core.c 195.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
517
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
518 519
#endif

520
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
521 522 523
{
	int cpu;

524
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
525

526
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
527 528
		return;

529
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538 539 540

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

541
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
542 543 544 545
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

546
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
547 548
		return;
	resched_task(cpu_curr(cpu));
549
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
550
}
551 552

#ifdef CONFIG_NO_HZ
553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

567
	rcu_read_lock();
568
	for_each_domain(cpu, sd) {
569 570 571 572 573 574
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
575
	}
576 577
unlock:
	rcu_read_unlock();
578 579
	return cpu;
}
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
606 607

	/*
608 609 610
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
611
	 */
612
	set_tsk_need_resched(rq->idle);
613

614 615 616 617
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
618 619
}

620
static inline bool got_nohz_idle_kick(void)
621
{
622 623
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 625
}

626
#else /* CONFIG_NO_HZ */
627

628
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
629
{
630
	return false;
P
Peter Zijlstra 已提交
631 632
}

633
#endif /* CONFIG_NO_HZ */
634

635
void sched_avg_update(struct rq *rq)
636
{
637 638 639
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 641 642 643 644 645
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
646 647 648
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
649 650
}

651
#else /* !CONFIG_SMP */
652
void resched_task(struct task_struct *p)
653
{
654
	assert_raw_spin_locked(&task_rq(p)->lock);
655
	set_tsk_need_resched(p);
656
}
657
#endif /* CONFIG_SMP */
658

659 660
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661
/*
662 663 664 665
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
666
 */
667
int walk_tg_tree_from(struct task_group *from,
668
			     tg_visitor down, tg_visitor up, void *data)
669 670
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
671
	int ret;
672

673 674
	parent = from;

675
down:
P
Peter Zijlstra 已提交
676 677
	ret = (*down)(parent, data);
	if (ret)
678
		goto out;
679 680 681 682 683 684 685
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
686
	ret = (*up)(parent, data);
687 688
	if (ret || parent == from)
		goto out;
689 690 691 692 693

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
694
out:
P
Peter Zijlstra 已提交
695
	return ret;
696 697
}

698
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
699
{
700
	return 0;
P
Peter Zijlstra 已提交
701
}
702 703
#endif

704 705
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
706 707 708
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
709 710 711 712
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
713
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
714
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
715 716
		return;
	}
717

718
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
719
	load->inv_weight = prio_to_wmult[prio];
720 721
}

722
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723
{
724
	update_rq_clock(rq);
I
Ingo Molnar 已提交
725
	sched_info_queued(p);
726
	p->sched_class->enqueue_task(rq, p, flags);
727 728
}

729
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730
{
731
	update_rq_clock(rq);
732
	sched_info_dequeued(p);
733
	p->sched_class->dequeue_task(rq, p, flags);
734 735
}

736
void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 738 739 740
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

741
	enqueue_task(rq, p, flags);
742 743
}

744
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 746 747 748
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

749
	dequeue_task(rq, p, flags);
750 751
}

752
static void update_rq_clock_task(struct rq *rq, s64 delta)
753
{
754 755 756 757 758 759 760 761
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
784 785
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786
	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

804 805
	rq->clock_task += delta;

806 807 808 809
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

842
/*
I
Ingo Molnar 已提交
843
 * __normal_prio - return the priority that is based on the static prio
844 845 846
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
847
	return p->static_prio;
848 849
}

850 851 852 853 854 855 856
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
857
static inline int normal_prio(struct task_struct *p)
858 859 860
{
	int prio;

861
	if (task_has_rt_policy(p))
862 863 864 865 866 867 868 869 870 871 872 873 874
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
875
static int effective_prio(struct task_struct *p)
876 877 878 879 880 881 882 883 884 885 886 887
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
888 889 890 891
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
892
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
893 894 895 896
{
	return cpu_curr(task_cpu(p)) == p;
}

897 898
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
899
				       int oldprio)
900 901 902
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
903 904 905 906
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
907 908
}

909
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
930
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 932 933
		rq->skip_clock_update = 1;
}

934 935 936 937 938 939 940
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
941
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
942
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
943
{
944 945 946 947 948
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
949 950
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 952

#ifdef CONFIG_LOCKDEP
953 954 955 956 957
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
958
	 * see task_group().
959 960 961 962
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
963 964 965
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
966 967
#endif

968
	trace_sched_migrate_task(p, new_cpu);
969

970
	if (task_cpu(p) != new_cpu) {
971 972
		struct task_migration_notifier tmn;

973 974
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
975
		p->se.nr_migrations++;
976
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 978 979 980 981 982

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983
	}
I
Ingo Molnar 已提交
984 985

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
986 987
}

988
struct migration_arg {
989
	struct task_struct *task;
L
Linus Torvalds 已提交
990
	int dest_cpu;
991
};
L
Linus Torvalds 已提交
992

993 994
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
995 996 997
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
998 999 1000 1001 1002 1003 1004
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1011
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1012 1013
{
	unsigned long flags;
I
Ingo Molnar 已提交
1014
	int running, on_rq;
R
Roland McGrath 已提交
1015
	unsigned long ncsw;
1016
	struct rq *rq;
L
Linus Torvalds 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1038 1039 1040
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1041
			cpu_relax();
R
Roland McGrath 已提交
1042
		}
1043

1044 1045 1046 1047 1048 1049
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1050
		trace_sched_wait_task(p);
1051
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1052
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1053
		ncsw = 0;
1054
		if (!match_state || p->state == match_state)
1055
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056
		task_rq_unlock(rq, p, &flags);
1057

R
Roland McGrath 已提交
1058 1059 1060 1061 1062 1063
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1074

1075 1076 1077 1078 1079
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1080
		 * So if it was still runnable (but just not actively
1081 1082 1083 1084
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1085 1086 1087 1088
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 1090
			continue;
		}
1091

1092 1093 1094 1095 1096 1097 1098
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1099 1100

	return ncsw;
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1110
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1116
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1126
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1127
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1128

1129
#ifdef CONFIG_SMP
1130
/*
1131
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132
 */
1133 1134 1135
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136 1137
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1138 1139

	/* Look for allowed, online CPU in same node. */
1140
	for_each_cpu(dest_cpu, nodemask) {
1141 1142 1143 1144
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1145
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146
			return dest_cpu;
1147
	}
1148

1149 1150
	for (;;) {
		/* Any allowed, online CPU? */
1151
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152 1153 1154 1155 1156 1157
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1188 1189 1190 1191 1192
	}

	return dest_cpu;
}

1193
/*
1194
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195
 */
1196
static inline
1197
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198
{
1199
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1211
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1212
		     !cpu_online(cpu)))
1213
		cpu = select_fallback_rq(task_cpu(p), p);
1214 1215

	return cpu;
1216
}
1217 1218 1219 1220 1221 1222

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1223 1224
#endif

P
Peter Zijlstra 已提交
1225
static void
1226
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1227
{
P
Peter Zijlstra 已提交
1228
#ifdef CONFIG_SCHEDSTATS
1229 1230
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241
		rcu_read_lock();
P
Peter Zijlstra 已提交
1242 1243 1244 1245 1246 1247
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1248
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1249
	}
1250 1251 1252 1253

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1254 1255 1256
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1257
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1258 1259

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1260
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1261 1262 1263 1264 1265 1266

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1267
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1268
	p->on_rq = 1;
1269 1270 1271 1272

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1273 1274
}

1275 1276 1277
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1278
static void
1279
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1280
{
1281
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1282 1283 1284 1285 1286 1287 1288
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1289
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1335
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1336
static void sched_ttwu_pending(void)
1337 1338
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1339 1340
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1341 1342 1343

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1344 1345 1346
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1347 1348 1349 1350 1351 1352 1353 1354
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1355
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1372
	sched_ttwu_pending();
1373 1374 1375 1376

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1377 1378
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1379
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1380
	}
1381
	irq_exit();
1382 1383 1384 1385
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1386
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387 1388
		smp_send_reschedule(cpu);
}
1389

1390
bool cpus_share_cache(int this_cpu, int that_cpu)
1391 1392 1393
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1394
#endif /* CONFIG_SMP */
1395

1396 1397 1398 1399
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1400
#if defined(CONFIG_SMP)
1401
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403 1404 1405 1406 1407
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1408 1409 1410
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1411 1412 1413
}

/**
L
Linus Torvalds 已提交
1414
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1415
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1416
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1417
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1425 1426
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1427
 */
1428 1429
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1430 1431
{
	unsigned long flags;
1432
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1433

1434
	smp_wmb();
1435
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1436
	if (!(p->state & state))
L
Linus Torvalds 已提交
1437 1438
		goto out;

1439
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1440 1441
	cpu = task_cpu(p);

1442 1443
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1444 1445

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1446
	/*
1447 1448
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1449
	 */
1450
	while (p->on_cpu)
1451
		cpu_relax();
1452
	/*
1453
	 * Pairs with the smp_wmb() in finish_lock_switch().
1454
	 */
1455
	smp_rmb();
L
Linus Torvalds 已提交
1456

1457
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1458
	p->state = TASK_WAKING;
1459

1460
	if (p->sched_class->task_waking)
1461
		p->sched_class->task_waking(p);
1462

1463
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464 1465
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1466
		set_task_cpu(p, cpu);
1467
	}
L
Linus Torvalds 已提交
1468 1469
#endif /* CONFIG_SMP */

1470 1471
	ttwu_queue(p, cpu);
stat:
1472
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1473
out:
1474
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1475 1476 1477 1478

	return success;
}

T
Tejun Heo 已提交
1479 1480 1481 1482
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1483
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1484
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485
 * the current task.
T
Tejun Heo 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1495 1496 1497 1498 1499 1500
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1501
	if (!(p->state & TASK_NORMAL))
1502
		goto out;
T
Tejun Heo 已提交
1503

P
Peter Zijlstra 已提交
1504
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1505 1506
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1507
	ttwu_do_wakeup(rq, p, 0);
1508
	ttwu_stat(p, smp_processor_id(), 0);
1509 1510
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1524
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1525
{
1526 1527
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1528 1529 1530
}
EXPORT_SYMBOL(wake_up_process);

1531
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1532 1533 1534 1535 1536 1537 1538
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1539 1540 1541 1542 1543
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1544 1545 1546
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1547 1548
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1549
	p->se.prev_sum_exec_runtime	= 0;
1550
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1551
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1552
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1553

1554 1555 1556 1557 1558 1559
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1560 1561 1562
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1563
#ifdef CONFIG_SCHEDSTATS
1564
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1565
#endif
N
Nick Piggin 已提交
1566

P
Peter Zijlstra 已提交
1567
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1568

1569 1570 1571
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1572 1573 1574 1575

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1576
		p->mm->numa_next_reset = jiffies;
1577 1578 1579 1580 1581 1582
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1583
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1584 1585
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1586 1587
}

1588
#ifdef CONFIG_NUMA_BALANCING
1589
#ifdef CONFIG_SCHED_DEBUG
1590 1591 1592 1593 1594 1595 1596
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1597 1598 1599 1600 1601 1602
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1603
}
1604
#endif /* CONFIG_SCHED_DEBUG */
1605
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1606 1607 1608 1609

/*
 * fork()/clone()-time setup:
 */
1610
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1611
{
1612
	unsigned long flags;
I
Ingo Molnar 已提交
1613 1614 1615
	int cpu = get_cpu();

	__sched_fork(p);
1616
	/*
1617
	 * We mark the process as running here. This guarantees that
1618 1619 1620
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1621
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1622

1623 1624 1625 1626 1627
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1628 1629 1630 1631
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1632
		if (task_has_rt_policy(p)) {
1633
			p->policy = SCHED_NORMAL;
1634
			p->static_prio = NICE_TO_PRIO(0);
1635 1636 1637 1638 1639 1640
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1641

1642 1643 1644 1645 1646 1647
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1648

H
Hiroshi Shimamoto 已提交
1649 1650
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1651

P
Peter Zijlstra 已提交
1652 1653 1654
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1655 1656 1657 1658 1659 1660 1661
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1662
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1663
	set_task_cpu(p, cpu);
1664
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1665

