core.c 199.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
517
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
518 519
#endif

520
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
521 522 523
{
	int cpu;

524
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
525

526
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
527 528
		return;

529
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538 539 540

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

541
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
542 543 544 545
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

546
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
547 548
		return;
	resched_task(cpu_curr(cpu));
549
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
550
}
551 552

#ifdef CONFIG_NO_HZ
553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

567
	rcu_read_lock();
568
	for_each_domain(cpu, sd) {
569 570 571 572 573 574
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
575
	}
576 577
unlock:
	rcu_read_unlock();
578 579
	return cpu;
}
580 581 582 583 584 585 586 587 588 589
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
590
static void wake_up_idle_cpu(int cpu)
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
606 607

	/*
608 609 610
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
611
	 */
612
	set_tsk_need_resched(rq->idle);
613

614 615 616 617
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static bool wake_up_extended_nohz_cpu(int cpu)
{
	if (tick_nohz_extended_cpu(cpu)) {
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
	if (!wake_up_extended_nohz_cpu(cpu))
		wake_up_idle_cpu(cpu);
}

638
static inline bool got_nohz_idle_kick(void)
639
{
640 641
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
642 643
}

644
#else /* CONFIG_NO_HZ */
645

646
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
647
{
648
	return false;
P
Peter Zijlstra 已提交
649 650
}

651
#endif /* CONFIG_NO_HZ */
652

653
void sched_avg_update(struct rq *rq)
654
{
655 656 657
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
658 659 660 661 662 663
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
664 665 666
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
667 668
}

669
#else /* !CONFIG_SMP */
670
void resched_task(struct task_struct *p)
671
{
672
	assert_raw_spin_locked(&task_rq(p)->lock);
673
	set_tsk_need_resched(p);
674
}
675
#endif /* CONFIG_SMP */
676

677 678
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
679
/*
680 681 682 683
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
684
 */
685
int walk_tg_tree_from(struct task_group *from,
686
			     tg_visitor down, tg_visitor up, void *data)
687 688
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
689
	int ret;
690

691 692
	parent = from;

693
down:
P
Peter Zijlstra 已提交
694 695
	ret = (*down)(parent, data);
	if (ret)
696
		goto out;
697 698 699 700 701 702 703
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
704
	ret = (*up)(parent, data);
705 706
	if (ret || parent == from)
		goto out;
707 708 709 710 711

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
712
out:
P
Peter Zijlstra 已提交
713
	return ret;
714 715
}

716
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
717
{
718
	return 0;
P
Peter Zijlstra 已提交
719
}
720 721
#endif

722 723
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
724 725 726
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
727 728 729 730
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
731
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
732
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
733 734
		return;
	}
735

736
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
737
	load->inv_weight = prio_to_wmult[prio];
738 739
}

740
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
741
{
742
	update_rq_clock(rq);
I
Ingo Molnar 已提交
743
	sched_info_queued(p);
744
	p->sched_class->enqueue_task(rq, p, flags);
745 746
}

747
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
748
{
749
	update_rq_clock(rq);
750
	sched_info_dequeued(p);
751
	p->sched_class->dequeue_task(rq, p, flags);
752 753
}

754
void activate_task(struct rq *rq, struct task_struct *p, int flags)
755 756 757 758
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

759
	enqueue_task(rq, p, flags);
760 761
}

762
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
763 764 765 766
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

767
	dequeue_task(rq, p, flags);
768 769
}

770
static void update_rq_clock_task(struct rq *rq, s64 delta)
771
{
772 773 774 775 776 777 778 779
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
780
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
802 803
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
804
	if (static_key_false((&paravirt_steal_rq_enabled))) {
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

822 823
	rq->clock_task += delta;

824 825 826 827
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
828 829
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

860
/*
I
Ingo Molnar 已提交
861
 * __normal_prio - return the priority that is based on the static prio
862 863 864
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
865
	return p->static_prio;
866 867
}

868 869 870 871 872 873 874
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
875
static inline int normal_prio(struct task_struct *p)
876 877 878
{
	int prio;

879
	if (task_has_rt_policy(p))
880 881 882 883 884 885 886 887 888 889 890 891 892
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
893
static int effective_prio(struct task_struct *p)
894 895 896 897 898 899 900 901 902 903 904 905
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
906 907 908 909
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
910
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
911 912 913 914
{
	return cpu_curr(task_cpu(p)) == p;
}

915 916
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
917
				       int oldprio)
918 919 920
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
921 922 923 924
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
925 926
}

927
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
948
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
949 950 951
		rq->skip_clock_update = 1;
}

952 953 954 955 956 957 958
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
959
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
960
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
961
{
962 963 964 965 966
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
967 968
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
969 970

