

2306
	if (time_before(jiffies, calc_load_update + 10))
2307
		return;
L
Linus Torvalds 已提交
2308

2309 2310 2311 2312 2313 2314 2315
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2316 2317
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2318

2319 2320 2321
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2322

2323
	calc_load_update += LOAD_FREQ;
2324 2325

	/*
2326
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2327 2328
	 */
	calc_global_nohz();
2329
}
L
Linus Torvalds 已提交
2330

2331
/*
2332 2333
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2334 2335 2336
 */
static void calc_load_account_active(struct rq *this_rq)
{
2337
	long delta;
2338

2339 2340
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2341

2342 2343
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2344
		atomic_long_add(delta, &calc_load_tasks);
2345 2346

	this_rq->calc_load_update += LOAD_FREQ;
2347 2348
}

2349 2350 2351 2352
/*
 * End of global load-average stuff
 */

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2420
/*
I
Ingo Molnar 已提交
2421
 * Update rq->cpu_load[] statistics. This function is usually called every
2422 2423
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2424
 */
2425 2426
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2427
{
I
Ingo Molnar 已提交
2428
	int i, scale;
2429

I
Ingo Molnar 已提交
2430
	this_rq->nr_load_updates++;
2431

I
Ingo Molnar 已提交
2432
	/* Update our load: */
2433 2434
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2435
		unsigned long old_load, new_load;
2436

I
Ingo Molnar 已提交
2437
		/* scale is effectively 1 << i now, and >> i divides by scale */
2438

I
Ingo Molnar 已提交
2439
		old_load = this_rq->cpu_load[i];
2440
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2441
		new_load = this_load;
I
Ingo Molnar 已提交
2442 2443 2444 2445 2446 2447
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2448 2449 2450
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2451
	}
2452 2453

	sched_avg_update(this_rq);
2454 2455
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2470 2471 2472 2473 2474 2475
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2476
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2477 2478 2479 2480
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2481
	 * bail if there's load or we're actually up-to-date.
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2518 2519 2520
/*
 * Called from scheduler_tick()
 */
2521 2522
static void update_cpu_load_active(struct rq *this_rq)
{
2523
	/*
2524
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2525 2526 2527
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2528

2529
	calc_load_account_active(this_rq);
2530 2531
}

I
Ingo Molnar 已提交
2532
#ifdef CONFIG_SMP
2533

2534
/*
P
Peter Zijlstra 已提交
2535 2536
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2537
 */
P
Peter Zijlstra 已提交
2538
void sched_exec(void)
2539
{
P
Peter Zijlstra 已提交
2540
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2541
	unsigned long flags;
2542
	int dest_cpu;
2543

2544
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2545
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2546 2547
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2548

2549
	if (likely(cpu_active(dest_cpu))) {
2550
		struct migration_arg arg = { p, dest_cpu };
2551

2552 2553
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2554 2555
		return;
	}
2556
unlock:
2557
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2558
}
I
Ingo Molnar 已提交
2559

L
Linus Torvalds 已提交
2560 2561 2562
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2563
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2564 2565

EXPORT_PER_CPU_SYMBOL(kstat);
2566
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2567 2568

/*
2569
 * Return any ns on the sched_clock that have not yet been accounted in
2570
 * @p in case that task is currently running.
2571 2572
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2573
 */
2574 2575 2576 2577 2578 2579
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2580
		ns = rq->clock_task - p->se.exec_start;
2581 2582 2583 2584 2585 2586 2587
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2588
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2589 2590
{
	unsigned long flags;
2591
	struct rq *rq;
2592
	u64 ns = 0;
2593

2594
	rq = task_rq_lock(p, &flags);
2595
	ns = do_task_delta_exec(p, rq);
2596
	task_rq_unlock(rq, p, &flags);
2597

2598 2599
	return ns;
}
2600

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2614
	task_rq_unlock(rq, p, &flags);
2615 2616 2617

	return ns;
}
2618

2619 2620 2621 2622 2623 2624 2625 2626
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2627
	struct task_struct *curr = rq->curr;
2628 2629

	sched_clock_tick();
I
Ingo Molnar 已提交
2630

2631
	raw_spin_lock(&rq->lock);
2632
	update_rq_clock(rq);
2633
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2634
	curr->sched_class->task_tick(rq, curr, 0);
2635
	raw_spin_unlock(&rq->lock);
2636

2637
	perf_event_task_tick();
2638

2639
#ifdef CONFIG_SMP
2640
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2641
	trigger_load_balance(rq, cpu);
2642
#endif
L
Linus Torvalds 已提交
2643 2644
}

2645
notrace unsigned long get_parent_ip(unsigned long addr)
2646 2647 2648 2649 2650 2651 2652 2653
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2654

2655 2656 2657
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2658
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2659
{
2660
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2661 2662 2663
	/*
	 * Underflow?
	 */
2664 2665
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2666
#endif
L
Linus Torvalds 已提交
2667
	preempt_count() += val;
2668
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2669 2670 2671
	/*
	 * Spinlock count overflowing soon?
	 */
2672 2673
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2674 2675 2676
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2677 2678 2679
}
EXPORT_SYMBOL(add_preempt_count);

2680
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2681
{
2682
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2683 2684 2685
	/*
	 * Underflow?
	 */
2686
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2687
		return;
L
Linus Torvalds 已提交
2688 2689 2690
	/*
	 * Is the spinlock portion underflowing?
	 */
2691 2692 2693
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2694
#endif
2695

2696 2697
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2698 2699 2700 2701 2702 2703 2704
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2705
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2706
 */
I
Ingo Molnar 已提交
2707
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2708
{
2709 2710 2711
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2712 2713
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2714

I
Ingo Molnar 已提交
2715
	debug_show_held_locks(prev);
2716
	print_modules();
I
Ingo Molnar 已提交
2717 2718
	if (irqs_disabled())
		print_irqtrace_events(prev);
2719
	dump_stack();
2720
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2721
}
L
Linus Torvalds 已提交
2722

I
Ingo Molnar 已提交
2723 2724 2725 2726 2727
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2728
	/*
I
Ingo Molnar 已提交
2729
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2730 2731 2732
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2733
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2734
		__schedule_bug(prev);
2735
	rcu_sleep_check();
I
Ingo Molnar 已提交
2736

L
Linus Torvalds 已提交
2737 2738
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2739
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2740 2741
}

P
Peter Zijlstra 已提交
2742
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2743
{
2744
	if (prev->on_rq || rq->skip_clock_update < 0)
2745
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2746
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2747 2748
}

I
Ingo Molnar 已提交
2749 2750 2751 2752
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2753
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2754
{
2755
	const struct sched_class *class;
I
Ingo Molnar 已提交
2756
	struct task_struct *p;
L
Linus Torvalds 已提交
2757 2758

	/*
I
Ingo Molnar 已提交
2759 2760
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2761
	 */
2762
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2763
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2764 2765
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2766 2767
	}

2768
	for_each_class(class) {
2769
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2770 2771 2772
		if (p)
			return p;
	}
2773 2774

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2775
}
L
Linus Torvalds 已提交
2776

I
Ingo Molnar 已提交
2777
/*
2778
 * __schedule() is the main scheduler function.
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2813
 */
2814
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2815 2816
{
	struct task_struct *prev, *next;
2817
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2818
	struct rq *rq;
2819
	int cpu;
I
Ingo Molnar 已提交
2820

2821 2822
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2823 2824
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2825
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2826 2827 2828
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2829

2830
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2831
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2832

2833
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2834

2835
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2836
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2837
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2838
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2839
		} else {
2840 2841 2842
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2843
			/*
2844 2845 2846
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2856
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2857 2858
	}

2859
	pre_schedule(rq, prev);
2860

I
Ingo Molnar 已提交
2861
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2862 2863
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2864
	put_prev_task(rq, prev);
2865
	next = pick_next_task(rq);
2866 2867
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2868 2869 2870 2871 2872 2873

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2874
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2875
		/*
2876 2877 2878 2879
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2880 2881 2882
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2883
	} else
2884
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2885

2886
	post_schedule(rq);
L
Linus Torvalds 已提交
2887

2888
	sched_preempt_enable_no_resched();
2889
	if (need_resched())
L
Linus Torvalds 已提交
2890 2891
		goto need_resched;
}
2892

2893 2894
static inline void sched_submit_work(struct task_struct *tsk)
{
2895
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2896 2897 2898 2899 2900 2901 2902 2903 2904
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2905
asmlinkage void __sched schedule(void)
2906
{
2907 2908 2909
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2910 2911
	__schedule();
}
L
Linus Torvalds 已提交
2912 2913
EXPORT_SYMBOL(schedule);

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
#ifdef CONFIG_RCU_USER_QS
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
	rcu_user_exit();
	schedule();
	rcu_user_enter();
}
#endif

2929 2930 2931 2932 2933 2934 2935
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2936
	sched_preempt_enable_no_resched();
2937 2938 2939 2940
	schedule();
	preempt_disable();
}

2941
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2942

2943 2944 2945
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2946
		return false;
2947 2948

	/*
2949 2950 2951 2952
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2953
	 */
2954
	barrier();
2955

2956
	return owner->on_cpu;
2957
}
2958

2959 2960 2961 2962 2963 2964 2965 2966
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2967

2968
	rcu_read_lock();
2969 2970
	while (owner_running(lock, owner)) {
		if (need_resched())
2971
			break;
2972

2973
		arch_mutex_cpu_relax();
2974
	}
2975
	rcu_read_unlock();
2976

2977
	/*
2978 2979 2980
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
2981
	 */
2982
	return lock->owner == NULL;
2983 2984 2985
}
#endif

L
Linus Torvalds 已提交
2986 2987
#ifdef CONFIG_PREEMPT
/*
2988
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2989
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2990 2991
 * occur there and call schedule directly.
 */
2992
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2993 2994
{
	struct thread_info *ti = current_thread_info();
2995