1666
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1667
	if (likely(sched_info_on()))
1668
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1669
#endif
P
Peter Zijlstra 已提交
1670 1671
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1672
#endif
1673
#ifdef CONFIG_PREEMPT_COUNT
1674
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1675
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1676
#endif
1677
#ifdef CONFIG_SMP
1678
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1679
#endif
1680

N
Nick Piggin 已提交
1681
	put_cpu();
L
Linus Torvalds 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1691
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1692 1693
{
	unsigned long flags;
I
Ingo Molnar 已提交
1694
	struct rq *rq;
1695

1696
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1697 1698 1699 1700 1701 1702
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1703
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1704 1705
#endif

1706
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1707
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1708
	p->on_rq = 1;
1709
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1710
	check_preempt_curr(rq, p, WF_FORK);
1711
#ifdef CONFIG_SMP
1712 1713
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1714
#endif
1715
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1716 1717
}

1718 1719 1720
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1721
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1722
 * @notifier: notifier struct to register
1723 1724 1725 1726 1727 1728 1729 1730 1731
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1732
 * @notifier: notifier struct to unregister
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1762
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1774
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1775

1776 1777 1778
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1779
 * @prev: the current task that is being switched out
1780 1781 1782 1783 1784 1785 1786 1787 1788
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1789 1790 1791
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1792
{
1793
	trace_sched_switch(prev, next);
1794 1795
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1796
	fire_sched_out_preempt_notifiers(prev, next);
1797 1798 1799 1800
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1801 1802
/**
 * finish_task_switch - clean up after a task-switch
1803
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1804 1805
 * @prev: the thread we just switched away from.
 *
1806 1807 1808 1809
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1810 1811
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1812
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1813 1814 1815
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1816
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1817 1818 1819
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1820
	long prev_state;
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1826
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1827 1828
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1829
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1835
	prev_state = prev->state;
1836
	vtime_task_switch(prev);
1837
	finish_arch_switch(prev);
1838
	perf_event_task_sched_in(prev, current);
1839
	finish_lock_switch(rq, prev);
1840
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1841

1842
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1843 1844
	if (mm)
		mmdrop(mm);
1845
	if (unlikely(prev_state == TASK_DEAD)) {
1846 1847 1848
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1849
		 */
1850
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1851
		put_task_struct(prev);
1852
	}
L
Linus Torvalds 已提交
1853 1854
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1870
		raw_spin_lock_irqsave(&rq->lock, flags);
1871 1872
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1873
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1874 1875 1876 1877 1878 1879

		rq->post_schedule = 0;
	}
}

#else
1880

1881 1882 1883 1884 1885 1886
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1887 1888
}

1889 1890
#endif

L
Linus Torvalds 已提交
1891 1892 1893 1894
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1895
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1896 1897
	__releases(rq->lock)
{
1898 1899
	struct rq *rq = this_rq();

1900
	finish_task_switch(rq, prev);
1901

1902 1903 1904 1905 1906
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1907

1908 1909 1910 1911
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1912
	if (current->set_child_tid)
1913
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918 1919
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1920
static inline void
1921
context_switch(struct rq *rq, struct task_struct *prev,
1922
	       struct task_struct *next)
L
Linus Torvalds 已提交
1923
{
I
Ingo Molnar 已提交
1924
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1925

1926
	prepare_task_switch(rq, prev, next);
1927

I
Ingo Molnar 已提交
1928 1929
	mm = next->mm;
	oldmm = prev->active_mm;
1930 1931 1932 1933 1934
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1935
	arch_start_context_switch(prev);
1936

1937
	if (!mm) {
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1944
	if (!prev->mm) {
L
Linus Torvalds 已提交
1945 1946 1947
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1948 1949 1950 1951 1952 1953 1954
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1955
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1956
#endif
L
Linus Torvalds 已提交
1957

1958
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
1959 1960 1961
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1962 1963 1964 1965 1966 1967 1968
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1969 1970 1971
}

/*
1972
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
1973 1974
 *
 * externally visible scheduler statistics: current number of runnable
1975
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1985
}
L
Linus Torvalds 已提交
1986 1987

unsigned long long nr_context_switches(void)
1988
{
1989 1990
	int i;
	unsigned long long sum = 0;
1991

1992
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1993
		sum += cpu_rq(i)->nr_switches;
1994

L
Linus Torvalds 已提交
1995 1996
	return sum;
}
1997

L
Linus Torvalds 已提交
1998 1999 2000
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2001

2002
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2003
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2004

L
Linus Torvalds 已提交
2005 2006
	return sum;
}
2007

2008
unsigned long nr_iowait_cpu(int cpu)
2009
{
2010
	struct rq *this = cpu_rq(cpu);
2011 2012
	return atomic_read(&this->nr_iowait);
}
2013

2014 2015 2016 2017 2018
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2019

2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2068 2069 2070 2071
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2104 2105 2106
/*
 * a1 = a0 * e + a * (1 - e)
 */
2107 2108 2109 2110 2111 2112 2113 2114 2115
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2116 2117
#ifdef CONFIG_NO_HZ
/*
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2156 2157 2158
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2159 2160
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2161

2162
static inline int calc_load_write_idx(void)
2163
{
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2190 2191
	long delta;

2192 2193 2194 2195
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2196
	delta = calc_load_fold_active(this_rq);
2197 2198 2199 2200
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2201 2202
}

2203
void calc_load_exit_idle(void)
2204
{
2205 2206 2207 2208 2209 2210 2211
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2212 2213

	/*
2214 2215 2216
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2217
	 */
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2230 2231 2232

	return delta;
}
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2311
static void calc_global_nohz(void)
2312 2313 2314
{
	long delta, active, n;

2315 2316 2317 2318 2319 2320
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2321

2322 2323
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2324

2325 2326 2327
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2328

2329 2330
		calc_load_update += n * LOAD_FREQ;
	}
2331

2332 2333 2334 2335 2336 2337 2338 2339 2340
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2341
}
2342
#else /* !CONFIG_NO_HZ */
2343

2344 2345
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2346

2347
#endif /* CONFIG_NO_HZ */
2348 2349

/*
2350 2351
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2352
 */
2353
void calc_global_load(unsigned long ticks)
2354
{
2355
	long active, delta;
L
Linus Torvalds 已提交
2356

2357
	if (time_before(jiffies, calc_load_update + 10))
2358
		return;
L
Linus Torvalds 已提交
2359

2360 2361 2362 2363 2364 2365 2366
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2367 2368
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2369

2370 2371 2372
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2373

2374
	calc_load_update += LOAD_FREQ;
2375 2376

	/*
2377
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2378 2379
	 */
	calc_global_nohz();
2380
}
L
Linus Torvalds 已提交
2381

2382
/*
2383 2384
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2385 2386 2387
 */
static void calc_load_account_active(struct rq *this_rq)
{
2388
	long delta;
2389

2390 2391
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2392

2393 2394
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2395
		atomic_long_add(delta, &calc_load_tasks);
2396 2397

	this_rq->calc_load_update += LOAD_FREQ;
2398 2399
}

2400 2401 2402 2403
/*
 * End of global load-average stuff
 */

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2471
/*
I
Ingo Molnar 已提交
2472
 * Update rq->cpu_load[] statistics. This function is usually called every
2473 2474
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2475
 */
2476 2477
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2478
{
I
Ingo Molnar 已提交
2479
	int i, scale;
2480

I
Ingo Molnar 已提交
2481
	this_rq->nr_load_updates++;
2482

I
Ingo Molnar 已提交
2483
	/* Update our load: */
2484 2485
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2486
		unsigned long old_load, new_load;
2487

I
Ingo Molnar 已提交
2488
		/* scale is effectively 1 << i now, and >> i divides by scale */
2489

I
Ingo Molnar 已提交
2490
		old_load = this_rq->cpu_load[i];
2491
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2492
		new_load = this_load;
I
Ingo Molnar 已提交
2493 2494 2495 2496 2497 2498
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2499 2500 2501
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2502
	}
2503 2504

	sched_avg_update(this_rq);
2505 2506
}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2521 2522 2523 2524 2525 2526
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2527
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2528 2529 2530 2531
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2532
	 * bail if there's load or we're actually up-to-date.
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2569 2570 2571
/*
 * Called from scheduler_tick()
 */
2572 2573
static void update_cpu_load_active(struct rq *this_rq)
{
2574
	/*
2575
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2576 2577 2578
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2579

2580
	calc_load_account_active(this_rq);
2581 2582
}

I
Ingo Molnar 已提交
2583
#ifdef CONFIG_SMP
2584

2585
/*
P
Peter Zijlstra 已提交
2586 2587
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2588
 */
P
Peter Zijlstra 已提交
2589
void sched_exec(void)
2590
{
P
Peter Zijlstra 已提交
2591
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2592
	unsigned long flags;
2593
	int dest_cpu;
2594

2595
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2596
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2597 2598
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2599

2600
	if (likely(cpu_active(dest_cpu))) {
2601
		struct migration_arg arg = { p, dest_cpu };
2602

2603 2604
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2605 2606
		return;
	}
2607
unlock:
2608
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2609
}
I
Ingo Molnar 已提交
2610

L
Linus Torvalds 已提交
2611 2612 2613
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2614
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2615 2616

EXPORT_PER_CPU_SYMBOL(kstat);
2617
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2618 2619

/*
2620
 * Return any ns on the sched_clock that have not yet been accounted in
2621
 * @p in case that task is currently running.
2622 2623
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2624
 */
2625 2626 2627 2628 2629 2630
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2631
		ns = rq->clock_task - p->se.exec_start;
2632 2633 2634 2635 2636 2637 2638
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2639
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2640 2641
{
	unsigned long flags;
2642
	struct rq *rq;
2643
	u64 ns = 0;
2644

2645
	rq = task_rq_lock(p, &flags);
2646
	ns = do_task_delta_exec(p, rq);
2647
	task_rq_unlock(rq, p, &flags);
2648

2649 2650
	return ns;
}
2651

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2665
	task_rq_unlock(rq, p, &flags);
2666 2667 2668

	return ns;
}
2669

2670 2671 2672 2673 2674 2675 2676 2677
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2678
	struct task_struct *curr = rq->curr;
2679 2680

	sched_clock_tick();
I
Ingo Molnar 已提交
2681

2682
	raw_spin_lock(&rq->lock);
2683
	update_rq_clock(rq);
2684
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2685
	curr->sched_class->task_tick(rq, curr, 0);
2686
	raw_spin_unlock(&rq->lock);
2687

2688
	perf_event_task_tick();
2689

2690
#ifdef CONFIG_SMP
2691
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2692
	trigger_load_balance(rq, cpu);
2693
#endif
L
Linus Torvalds 已提交
2694 2695
}

2696
notrace unsigned long get_parent_ip(unsigned long addr)
2697 2698 2699 2700 2701 2702 2703 2704
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2705

2706 2707 2708
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2709
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2710
{
2711
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2712 2713 2714
	/*
	 * Underflow?
	 */
2715 2716
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2717
#endif
L
Linus Torvalds 已提交
2718
	preempt_count() += val;
2719
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2720 2721 2722
	/*
	 * Spinlock count overflowing soon?
	 */
2723 2724
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2725 2726 2727
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2728 2729 2730
}
EXPORT_SYMBOL(add_preempt_count);

2731
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2732
{
2733
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2734 2735 2736
	/*
	 * Underflow?
	 */
2737
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2738
		return;
L
Linus Torvalds 已提交
2739 2740 2741
	/*
	 * Is the spinlock portion underflowing?
	 */
2742 2743 2744
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2745
#endif
2746

2747 2748
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2749 2750 2751 2752 2753 2754 2755
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2756
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2757
 */
I
Ingo Molnar 已提交
2758
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2759
{
2760 2761 2762
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2763 2764
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2765

I
Ingo Molnar 已提交
2766
	debug_show_held_locks(prev);
2767
	print_modules();
I
Ingo Molnar 已提交
2768 2769
	if (irqs_disabled())
		print_irqtrace_events(prev);
2770
	dump_stack();
2771
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2772
}
L
Linus Torvalds 已提交
2773