#ifdef CONFIG_LOCKDEP
971 972 973 974 975
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
976
	 * see task_group().
977 978 979 980
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
981 982 983
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
984 985
#endif

986
	trace_sched_migrate_task(p, new_cpu);
987

988
	if (task_cpu(p) != new_cpu) {
989 990
		struct task_migration_notifier tmn;

991 992
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
993
		p->se.nr_migrations++;
994
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
995 996 997 998 999 1000

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1001
	}
I
Ingo Molnar 已提交
1002 1003

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1004 1005
}

1006
struct migration_arg {
1007
	struct task_struct *task;
L
Linus Torvalds 已提交
1008
	int dest_cpu;
1009
};
L
Linus Torvalds 已提交
1010

1011 1012
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1013 1014 1015
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1016 1017 1018 1019 1020 1021 1022
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1029
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1030 1031
{
	unsigned long flags;
I
Ingo Molnar 已提交
1032
	int running, on_rq;
R
Roland McGrath 已提交
1033
	unsigned long ncsw;
1034
	struct rq *rq;
L
Linus Torvalds 已提交
1035

1036 1037 1038 1039 1040 1041 1042 1043
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1056 1057 1058
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1059
			cpu_relax();
R
Roland McGrath 已提交
1060
		}
1061

1062 1063 1064 1065 1066 1067
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1068
		trace_sched_wait_task(p);
1069
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1070
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1071
		ncsw = 0;
1072
		if (!match_state || p->state == match_state)
1073
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1074
		task_rq_unlock(rq, p, &flags);
1075

R
Roland McGrath 已提交
1076 1077 1078 1079 1080 1081
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1092

1093 1094 1095 1096 1097
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1098
		 * So if it was still runnable (but just not actively
1099 1100 1101 1102
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1103 1104 1105 1106
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1107 1108
			continue;
		}
1109

1110 1111 1112 1113 1114 1115 1116
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1117 1118

	return ncsw;
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1128
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1134
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1144
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1145
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1146

1147
#ifdef CONFIG_SMP
1148
/*
1149
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1150
 */
1151 1152
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1153 1154
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1155 1156
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1175
	}
1176

1177 1178
	for (;;) {
		/* Any allowed, online CPU? */
1179
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1180 1181 1182 1183 1184 1185
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1216 1217 1218 1219 1220
	}

	return dest_cpu;
}

1221
/*
1222
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1223
 */
1224
static inline
1225
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1226
{
1227
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1239
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1240
		     !cpu_online(cpu)))
1241
		cpu = select_fallback_rq(task_cpu(p), p);
1242 1243

	return cpu;
1244
}
1245 1246 1247 1248 1249 1250

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1251 1252
#endif

P
Peter Zijlstra 已提交
1253
static void
1254
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1255
{
P
Peter Zijlstra 已提交
1256
#ifdef CONFIG_SCHEDSTATS
1257 1258
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1269
		rcu_read_lock();
P
Peter Zijlstra 已提交
1270 1271 1272 1273 1274 1275
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1276
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1277
	}
1278 1279 1280 1281

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1282 1283 1284
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1285
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1286 1287

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1288
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1289 1290 1291 1292 1293 1294

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1295
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1296
	p->on_rq = 1;
1297 1298 1299 1300

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1301 1302
}

1303 1304 1305
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1306
static void
1307
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1308 1309
{
	check_preempt_curr(rq, p, wake_flags);
1310
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1311 1312 1313 1314 1315 1316

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1317
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1363
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1364
static void sched_ttwu_pending(void)
1365 1366
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1367 1368
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1369 1370 1371

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1372 1373 1374
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1375 1376 1377 1378 1379 1380 1381 1382
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1383
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1400
	sched_ttwu_pending();
1401 1402 1403 1404

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1405 1406
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1407
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1408
	}
1409
	irq_exit();
1410 1411 1412 1413
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1414
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1415 1416
		smp_send_reschedule(cpu);
}
1417

1418
bool cpus_share_cache(int this_cpu, int that_cpu)
1419 1420 1421
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1422
#endif /* CONFIG_SMP */
1423

1424 1425 1426 1427
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1428
#if defined(CONFIG_SMP)
1429
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1430
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1431 1432 1433 1434 1435
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1436 1437 1438
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1439 1440 1441
}

/**
L
Linus Torvalds 已提交
1442
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1443
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1444
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1445
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1446 1447 1448 1449 1450 1451 1452
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1453 1454
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1455
 */
1456 1457
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1458 1459
{
	unsigned long flags;
1460
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1461

1462
	smp_wmb();
1463
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1464
	if (!(p->state & state))
L
Linus Torvalds 已提交
1465 1466
		goto out;