L
Linus Torvalds 已提交
2996 2997
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2998
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2999
	 */
N
Nick Piggin 已提交
3000
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3001 3002
		return;

3003
	do {
3004
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3005
		__schedule();
3006
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3007

3008 3009 3010 3011 3012
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3013
	} while (need_resched());
L
Linus Torvalds 已提交
3014 3015 3016 3017
}
EXPORT_SYMBOL(preempt_schedule);

/*
3018
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3019 3020 3021 3022 3023 3024 3025
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3026

3027
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3028 3029
	BUG_ON(ti->preempt_count || !irqs_disabled());

3030
	rcu_user_exit();
3031 3032 3033
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3034
		__schedule();
3035 3036
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3037

3038 3039 3040 3041 3042
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3043
	} while (need_resched());
L
Linus Torvalds 已提交
3044 3045 3046 3047
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3048
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3049
			  void *key)
L
Linus Torvalds 已提交
3050
{
P
Peter Zijlstra 已提交
3051
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3052 3053 3054 3055
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3056 3057
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3058 3059 3060
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3061
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3062 3063
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3064
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3065
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3066
{
3067
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3068

3069
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3070 3071
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3072
		if (curr->func(curr, mode, wake_flags, key) &&
3073
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3083
 * @key: is directly passed to the wakeup function
3084 3085 3086
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3087
 */
3088
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3089
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3102
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3103
{
3104
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3105
}
3106
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3107

3108 3109 3110 3111
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3112
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3113

L
Linus Torvalds 已提交
3114
/**
3115
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3116 3117 3118
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3119
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3120 3121 3122 3123 3124 3125 3126
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3127 3128 3129
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3130
 */
3131 3132
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3133 3134
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3135
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3136 3137 3138 3139 3140

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3141
		wake_flags = 0;
L
Linus Torvalds 已提交
3142 3143

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3144
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3145 3146
	spin_unlock_irqrestore(&q->lock, flags);
}
3147 3148 3149 3150 3151 3152 3153 3154 3155
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3156 3157
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3158 3159 3160 3161 3162 3163 3164 3165
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3166 3167 3168
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3169
 */
3170
void complete(struct completion *x)
L
Linus Torvalds 已提交
3171 3172 3173 3174 3175
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3176
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3177 3178 3179 3180
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3181 3182 3183 3184 3185
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3186 3187 3188
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3189
 */
3190
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3191 3192 3193 3194 3195
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3196
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3197 3198 3199 3200
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3201 3202
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3203 3204 3205 3206
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3207
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3208
		do {
3209
			if (signal_pending_state(state, current)) {
3210 3211
				timeout = -ERESTARTSYS;
				break;
3212 3213
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3214 3215 3216
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3217
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3218
		__remove_wait_queue(&x->wait, &wait);
3219 3220
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3221 3222
	}
	x->done--;
3223
	return timeout ?: 1;
L
Linus Torvalds 已提交
3224 3225
}

3226 3227
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3228 3229 3230 3231
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3232
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3233
	spin_unlock_irq(&x->wait.lock);
3234 3235
	return timeout;
}
L
Linus Torvalds 已提交
3236

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3247
void __sched wait_for_completion(struct completion *x)
3248 3249
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3250
}
3251
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3252

3253 3254 3255 3256 3257 3258 3259 3260
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3261 3262 3263
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3264
 */
3265
unsigned long __sched
3266
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3267
{
3268
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3269
}
3270
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3271

3272 3273 3274 3275 3276 3277
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3278 3279
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3280
 */
3281
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3282
{
3283 3284 3285 3286
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3287
}
3288
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3289

3290 3291 3292 3293 3294 3295 3296
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3297 3298 3299
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3300
 */
3301
long __sched
3302 3303
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3304
{
3305
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3306
}
3307
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3308

3309 3310 3311 3312 3313 3314
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3315 3316
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3317
 */
M
Matthew Wilcox 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3327 3328 3329 3330 3331 3332 3333 3334
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3335 3336 3337
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3338
 */
3339
long __sched
3340 3341 3342 3343 3344 3345 3346
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3361
	unsigned long flags;
3362 3363
	int ret = 1;

3364
	spin_lock_irqsave(&x->wait.lock, flags);
3365 3366 3367 3368
	if (!x->done)
		ret = 0;
	else
		x->done--;
3369
	spin_unlock_irqrestore(&x->wait.lock, flags);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3384
	unsigned long flags;
3385 3386
	int ret = 1;

3387
	spin_lock_irqsave(&x->wait.lock, flags);
3388 3389
	if (!x->done)
		ret = 0;
3390
	spin_unlock_irqrestore(&x->wait.lock, flags);
3391 3392 3393 3394
	return ret;
}
EXPORT_SYMBOL(completion_done);

3395 3396
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3397
{
I
Ingo Molnar 已提交
3398 3399 3400 3401
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3402

3403
	__set_current_state(state);
L
Linus Torvalds 已提交
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3419 3420 3421
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3422
long __sched
I
Ingo Molnar 已提交
3423
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3424
{
3425
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3426 3427 3428
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3429
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3430
{
3431
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3432 3433 3434
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3435
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3436
{
3437
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3438 3439 3440
}
EXPORT_SYMBOL(sleep_on_timeout);

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3453
void rt_mutex_setprio(struct task_struct *p, int prio)
3454
{
3455
	int oldprio, on_rq, running;
3456
	struct rq *rq;
3457
	const struct sched_class *prev_class;
3458 3459 3460

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3461
	rq = __task_rq_lock(p);
3462

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3481
	trace_sched_pi_setprio(p, prio);
3482
	oldprio = p->prio;
3483
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3484
	on_rq = p->on_rq;
3485
	running = task_current(rq, p);
3486
	if (on_rq)
3487
		dequeue_task(rq, p, 0);
3488 3489
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3490 3491 3492 3493 3494 3495

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3496 3497
	p->prio = prio;

3498 3499
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3500
	if (on_rq)
3501
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3502

P
Peter Zijlstra 已提交
3503
	check_class_changed(rq, p, prev_class, oldprio);
3504
out_unlock:
3505
	__task_rq_unlock(rq);
3506 3507
}
#endif
3508
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3509
{
I
Ingo Molnar 已提交
3510
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3511
	unsigned long flags;
3512
	struct rq *rq;
L
Linus Torvalds 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3525
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3526
	 */
3527
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3528 3529 3530
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3531
	on_rq = p->on_rq;
3532
	if (on_rq)
3533
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3534 3535

	p->static_prio = NICE_TO_PRIO(nice);
3536
	set_load_weight(p);
3537 3538 3539
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3540

I
Ingo Molnar 已提交
3541
	if (on_rq) {
3542
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3543
		/*
3544 3545
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3546
		 */
3547
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3548 3549 3550
			resched_task(rq->curr);
	}
out_unlock:
3551
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3552 3553 3554
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3555 3556 3557 3558 3559
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3560
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3561
{
3562 3563
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3564

3565
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3566 3567 3568
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3578
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3579
{
3580
	long nice, retval;
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3587 3588
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3589 3590 3591
	if (increment > 40)
		increment = 40;

3592
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3598 3599 3600
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3619
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3628
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3629 3630 3631
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3632
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638 3639

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3660
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3661 3662 3663 3664 3665 3666 3667 3668
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3669
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3670
{
3671
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3672 3673 3674
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3675 3676
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3677 3678 3679
{
	p->policy = policy;
	p->rt_priority = prio;
3680 3681 3682
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3683 3684 3685 3686
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3687
	set_load_weight(p);
L
Linus Torvalds 已提交
3688 3689
}

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3700 3701
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3702 3703 3704 3705
	rcu_read_unlock();
	return match;
}

3706
static int __sched_setscheduler(struct task_struct *p, int policy,
3707
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3708
{
3709
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3710
	unsigned long flags;
3711
	const struct sched_class *prev_class;
3712
	struct rq *rq;
3713
	int reset_on_fork;
L
Linus Torvalds 已提交
3714

3715 3716
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3717 3718
recheck:
	/* double check policy once rq lock held */
3719 3720
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3721
		policy = oldpolicy = p->policy;
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3732 3733
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3734 3735
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3736 3737
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3738
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3739
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3740
		return -EINVAL;
3741
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3742 3743
		return -EINVAL;

3744 3745 3746
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3747
	if (user && !capable(CAP_SYS_NICE)) {
3748
		if (rt_policy(policy)) {
3749 3750
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3761

I
Ingo Molnar 已提交
3762
		/*
3763 3764
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3765
		 */
3766 3767 3768 3769
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3770

3771
		/* can't change other user's priorities */
3772
		if (!check_same_owner(p))
3773
			return -EPERM;
3774 3775 3776 3777

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3778
	}
L
Linus Torvalds 已提交
3779

3780
	if (user) {
3781
		retval = security_task_setscheduler(p);
3782 3783 3784 3785
		if (retval)
			return retval;
	}

3786 3787 3788
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3789
	 *
L
Lucas De Marchi 已提交
3790
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3791 3792
	 * runqueue lock must be held.
	 */
3793
	rq = task_rq_lock(p, &flags);
3794

3795 3796 3797 3798
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3799
		task_rq_unlock(rq, p, &flags);
3800 3801 3802
		return -EINVAL;
	}

3803 3804 3805 3806 3807
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3808
		task_rq_unlock(rq, p, &flags);
3809 3810 3811
		return 0;
	}

3812 3813 3814 3815 3816 3817 3818
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3819 3820
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3821
			task_rq_unlock(rq, p, &flags);
3822 3823 3824 3825 3826
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3827 3828 3829
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3830
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3831 3832
		goto recheck;
	}
P
Peter Zijlstra 已提交
3833
	on_rq = p->on_rq;
3834
	running = task_current(rq, p);
3835
	if (on_rq)
3836
		dequeue_task(rq, p, 0);
3837 3838
	if (running)
		p->sched_class->put_prev_task(rq, p);
3839