I
Ingo Molnar 已提交
2774 2775 2776 2777 2778
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2779
	/*
I
Ingo Molnar 已提交
2780
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2781 2782 2783
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2784
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2785
		__schedule_bug(prev);
2786
	rcu_sleep_check();
I
Ingo Molnar 已提交
2787

L
Linus Torvalds 已提交
2788 2789
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2790
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2791 2792
}

P
Peter Zijlstra 已提交
2793
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2794
{
2795
	if (prev->on_rq || rq->skip_clock_update < 0)
2796
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2797
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2798 2799
}

I
Ingo Molnar 已提交
2800 2801 2802 2803
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2804
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2805
{
2806
	const struct sched_class *class;
I
Ingo Molnar 已提交
2807
	struct task_struct *p;
L
Linus Torvalds 已提交
2808 2809

	/*
I
Ingo Molnar 已提交
2810 2811
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2812
	 */
2813
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2814
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2815 2816
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2817 2818
	}

2819
	for_each_class(class) {
2820
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2821 2822 2823
		if (p)
			return p;
	}
2824 2825

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2826
}
L
Linus Torvalds 已提交
2827

I
Ingo Molnar 已提交
2828
/*
2829
 * __schedule() is the main scheduler function.
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2864
 */
2865
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2866 2867
{
	struct task_struct *prev, *next;
2868
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2869
	struct rq *rq;
2870
	int cpu;
I
Ingo Molnar 已提交
2871

2872 2873
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2874 2875
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2876
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2877 2878 2879
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2880

2881
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2882
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2883

2884
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2885

2886
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2887
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2888
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2889
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2890
		} else {
2891 2892 2893
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2894
			/*
2895 2896 2897
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2907
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2908 2909
	}

2910
	pre_schedule(rq, prev);
2911

I
Ingo Molnar 已提交
2912
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2913 2914
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2915
	put_prev_task(rq, prev);
2916
	next = pick_next_task(rq);
2917 2918
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2919 2920 2921 2922 2923 2924

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2925
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2926
		/*
2927 2928 2929 2930
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2931 2932 2933
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2934
	} else
2935
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2936

2937
	post_schedule(rq);
L
Linus Torvalds 已提交
2938

2939
	sched_preempt_enable_no_resched();
2940
	if (need_resched())
L
Linus Torvalds 已提交
2941 2942
		goto need_resched;
}
2943

2944 2945
static inline void sched_submit_work(struct task_struct *tsk)
{
2946
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2947 2948 2949 2950 2951 2952 2953 2954 2955
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2956
asmlinkage void __sched schedule(void)
2957
{
2958 2959 2960
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2961 2962
	__schedule();
}
L
Linus Torvalds 已提交
2963 2964
EXPORT_SYMBOL(schedule);

2965
#ifdef CONFIG_CONTEXT_TRACKING
2966 2967 2968 2969 2970 2971 2972 2973
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2974
	user_exit();
2975
	schedule();
2976
	user_enter();
2977 2978 2979
}
#endif

2980 2981 2982 2983 2984 2985 2986
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2987
	sched_preempt_enable_no_resched();
2988 2989 2990 2991
	schedule();
	preempt_disable();
}

2992
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2993

2994 2995 2996
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2997
		return false;
2998 2999

	/*
3000 3001 3002 3003
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3004
	 */
3005
	barrier();
3006

3007
	return owner->on_cpu;
3008
}
3009

3010 3011 3012 3013 3014 3015 3016 3017
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3018

3019
	rcu_read_lock();
3020 3021
	while (owner_running(lock, owner)) {
		if (need_resched())
3022
			break;
3023

3024
		arch_mutex_cpu_relax();
3025
	}
3026
	rcu_read_unlock();
3027

3028
	/*
3029 3030 3031
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3032
	 */
3033
	return lock->owner == NULL;
3034 3035 3036
}
#endif

L
Linus Torvalds 已提交
3037 3038
#ifdef CONFIG_PREEMPT
/*
3039
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3040
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3041 3042
 * occur there and call schedule directly.
 */
3043
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3044 3045
{
	struct thread_info *ti = current_thread_info();
3046

L
Linus Torvalds 已提交
3047 3048
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3049
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3050
	 */
N
Nick Piggin 已提交
3051
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3052 3053
		return;

3054
	do {
3055
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3056
		__schedule();
3057
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3058

3059 3060 3061 3062 3063
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3064
	} while (need_resched());
L
Linus Torvalds 已提交
3065 3066 3067 3068
}
EXPORT_SYMBOL(preempt_schedule);

/*
3069
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3077

3078
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3079 3080
	BUG_ON(ti->preempt_count || !irqs_disabled());

3081
	user_exit();
3082 3083 3084
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3085
		__schedule();
3086 3087
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3088

3089 3090 3091 3092 3093
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3094
	} while (need_resched());
L
Linus Torvalds 已提交
3095 3096 3097 3098
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3099
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3100
			  void *key)
L
Linus Torvalds 已提交
3101
{
P
Peter Zijlstra 已提交
3102
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3103 3104 3105 3106
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3107 3108
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3109 3110 3111
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3112
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3113 3114
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3115
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3116
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3117
{
3118
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3119

3120
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3121 3122
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3123
		if (curr->func(curr, mode, wake_flags, key) &&
3124
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3134
 * @key: is directly passed to the wakeup function
3135 3136 3137
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3138
 */
3139
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3140
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3153
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3154
{
3155
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3156
}
3157
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3158

3159 3160 3161 3162
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3163
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3164

L
Linus Torvalds 已提交
3165
/**
3166
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3167 3168 3169
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3170
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3171 3172 3173 3174 3175 3176 3177
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3178 3179 3180
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3181
 */
3182 3183
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3184 3185
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3186
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3187 3188 3189 3190 3191

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3192
		wake_flags = 0;
L
Linus Torvalds 已提交
3193 3194

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3195
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3196 3197
	spin_unlock_irqrestore(&q->lock, flags);
}
3198 3199 3200 3201 3202 3203 3204 3205 3206
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3207 3208
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3209 3210 3211 3212 3213 3214 3215 3216
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3217 3218 3219
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3220
 */
3221
void complete(struct completion *x)
L
Linus Torvalds 已提交
3222 3223 3224 3225 3226
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3227
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3228 3229 3230 3231
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3232 3233 3234 3235 3236
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3237 3238 3239
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3240
 */
3241
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3242 3243 3244 3245 3246
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3247
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3248 3249 3250 3251
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3252 3253
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3254 3255 3256 3257
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3258
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3259
		do {
3260
			if (signal_pending_state(state, current)) {
3261 3262
				timeout = -ERESTARTSYS;
				break;
3263 3264
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3265 3266 3267
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3268
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3269
		__remove_wait_queue(&x->wait, &wait);
3270 3271
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3272 3273
	}
	x->done--;
3274
	return timeout ?: 1;
L
Linus Torvalds 已提交
3275 3276
}

3277 3278
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3279 3280 3281 3282
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3283
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3284
	spin_unlock_irq(&x->wait.lock);
3285 3286
	return timeout;
}
L
Linus Torvalds 已提交
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3298
void __sched wait_for_completion(struct completion *x)
3299 3300
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3301
}
3302
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3303

3304 3305 3306 3307 3308 3309 3310 3311
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3312 3313 3314
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3315
 */
3316
unsigned long __sched
3317
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3318
{
3319
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3320
}
3321
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3322

3323 3324 3325 3326 3327 3328
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3329 3330
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3331
 */
3332
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3333
{
3334 3335 3336 3337
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3338
}
3339
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3340

3341 3342 3343 3344 3345 3346 3347
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3348 3349 3350
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3351
 */
3352
long __sched
3353 3354
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3355
{
3356
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3357
}
3358
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3359

3360 3361 3362 3363 3364 3365
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3366 3367
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3368
 */
M
Matthew Wilcox 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3378 3379 3380 3381 3382 3383 3384 3385
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3386 3387 3388
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3389
 */
3390
long __sched
3391 3392 3393 3394 3395 3396 3397
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3412
	unsigned long flags;
3413 3414
	int ret = 1;

3415
	spin_lock_irqsave(&x->wait.lock, flags);
3416 3417 3418 3419
	if (!x->done)
		ret = 0;
	else
		x->done--;
3420
	spin_unlock_irqrestore(&x->wait.lock, flags);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3435
	unsigned long flags;
3436 3437
	int ret = 1;

3438
	spin_lock_irqsave(&x->wait.lock, flags);
3439 3440
	if (!x->done)
		ret = 0;
3441
	spin_unlock_irqrestore(&x->wait.lock, flags);
3442 3443 3444 3445
	return ret;
}
EXPORT_SYMBOL(completion_done);

3446 3447
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3448
{
I
Ingo Molnar 已提交
3449 3450 3451 3452
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3453

3454
	__set_current_state(state);
L
Linus Torvalds 已提交
3455

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3470 3471 3472
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3473
long __sched
I
Ingo Molnar 已提交
3474
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3475
{
3476
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3477 3478 3479
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3480
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3481
{
3482
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3483 3484 3485
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3486
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3487
{
3488
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3489 3490 3491
}
EXPORT_SYMBOL(sleep_on_timeout);

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3504
void rt_mutex_setprio(struct task_struct *p, int prio)
3505
{
3506
	int oldprio, on_rq, running;
3507
	struct rq *rq;
3508
	const struct sched_class *prev_class;
3509 3510 3511

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3512
	rq = __task_rq_lock(p);
3513

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3532
	trace_sched_pi_setprio(p, prio);
3533
	oldprio = p->prio;
3534
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3535
	on_rq = p->on_rq;
3536
	running = task_current(rq, p);
3537
	if (on_rq)
3538
		dequeue_task(rq, p, 0);
3539 3540
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3541 3542 3543 3544 3545 3546

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3547 3548
	p->prio = prio;

3549 3550
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3551
	if (on_rq)
3552
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3553

P
Peter Zijlstra 已提交
3554
	check_class_changed(rq, p, prev_class, oldprio);
3555
out_unlock:
3556
	__task_rq_unlock(rq);
3557 3558
}
#endif
3559
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3560
{
I
Ingo Molnar 已提交
3561
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3562
	unsigned long flags;
3563
	struct rq *rq;
L
Linus Torvalds 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3576
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3577
	 */
3578
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3579 3580 3581
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3582
	on_rq = p->on_rq;
3583
	if (on_rq)
3584
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3585 3586

	p->static_prio = NICE_TO_PRIO(nice);
3587
	set_load_weight(p);
3588 3589 3590
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3591

I
Ingo Molnar 已提交
3592
	if (on_rq) {
3593
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3594
		/*
3595 3596
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3597
		 */
3598
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3599 3600 3601
			resched_task(rq->curr);
	}
out_unlock:
3602
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3603 3604 3605
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3606 3607 3608 3609 3610
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3611
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3612
{
3613 3614
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3615

3616
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3617 3618 3619
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3629
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3630
{
3631
	long nice, retval;
L
Linus Torvalds 已提交
3632 3633 3634 3635 3636 3637

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3638 3639
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3640 3641 3642
	if (increment > 40)
		increment = 40;

3643
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3644 3645 3646 3647 3648
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3649 3650 3651
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3670
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677 3678
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3679
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3680 3681 3682
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3683
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3684 3685 3686 3687 3688 3689 3690

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3705 3706 3707 3708 3709 3710
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3711
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3712 3713 3714 3715 3716 3717 3718 3719
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3720
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3721
{
3722
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3723 3724 3725
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3726 3727
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3728 3729 3730
{
	p->policy = policy;
	p->rt_priority = prio;
3731 3732 3733
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3734 3735 3736 3737
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3738
	set_load_weight(p);
L
Linus Torvalds 已提交
3739 3740
}

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3751 3752
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3753 3754 3755 3756
	rcu_read_unlock();
	return match;
}

3757
static int __sched_setscheduler(struct task_struct *p, int policy,
3758
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3759
{
3760
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3761
	unsigned long flags;
3762
	const struct sched_class *prev_class;
3763
	struct rq *rq;
3764
	int reset_on_fork;
L
Linus Torvalds 已提交
3765

3766 3767
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3768 3769
recheck:
	/* double check policy once rq lock held */
3770 3771
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3772
		policy = oldpolicy = p->policy;
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3783 3784
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3785 3786
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3787 3788
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3789
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3790
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3791
		return -EINVAL;
3792
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3793 3794
		return -EINVAL;