3840 3841
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3842
	oldprio = p->prio;
3843
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3844
	__setscheduler(rq, p, policy, param->sched_priority);
3845

3846 3847
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3848
	if (on_rq)
3849
		enqueue_task(rq, p, 0);
3850

P
Peter Zijlstra 已提交
3851
	check_class_changed(rq, p, prev_class, oldprio);
3852
	task_rq_unlock(rq, p, &flags);
3853

3854 3855
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3856 3857
	return 0;
}
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3868
		       const struct sched_param *param)
3869 3870 3871
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3872 3873
EXPORT_SYMBOL_GPL(sched_setscheduler);

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3886
			       const struct sched_param *param)
3887 3888 3889 3890
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3891 3892
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3893 3894 3895
{
	struct sched_param lparam;
	struct task_struct *p;
3896
	int retval;
L
Linus Torvalds 已提交
3897 3898 3899 3900 3901

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3902 3903 3904

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3905
	p = find_process_by_pid(pid);
3906 3907 3908
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3909

L
Linus Torvalds 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3919 3920
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3921
{
3922 3923 3924 3925
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3934
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3935 3936 3937 3938 3939 3940 3941 3942
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3943
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3944
{
3945
	struct task_struct *p;
3946
	int retval;
L
Linus Torvalds 已提交
3947 3948

	if (pid < 0)
3949
		return -EINVAL;
L
Linus Torvalds 已提交
3950 3951

	retval = -ESRCH;
3952
	rcu_read_lock();
L
Linus Torvalds 已提交
3953 3954 3955 3956
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3957 3958
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3959
	}
3960
	rcu_read_unlock();
L
Linus Torvalds 已提交
3961 3962 3963 3964
	return retval;
}

/**
3965
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3966 3967 3968
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3969
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3970 3971
{
	struct sched_param lp;
3972
	struct task_struct *p;
3973
	int retval;
L
Linus Torvalds 已提交
3974 3975

	if (!param || pid < 0)
3976
		return -EINVAL;
L
Linus Torvalds 已提交
3977

3978
	rcu_read_lock();
L
Linus Torvalds 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3989
	rcu_read_unlock();
L
Linus Torvalds 已提交
3990 3991 3992 3993 3994 3995 3996 3997 3998

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3999
	rcu_read_unlock();
L
Linus Torvalds 已提交
4000 4001 4002
	return retval;
}

4003
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4004
{
4005
	cpumask_var_t cpus_allowed, new_mask;
4006 4007
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4008

4009
	get_online_cpus();
4010
	rcu_read_lock();
L
Linus Torvalds 已提交
4011 4012 4013

	p = find_process_by_pid(pid);
	if (!p) {
4014
		rcu_read_unlock();
4015
		put_online_cpus();
L
Linus Torvalds 已提交
4016 4017 4018
		return -ESRCH;
	}

4019
	/* Prevent p going away */
L
Linus Torvalds 已提交
4020
	get_task_struct(p);
4021
	rcu_read_unlock();
L
Linus Torvalds 已提交
4022

4023 4024 4025 4026 4027 4028 4029 4030
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4031
	retval = -EPERM;
4032
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4033 4034
		goto out_unlock;

4035
	retval = security_task_setscheduler(p);
4036 4037 4038
	if (retval)
		goto out_unlock;

4039 4040
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4041
again:
4042
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4043

P
Paul Menage 已提交
4044
	if (!retval) {
4045 4046
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4047 4048 4049 4050 4051
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4052
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4053 4054 4055
			goto again;
		}
	}
L
Linus Torvalds 已提交
4056
out_unlock:
4057 4058 4059 4060
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4061
	put_task_struct(p);
4062
	put_online_cpus();
L
Linus Torvalds 已提交
4063 4064 4065 4066
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4067
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4068
{
4069 4070 4071 4072 4073
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4083 4084
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4085
{
4086
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4087 4088
	int retval;

4089 4090
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4091

4092 4093 4094 4095 4096
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4097 4098
}

4099
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4100
{
4101
	struct task_struct *p;
4102
	unsigned long flags;
L
Linus Torvalds 已提交
4103 4104
	int retval;

4105
	get_online_cpus();
4106
	rcu_read_lock();
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4113 4114 4115 4116
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4117
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4118
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4119
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4120 4121

out_unlock:
4122
	rcu_read_unlock();
4123
	put_online_cpus();
L
Linus Torvalds 已提交
4124

4125
	return retval;
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130 4131 4132 4133
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4134 4135
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4136 4137
{
	int ret;
4138
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4139

A
Anton Blanchard 已提交
4140
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4141 4142
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4143 4144
		return -EINVAL;

4145 4146
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4147

4148 4149
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4150
		size_t retlen = min_t(size_t, len, cpumask_size());
4151 4152

		if (copy_to_user(user_mask_ptr, mask, retlen))
4153 4154
			ret = -EFAULT;
		else
4155
			ret = retlen;
4156 4157
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4158

4159
	return ret;
L
Linus Torvalds 已提交
4160 4161 4162 4163 4164
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4165 4166
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4167
 */
4168
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4169
{
4170
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4171

4172
	schedstat_inc(rq, yld_count);
4173
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4174 4175 4176 4177 4178 4179

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4180
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4181
	do_raw_spin_unlock(&rq->lock);
4182
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4183 4184 4185 4186 4187 4188

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4189 4190 4191 4192 4193
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4194
static void __cond_resched(void)
L
Linus Torvalds 已提交
4195
{
4196
	add_preempt_count(PREEMPT_ACTIVE);
4197
	__schedule();
4198
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4199 4200
}

4201
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4202
{
P
Peter Zijlstra 已提交
4203
	if (should_resched()) {
L
Linus Torvalds 已提交
4204 4205 4206 4207 4208
		__cond_resched();
		return 1;
	}
	return 0;
}
4209
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4210 4211

/*
4212
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4213 4214
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4215
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4216 4217 4218
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4219
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4220
{
P
Peter Zijlstra 已提交
4221
	int resched = should_resched();
J
Jan Kara 已提交
4222 4223
	int ret = 0;

4224 4225
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4226
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4227
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4228
		if (resched)
N
Nick Piggin 已提交
4229 4230 4231
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4232
		ret = 1;
L
Linus Torvalds 已提交
4233 4234
		spin_lock(lock);
	}
J
Jan Kara 已提交
4235
	return ret;
L
Linus Torvalds 已提交
4236
}
4237
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4238

4239
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4240 4241 4242
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4243
	if (should_resched()) {
4244
		local_bh_enable();
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4251
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4252 4253 4254 4255

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279 4280 4281
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4282 4283 4284 4285
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4286 4287
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4322
	if (yielded) {
4323
		schedstat_inc(rq, yld_count);
4324 4325 4326 4327 4328 4329 4330
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4343
/*
I
Ingo Molnar 已提交
4344
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4345 4346 4347 4348
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4349
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4350

4351
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4352
	atomic_inc(&rq->nr_iowait);
4353
	blk_flush_plug(current);
4354
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4355
	schedule();
4356
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4357
	atomic_dec(&rq->nr_iowait);
4358
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4359 4360 4361 4362 4363
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4364
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4365 4366
	long ret;

4367
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4368
	atomic_inc(&rq->nr_iowait);
4369
	blk_flush_plug(current);
4370
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4371
	ret = schedule_timeout(timeout);
4372
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4373
	atomic_dec(&rq->nr_iowait);
4374
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4385
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390 4391 4392 4393 4394
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4395
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4396
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4410
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4420
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4421
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4435
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4436
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4437
{
4438
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4439
	unsigned int time_slice;
4440 4441
	unsigned long flags;
	struct rq *rq;
4442
	int retval;
L
Linus Torvalds 已提交
4443 4444 4445
	struct timespec t;

	if (pid < 0)
4446
		return -EINVAL;
L
Linus Torvalds 已提交
4447 4448

	retval = -ESRCH;
4449
	rcu_read_lock();
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4458 4459
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4460
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4461

4462
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4463
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4464 4465
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4466

L
Linus Torvalds 已提交
4467
out_unlock:
4468
	rcu_read_unlock();
L
Linus Torvalds 已提交
4469 4470 4471
	return retval;
}

4472
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4473

4474
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4475 4476
{
	unsigned long free = 0;
4477
	unsigned state;
L
Linus Torvalds 已提交
4478 4479

	state = p->state ? __ffs(p->state) + 1 : 0;
4480
	printk(KERN_INFO "%-15.15s %c", p->comm,
4481
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4482
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4483
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4484
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4485
	else
P
Peter Zijlstra 已提交
4486
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4487 4488
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4489
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4490
	else
P
Peter Zijlstra 已提交
4491
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4492 4493
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4494
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4495
#endif
P
Peter Zijlstra 已提交
4496
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4497
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4498
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4499

4500
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4501 4502
}

I
Ingo Molnar 已提交
4503
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4504
{
4505
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4506

4507
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4508 4509
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4510
#else
P
Peter Zijlstra 已提交
4511 4512
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4513
#endif
4514
	rcu_read_lock();
L
Linus Torvalds 已提交
4515 4516 4517
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4518
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4519 4520
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4521
		if (!state_filter || (p->state & state_filter))
4522
			sched_show_task(p);
L
Linus Torvalds 已提交
4523 4524
	} while_each_thread(g, p);

4525 4526
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4527 4528 4529
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4530
	rcu_read_unlock();
I
Ingo Molnar 已提交
4531 4532 4533
	/*
	 * Only show locks if all tasks are dumped:
	 */
4534
	if (!state_filter)
I
Ingo Molnar 已提交
4535
		debug_show_all_locks();
L
Linus Torvalds 已提交
4536 4537
}