3795 3796 3797
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3798
	if (user && !capable(CAP_SYS_NICE)) {
3799
		if (rt_policy(policy)) {
3800 3801
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3812

I
Ingo Molnar 已提交
3813
		/*
3814 3815
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3816
		 */
3817 3818 3819 3820
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3821

3822
		/* can't change other user's priorities */
3823
		if (!check_same_owner(p))
3824
			return -EPERM;
3825 3826 3827 3828

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3829
	}
L
Linus Torvalds 已提交
3830

3831
	if (user) {
3832
		retval = security_task_setscheduler(p);
3833 3834 3835 3836
		if (retval)
			return retval;
	}

3837 3838 3839
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3840
	 *
L
Lucas De Marchi 已提交
3841
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3842 3843
	 * runqueue lock must be held.
	 */
3844
	rq = task_rq_lock(p, &flags);
3845

3846 3847 3848 3849
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3850
		task_rq_unlock(rq, p, &flags);
3851 3852 3853
		return -EINVAL;
	}

3854 3855 3856 3857 3858
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3859
		task_rq_unlock(rq, p, &flags);
3860 3861 3862
		return 0;
	}

3863 3864 3865 3866 3867 3868 3869
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3870 3871
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3872
			task_rq_unlock(rq, p, &flags);
3873 3874 3875 3876 3877
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3878 3879 3880
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3881
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3882 3883
		goto recheck;
	}
P
Peter Zijlstra 已提交
3884
	on_rq = p->on_rq;
3885
	running = task_current(rq, p);
3886
	if (on_rq)
3887
		dequeue_task(rq, p, 0);
3888 3889
	if (running)
		p->sched_class->put_prev_task(rq, p);
3890

3891 3892
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3893
	oldprio = p->prio;
3894
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3895
	__setscheduler(rq, p, policy, param->sched_priority);
3896

3897 3898
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3899
	if (on_rq)
3900
		enqueue_task(rq, p, 0);
3901

P
Peter Zijlstra 已提交
3902
	check_class_changed(rq, p, prev_class, oldprio);
3903
	task_rq_unlock(rq, p, &flags);
3904

3905 3906
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3907 3908
	return 0;
}
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3919
		       const struct sched_param *param)
3920 3921 3922
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3923 3924
EXPORT_SYMBOL_GPL(sched_setscheduler);

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3937
			       const struct sched_param *param)
3938 3939 3940 3941
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3942 3943
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3944 3945 3946
{
	struct sched_param lparam;
	struct task_struct *p;
3947
	int retval;
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3953 3954 3955

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3956
	p = find_process_by_pid(pid);
3957 3958 3959
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3960

L
Linus Torvalds 已提交
3961 3962 3963 3964 3965 3966 3967 3968 3969
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3970 3971
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3972
{
3973 3974 3975 3976
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3977 3978 3979 3980 3981 3982 3983 3984
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3985
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991 3992 3993
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3994
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3995
{
3996
	struct task_struct *p;
3997
	int retval;
L
Linus Torvalds 已提交
3998 3999

	if (pid < 0)
4000
		return -EINVAL;
L
Linus Torvalds 已提交
4001 4002

	retval = -ESRCH;
4003
	rcu_read_lock();
L
Linus Torvalds 已提交
4004 4005 4006 4007
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4008 4009
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4010
	}
4011
	rcu_read_unlock();
L
Linus Torvalds 已提交
4012 4013 4014 4015
	return retval;
}

/**
4016
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4017 4018 4019
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4020
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4021 4022
{
	struct sched_param lp;
4023
	struct task_struct *p;
4024
	int retval;
L
Linus Torvalds 已提交
4025 4026

	if (!param || pid < 0)
4027
		return -EINVAL;
L
Linus Torvalds 已提交
4028

4029
	rcu_read_lock();
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4040
	rcu_read_unlock();
L
Linus Torvalds 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4050
	rcu_read_unlock();
L
Linus Torvalds 已提交
4051 4052 4053
	return retval;
}

4054
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4055
{
4056
	cpumask_var_t cpus_allowed, new_mask;
4057 4058
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4059

4060
	get_online_cpus();
4061
	rcu_read_lock();
L
Linus Torvalds 已提交
4062 4063 4064

	p = find_process_by_pid(pid);
	if (!p) {
4065
		rcu_read_unlock();
4066
		put_online_cpus();
L
Linus Torvalds 已提交
4067 4068 4069
		return -ESRCH;
	}

4070
	/* Prevent p going away */
L
Linus Torvalds 已提交
4071
	get_task_struct(p);
4072
	rcu_read_unlock();
L
Linus Torvalds 已提交
4073

4074 4075 4076 4077 4078 4079 4080 4081
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4082
	retval = -EPERM;
E
Eric W. Biederman 已提交
4083 4084 4085 4086 4087 4088 4089 4090
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4091

4092
	retval = security_task_setscheduler(p);
4093 4094 4095
	if (retval)
		goto out_unlock;

4096 4097
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4098
again:
4099
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4100

P
Paul Menage 已提交
4101
	if (!retval) {
4102 4103
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4104 4105 4106 4107 4108
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4109
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4110 4111 4112
			goto again;
		}
	}
L
Linus Torvalds 已提交
4113
out_unlock:
4114 4115 4116 4117
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4118
	put_task_struct(p);
4119
	put_online_cpus();
L
Linus Torvalds 已提交
4120 4121 4122 4123
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4124
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4125
{
4126 4127 4128 4129 4130
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138 4139
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4140 4141
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4142
{
4143
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4144 4145
	int retval;

4146 4147
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4148

4149 4150 4151 4152 4153
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4154 4155
}

4156
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4157
{
4158
	struct task_struct *p;
4159
	unsigned long flags;
L
Linus Torvalds 已提交
4160 4161
	int retval;

4162
	get_online_cpus();
4163
	rcu_read_lock();
L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4170 4171 4172 4173
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4174
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4175
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4176
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4177 4178

out_unlock:
4179
	rcu_read_unlock();
4180
	put_online_cpus();
L
Linus Torvalds 已提交
4181

4182
	return retval;
L
Linus Torvalds 已提交
4183 4184 4185 4186 4187 4188 4189 4190
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4191 4192
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4193 4194
{
	int ret;
4195
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4196

A
Anton Blanchard 已提交
4197
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4198 4199
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4200 4201
		return -EINVAL;

4202 4203
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4204

4205 4206
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4207
		size_t retlen = min_t(size_t, len, cpumask_size());
4208 4209

		if (copy_to_user(user_mask_ptr, mask, retlen))
4210 4211
			ret = -EFAULT;
		else
4212
			ret = retlen;
4213 4214
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4215

4216
	return ret;
L
Linus Torvalds 已提交
4217 4218 4219 4220 4221
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4222 4223
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4224
 */
4225
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4226
{
4227
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4228

4229
	schedstat_inc(rq, yld_count);
4230
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4231 4232 4233 4234 4235 4236

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4237
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4238
	do_raw_spin_unlock(&rq->lock);
4239
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4240 4241 4242 4243 4244 4245

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4246 4247 4248 4249 4250
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4251
static void __cond_resched(void)
L
Linus Torvalds 已提交
4252
{
4253
	add_preempt_count(PREEMPT_ACTIVE);
4254
	__schedule();
4255
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4256 4257
}

4258
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4259
{
P
Peter Zijlstra 已提交
4260
	if (should_resched()) {
L
Linus Torvalds 已提交
4261 4262 4263 4264 4265
		__cond_resched();
		return 1;
	}
	return 0;
}
4266
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4267 4268

/*
4269
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4270 4271
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4272
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4273 4274 4275
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4276
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4277
{
P
Peter Zijlstra 已提交
4278
	int resched = should_resched();
J
Jan Kara 已提交
4279 4280
	int ret = 0;

4281 4282
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4283
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4284
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4285
		if (resched)
N
Nick Piggin 已提交
4286 4287 4288
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4289
		ret = 1;
L
Linus Torvalds 已提交
4290 4291
		spin_lock(lock);
	}
J
Jan Kara 已提交
4292
	return ret;
L
Linus Torvalds 已提交
4293
}
4294
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4295

4296
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4297 4298 4299
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4300
	if (should_resched()) {
4301
		local_bh_enable();
L
Linus Torvalds 已提交
4302 4303 4304 4305 4306 4307
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4308
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4309 4310 4311 4312

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4331 4332 4333 4334 4335 4336 4337 4338
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4339 4340 4341 4342
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4343 4344
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4356
	int yielded = 0;
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4379
	if (yielded) {
4380
		schedstat_inc(rq, yld_count);
4381 4382 4383 4384 4385 4386 4387
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4400
/*
I
Ingo Molnar 已提交
4401
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4402 4403 4404 4405
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4406
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4407

4408
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4409
	atomic_inc(&rq->nr_iowait);
4410
	blk_flush_plug(current);
4411
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4412
	schedule();
4413
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4414
	atomic_dec(&rq->nr_iowait);
4415
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4416 4417 4418 4419 4420
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4421
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4422 4423
	long ret;

4424
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4425
	atomic_inc(&rq->nr_iowait);
4426
	blk_flush_plug(current);
4427
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4428
	ret = schedule_timeout(timeout);
4429
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4430
	atomic_dec(&rq->nr_iowait);
4431
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4442
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4452
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4453
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4467
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4477
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4478
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4492
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4493
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4494
{
4495
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4496
	unsigned int time_slice;
4497 4498
	unsigned long flags;
	struct rq *rq;
4499
	int retval;
L
Linus Torvalds 已提交
4500 4501 4502
	struct timespec t;

	if (pid < 0)
4503
		return -EINVAL;
L
Linus Torvalds 已提交
4504 4505

	retval = -ESRCH;
4506
	rcu_read_lock();
L
Linus Torvalds 已提交
4507 4508 4509 4510 4511 4512 4513 4514
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4515 4516
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4517
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4518

4519
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4520
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4521 4522
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4523

L
Linus Torvalds 已提交
4524
out_unlock:
4525
	rcu_read_unlock();
L
Linus Torvalds 已提交
4526 4527 4528
	return retval;
}

4529
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4530

4531
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4532 4533
{
	unsigned long free = 0;
4534
	int ppid;
4535
	unsigned state;
L
Linus Torvalds 已提交
4536 4537

	state = p->state ? __ffs(p->state) + 1 : 0;
4538
	printk(KERN_INFO "%-15.15s %c", p->comm,
4539
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4540
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4541
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4542
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4543
	else
P
Peter Zijlstra 已提交
4544
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4545 4546
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4547
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4548
	else
P
Peter Zijlstra 已提交
4549
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4550 4551
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4552
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4553
#endif
4554 4555 4556
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4557
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4558
		task_pid_nr(p), ppid,
4559
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4560

4561
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4562 4563
}

I
Ingo Molnar 已提交
4564
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4565
{
4566
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4567

4568
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4569 4570
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4571
#else
P
Peter Zijlstra 已提交
4572 4573
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4574
#endif
4575
	rcu_read_lock();
L
Linus Torvalds 已提交
4576 4577 4578
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4579
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4580 4581
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4582
		if (!state_filter || (p->state & state_filter))
4583
			sched_show_task(p);
L
Linus Torvalds 已提交
4584 4585
	} while_each_thread(g, p);

4586 4587
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4588 4589 4590
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4591
	rcu_read_unlock();
I
Ingo Molnar 已提交
4592 4593 4594
	/*
	 * Only show locks if all tasks are dumped:
	 */
4595
	if (!state_filter)
I
Ingo Molnar 已提交
4596
		debug_show_all_locks();
L
Linus Torvalds 已提交
4597 4598
}

I
Ingo Molnar 已提交
4599 4600
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4601
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4602 4603
}

4604 4605 4606 4607 4608 4609 4610 4611
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4612
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4613
{
4614
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4615 4616
	unsigned long flags;

4617
	raw_spin_lock_irqsave(&rq->lock, flags);
4618

I
Ingo Molnar 已提交
4619
	__sched_fork(idle);
4620
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4621 4622
	idle->se.exec_start = sched_clock();

4623
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4635
	__set_task_cpu(idle, cpu);
4636
	rcu_read_unlock();
L
Linus Torvalds 已提交
4637 4638

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4639 4640
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4641
#endif
4642
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4643 4644

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4645
	task_thread_info(idle)->preempt_count = 0;
4646

I
Ingo Molnar 已提交
4647 4648 4649 4650
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4651
	ftrace_graph_init_idle_task(idle, cpu);
4652
	vtime_init_idle(idle);
4653 4654 4655
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4656 4657
}

L
Linus Torvalds 已提交
4658
#ifdef CONFIG_SMP
4659 4660 4661 4662
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4663 4664

	cpumask_copy(&p->cpus_allowed, new_mask);
4665
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4666 4667
}

L
Linus Torvalds 已提交
4668 4669 4670
/*
 * This is how migration works:
 *
4671 4672 4673 4674 4675 4676
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4677
 *    it and puts it into the right queue.
4678 4679
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4680 4681 4682 4683 4684 4685 4686 4687
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4688
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4689 4690
 * call is not atomic; no spinlocks may be held.
 */
4691
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4692 4693
{
	unsigned long flags;
4694
	struct rq *rq;
4695
	unsigned int dest_cpu;
4696
	int ret = 0;
L
Linus Torvalds 已提交
4697 4698

	rq = task_rq_lock(p, &flags);
4699

4700 4701 4702
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4703
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4704 4705 4706 4707
		ret = -EINVAL;
		goto out;
	}

4708
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4709 4710 4711 4712
		ret = -EINVAL;
		goto out;
	}

4713
	do_set_cpus_allowed(p, new_mask);
4714

L
Linus Torvalds 已提交
4715
	/* Can the task run on the task's current CPU? If so, we're done */
4716
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4717 4718
		goto out;

4719
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4720
	if (p->on_rq) {
4721
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4722
		/* Need help from migration thread: drop lock and wait. */
4723
		task_rq_unlock(rq, p, &flags);
4724
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4725 4726 4727 4728
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4729
	task_rq_unlock(rq, p, &flags);
4730

L
Linus Torvalds 已提交
4731 4732
	return ret;
}
4733
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4734 4735

/*
I
Ingo Molnar 已提交
4736
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4737 4738 4739 4740 4741 4742
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4743 4744
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4745
 */
4746
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4747
{
4748
	struct rq *rq_dest, *rq_src;
4749
	int ret = 0;
L
Linus Torvalds 已提交
4750

4751
	if (unlikely(!cpu_active(dest_cpu)))
4752
		return ret;
L
Linus Torvalds 已提交
4753 4754 4755 4756

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4757
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4758 4759 4760
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4761
		goto done;
L
Linus Torvalds 已提交
4762
	/* Affinity changed (again). */
4763
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4764
		goto fail;
L
Linus Torvalds 已提交
4765

4766 4767 4768 4769
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4770
	if (p->on_rq) {
4771
		dequeue_task(rq_src, p, 0);
4772
		set_task_cpu(p, dest_cpu);
4773
		enqueue_task(rq_dest, p, 0);
4774
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4775
	}
L
Linus Torvalds 已提交
4776
done:
4777
	ret = 1;
L
Linus Torvalds 已提交
4778
fail:
L
Linus Torvalds 已提交
4779
	double_rq_unlock(rq_src, rq_dest);
4780
	raw_spin_unlock(&p->pi_lock);
4781
	return ret;
L
Linus Torvalds 已提交
4782 4783 4784
}

/*
4785 4786 4787
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4788
 */
4789
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4790
{
4791
	struct migration_arg *arg = data;
4792

4793 4794 4795 4796
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4797
	local_irq_disable();
4798
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4799
	local_irq_enable();
L
Linus Torvalds 已提交
4800
	return 0;
4801 4802
}

L
Linus Torvalds 已提交
4803
#ifdef CONFIG_HOTPLUG_CPU
4804

4805
/*
4806 4807
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4808
 */
4809
void idle_task_exit(void)
L
Linus Torvalds 已提交
4810
{
4811
	struct mm_struct *mm = current->active_mm;
4812

4813
	BUG_ON(cpu_online(smp_processor_id()));
4814

4815 4816 4817
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4818 4819 4820
}

/*
4821 4822 4823 4824 4825
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4826
 */
4827
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4828
{
4829 4830 4831
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4832 4833
}

4834
/*
4835 4836 4837 4838 4839 4840
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4841
 */
4842
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4843
{
4844
	struct rq *rq = cpu_rq(dead_cpu);
4845 4846
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4847 4848

	/*
4849 4850 4851 4852 4853 4854 4855
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4856
	 */
4857
	rq->stop = NULL;
4858

I
Ingo Molnar 已提交
4859
	for ( ; ; ) {
4860 4861 4862 4863 4864
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4865
			break;
4866

4867
		next = pick_next_task(rq);
4868
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4869
		next->sched_class->put_prev_task(rq, next);
4870

4871 4872 4873 4874 4875 4876 4877
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4878
	}
4879

4880
	rq->stop = stop;
4881
}
4882

L
Linus Torvalds 已提交
4883 4884
#endif /* CONFIG_HOTPLUG_CPU */

4885 4886 4887
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4888 4889
	{
		.procname	= "sched_domain",
4890
		.mode		= 0555,
4891
	},
4892
	{}
4893 4894 4895
};

static struct ctl_table sd_ctl_root[] = {
4896 4897
	{
		.procname	= "kernel",
4898
		.mode		= 0555,
4899 4900
		.child		= sd_ctl_dir,
	},
4901
	{}
4902 4903 4904 4905 4906
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4907
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4908 4909 4910 4911

	return entry;
}

4912 4913
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4914
	struct ctl_table *entry;
4915

4916 4917 4918
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4919
	 * will always be set. In the lowest directory the names are
4920 4921 4922
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4923 4924
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4925 4926 4927
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4928 4929 4930 4931 4932

	kfree(*tablep);
	*tablep = NULL;
}

4933 4934 4935
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4936
static void
4937
set_table_entry(struct ctl_table *entry,
4938
		const char *procname, void *data, int maxlen,
4939 4940
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4941 4942 4943 4944 4945 4946
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4947 4948 4949 4950 4951

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4952 4953 4954 4955 4956
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4957
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4958

4959 4960 4961
	if (table == NULL)
		return NULL;

4962
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4963
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4964
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4965
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4966
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4967
		sizeof(int), 0644, proc_dointvec_minmax, true);
4968
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4969
		sizeof(int), 0644, proc_dointvec_minmax, true);
4970
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4971
		sizeof(int), 0644, proc_dointvec_minmax, true);
4972
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4973
		sizeof(int), 0644, proc_dointvec_minmax, true);
4974
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4975
		sizeof(int), 0644, proc_dointvec_minmax, true);
4976
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4977
		sizeof(int), 0644, proc_dointvec_minmax, false);
4978
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4979
		sizeof(int), 0644, proc_dointvec_minmax, false);
4980
	set_table_entry(&table[9], "cache_nice_tries",
4981
		&sd->cache_nice_tries,
4982
		sizeof(int), 0644, proc_dointvec_minmax, false);
4983
	set_table_entry(&table[10], "flags", &sd->flags,
4984
		sizeof(int), 0644, proc_dointvec_minmax, false);
4985
	set_table_entry(&table[11], "name", sd->name,
4986
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4987
	/* &table[12] is terminator */
4988 4989 4990 4991

	return table;
}

4992
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4993 4994 4995 4996 4997 4998 4999 5000 5001
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5002 5003
	if (table == NULL)
		return NULL;
5004 5005 5006 5007 5008

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5009
		entry->mode = 0555;
5010 5011 5012 5013 5014 5015 5016 5017
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5018
static void register_sched_domain_sysctl(void)
5019
{
5020
	int i, cpu_num = num_possible_cpus();
5021 5022 5023
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5024 5025 5026
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5027 5028 5029
	if (entry == NULL)
		return;

5030
	for_each_possible_cpu(i) {
5031 5032
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5033
		entry->mode = 0555;
5034
		entry->child = sd_alloc_ctl_cpu_table(i);
5035
		entry++;
5036
	}
5037 5038

	WARN_ON(sd_sysctl_header);
5039 5040
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5041

5042
/* may be called multiple times per register */
5043 5044
static void unregister_sched_domain_sysctl(void)
{
5045 5046
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5047
	sd_sysctl_header = NULL;
5048 5049
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5050
}
5051
#else
5052 5053 5054 5055
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5056 5057 5058 5059
{
}
#endif

5060 5061 5062 5063 5064
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5065
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5085
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5086 5087 5088 5089
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5090 5091 5092 5093
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5094 5095
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5096
{
5097
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5098
	unsigned long flags;
5099
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5100

5101
	switch (action & ~CPU_TASKS_FROZEN) {
5102

L
Linus Torvalds 已提交
5103
	case CPU_UP_PREPARE:
5104
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5105
		break;
5106

L
Linus Torvalds 已提交
5107
	case CPU_ONLINE:
5108
		/* Update our root-domain */
5109
		raw_spin_lock_irqsave(&rq->lock, flags);
5110
		if (rq->rd) {
5111
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5112 5113

			set_rq_online(rq);
5114
		}
5115
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5116
		break;
5117

L
Linus Torvalds 已提交
5118
#ifdef CONFIG_HOTPLUG_CPU
5119
	case CPU_DYING:
5120
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5121
		/* Update our root-domain */
5122
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5123
		if (rq->rd) {
5124
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5125
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5126
		}
5127 5128
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5129
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5130
		break;
5131

5132
	case CPU_DEAD:
5133
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5134
		break;
L
Linus Torvalds 已提交
5135 5136
#endif
	}
5137 5138 5139

	update_max_interval();

L
Linus Torvalds 已提交
5140 5141 5142
	return NOTIFY_OK;
}

5143 5144 5145
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5146
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5147
 */
5148
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5149
	.notifier_call = migration_call,
5150
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5151 5152
};

5153 5154 5155 5156
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5157
	case CPU_STARTING:
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5178
static int __init migration_init(void)
L
Linus Torvalds 已提交
5179 5180
{
	void *cpu = (void *)(long)smp_processor_id();
5181
	int err;
5182

5183
	/* Initialize migration for the boot CPU */
5184 5185
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5186 5187
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5188

5189 5190 5191 5192
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5193
	return 0;
L
Linus Torvalds 已提交
5194
}
5195
early_initcall(migration_init);
L
Linus Torvalds 已提交
5196 5197 5198
#endif

#ifdef CONFIG_SMP
5199

5200 5201
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5202
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5203

5204
static __read_mostly int sched_debug_enabled;
5205

5206
static int __init sched_debug_setup(char *str)
5207
{
5208
	sched_debug_enabled = 1;
5209 5210 5211

	return 0;
}
5212 5213 5214 5215 5216 5217
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5218

5219
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5220
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5221
{
I
Ingo Molnar 已提交
5222
	struct sched_group *group = sd->groups;
5223
	char str[256];
L
Linus Torvalds 已提交
5224

R
Rusty Russell 已提交
5225
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5226
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5227 5228 5229 5230

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5231
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5232
		if (sd->parent)
P
Peter Zijlstra 已提交
5233 5234
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5235
		return -1;
N
Nick Piggin 已提交
5236 5237
	}

P
Peter Zijlstra 已提交
5238
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5239

5240
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5241 5242
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5243
	}
5244
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5245 5246
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5247
	}
L
Linus Torvalds 已提交
5248

I
Ingo Molnar 已提交
5249
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5250
	do {
I
Ingo Molnar 已提交
5251
		if (!group) {
P
Peter Zijlstra 已提交
5252 5253
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5254 5255 5256
			break;
		}

5257 5258 5259 5260 5261 5262
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5263 5264 5265
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5266 5267
			break;
		}
L
Linus Torvalds 已提交
5268

5269
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5270 5271
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5272 5273
			break;
		}
L
Linus Torvalds 已提交
5274

5275 5276
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5277 5278
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5279 5280
			break;
		}
L
Linus Torvalds 已提交
5281

5282
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5283

R
Rusty Russell 已提交
5284
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5285