I
Ingo Molnar 已提交
4538 4539
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4540
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4541 4542
}

4543 4544 4545 4546 4547 4548 4549 4550
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4551
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4552
{
4553
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4554 4555
	unsigned long flags;

4556
	raw_spin_lock_irqsave(&rq->lock, flags);
4557

I
Ingo Molnar 已提交
4558
	__sched_fork(idle);
4559
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4560 4561
	idle->se.exec_start = sched_clock();

4562
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4574
	__set_task_cpu(idle, cpu);
4575
	rcu_read_unlock();
L
Linus Torvalds 已提交
4576 4577

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4578 4579
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4580
#endif
4581
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4582 4583

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4584
	task_thread_info(idle)->preempt_count = 0;
4585

I
Ingo Molnar 已提交
4586 4587 4588 4589
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4590
	ftrace_graph_init_idle_task(idle, cpu);
4591 4592 4593
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4594 4595
}

L
Linus Torvalds 已提交
4596
#ifdef CONFIG_SMP
4597 4598 4599 4600
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4601 4602

	cpumask_copy(&p->cpus_allowed, new_mask);
4603
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4604 4605
}

L
Linus Torvalds 已提交
4606 4607 4608
/*
 * This is how migration works:
 *
4609 4610 4611 4612 4613 4614
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4615
 *    it and puts it into the right queue.
4616 4617
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4618 4619 4620 4621 4622 4623 4624 4625
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4626
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4627 4628
 * call is not atomic; no spinlocks may be held.
 */
4629
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4630 4631
{
	unsigned long flags;
4632
	struct rq *rq;
4633
	unsigned int dest_cpu;
4634
	int ret = 0;
L
Linus Torvalds 已提交
4635 4636

	rq = task_rq_lock(p, &flags);
4637

4638 4639 4640
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4641
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4642 4643 4644 4645
		ret = -EINVAL;
		goto out;
	}

4646
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4647 4648 4649 4650
		ret = -EINVAL;
		goto out;
	}

4651
	do_set_cpus_allowed(p, new_mask);
4652

L
Linus Torvalds 已提交
4653
	/* Can the task run on the task's current CPU? If so, we're done */
4654
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4655 4656
		goto out;

4657
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4658
	if (p->on_rq) {
4659
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4660
		/* Need help from migration thread: drop lock and wait. */
4661
		task_rq_unlock(rq, p, &flags);
4662
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4663 4664 4665 4666
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4667
	task_rq_unlock(rq, p, &flags);
4668

L
Linus Torvalds 已提交
4669 4670
	return ret;
}
4671
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4672 4673

/*
I
Ingo Molnar 已提交
4674
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4675 4676 4677 4678 4679 4680
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4681 4682
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4683
 */
4684
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4685
{
4686
	struct rq *rq_dest, *rq_src;
4687
	int ret = 0;
L
Linus Torvalds 已提交
4688

4689
	if (unlikely(!cpu_active(dest_cpu)))
4690
		return ret;
L
Linus Torvalds 已提交
4691 4692 4693 4694

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4695
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4696 4697 4698
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4699
		goto done;
L
Linus Torvalds 已提交
4700
	/* Affinity changed (again). */
4701
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4702
		goto fail;
L
Linus Torvalds 已提交
4703

4704 4705 4706 4707
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4708
	if (p->on_rq) {
4709
		dequeue_task(rq_src, p, 0);
4710
		set_task_cpu(p, dest_cpu);
4711
		enqueue_task(rq_dest, p, 0);
4712
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4713
	}
L
Linus Torvalds 已提交
4714
done:
4715
	ret = 1;
L
Linus Torvalds 已提交
4716
fail:
L
Linus Torvalds 已提交
4717
	double_rq_unlock(rq_src, rq_dest);
4718
	raw_spin_unlock(&p->pi_lock);
4719
	return ret;
L
Linus Torvalds 已提交
4720 4721 4722
}

/*
4723 4724 4725
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4726
 */
4727
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4728
{
4729
	struct migration_arg *arg = data;
4730

4731 4732 4733 4734
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4735
	local_irq_disable();
4736
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4737
	local_irq_enable();
L
Linus Torvalds 已提交
4738
	return 0;
4739 4740
}

L
Linus Torvalds 已提交
4741
#ifdef CONFIG_HOTPLUG_CPU
4742

4743
/*
4744 4745
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4746
 */
4747
void idle_task_exit(void)
L
Linus Torvalds 已提交
4748
{
4749
	struct mm_struct *mm = current->active_mm;
4750

4751
	BUG_ON(cpu_online(smp_processor_id()));
4752

4753 4754 4755
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4756 4757 4758
}

/*
4759 4760 4761 4762 4763
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4764
 */
4765
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4766
{
4767 4768 4769
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4770 4771
}

4772
/*
4773 4774 4775 4776 4777 4778
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4779
 */
4780
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4781
{
4782
	struct rq *rq = cpu_rq(dead_cpu);
4783 4784
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4785 4786

	/*
4787 4788 4789 4790 4791 4792 4793
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4794
	 */
4795
	rq->stop = NULL;
4796

I
Ingo Molnar 已提交
4797
	for ( ; ; ) {
4798 4799 4800 4801 4802
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4803
			break;
4804

4805
		next = pick_next_task(rq);
4806
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4807
		next->sched_class->put_prev_task(rq, next);
4808

4809 4810 4811 4812 4813 4814 4815
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4816
	}
4817

4818
	rq->stop = stop;
4819
}
4820

L
Linus Torvalds 已提交
4821 4822
#endif /* CONFIG_HOTPLUG_CPU */

4823 4824 4825
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4826 4827
	{
		.procname	= "sched_domain",
4828
		.mode		= 0555,
4829
	},
4830
	{}
4831 4832 4833
};

static struct ctl_table sd_ctl_root[] = {
4834 4835
	{
		.procname	= "kernel",
4836
		.mode		= 0555,
4837 4838
		.child		= sd_ctl_dir,
	},
4839
	{}
4840 4841 4842 4843 4844
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4845
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4846 4847 4848 4849

	return entry;
}

4850 4851
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4852
	struct ctl_table *entry;
4853

4854 4855 4856
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4857
	 * will always be set. In the lowest directory the names are
4858 4859 4860
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4861 4862
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4863 4864 4865
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4866 4867 4868 4869 4870

	kfree(*tablep);
	*tablep = NULL;
}

4871 4872 4873
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4874
static void
4875
set_table_entry(struct ctl_table *entry,
4876
		const char *procname, void *data, int maxlen,
4877 4878
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4879 4880 4881 4882 4883 4884
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4885 4886 4887 4888 4889

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4890 4891 4892 4893 4894
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4895
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4896

4897 4898 4899
	if (table == NULL)
		return NULL;

4900
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4901
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4902
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4903
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4904
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4905
		sizeof(int), 0644, proc_dointvec_minmax, true);
4906
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4907
		sizeof(int), 0644, proc_dointvec_minmax, true);
4908
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4909
		sizeof(int), 0644, proc_dointvec_minmax, true);
4910
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4911
		sizeof(int), 0644, proc_dointvec_minmax, true);
4912
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4913
		sizeof(int), 0644, proc_dointvec_minmax, true);
4914
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4915
		sizeof(int), 0644, proc_dointvec_minmax, false);
4916
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4917
		sizeof(int), 0644, proc_dointvec_minmax, false);
4918
	set_table_entry(&table[9], "cache_nice_tries",
4919
		&sd->cache_nice_tries,
4920
		sizeof(int), 0644, proc_dointvec_minmax, false);
4921
	set_table_entry(&table[10], "flags", &sd->flags,
4922
		sizeof(int), 0644, proc_dointvec_minmax, false);
4923
	set_table_entry(&table[11], "name", sd->name,
4924
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4925
	/* &table[12] is terminator */
4926 4927 4928 4929

	return table;
}

4930
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4931 4932 4933 4934 4935 4936 4937 4938 4939
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4940 4941
	if (table == NULL)
		return NULL;
4942 4943 4944 4945 4946

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4947
		entry->mode = 0555;
4948 4949 4950 4951 4952 4953 4954 4955
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4956
static void register_sched_domain_sysctl(void)
4957
{
4958
	int i, cpu_num = num_possible_cpus();
4959 4960 4961
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4962 4963 4964
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4965 4966 4967
	if (entry == NULL)
		return;

4968
	for_each_possible_cpu(i) {
4969 4970
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4971
		entry->mode = 0555;
4972
		entry->child = sd_alloc_ctl_cpu_table(i);
4973
		entry++;
4974
	}
4975 4976

	WARN_ON(sd_sysctl_header);
4977 4978
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4979

4980
/* may be called multiple times per register */
4981 4982
static void unregister_sched_domain_sysctl(void)
{
4983 4984
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4985
	sd_sysctl_header = NULL;
4986 4987
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4988
}
4989
#else
4990 4991 4992 4993
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4994 4995 4996 4997
{
}
#endif

4998 4999 5000 5001 5002
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5003
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5023
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5024 5025 5026 5027
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5028 5029 5030 5031
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5032 5033
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5034
{
5035
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5036
	unsigned long flags;
5037
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5038

5039
	switch (action & ~CPU_TASKS_FROZEN) {
5040

L
Linus Torvalds 已提交
5041
	case CPU_UP_PREPARE:
5042
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5043
		break;
5044

L
Linus Torvalds 已提交
5045
	case CPU_ONLINE:
5046
		/* Update our root-domain */
5047
		raw_spin_lock_irqsave(&rq->lock, flags);
5048
		if (rq->rd) {
5049
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5050 5051

			set_rq_online(rq);
5052
		}
5053
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5054
		break;
5055

L
Linus Torvalds 已提交
5056
#ifdef CONFIG_HOTPLUG_CPU
5057
	case CPU_DYING:
5058
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5059
		/* Update our root-domain */
5060
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5061
		if (rq->rd) {
5062
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5063
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5064
		}
5065 5066
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5067
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5068
		break;
5069