P
Peter Zijlstra 已提交
5286
		printk(KERN_CONT " %s", str);
5287
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5288
			printk(KERN_CONT " (cpu_power = %d)",
5289
				group->sgp->power);
5290
		}
L
Linus Torvalds 已提交
5291

I
Ingo Molnar 已提交
5292 5293
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5294
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5295

5296
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5297
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5298

5299 5300
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5301 5302
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5303 5304
	return 0;
}
L
Linus Torvalds 已提交
5305

I
Ingo Molnar 已提交
5306 5307 5308
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5309

5310
	if (!sched_debug_enabled)
5311 5312
		return;

I
Ingo Molnar 已提交
5313 5314 5315 5316
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5317

I
Ingo Molnar 已提交
5318 5319 5320
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5321
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5322
			break;
L
Linus Torvalds 已提交
5323 5324
		level++;
		sd = sd->parent;
5325
		if (!sd)
I
Ingo Molnar 已提交
5326 5327
			break;
	}
L
Linus Torvalds 已提交
5328
}
5329
#else /* !CONFIG_SCHED_DEBUG */
5330
# define sched_domain_debug(sd, cpu) do { } while (0)
5331 5332 5333 5334
static inline bool sched_debug(void)
{
	return false;
}
5335
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5336

5337
static int sd_degenerate(struct sched_domain *sd)
5338
{
5339
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5340 5341 5342 5343 5344 5345
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5346 5347 5348
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5349 5350 5351 5352 5353
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5354
	if (sd->flags & (SD_WAKE_AFFINE))
5355 5356 5357 5358 5359
		return 0;

	return 1;
}

5360 5361
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5362 5363 5364 5365 5366 5367
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5368
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5369 5370 5371 5372 5373 5374 5375
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5376 5377 5378
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5379 5380
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5381 5382 5383 5384 5385 5386 5387
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5388
static void free_rootdomain(struct rcu_head *rcu)
5389
{
5390
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5391

5392
	cpupri_cleanup(&rd->cpupri);
5393 5394 5395 5396 5397 5398
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5399 5400
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5401
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5402 5403
	unsigned long flags;

5404
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5405 5406

	if (rq->rd) {
I
Ingo Molnar 已提交
5407
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5408

5409
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5410
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5411

5412
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5413

I
Ingo Molnar 已提交
5414 5415 5416 5417 5418 5419 5420
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5421 5422 5423 5424 5425
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5426
	cpumask_set_cpu(rq->cpu, rd->span);
5427
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5428
		set_rq_online(rq);
G
Gregory Haskins 已提交
5429

5430
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5431 5432

	if (old_rd)
5433
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5434 5435
}

5436
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5437 5438 5439
{
	memset(rd, 0, sizeof(*rd));

5440
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5441
		goto out;
5442
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5443
		goto free_span;
5444
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5445
		goto free_online;
5446

5447
	if (cpupri_init(&rd->cpupri) != 0)
5448
		goto free_rto_mask;
5449
	return 0;
5450

5451 5452
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5453 5454 5455 5456
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5457
out:
5458
	return -ENOMEM;
G
Gregory Haskins 已提交
5459 5460
}

5461 5462 5463 5464 5465 5466
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5467 5468
static void init_defrootdomain(void)
{
5469
	init_rootdomain(&def_root_domain);
5470

G
Gregory Haskins 已提交
5471 5472 5473
	atomic_set(&def_root_domain.refcount, 1);
}

5474
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5475 5476 5477 5478 5479 5480 5481
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5482
	if (init_rootdomain(rd) != 0) {
5483 5484 5485
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5486 5487 5488 5489

	return rd;
}

5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5509 5510 5511
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5512 5513 5514 5515 5516 5517 5518 5519

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5520
		kfree(sd->groups->sgp);
5521
		kfree(sd->groups);
5522
	}
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5537 5538 5539 5540 5541 5542 5543
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5544
 * two cpus are in the same cache domain, see cpus_share_cache().
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5555
	if (sd)
5556 5557 5558 5559 5560 5561
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5562
/*
I
Ingo Molnar 已提交
5563
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5564 5565
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5566 5567
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5568
{
5569
	struct rq *rq = cpu_rq(cpu);
5570 5571 5572
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5573
	for (tmp = sd; tmp; ) {
5574 5575 5576
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5577

5578
		if (sd_parent_degenerate(tmp, parent)) {
5579
			tmp->parent = parent->parent;
5580 5581
			if (parent->parent)
				parent->parent->child = tmp;
5582
			destroy_sched_domain(parent, cpu);
5583 5584
		} else
			tmp = tmp->parent;
5585 5586
	}

5587
	if (sd && sd_degenerate(sd)) {
5588
		tmp = sd;
5589
		sd = sd->parent;
5590
		destroy_sched_domain(tmp, cpu);
5591 5592 5593
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5594

5595
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5596

G
Gregory Haskins 已提交
5597
	rq_attach_root(rq, rd);
5598
	tmp = rq->sd;
N
Nick Piggin 已提交
5599
	rcu_assign_pointer(rq->sd, sd);
5600
	destroy_sched_domains(tmp, cpu);
5601 5602

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5603 5604 5605
}

/* cpus with isolated domains */
5606
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5607 5608 5609 5610

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5611
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5612
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5613 5614 5615
	return 1;
}

I
Ingo Molnar 已提交
5616
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5617

5618 5619 5620 5621 5622
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5623 5624 5625
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5626
	struct sched_group_power **__percpu sgp;
5627 5628
};

5629
struct s_data {
5630
	struct sched_domain ** __percpu sd;
5631 5632 5633
	struct root_domain	*rd;
};

5634 5635
enum s_alloc {
	sa_rootdomain,
5636
	sa_sd,
5637
	sa_sd_storage,
5638 5639 5640
	sa_none,
};

5641 5642 5643
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5644 5645
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5646 5647
#define SDTL_OVERLAP	0x01

5648
struct sched_domain_topology_level {
5649 5650
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5651
	int		    flags;
5652
	int		    numa_level;
5653
	struct sd_data      data;
5654 5655
};

P
Peter Zijlstra 已提交
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5712 5713 5714 5715 5716 5717
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5718
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5719
				GFP_KERNEL, cpu_to_node(cpu));
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5733
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5734 5735 5736
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5737 5738 5739 5740 5741 5742
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5743

P
Peter Zijlstra 已提交
5744 5745 5746 5747 5748
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5749
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5750
		    group_balance_cpu(sg) == cpu)
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5770
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5771
{
5772 5773
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5774

5775 5776
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5777

5778
	if (sg) {
5779
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5780
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5781
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5782
	}
5783 5784

	return cpu;
5785 5786
}

5787
/*
5788 5789 5790
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5791 5792
 *
 * Assumes the sched_domain tree is fully constructed
5793
 */
5794 5795
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5796
{
5797 5798 5799
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5800
	struct cpumask *covered;
5801
	int i;
5802

5803 5804 5805 5806 5807 5808
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5809 5810 5811
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5812
	cpumask_clear(covered);
5813

5814 5815 5816 5817
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5818

5819 5820
		if (cpumask_test_cpu(i, covered))
			continue;
5821

5822
		cpumask_clear(sched_group_cpus(sg));
5823
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5824
		cpumask_setall(sched_group_mask(sg));
5825

5826 5827 5828
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5829

5830 5831 5832
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5833

5834 5835 5836 5837 5838 5839 5840
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5841 5842

	return 0;
5843
}
5844

5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5857
	struct sched_group *sg = sd->groups;
5858

5859 5860 5861 5862 5863 5864
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5865

P
Peter Zijlstra 已提交
5866
	if (cpu != group_balance_cpu(sg))
5867
		return;
5868

5869
	update_group_power(sd, cpu);
5870
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5871 5872
}

5873 5874 5875
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5876 5877
}

5878 5879 5880 5881 5882
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5883 5884 5885 5886 5887 5888
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5889 5890 5891 5892 5893 5894 5895 5896 5897
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5898 5899 5900 5901 5902 5903 5904 5905 5906
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5907 5908 5909
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5910

5911
static int default_relax_domain_level = -1;
5912
int sched_domain_level_max;
5913 5914 5915

static int __init setup_relax_domain_level(char *str)
{
5916 5917
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5918

5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5937
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5938 5939
	} else {
		/* turn on idle balance on this domain */
5940
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5941 5942 5943
	}
}

5944 5945 5946
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5947 5948 5949 5950 5951
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5952 5953
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5954 5955
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5956
	case sa_sd_storage:
5957
		__sdt_free(cpu_map); /* fall through */
5958 5959 5960 5961
	case sa_none:
		break;
	}
}
5962

5963 5964 5965
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5966 5967
	memset(d, 0, sizeof(*d));

5968 5969
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5970 5971 5972
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5973
	d->rd = alloc_rootdomain();
5974
	if (!d->rd)
5975
		return sa_sd;
5976 5977
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5978

5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5991
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5992
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5993 5994

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5995
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5996 5997
}

5998 5999
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6000
{
6001
	return topology_thread_cpumask(cpu);
6002
}
6003
#endif
6004

6005 6006 6007
/*
 * Topology list, bottom-up.
 */
6008
static struct sched_domain_topology_level default_topology[] = {
6009 6010
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6011
#endif
6012
#ifdef CONFIG_SCHED_MC
6013
	{ sd_init_MC, cpu_coregroup_mask, },
6014
#endif
6015 6016 6017 6018
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6019 6020 6021 6022 6023
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6024 6025 6026 6027 6028 6029 6030 6031 6032
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6033
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6051
		.imbalance_pct		= 125,
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6171
		}
6172 6173 6174 6175 6176 6177

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6178 6179 6180 6181 6182 6183 6184 6185 6186
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6213
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6214 6215 6216 6217 6218 6219
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6220
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6252 6253

	sched_domains_numa_levels = level;
6254
}
6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6302 6303 6304 6305 6306
}
#else
static inline void sched_init_numa(void)
{
}
6307 6308 6309 6310 6311 6312 6313

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6314 6315
#endif /* CONFIG_NUMA */

6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6332 6333 6334 6335
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6336 6337 6338
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6339
			struct sched_group_power *sgp;
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6353 6354
			sg->next = sg;

6355
			*per_cpu_ptr(sdd->sg, j) = sg;
6356

P
Peter Zijlstra 已提交
6357
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6358 6359 6360 6361 6362
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6391 6392
		}
		free_percpu(sdd->sd);
6393
		sdd->sd = NULL;
6394
		free_percpu(sdd->sg);
6395
		sdd->sg = NULL;
6396
		free_percpu(sdd->sgp);
6397
		sdd->sgp = NULL;
6398 6399 6400
	}
}

6401 6402
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6403
		struct sched_domain_attr *attr, struct sched_domain *child,
6404 6405
		int cpu)
{
6406
	struct sched_domain *sd = tl->init(tl, cpu);
6407
	if (!sd)
6408
		return child;
6409 6410

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6411 6412 6413
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6414
		child->parent = sd;
6415
	}
6416
	sd->child = child;
6417
	set_domain_attribute(sd, attr);
6418 6419 6420 6421

	return sd;
}

6422 6423 6424 6425
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6426 6427
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6428 6429
{
	enum s_alloc alloc_state = sa_none;
6430
	struct sched_domain *sd;
6431
	struct s_data d;
6432
	int i, ret = -ENOMEM;
6433

6434 6435 6436
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6437

6438
	/* Set up domains for cpus specified by the cpu_map. */
6439
	for_each_cpu(i, cpu_map) {
6440 6441
		struct sched_domain_topology_level *tl;

6442
		sd = NULL;
6443
		for (tl = sched_domain_topology; tl->init; tl++) {
6444
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6445 6446
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6447 6448
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6449
		}
6450

6451 6452 6453
		while (sd->child)
			sd = sd->child;

6454
		*per_cpu_ptr(d.sd, i) = sd;
6455 6456 6457 6458 6459 6460
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6461 6462 6463 6464 6465 6466 6467
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6468
		}
6469
	}
6470

L
Linus Torvalds 已提交
6471
	/* Calculate CPU power for physical packages and nodes */
6472 6473 6474
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6475

6476 6477
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6478
			init_sched_groups_power(i, sd);
6479
		}
6480
	}
6481