5070
	case CPU_DEAD:
5071
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5072
		break;
L
Linus Torvalds 已提交
5073 5074
#endif
	}
5075 5076 5077

	update_max_interval();

L
Linus Torvalds 已提交
5078 5079 5080
	return NOTIFY_OK;
}

5081 5082 5083
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5084
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5085
 */
5086
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5087
	.notifier_call = migration_call,
5088
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5089 5090
};

5091 5092 5093 5094
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5095
	case CPU_STARTING:
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5116
static int __init migration_init(void)
L
Linus Torvalds 已提交
5117 5118
{
	void *cpu = (void *)(long)smp_processor_id();
5119
	int err;
5120

5121
	/* Initialize migration for the boot CPU */
5122 5123
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5124 5125
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5126

5127 5128 5129 5130
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5131
	return 0;
L
Linus Torvalds 已提交
5132
}
5133
early_initcall(migration_init);
L
Linus Torvalds 已提交
5134 5135 5136
#endif

#ifdef CONFIG_SMP
5137

5138 5139
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5140
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5141

5142
static __read_mostly int sched_debug_enabled;
5143

5144
static int __init sched_debug_setup(char *str)
5145
{
5146
	sched_debug_enabled = 1;
5147 5148 5149

	return 0;
}
5150 5151 5152 5153 5154 5155
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5156

5157
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5158
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5159
{
I
Ingo Molnar 已提交
5160
	struct sched_group *group = sd->groups;
5161
	char str[256];
L
Linus Torvalds 已提交
5162

R
Rusty Russell 已提交
5163
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5164
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5165 5166 5167 5168

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5169
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5170
		if (sd->parent)
P
Peter Zijlstra 已提交
5171 5172
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5173
		return -1;
N
Nick Piggin 已提交
5174 5175
	}

P
Peter Zijlstra 已提交
5176
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5177

5178
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5179 5180
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5181
	}
5182
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5183 5184
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5185
	}
L
Linus Torvalds 已提交
5186

I
Ingo Molnar 已提交
5187
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5188
	do {
I
Ingo Molnar 已提交
5189
		if (!group) {
P
Peter Zijlstra 已提交
5190 5191
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5192 5193 5194
			break;
		}

5195 5196 5197 5198 5199 5200
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5201 5202 5203
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5204 5205
			break;
		}
L
Linus Torvalds 已提交
5206

5207
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5208 5209
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5210 5211
			break;
		}
L
Linus Torvalds 已提交
5212

5213 5214
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5215 5216
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5217 5218
			break;
		}
L
Linus Torvalds 已提交
5219

5220
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5221

R
Rusty Russell 已提交
5222
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5223

P
Peter Zijlstra 已提交
5224
		printk(KERN_CONT " %s", str);
5225
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5226
			printk(KERN_CONT " (cpu_power = %d)",
5227
				group->sgp->power);
5228
		}
L
Linus Torvalds 已提交
5229

I
Ingo Molnar 已提交
5230 5231
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5232
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5233

5234
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5235
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5236

5237 5238
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5239 5240
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5241 5242
	return 0;
}
L
Linus Torvalds 已提交
5243

I
Ingo Molnar 已提交
5244 5245 5246
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5247

5248
	if (!sched_debug_enabled)
5249 5250
		return;

I
Ingo Molnar 已提交
5251 5252 5253 5254
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5255

I
Ingo Molnar 已提交
5256 5257 5258
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5259
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5260
			break;
L
Linus Torvalds 已提交
5261 5262
		level++;
		sd = sd->parent;
5263
		if (!sd)
I
Ingo Molnar 已提交
5264 5265
			break;
	}
L
Linus Torvalds 已提交
5266
}
5267
#else /* !CONFIG_SCHED_DEBUG */
5268
# define sched_domain_debug(sd, cpu) do { } while (0)
5269 5270 5271 5272
static inline bool sched_debug(void)
{
	return false;
}
5273
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5274

5275
static int sd_degenerate(struct sched_domain *sd)
5276
{
5277
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5278 5279 5280 5281 5282 5283
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5284 5285 5286
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5287 5288 5289 5290 5291
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5292
	if (sd->flags & (SD_WAKE_AFFINE))
5293 5294 5295 5296 5297
		return 0;

	return 1;
}

5298 5299
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5300 5301 5302 5303 5304 5305
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5306
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5307 5308 5309 5310 5311 5312 5313
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5314 5315 5316
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5317 5318
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5319 5320 5321 5322 5323 5324 5325
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5326
static void free_rootdomain(struct rcu_head *rcu)
5327
{
5328
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5329

5330
	cpupri_cleanup(&rd->cpupri);
5331 5332 5333 5334 5335 5336
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5337 5338
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5339
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5340 5341
	unsigned long flags;

5342
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5343 5344

	if (rq->rd) {
I
Ingo Molnar 已提交
5345
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5346

5347
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5348
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5349

5350
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5351

I
Ingo Molnar 已提交
5352 5353 5354 5355 5356 5357 5358
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5359 5360 5361 5362 5363
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5364
	cpumask_set_cpu(rq->cpu, rd->span);
5365
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5366
		set_rq_online(rq);
G
Gregory Haskins 已提交
5367

5368
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5369 5370

	if (old_rd)
5371
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5372 5373
}

5374
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5375 5376 5377
{
	memset(rd, 0, sizeof(*rd));

5378
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5379
		goto out;
5380
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5381
		goto free_span;
5382
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5383
		goto free_online;
5384

5385
	if (cpupri_init(&rd->cpupri) != 0)
5386
		goto free_rto_mask;
5387
	return 0;
5388

5389 5390
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5391 5392 5393 5394
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5395
out:
5396
	return -ENOMEM;
G
Gregory Haskins 已提交
5397 5398
}

5399 5400 5401 5402 5403 5404
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5405 5406
static void init_defrootdomain(void)
{
5407
	init_rootdomain(&def_root_domain);
5408

G
Gregory Haskins 已提交
5409 5410 5411
	atomic_set(&def_root_domain.refcount, 1);
}

5412
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5413 5414 5415 5416 5417 5418 5419
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5420
	if (init_rootdomain(rd) != 0) {
5421 5422 5423
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5424 5425 5426 5427

	return rd;
}

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5447 5448 5449
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5450 5451 5452 5453 5454 5455 5456 5457

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5458
		kfree(sd->groups->sgp);
5459
		kfree(sd->groups);
5460
	}
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5475 5476 5477 5478 5479 5480 5481
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5482
 * two cpus are in the same cache domain, see cpus_share_cache().
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5493
	if (sd)
5494 5495 5496 5497 5498 5499
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5500
/*
I
Ingo Molnar 已提交
5501
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5502 5503
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5504 5505
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5506
{
5507
	struct rq *rq = cpu_rq(cpu);
5508 5509 5510
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5511
	for (tmp = sd; tmp; ) {
5512 5513 5514
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5515

5516
		if (sd_parent_degenerate(tmp, parent)) {
5517
			tmp->parent = parent->parent;
5518 5519
			if (parent->parent)
				parent->parent->child = tmp;
5520
			destroy_sched_domain(parent, cpu);
5521 5522
		} else
			tmp = tmp->parent;
5523 5524
	}

5525
	if (sd && sd_degenerate(sd)) {
5526
		tmp = sd;
5527
		sd = sd->parent;
5528
		destroy_sched_domain(tmp, cpu);
5529 5530 5531
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5532

5533
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5534

G
Gregory Haskins 已提交
5535
	rq_attach_root(rq, rd);
5536
	tmp = rq->sd;
N
Nick Piggin 已提交
5537
	rcu_assign_pointer(rq->sd, sd);
5538
	destroy_sched_domains(tmp, cpu);
5539 5540

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5541 5542 5543
}

/* cpus with isolated domains */
5544
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5545 5546 5547 5548

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5549
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5550
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5551 5552 5553
	return 1;
}

I
Ingo Molnar 已提交
5554
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5555

5556 5557 5558 5559 5560
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5561 5562 5563
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5564
	struct sched_group_power **__percpu sgp;
5565 5566
};

5567
struct s_data {
5568
	struct sched_domain ** __percpu sd;
5569 5570 5571
	struct root_domain	*rd;
};

5572 5573
enum s_alloc {
	sa_rootdomain,
5574
	sa_sd,
5575
	sa_sd_storage,
5576 5577 5578
	sa_none,
};

5579 5580 5581
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5582 5583
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5584 5585
#define SDTL_OVERLAP	0x01

5586
struct sched_domain_topology_level {
5587 5588
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5589
	int		    flags;
5590
	int		    numa_level;
5591
	struct sd_data      data;
5592 5593
};

P
Peter Zijlstra 已提交
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5650 5651 5652 5653 5654 5655
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5656
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5657
				GFP_KERNEL, cpu_to_node(cpu));
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5671
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5672 5673 5674
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5675 5676 5677 5678 5679 5680
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5681

P
Peter Zijlstra 已提交
5682 5683 5684 5685 5686
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5687
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5688
		    group_balance_cpu(sg) == cpu)
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5708
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5709
{
5710 5711
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5712

5713 5714
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5715

5716
	if (sg) {
5717
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5718
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5719
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5720
	}
5721 5722

	return cpu;
5723 5724
}

5725
/*
5726 5727 5728
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5729 5730
 *
 * Assumes the sched_domain tree is fully constructed
5731
 */
5732 5733
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5734
{
5735 5736 5737
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5738
	struct cpumask *covered;
5739
	int i;
5740

5741 5742 5743 5744 5745 5746
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5747 5748 5749
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5750
	cpumask_clear(covered);
5751