L
Linus Torvalds 已提交
6482
	/* Attach the domains */
6483
	rcu_read_lock();
6484
	for_each_cpu(i, cpu_map) {
6485
		sd = *per_cpu_ptr(d.sd, i);
6486
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6487
	}
6488
	rcu_read_unlock();
6489

6490
	ret = 0;
6491
error:
6492
	__free_domain_allocs(&d, alloc_state, cpu_map);
6493
	return ret;
L
Linus Torvalds 已提交
6494
}
P
Paul Jackson 已提交
6495

6496
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6497
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6498 6499
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6500 6501 6502

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6503 6504
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6505
 */
6506
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6507

6508 6509 6510 6511 6512 6513
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6514
{
6515
	return 0;
6516 6517
}

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6543
/*
I
Ingo Molnar 已提交
6544
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6545 6546
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6547
 */
6548
static int init_sched_domains(const struct cpumask *cpu_map)
6549
{
6550 6551
	int err;

6552
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6553
	ndoms_cur = 1;
6554
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6555
	if (!doms_cur)
6556 6557
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6558
	err = build_sched_domains(doms_cur[0], NULL);
6559
	register_sched_domain_sysctl();
6560 6561

	return err;
6562 6563 6564 6565 6566 6567
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6568
static void detach_destroy_domains(const struct cpumask *cpu_map)
6569 6570 6571
{
	int i;

6572
	rcu_read_lock();
6573
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6574
		cpu_attach_domain(NULL, &def_root_domain, i);
6575
	rcu_read_unlock();
6576 6577
}

6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6594 6595
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6596
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6597 6598 6599
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6600
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6601 6602 6603
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6604 6605 6606
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6607 6608 6609 6610 6611 6612
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6613
 *
6614
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6615 6616
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6617
 *
P
Paul Jackson 已提交
6618 6619
 * Call with hotplug lock held
 */
6620
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6621
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6622
{
6623
	int i, j, n;
6624
	int new_topology;
P
Paul Jackson 已提交
6625

6626
	mutex_lock(&sched_domains_mutex);
6627

6628 6629 6630
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6631 6632 6633
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6634
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6635 6636 6637

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6638
		for (j = 0; j < n && !new_topology; j++) {
6639
			if (cpumask_equal(doms_cur[i], doms_new[j])
6640
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6641 6642 6643
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6644
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6645 6646 6647 6648
match1:
		;
	}

6649 6650
	if (doms_new == NULL) {
		ndoms_cur = 0;
6651
		doms_new = &fallback_doms;
6652
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6653
		WARN_ON_ONCE(dattr_new);
6654 6655
	}

P
Paul Jackson 已提交
6656 6657
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6658
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6659
			if (cpumask_equal(doms_new[i], doms_cur[j])
6660
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6661 6662 6663
				goto match2;
		}
		/* no match - add a new doms_new */
6664
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6665 6666 6667 6668 6669
match2:
		;
	}

	/* Remember the new sched domains */
6670 6671
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6672
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6673
	doms_cur = doms_new;
6674
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6675
	ndoms_cur = ndoms_new;
6676 6677

	register_sched_domain_sysctl();
6678

6679
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6680 6681
}

6682 6683
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6684
/*
6685 6686 6687
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6688 6689 6690
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6691
 */
6692 6693
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6694
{
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6717
	case CPU_ONLINE:
6718
	case CPU_DOWN_FAILED:
6719
		cpuset_update_active_cpus(true);
6720
		break;
6721 6722 6723
	default:
		return NOTIFY_DONE;
	}
6724
	return NOTIFY_OK;
6725
}
6726

6727 6728
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6729
{
6730
	switch (action) {
6731
	case CPU_DOWN_PREPARE:
6732
		cpuset_update_active_cpus(false);
6733 6734 6735 6736 6737
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6738 6739 6740
	default:
		return NOTIFY_DONE;
	}
6741
	return NOTIFY_OK;
6742 6743
}

L
Linus Torvalds 已提交
6744 6745
void __init sched_init_smp(void)
{
6746 6747 6748
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6749
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6750

6751 6752
	sched_init_numa();

6753
	get_online_cpus();
6754
	mutex_lock(&sched_domains_mutex);
6755
	init_sched_domains(cpu_active_mask);
6756 6757 6758
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6759
	mutex_unlock(&sched_domains_mutex);
6760
	put_online_cpus();
6761

6762
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6763 6764
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6765 6766 6767 6768

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6769
	init_hrtick();
6770 6771

	/* Move init over to a non-isolated CPU */
6772
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6773
		BUG();
I
Ingo Molnar 已提交
6774
	sched_init_granularity();
6775
	free_cpumask_var(non_isolated_cpus);
6776

6777
	init_sched_rt_class();
L
Linus Torvalds 已提交
6778 6779 6780 6781
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6782
	sched_init_granularity();
L
Linus Torvalds 已提交
6783 6784 6785
}
#endif /* CONFIG_SMP */

6786 6787
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6788 6789 6790 6791 6792 6793 6794
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6795 6796
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6797
LIST_HEAD(task_groups);
6798
#endif
P
Peter Zijlstra 已提交
6799

6800
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6801

L
Linus Torvalds 已提交
6802 6803
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6804
	int i, j;
6805 6806 6807 6808 6809 6810 6811
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6812
#endif
6813
#ifdef CONFIG_CPUMASK_OFFSTACK
6814
	alloc_size += num_possible_cpus() * cpumask_size();
6815 6816
#endif
	if (alloc_size) {
6817
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6818 6819

#ifdef CONFIG_FAIR_GROUP_SCHED
6820
		root_task_group.se = (struct sched_entity **)ptr;
6821 6822
		ptr += nr_cpu_ids * sizeof(void **);

6823
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6824
		ptr += nr_cpu_ids * sizeof(void **);
6825

6826
#endif /* CONFIG_FAIR_GROUP_SCHED */
6827
#ifdef CONFIG_RT_GROUP_SCHED
6828
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6829 6830
		ptr += nr_cpu_ids * sizeof(void **);

6831
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6832 6833
		ptr += nr_cpu_ids * sizeof(void **);

6834
#endif /* CONFIG_RT_GROUP_SCHED */
6835 6836 6837 6838 6839 6840
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6841
	}
I
Ingo Molnar 已提交
6842

G
Gregory Haskins 已提交
6843 6844 6845 6846
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6847 6848 6849 6850
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6851
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6852
			global_rt_period(), global_rt_runtime());
6853
#endif /* CONFIG_RT_GROUP_SCHED */
6854

D
Dhaval Giani 已提交
6855
#ifdef CONFIG_CGROUP_SCHED
6856 6857
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6858
	INIT_LIST_HEAD(&root_task_group.siblings);
6859
	autogroup_init(&init_task);
6860

D
Dhaval Giani 已提交
6861
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6862

6863 6864 6865 6866 6867 6868
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6869
	for_each_possible_cpu(i) {
6870
		struct rq *rq;
L
Linus Torvalds 已提交
6871 6872

		rq = cpu_rq(i);
6873
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6874
		rq->nr_running = 0;
6875 6876
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6877
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6878
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6879
#ifdef CONFIG_FAIR_GROUP_SCHED
6880
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6881
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6882
		/*
6883
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6884 6885 6886 6887
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6888
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6889 6890 6891
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6892
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6893 6894 6895
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6896
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6897
		 *
6898 6899
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6900
		 */
6901
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6902
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6903 6904 6905
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6906
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6907
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6908
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6909
#endif
L
Linus Torvalds 已提交
6910

I
Ingo Molnar 已提交
6911 6912
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6913 6914 6915

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6916
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6917
		rq->sd = NULL;
G
Gregory Haskins 已提交
6918
		rq->rd = NULL;
6919
		rq->cpu_power = SCHED_POWER_SCALE;
6920
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6921
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6922
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6923
		rq->push_cpu = 0;
6924
		rq->cpu = i;
6925
		rq->online = 0;
6926 6927
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6928 6929 6930

		INIT_LIST_HEAD(&rq->cfs_tasks);

6931
		rq_attach_root(rq, &def_root_domain);
6932
#ifdef CONFIG_NO_HZ
6933
		rq->nohz_flags = 0;
6934
#endif
L
Linus Torvalds 已提交
6935
#endif
P
Peter Zijlstra 已提交
6936
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6937 6938 6939
		atomic_set(&rq->nr_iowait, 0);
	}

6940
	set_load_weight(&init_task);
6941

6942 6943 6944 6945
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6946
#ifdef CONFIG_RT_MUTEXES
6947
	plist_head_init(&init_task.pi_waiters);
6948 6949
#endif

L
Linus Torvalds 已提交
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6963 6964 6965

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6966 6967 6968 6969
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6970

6971
#ifdef CONFIG_SMP
6972
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6973 6974 6975
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6976
	idle_thread_set_boot_cpu();
6977 6978
#endif
	init_sched_fair_class();
6979

6980
	scheduler_running = 1;
L
Linus Torvalds 已提交
6981 6982
}

6983
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6984 6985
static inline int preempt_count_equals(int preempt_offset)
{
6986
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6987

A
Arnd Bergmann 已提交
6988
	return (nested == preempt_offset);
6989 6990
}

6991
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6992 6993 6994
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6995
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6996 6997
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6998 6999 7000 7001 7002
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7003 7004 7005 7006 7007 7008 7009
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7010 7011 7012 7013 7014

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7015 7016 7017 7018 7019
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7020 7021
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7022 7023
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7024
	int on_rq;
7025

P
Peter Zijlstra 已提交
7026
	on_rq = p->on_rq;
7027
	if (on_rq)
7028
		dequeue_task(rq, p, 0);
7029 7030
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7031
		enqueue_task(rq, p, 0);
7032 7033
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7034 7035

	check_class_changed(rq, p, prev_class, old_prio);
7036 7037
}

L
Linus Torvalds 已提交
7038 7039
void normalize_rt_tasks(void)
{
7040
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7041
	unsigned long flags;
7042
	struct rq *rq;
L
Linus Torvalds 已提交
7043

7044
	read_lock_irqsave(&tasklist_lock, flags);
7045
	do_each_thread(g, p) {
7046 7047 7048 7049 7050 7051
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7052 7053
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7054 7055 7056
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7057
#endif
I
Ingo Molnar 已提交
7058 7059 7060 7061 7062 7063 7064 7065

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7066
			continue;
I
Ingo Molnar 已提交
7067
		}
L
Linus Torvalds 已提交
7068

7069
		raw_spin_lock(&p->pi_lock);
7070
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7071

7072
		normalize_task(rq, p);
7073

7074
		__task_rq_unlock(rq);
7075
		raw_spin_unlock(&p->pi_lock);
7076 7077
	} while_each_thread(g, p);

7078
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7079 7080 7081
}

#endif /* CONFIG_MAGIC_SYSRQ */
7082

7083
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7084
/*
7085
 * These functions are only useful for the IA64 MCA handling, or kdb.
7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7100
struct task_struct *curr_task(int cpu)
7101 7102 7103 7104
{
	return cpu_curr(cpu);
}

7105 7106 7107
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7108 7109 7110 7111 7112 7113
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7114 7115
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7116 7117 7118 7119 7120 7121 7122
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7123
void set_curr_task(int cpu, struct task_struct *p)
7124 7125 7126 7127 7128
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7129

D
Dhaval Giani 已提交
7130
#ifdef CONFIG_CGROUP_SCHED
7131 7132 7133
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7134 7135 7136 7137
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7138
	autogroup_free(tg);
7139 7140 7141 7142
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7143
struct task_group *sched_create_group(struct task_group *parent)
7144 7145 7146 7147 7148 7149 7150 7151
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7152
	if (!alloc_fair_sched_group(tg, parent))
7153 7154
		goto err;

7155
	if (!alloc_rt_sched_group(tg, parent))
7156 7157
		goto err;

7158
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7159
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7160 7161 7162 7163 7164

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7165
	list_add_rcu(&tg->siblings, &parent->children);
7166
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7167

7168
	return tg;
S
Srivatsa Vaddagiri 已提交
7169 7170

err:
P
Peter Zijlstra 已提交
7171
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7172 7173 7174
	return ERR_PTR(-ENOMEM);
}