5752 5753 5754 5755
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5756

5757 5758
		if (cpumask_test_cpu(i, covered))
			continue;
5759

5760
		cpumask_clear(sched_group_cpus(sg));
5761
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5762
		cpumask_setall(sched_group_mask(sg));
5763

5764 5765 5766
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5767

5768 5769 5770
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5771

5772 5773 5774 5775 5776 5777 5778
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5779 5780

	return 0;
5781
}
5782

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5795
	struct sched_group *sg = sd->groups;
5796

5797 5798 5799 5800 5801 5802
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5803

P
Peter Zijlstra 已提交
5804
	if (cpu != group_balance_cpu(sg))
5805
		return;
5806

5807
	update_group_power(sd, cpu);
5808
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5809 5810
}

5811 5812 5813
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5814 5815
}

5816 5817 5818 5819 5820
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5821 5822 5823 5824 5825 5826
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5827 5828 5829 5830 5831 5832 5833 5834 5835
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5836 5837 5838 5839 5840 5841 5842 5843 5844
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5845 5846 5847
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5848

5849
static int default_relax_domain_level = -1;
5850
int sched_domain_level_max;
5851 5852 5853

static int __init setup_relax_domain_level(char *str)
{
5854 5855
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5856

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5875
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5876 5877
	} else {
		/* turn on idle balance on this domain */
5878
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5879 5880 5881
	}
}

5882 5883 5884
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5885 5886 5887 5888 5889
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5890 5891
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5892 5893
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5894
	case sa_sd_storage:
5895
		__sdt_free(cpu_map); /* fall through */
5896 5897 5898 5899
	case sa_none:
		break;
	}
}
5900

5901 5902 5903
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5904 5905
	memset(d, 0, sizeof(*d));

5906 5907
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5908 5909 5910
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5911
	d->rd = alloc_rootdomain();
5912
	if (!d->rd)
5913
		return sa_sd;
5914 5915
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5916

5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5929
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5930
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5931 5932

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5933
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5934 5935
}

5936 5937
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5938
{
5939
	return topology_thread_cpumask(cpu);
5940
}
5941
#endif
5942

5943 5944 5945
/*
 * Topology list, bottom-up.
 */
5946
static struct sched_domain_topology_level default_topology[] = {
5947 5948
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5949
#endif
5950
#ifdef CONFIG_SCHED_MC
5951
	{ sd_init_MC, cpu_coregroup_mask, },
5952
#endif
5953 5954 5955 5956
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5957 5958 5959 5960 5961
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5962 5963 5964 5965 5966 5967 5968 5969 5970
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5971
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5989
		.imbalance_pct		= 125,
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6109
		}
6110 6111 6112 6113 6114 6115

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6116 6117 6118 6119 6120 6121 6122 6123 6124
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6151
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6152 6153 6154 6155 6156 6157
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6158
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6190 6191

	sched_domains_numa_levels = level;
6192
}
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6240 6241 6242 6243 6244
}
#else
static inline void sched_init_numa(void)
{
}
6245 6246 6247 6248 6249 6250 6251

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6252 6253
#endif /* CONFIG_NUMA */

6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6270 6271 6272 6273
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6274 6275 6276
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6277
			struct sched_group_power *sgp;
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6291 6292
			sg->next = sg;

6293
			*per_cpu_ptr(sdd->sg, j) = sg;
6294

P
Peter Zijlstra 已提交
6295
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6296 6297 6298 6299 6300
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6329 6330
		}
		free_percpu(sdd->sd);
6331
		sdd->sd = NULL;
6332
		free_percpu(sdd->sg);
6333
		sdd->sg = NULL;
6334
		free_percpu(sdd->sgp);
6335
		sdd->sgp = NULL;
6336 6337 6338
	}
}

6339 6340
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6341
		struct sched_domain_attr *attr, struct sched_domain *child,
6342 6343
		int cpu)
{
6344
	struct sched_domain *sd = tl->init(tl, cpu);
6345
	if (!sd)
6346
		return child;
6347 6348

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6349 6350 6351
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6352
		child->parent = sd;
6353
	}
6354
	sd->child = child;
6355
	set_domain_attribute(sd, attr);
6356 6357 6358 6359

	return sd;
}

6360 6361 6362 6363
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6364 6365
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6366 6367
{
	enum s_alloc alloc_state = sa_none;
6368
	struct sched_domain *sd;
6369
	struct s_data d;
6370
	int i, ret = -ENOMEM;
6371

6372 6373 6374
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6375

6376
	/* Set up domains for cpus specified by the cpu_map. */
6377
	for_each_cpu(i, cpu_map) {
6378 6379
		struct sched_domain_topology_level *tl;

6380
		sd = NULL;
6381
		for (tl = sched_domain_topology; tl->init; tl++) {
6382
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6383 6384
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6385 6386
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6387
		}
6388

6389 6390 6391
		while (sd->child)
			sd = sd->child;

6392
		*per_cpu_ptr(d.sd, i) = sd;
6393 6394 6395 6396 6397 6398
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6399 6400 6401 6402 6403 6404 6405
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6406
		}
6407
	}
6408

L
Linus Torvalds 已提交
6409
	/* Calculate CPU power for physical packages and nodes */
6410 6411 6412
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6413

6414 6415
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6416
			init_sched_groups_power(i, sd);
6417
		}
6418
	}
6419

L
Linus Torvalds 已提交
6420
	/* Attach the domains */
6421
	rcu_read_lock();
6422
	for_each_cpu(i, cpu_map) {
6423
		sd = *per_cpu_ptr(d.sd, i);
6424
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6425
	}
6426
	rcu_read_unlock();
6427

6428
	ret = 0;
6429
error:
6430
	__free_domain_allocs(&d, alloc_state, cpu_map);
6431
	return ret;
L
Linus Torvalds 已提交
6432
}
P
Paul Jackson 已提交
6433

6434
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6435
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6436 6437
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6438 6439 6440

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6441 6442
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6443
 */
6444
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6445

6446 6447 6448 6449 6450 6451
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6452
{
6453
	return 0;
6454 6455
}

6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6481
/*
I
Ingo Molnar 已提交
6482
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6483 6484
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6485
 */
6486
static int init_sched_domains(const struct cpumask *cpu_map)
6487
{
6488 6489
	int err;

6490
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6491
	ndoms_cur = 1;
6492
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6493
	if (!doms_cur)
6494 6495
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6496
	err = build_sched_domains(doms_cur[0], NULL);
6497
	register_sched_domain_sysctl();
6498 6499

	return err;
6500 6501 6502 6503 6504 6505
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6506
static void detach_destroy_domains(const struct cpumask *cpu_map)
6507 6508 6509
{
	int i;

6510
	rcu_read_lock();
6511
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6512
		cpu_attach_domain(NULL, &def_root_domain, i);
6513
	rcu_read_unlock();
6514 6515
}

6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6532 6533
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6534
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6535 6536 6537
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6538
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6539 6540 6541
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6542 6543 6544
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6545 6546 6547 6548 6549 6550
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6551
 *
6552
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6553 6554
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6555
 *
P
Paul Jackson 已提交
6556 6557
 * Call with hotplug lock held
 */
6558
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6559
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6560
{
6561
	int i, j, n;
6562
	int new_topology;
P
Paul Jackson 已提交
6563

6564
	mutex_lock(&sched_domains_mutex);
6565

6566 6567 6568
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6569 6570 6571
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6572
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6573 6574 6575

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6576
		for (j = 0; j < n && !new_topology; j++) {
6577
			if (cpumask_equal(doms_cur[i], doms_new[j])
6578
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6579 6580 6581
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6582
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6583 6584 6585 6586
match1:
		;
	}

6587 6588
	if (doms_new == NULL) {
		ndoms_cur = 0;
6589
		doms_new = &fallback_doms;
6590
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6591
		WARN_ON_ONCE(dattr_new);
6592 6593
	}

P
Paul Jackson 已提交
6594 6595
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6596
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6597
			if (cpumask_equal(doms_new[i], doms_cur[j])
6598
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6599 6600 6601
				goto match2;
		}
		/* no match - add a new doms_new */
6602
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6603 6604 6605 6606 6607
match2:
		;
	}

	/* Remember the new sched domains */
6608 6609
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6610
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6611
	doms_cur = doms_new;
6612
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6613
	ndoms_cur = ndoms_new;
6614 6615

	register_sched_domain_sysctl();
6616

6617
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6618 6619
}

6620 6621
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6622
/*
6623 6624 6625
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6626 6627 6628
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6629
 */
6630 6631
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6632
{
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6655
	case CPU_ONLINE:
6656
	case CPU_DOWN_FAILED:
6657
		cpuset_update_active_cpus(true);
6658
		break;
6659 6660 6661
	default:
		return NOTIFY_DONE;
	}
6662
	return NOTIFY_OK;
6663
}
6664

6665 6666
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6667
{
6668
	switch (action) {
6669
	case CPU_DOWN_PREPARE:
6670
		cpuset_update_active_cpus(false);
6671 6672 6673 6674 6675
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6676 6677 6678
	default:
		return NOTIFY_DONE;
	}
6679
	return NOTIFY_OK;
6680 6681
}

L
Linus Torvalds 已提交
6682 6683
void __init sched_init_smp(void)
{
6684 6685 6686
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6687
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6688

6689 6690
	sched_init_numa();

6691
	get_online_cpus();
6692
	mutex_lock(&sched_domains_mutex);
6693
	init_sched_domains(cpu_active_mask);
6694 6695 6696
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6697
	mutex_unlock(&sched_domains_mutex);
6698
	put_online_cpus();
6699

6700
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6701 6702
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6703 6704 6705 6706

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6707
	init_hrtick();
6708 6709

	/* Move init over to a non-isolated CPU */
6710
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6711
		BUG();
I
Ingo Molnar 已提交
6712
	sched_init_granularity();
6713
	free_cpumask_var(non_isolated_cpus);
6714

6715
	init_sched_rt_class();
L
Linus Torvalds 已提交
6716 6717 6718 6719
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6720
	sched_init_granularity();
L
Linus Torvalds 已提交
6721 6722 6723
}
#endif /* CONFIG_SMP */

6724 6725
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6726 6727 6728 6729 6730 6731 6732
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6733 6734
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6735
LIST_HEAD(task_groups);
6736
#endif
P
Peter Zijlstra 已提交
6737

6738
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6739

L
Linus Torvalds 已提交
6740 6741
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6742
	int i, j;
6743 6744 6745 6746 6747 6748 6749
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6750
#endif
6751
#ifdef CONFIG_CPUMASK_OFFSTACK
6752
	alloc_size += num_possible_cpus() * cpumask_size();
6753 6754
#endif
	if (alloc_size) {
6755
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6756 6757

#ifdef CONFIG_FAIR_GROUP_SCHED
6758
		root_task_group.se = (struct sched_entity **)ptr;
6759 6760
		ptr += nr_cpu_ids * sizeof(void **);

6761
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6762
		ptr += nr_cpu_ids * sizeof(void **);
6763

6764
#endif /* CONFIG_FAIR_GROUP_SCHED */
6765
#ifdef CONFIG_RT_GROUP_SCHED
6766
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6767 6768
		ptr += nr_cpu_ids * sizeof(void **);

6769
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6770 6771
		ptr += nr_cpu_ids * sizeof(void **);

6772
#endif /* CONFIG_RT_GROUP_SCHED */
6773 6774 6775 6776 6777 6778
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6779
	}
I
Ingo Molnar 已提交
6780

G
Gregory Haskins 已提交
6781 6782 6783 6784
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6785 6786 6787 6788
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6789
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6790
			global_rt_period(), global_rt_runtime());
6791
#endif /* CONFIG_RT_GROUP_SCHED */
6792

D
Dhaval Giani 已提交
6793
#ifdef CONFIG_CGROUP_SCHED
6794 6795
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6796
	INIT_LIST_HEAD(&root_task_group.siblings);
6797
	autogroup_init(&init_task);
6798

D
Dhaval Giani 已提交
6799
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6800

6801 6802 6803 6804 6805 6806
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6807
	for_each_possible_cpu(i) {
6808
		struct rq *rq;
L
Linus Torvalds 已提交
6809 6810

		rq = cpu_rq(i);
6811
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6812
		rq->nr_running = 0;
6813 6814
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6815
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6816
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6817
#ifdef CONFIG_FAIR_GROUP_SCHED
6818
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6819
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6820
		/*
6821
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6822 6823 6824 6825
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6826
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6827 6828 6829
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6830
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6831 6832 6833
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6834
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6835
		 *
6836 6837
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6838
		 */
6839
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6840
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6841 6842 6843
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6844
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6845
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6846
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6847
#endif
L
Linus Torvalds 已提交
6848

I
Ingo Molnar 已提交
6849 6850
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6851 6852 6853

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6854
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6855
		rq->sd = NULL;
G
Gregory Haskins 已提交
6856
		rq->rd = NULL;
6857
		rq->cpu_power = SCHED_POWER_SCALE;
6858
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6859
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6860
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6861
		rq->push_cpu = 0;
6862
		rq->cpu = i;
6863
		rq->online = 0;
6864 6865
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6866 6867 6868

		INIT_LIST_HEAD(&rq->cfs_tasks);

6869
		rq_attach_root(rq, &def_root_domain);
6870
#ifdef CONFIG_NO_HZ
6871
		rq->nohz_flags = 0;
6872
#endif
L
Linus Torvalds 已提交
6873
#endif
P
Peter Zijlstra 已提交
6874
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6875 6876 6877
		atomic_set(&rq->nr_iowait, 0);
	}

6878
	set_load_weight(&init_task);
6879

6880 6881 6882 6883
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6884
#ifdef CONFIG_RT_MUTEXES
6885
	plist_head_init(&init_task.pi_waiters);
6886 6887
#endif

L
Linus Torvalds 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6901 6902 6903

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6904 6905 6906 6907
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6908

6909
#ifdef CONFIG_SMP
6910
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6911 6912 6913
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6914
	idle_thread_set_boot_cpu();
6915 6916
#endif
	init_sched_fair_class();
6917

6918
	scheduler_running = 1;
L
Linus Torvalds 已提交
6919 6920
}

6921
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6922 6923
static inline int preempt_count_equals(int preempt_offset)
{
6924
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6925

A
Arnd Bergmann 已提交
6926
	return (nested == preempt_offset);
6927 6928
}

6929
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6930 6931 6932
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6933
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6934 6935
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6936 6937 6938 6939 6940
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6941 6942 6943 6944 6945 6946 6947
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6948 6949 6950 6951 6952

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6953 6954 6955 6956 6957
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6958 6959
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6960 6961
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6962
	int on_rq;
6963

P
Peter Zijlstra 已提交
6964
	on_rq = p->on_rq;
6965
	if (on_rq)
6966
		dequeue_task(rq, p, 0);
6967 6968
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6969
		enqueue_task(rq, p, 0);
6970 6971
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6972 6973

	check_class_changed(rq, p, prev_class, old_prio);
6974 6975
}

L
Linus Torvalds 已提交
6976 6977
void normalize_rt_tasks(void)
{
6978
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6979
	unsigned long flags;
6980
	struct rq *rq;
L
Linus Torvalds 已提交
6981

6982
	read_lock_irqsave(&tasklist_lock, flags);
6983
	do_each_thread(g, p) {
6984 6985 6986 6987 6988 6989
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6990 6991
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6992 6993 6994
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6995
#endif
I
Ingo Molnar 已提交
6996 6997 6998 6999 7000 7001 7002 7003

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7004
			continue;
I
Ingo Molnar 已提交
7005
		}
L
Linus Torvalds 已提交
7006

7007
		raw_spin_lock(&p->pi_lock);
7008
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7009

7010
		normalize_task(rq, p);
7011

7012
		__task_rq_unlock(rq);
7013
		raw_spin_unlock(&p->pi_lock);
7014 7015
	} while_each_thread(g, p);

7016
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7017 7018 7019
}

#endif /* CONFIG_MAGIC_SYSRQ */
7020

7021
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7022
/*
7023
 * These functions are only useful for the IA64 MCA handling, or kdb.
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7038
struct task_struct *curr_task(int cpu)
7039 7040 7041 7042
{
	return cpu_curr(cpu);
}

7043 7044 7045
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7046 7047 7048 7049 7050 7051
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7052 7053
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7054 7055 7056 7057 7058 7059 7060
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7061
void set_curr_task(int cpu, struct task_struct *p)
7062 7063 7064 7065 7066
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7067

D
Dhaval Giani 已提交
7068
#ifdef CONFIG_CGROUP_SCHED
7069 7070 7071
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7072 7073 7074 7075
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7076
	autogroup_free(tg);
7077 7078 7079 7080
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7081
struct task_group *sched_create_group(struct task_group *parent)
7082 7083 7084 7085 7086 7087 7088 7089
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7090
	if (!alloc_fair_sched_group(tg, parent))
7091 7092
		goto err;

7093
	if (!alloc_rt_sched_group(tg, parent))
7094 7095
		goto err;

7096
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7097
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7098 7099 7100 7101 7102

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7103
	list_add_rcu(&tg->siblings, &parent->children);
7104
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7105

7106
	return tg;
S
Srivatsa Vaddagiri 已提交
7107 7108

err:
P
Peter Zijlstra 已提交
7109
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7110 7111 7112
	return ERR_PTR(-ENOMEM);
}

7113
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7114
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7115 7116
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7117
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7118 7119
}

7120
/* Destroy runqueue etc associated with a task group */
7121
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7122
{
7123
	unsigned long flags;
7124
	int i;
S
Srivatsa Vaddagiri 已提交
7125

7126 7127
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7128
		unregister_fair_sched_group(tg, i);
7129 7130

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7131
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7132
	list_del_rcu(&tg->siblings);
7133
	spin_unlock_irqrestore(&task_group_lock, flags);
7134 7135

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7136
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7137 7138
}

7139
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7140 7141 7142
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7143 7144
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7145
{
P
Peter Zijlstra 已提交
7146
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7147 7148 7149 7150 7151 7152
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7153
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7154
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7155

7156
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7157
		dequeue_task(rq, tsk, 0);
7158 7159
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7160

P
Peter Zijlstra 已提交
7161 7162 7163 7164 7165 7166
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7167
#ifdef CONFIG_FAIR_GROUP_SCHED
7168 7169 7170
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7171
#endif
7172
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7173

7174 7175 7176
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7177
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7178

7179
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7180
}
D
Dhaval Giani 已提交
7181
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7182

7183
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7184 7185 7186
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7187
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7188

P
Peter Zijlstra 已提交
7189
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7190
}
7191 7192 7193 7194 7195 7196 7197
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7198

P
Peter Zijlstra 已提交
7199 7200
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7201
{
P
Peter Zijlstra 已提交
7202
	struct task_struct *g, *p;
7203

P
Peter Zijlstra 已提交
7204
	do_each_thread(g, p) {
7205
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7206 7207
			return 1;
	} while_each_thread(g, p);
7208

P
Peter Zijlstra 已提交
7209 7210
	return 0;
}
7211

P
Peter Zijlstra 已提交
7212 7213 7214 7215 7216
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7217

7218
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7219 7220 7221 7222 7223
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7224

P
Peter Zijlstra 已提交
7225 7226
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7227

P
Peter Zijlstra 已提交
7228 7229 7230
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7231 7232
	}

7233 7234 7235 7236 7237
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7238

7239 7240 7241
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7242 7243
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7244

P
Peter Zijlstra 已提交
7245
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7246

7247 7248 7249 7250 7251
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7252

7253 7254 7255
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7256 7257 7258
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7259