7175
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7176
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7177 7178
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7179
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7180 7181
}

7182
/* Destroy runqueue etc associated with a task group */
7183
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7184
{
7185
	unsigned long flags;
7186
	int i;
S
Srivatsa Vaddagiri 已提交
7187

7188 7189
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7190
		unregister_fair_sched_group(tg, i);
7191 7192

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7193
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7194
	list_del_rcu(&tg->siblings);
7195
	spin_unlock_irqrestore(&task_group_lock, flags);
7196 7197

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7198
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7199 7200
}

7201
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7202 7203 7204
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7205 7206
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7207
{
P
Peter Zijlstra 已提交
7208
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7209 7210 7211 7212 7213 7214
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7215
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7216
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7217

7218
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7219
		dequeue_task(rq, tsk, 0);
7220 7221
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7222

P
Peter Zijlstra 已提交
7223 7224 7225 7226 7227 7228
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7229
#ifdef CONFIG_FAIR_GROUP_SCHED
7230 7231 7232
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7233
#endif
7234
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7235

7236 7237 7238
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7239
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7240

7241
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7242
}
D
Dhaval Giani 已提交
7243
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7244

7245
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7246 7247 7248
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7249
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7250

P
Peter Zijlstra 已提交
7251
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7252
}
7253 7254 7255 7256 7257 7258 7259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7260

P
Peter Zijlstra 已提交
7261 7262
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7263
{
P
Peter Zijlstra 已提交
7264
	struct task_struct *g, *p;
7265

P
Peter Zijlstra 已提交
7266
	do_each_thread(g, p) {
7267
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7268 7269
			return 1;
	} while_each_thread(g, p);
7270

P
Peter Zijlstra 已提交
7271 7272
	return 0;
}
7273

P
Peter Zijlstra 已提交
7274 7275 7276 7277 7278
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7279

7280
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7281 7282 7283 7284 7285
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7286

P
Peter Zijlstra 已提交
7287 7288
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7289

P
Peter Zijlstra 已提交
7290 7291 7292
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7293 7294
	}

7295 7296 7297 7298 7299
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7300

7301 7302 7303
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7304 7305
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7306

P
Peter Zijlstra 已提交
7307
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7308

7309 7310 7311 7312 7313
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7314

7315 7316 7317
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7318 7319 7320
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7321

P
Peter Zijlstra 已提交
7322 7323 7324 7325
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7326

P
Peter Zijlstra 已提交
7327
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7328
	}
P
Peter Zijlstra 已提交
7329

P
Peter Zijlstra 已提交
7330 7331 7332 7333
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7334 7335
}

P
Peter Zijlstra 已提交
7336
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7337
{
7338 7339
	int ret;

P
Peter Zijlstra 已提交
7340 7341 7342 7343 7344 7345
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7346 7347 7348 7349 7350
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7351 7352
}

7353
static int tg_set_rt_bandwidth(struct task_group *tg,
7354
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7355
{
P
Peter Zijlstra 已提交
7356
	int i, err = 0;
P
Peter Zijlstra 已提交
7357 7358

	mutex_lock(&rt_constraints_mutex);
7359
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7360 7361
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7362
		goto unlock;
P
Peter Zijlstra 已提交
7363

7364
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365 7366
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7367 7368 7369 7370

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7371
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7372
		rt_rq->rt_runtime = rt_runtime;
7373
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7374
	}
7375
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7376
unlock:
7377
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7378 7379 7380
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7381 7382
}

7383 7384 7385 7386 7387 7388 7389 7390 7391
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7392
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7393 7394
}

P
Peter Zijlstra 已提交
7395 7396 7397 7398
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7399
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7400 7401
		return -1;

7402
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7403 7404 7405
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7406 7407 7408 7409 7410 7411 7412 7413

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7414 7415 7416
	if (rt_period == 0)
		return -EINVAL;

7417
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7431
	u64 runtime, period;
7432 7433
	int ret = 0;

7434 7435 7436
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7437 7438 7439 7440 7441 7442 7443 7444
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7445

7446
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7447
	read_lock(&tasklist_lock);
7448
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7449
	read_unlock(&tasklist_lock);
7450 7451 7452 7453
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7464
#else /* !CONFIG_RT_GROUP_SCHED */
7465 7466
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7467 7468 7469
	unsigned long flags;
	int i;

7470 7471 7472
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7473 7474 7475 7476 7477 7478 7479
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7480
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7481 7482 7483
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7484
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7485
		rt_rq->rt_runtime = global_rt_runtime();
7486
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7487
	}
7488
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7489

7490 7491
	return 0;
}
7492
#endif /* CONFIG_RT_GROUP_SCHED */
7493

7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7513
int sched_rt_handler(struct ctl_table *table, int write,
7514
		void __user *buffer, size_t *lenp,
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7525
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7542

7543
#ifdef CONFIG_CGROUP_SCHED
7544 7545

/* return corresponding task_group object of a cgroup */
7546
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7547
{
7548 7549
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7550 7551
}

7552
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7553
{
7554
	struct task_group *tg, *parent;
7555

7556
	if (!cgrp->parent) {
7557
		/* This is early initialization for the top cgroup */
7558
		return &root_task_group.css;
7559 7560
	}

7561 7562
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7563 7564 7565 7566 7567 7568
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7569
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7570
{
7571
	struct task_group *tg = cgroup_tg(cgrp);
7572 7573 7574 7575

	sched_destroy_group(tg);
}

7576
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7577
				 struct cgroup_taskset *tset)
7578
{
7579 7580 7581
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7582
#ifdef CONFIG_RT_GROUP_SCHED
7583 7584
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7585
#else
7586 7587 7588
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7589
#endif
7590
	}
7591 7592
	return 0;
}
7593

7594
static void cpu_cgroup_attach(struct cgroup *cgrp,
7595
			      struct cgroup_taskset *tset)
7596
{
7597 7598 7599 7600
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7601 7602
}

7603
static void
7604 7605
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7618
#ifdef CONFIG_FAIR_GROUP_SCHED
7619
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7620
				u64 shareval)
7621
{
7622
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7623 7624
}

7625
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7626
{
7627
	struct task_group *tg = cgroup_tg(cgrp);
7628

7629
	return (u64) scale_load_down(tg->shares);
7630
}
7631 7632

#ifdef CONFIG_CFS_BANDWIDTH
7633 7634
static DEFINE_MUTEX(cfs_constraints_mutex);

7635 7636 7637
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7638 7639
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7640 7641
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7642
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7643
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7664 7665 7666 7667 7668
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7669
	runtime_enabled = quota != RUNTIME_INF;
7670 7671
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7672 7673 7674
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7675

P
Paul Turner 已提交
7676
	__refill_cfs_bandwidth_runtime(cfs_b);
7677 7678 7679 7680 7681 7682
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7683 7684 7685 7686
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7687
		struct rq *rq = cfs_rq->rq;
7688 7689

		raw_spin_lock_irq(&rq->lock);
7690
		cfs_rq->runtime_enabled = runtime_enabled;
7691
		cfs_rq->runtime_remaining = 0;
7692

7693
		if (cfs_rq->throttled)
7694
			unthrottle_cfs_rq(cfs_rq);
7695 7696
		raw_spin_unlock_irq(&rq->lock);
	}
7697 7698
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7699

7700
	return ret;
7701 7702 7703 7704 7705 7706
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7707
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7720
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7721 7722
		return -1;

7723
	quota_us = tg->cfs_bandwidth.quota;
7724 7725 7726 7727 7728 7729 7730 7731 7732 7733
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7734
	quota = tg->cfs_bandwidth.quota;
7735 7736 7737 7738 7739 7740 7741 7742

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7743
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7803
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7804 7805 7806 7807 7808
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7809
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7830
	int ret;
7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7842 7843 7844 7845 7846
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7847
}
7848 7849 7850 7851 7852

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7853
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7854 7855 7856 7857 7858 7859 7860

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7861
#endif /* CONFIG_CFS_BANDWIDTH */
7862
#endif /* CONFIG_FAIR_GROUP_SCHED */
7863

7864
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7865
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7866
				s64 val)
P
Peter Zijlstra 已提交
7867
{
7868
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7869 7870
}

7871
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7872
{
7873
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7874
}
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7886
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7887

7888
static struct cftype cpu_files[] = {
7889
#ifdef CONFIG_FAIR_GROUP_SCHED
7890 7891
	{
		.name = "shares",
7892 7893
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7894
	},
7895
#endif
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7907 7908 7909 7910
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7911
#endif
7912
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7913
	{
P
Peter Zijlstra 已提交
7914
		.name = "rt_runtime_us",
7915 7916
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7917
	},
7918 7919
	{
		.name = "rt_period_us",
7920 7921
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7922
	},
7923
#endif
7924
	{ }	/* terminate */
7925 7926 7927
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7928
	.name		= "cpu",
7929 7930
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7931 7932
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7933
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7934
	.subsys_id	= cpu_cgroup_subsys_id,
7935
	.base_cftypes	= cpu_files,
7936 7937 7938
	.early_init	= 1,
};

7939
#endif	/* CONFIG_CGROUP_SCHED */
7940 7941 7942 7943 7944 7945 7946 7947 7948 7949

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7950 7951
struct cpuacct root_cpuacct;

7952
/* create a new cpu accounting group */
7953
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7954
{
7955
	struct cpuacct *ca;
7956

7957 7958 7959 7960
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7961
	if (!ca)
7962
		goto out;
7963 7964

	ca->cpuusage = alloc_percpu(u64);
7965 7966 7967
	if (!ca->cpuusage)
		goto out_free_ca;

7968 7969 7970
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7971

7972
	return &ca->css;
7973

7974
out_free_cpuusage:
7975 7976 7977 7978 7979
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7980 7981 7982
}

/* destroy an existing cpu accounting group */
7983
static void cpuacct_css_free(struct cgroup *cgrp)
7984
{
7985
	struct cpuacct *ca = cgroup_ca(cgrp);
7986

7987
	free_percpu(ca->cpustat);
7988 7989 7990 7991
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7992 7993
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7994
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7995 7996 7997 7998 7999 8000
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8001
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8002
	data = *cpuusage;
8003
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8004 8005 8006 8007 8008 8009 8010 8011 8012
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8013
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8014 8015 8016 8017 8018

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8019
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8020
	*cpuusage = val;
8021
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8022 8023 8024 8025 8026
#else
	*cpuusage = val;
#endif
}

8027
/* return total cpu usage (in nanoseconds) of a group */
8028
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8029
{
8030
	struct cpuacct *ca = cgroup_ca(cgrp);
8031 8032 8033
	u64 totalcpuusage = 0;
	int i;

8034 8035
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8036 8037 8038 8039

	return totalcpuusage;
}

8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8052 8053
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8054 8055 8056 8057 8058

out:
	return err;
}

8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8074 8075 8076 8077 8078 8079
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8080
			      struct cgroup_map_cb *cb)
8081 8082
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8083 8084
	int cpu;
	s64 val = 0;
8085

8086 8087 8088 8089
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8090
	}
8091 8092
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8093

8094 8095 8096 8097 8098 8099
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8100
	}
8101 8102 8103 8104

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8105 8106 8107
	return 0;
}

8108 8109 8110
static struct cftype files[] = {
	{
		.name = "usage",
8111 8112
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8113
	},
8114 8115 8116 8117
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8118 8119 8120 8121
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8122
	{ }	/* terminate */
8123 8124 8125 8126 8127 8128 8129
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8130
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8131 8132
{
	struct cpuacct *ca;
8133
	int cpu;
8134

L
Li Zefan 已提交
8135
	if (unlikely(!cpuacct_subsys.active))
8136 8137
		return;

8138
	cpu = task_cpu(tsk);
8139 8140 8141

	rcu_read_lock();

8142 8143
	ca = task_ca(tsk);

8144
	for (; ca; ca = parent_ca(ca)) {
8145
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8146 8147
		*cpuusage += cputime;
	}
8148 8149

	rcu_read_unlock();
8150 8151 8152 8153
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8154 8155
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8156
	.subsys_id = cpuacct_subsys_id,
8157
	.base_cftypes = files,
8158 8159
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8160 8161 8162 8163 8164 8165

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}