P
Peter Zijlstra 已提交
7260 7261 7262 7263
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7264

P
Peter Zijlstra 已提交
7265
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7266
	}
P
Peter Zijlstra 已提交
7267

P
Peter Zijlstra 已提交
7268 7269 7270 7271
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7272 7273
}

P
Peter Zijlstra 已提交
7274
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7275
{
7276 7277
	int ret;

P
Peter Zijlstra 已提交
7278 7279 7280 7281 7282 7283
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7284 7285 7286 7287 7288
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7289 7290
}

7291
static int tg_set_rt_bandwidth(struct task_group *tg,
7292
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7293
{
P
Peter Zijlstra 已提交
7294
	int i, err = 0;
P
Peter Zijlstra 已提交
7295 7296

	mutex_lock(&rt_constraints_mutex);
7297
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7298 7299
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7300
		goto unlock;
P
Peter Zijlstra 已提交
7301

7302
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7303 7304
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7305 7306 7307 7308

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7309
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7310
		rt_rq->rt_runtime = rt_runtime;
7311
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7312
	}
7313
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7314
unlock:
7315
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7316 7317 7318
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7319 7320
}

7321 7322 7323 7324 7325 7326 7327 7328 7329
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7330
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7331 7332
}

P
Peter Zijlstra 已提交
7333 7334 7335 7336
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7337
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7338 7339
		return -1;

7340
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7341 7342 7343
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7344 7345 7346 7347 7348 7349 7350 7351

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7352 7353 7354
	if (rt_period == 0)
		return -EINVAL;

7355
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7369
	u64 runtime, period;
7370 7371
	int ret = 0;

7372 7373 7374
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7375 7376 7377 7378 7379 7380 7381 7382
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7383

7384
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7385
	read_lock(&tasklist_lock);
7386
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7387
	read_unlock(&tasklist_lock);
7388 7389 7390 7391
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7392 7393 7394 7395 7396 7397 7398 7399 7400 7401

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7402
#else /* !CONFIG_RT_GROUP_SCHED */
7403 7404
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7405 7406 7407
	unsigned long flags;
	int i;

7408 7409 7410
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7411 7412 7413 7414 7415 7416 7417
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7418
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7419 7420 7421
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7422
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7423
		rt_rq->rt_runtime = global_rt_runtime();
7424
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7425
	}
7426
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7427

7428 7429
	return 0;
}
7430
#endif /* CONFIG_RT_GROUP_SCHED */
7431 7432

int sched_rt_handler(struct ctl_table *table, int write,
7433
		void __user *buffer, size_t *lenp,
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7444
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7461

7462
#ifdef CONFIG_CGROUP_SCHED
7463 7464

/* return corresponding task_group object of a cgroup */
7465
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7466
{
7467 7468
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7469 7470
}

7471
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7472
{
7473
	struct task_group *tg, *parent;
7474

7475
	if (!cgrp->parent) {
7476
		/* This is early initialization for the top cgroup */
7477
		return &root_task_group.css;
7478 7479
	}

7480 7481
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7482 7483 7484 7485 7486 7487
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7488
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7489
{
7490
	struct task_group *tg = cgroup_tg(cgrp);
7491 7492 7493 7494

	sched_destroy_group(tg);
}

7495
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7496
				 struct cgroup_taskset *tset)
7497
{
7498 7499 7500
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7501
#ifdef CONFIG_RT_GROUP_SCHED
7502 7503
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7504
#else
7505 7506 7507
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7508
#endif
7509
	}
7510 7511
	return 0;
}
7512

7513
static void cpu_cgroup_attach(struct cgroup *cgrp,
7514
			      struct cgroup_taskset *tset)
7515
{
7516 7517 7518 7519
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7520 7521
}

7522
static void
7523 7524
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7537
#ifdef CONFIG_FAIR_GROUP_SCHED
7538
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7539
				u64 shareval)
7540
{
7541
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7542 7543
}

7544
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7545
{
7546
	struct task_group *tg = cgroup_tg(cgrp);
7547

7548
	return (u64) scale_load_down(tg->shares);
7549
}
7550 7551

#ifdef CONFIG_CFS_BANDWIDTH
7552 7553
static DEFINE_MUTEX(cfs_constraints_mutex);

7554 7555 7556
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7557 7558
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7559 7560
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7561
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7562
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7583 7584 7585 7586 7587
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7588
	runtime_enabled = quota != RUNTIME_INF;
7589 7590
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7591 7592 7593
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7594

P
Paul Turner 已提交
7595
	__refill_cfs_bandwidth_runtime(cfs_b);
7596 7597 7598 7599 7600 7601
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7602 7603 7604 7605
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7606
		struct rq *rq = cfs_rq->rq;
7607 7608

		raw_spin_lock_irq(&rq->lock);
7609
		cfs_rq->runtime_enabled = runtime_enabled;
7610
		cfs_rq->runtime_remaining = 0;
7611

7612
		if (cfs_rq->throttled)
7613
			unthrottle_cfs_rq(cfs_rq);
7614 7615
		raw_spin_unlock_irq(&rq->lock);
	}
7616 7617
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7618

7619
	return ret;
7620 7621 7622 7623 7624 7625
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7626
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7639
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7640 7641
		return -1;

7642
	quota_us = tg->cfs_bandwidth.quota;
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7653
	quota = tg->cfs_bandwidth.quota;
7654 7655 7656 7657 7658 7659 7660 7661

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7662
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7722
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7723 7724 7725 7726 7727
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7728
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7749
	int ret;
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7761 7762 7763 7764 7765
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7766
}
7767 7768 7769 7770 7771

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7772
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7773 7774 7775 7776 7777 7778 7779

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7780
#endif /* CONFIG_CFS_BANDWIDTH */
7781
#endif /* CONFIG_FAIR_GROUP_SCHED */
7782

7783
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7784
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7785
				s64 val)
P
Peter Zijlstra 已提交
7786
{
7787
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7788 7789
}

7790
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7791
{
7792
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7793
}
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7805
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7806

7807
static struct cftype cpu_files[] = {
7808
#ifdef CONFIG_FAIR_GROUP_SCHED
7809 7810
	{
		.name = "shares",
7811 7812
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7813
	},
7814
#endif
7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7826 7827 7828 7829
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7830
#endif
7831
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7832
	{
P
Peter Zijlstra 已提交
7833
		.name = "rt_runtime_us",
7834 7835
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7836
	},
7837 7838
	{
		.name = "rt_period_us",
7839 7840
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7841
	},
7842
#endif
7843
	{ }	/* terminate */
7844 7845 7846
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7847 7848 7849
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7850 7851
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7852
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7853
	.subsys_id	= cpu_cgroup_subsys_id,
7854
	.base_cftypes	= cpu_files,
7855 7856 7857
	.early_init	= 1,
};

7858
#endif	/* CONFIG_CGROUP_SCHED */
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7869 7870
struct cpuacct root_cpuacct;

7871
/* create a new cpu accounting group */
7872
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7873
{
7874
	struct cpuacct *ca;
7875

7876 7877 7878 7879
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7880
	if (!ca)
7881
		goto out;
7882 7883

	ca->cpuusage = alloc_percpu(u64);
7884 7885 7886
	if (!ca->cpuusage)
		goto out_free_ca;

7887 7888 7889
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7890

7891
	return &ca->css;
7892

7893
out_free_cpuusage:
7894 7895 7896 7897 7898
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7899 7900 7901
}

/* destroy an existing cpu accounting group */
7902
static void cpuacct_destroy(struct cgroup *cgrp)
7903
{
7904
	struct cpuacct *ca = cgroup_ca(cgrp);
7905

7906
	free_percpu(ca->cpustat);
7907 7908 7909 7910
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7911 7912
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7913
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7914 7915 7916 7917 7918 7919
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7920
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7921
	data = *cpuusage;
7922
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7923 7924 7925 7926 7927 7928 7929 7930 7931
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7932
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7933 7934 7935 7936 7937

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7938
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7939
	*cpuusage = val;
7940
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7941 7942 7943 7944 7945
#else
	*cpuusage = val;
#endif
}

7946
/* return total cpu usage (in nanoseconds) of a group */
7947
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7948
{
7949
	struct cpuacct *ca = cgroup_ca(cgrp);
7950 7951 7952
	u64 totalcpuusage = 0;
	int i;

7953 7954
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7955 7956 7957 7958

	return totalcpuusage;
}

7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

7971 7972
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
7973 7974 7975 7976 7977

out:
	return err;
}

7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

7993 7994 7995 7996 7997 7998
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7999
			      struct cgroup_map_cb *cb)
8000 8001
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8002 8003
	int cpu;
	s64 val = 0;
8004

8005 8006 8007 8008
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8009
	}
8010 8011
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8012

8013 8014 8015 8016 8017 8018
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8019
	}
8020 8021 8022 8023

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8024 8025 8026
	return 0;
}

8027 8028 8029
static struct cftype files[] = {
	{
		.name = "usage",
8030 8031
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8032
	},
8033 8034 8035 8036
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8037 8038 8039 8040
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8041
	{ }	/* terminate */
8042 8043 8044 8045 8046 8047 8048
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8049
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8050 8051
{
	struct cpuacct *ca;
8052
	int cpu;
8053

L
Li Zefan 已提交
8054
	if (unlikely(!cpuacct_subsys.active))
8055 8056
		return;

8057
	cpu = task_cpu(tsk);
8058 8059 8060

	rcu_read_lock();

8061 8062
	ca = task_ca(tsk);

8063
	for (; ca; ca = parent_ca(ca)) {
8064
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8065 8066
		*cpuusage += cputime;
	}
8067 8068

	rcu_read_unlock();
8069 8070 8071 8072 8073 8074 8075
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8076
	.base_cftypes = files,
8077 8078
};
#endif	/* CONFIG_CGROUP_CPUACCT */