1467
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1468 1469
	cpu = task_cpu(p);

1470 1471
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1472 1473

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1474
	/*
1475 1476
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1477
	 */
1478
	while (p->on_cpu)
1479
		cpu_relax();
1480
	/*
1481
	 * Pairs with the smp_wmb() in finish_lock_switch().
1482
	 */
1483
	smp_rmb();
L
Linus Torvalds 已提交
1484

1485
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1486
	p->state = TASK_WAKING;
1487

1488
	if (p->sched_class->task_waking)
1489
		p->sched_class->task_waking(p);
1490

1491
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1492 1493
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1494
		set_task_cpu(p, cpu);
1495
	}
L
Linus Torvalds 已提交
1496 1497
#endif /* CONFIG_SMP */

1498 1499
	ttwu_queue(p, cpu);
stat:
1500
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1501
out:
1502
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1503 1504 1505 1506

	return success;
}

T
Tejun Heo 已提交
1507 1508 1509 1510
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1511
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1512
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1513
 * the current task.
T
Tejun Heo 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1523 1524 1525 1526 1527 1528
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1529
	if (!(p->state & TASK_NORMAL))
1530
		goto out;
T
Tejun Heo 已提交
1531

P
Peter Zijlstra 已提交
1532
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1533 1534
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1535
	ttwu_do_wakeup(rq, p, 0);
1536
	ttwu_stat(p, smp_processor_id(), 0);
1537 1538
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1552
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1553
{
1554 1555
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1556 1557 1558
}
EXPORT_SYMBOL(wake_up_process);

1559
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1567 1568 1569 1570 1571
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1572 1573 1574
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1575 1576
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1577
	p->se.prev_sum_exec_runtime	= 0;
1578
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1579
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1580
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1581

1582 1583 1584 1585 1586 1587
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1588 1589 1590
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1591
#ifdef CONFIG_SCHEDSTATS
1592
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1593
#endif
N
Nick Piggin 已提交
1594

P
Peter Zijlstra 已提交
1595
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1596

1597 1598 1599
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1600 1601 1602 1603

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1604
		p->mm->numa_next_reset = jiffies;
1605 1606 1607 1608 1609 1610
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1611
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1612 1613
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1614 1615
}

1616
#ifdef CONFIG_NUMA_BALANCING
1617
#ifdef CONFIG_SCHED_DEBUG
1618 1619 1620 1621 1622 1623 1624
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1625 1626 1627 1628 1629 1630
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1631
}
1632
#endif /* CONFIG_SCHED_DEBUG */
1633
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1634 1635 1636 1637

/*
 * fork()/clone()-time setup:
 */
1638
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1639
{
1640
	unsigned long flags;
I
Ingo Molnar 已提交
1641 1642 1643
	int cpu = get_cpu();

	__sched_fork(p);
1644
	/*
1645
	 * We mark the process as running here. This guarantees that
1646 1647 1648
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1649
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1650

1651 1652 1653 1654 1655
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1656 1657 1658 1659
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1660
		if (task_has_rt_policy(p)) {
1661
			p->policy = SCHED_NORMAL;
1662
			p->static_prio = NICE_TO_PRIO(0);
1663 1664 1665 1666 1667 1668
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1669

1670 1671 1672 1673 1674 1675
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1676

H
Hiroshi Shimamoto 已提交
1677 1678
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1679

P
Peter Zijlstra 已提交
1680 1681 1682
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1683 1684 1685 1686 1687 1688 1689
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1690
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1691
	set_task_cpu(p, cpu);
1692
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1693

1694
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1695
	if (likely(sched_info_on()))
1696
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1697
#endif
P
Peter Zijlstra 已提交
1698 1699
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1700
#endif
1701
#ifdef CONFIG_PREEMPT_COUNT
1702
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1703
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1704
#endif
1705
#ifdef CONFIG_SMP
1706
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1707
#endif
1708

N
Nick Piggin 已提交
1709
	put_cpu();
L
Linus Torvalds 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1719
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1720 1721
{
	unsigned long flags;
I
Ingo Molnar 已提交
1722
	struct rq *rq;
1723

1724
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1725 1726 1727 1728 1729 1730
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1731
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1732 1733
#endif

1734
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1735
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1736
	p->on_rq = 1;
1737
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1738
	check_preempt_curr(rq, p, WF_FORK);
1739
#ifdef CONFIG_SMP
1740 1741
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1742
#endif
1743
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1744 1745
}

1746 1747 1748
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1749
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1750
 * @notifier: notifier struct to register
1751 1752 1753 1754 1755 1756 1757 1758 1759
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1760
 * @notifier: notifier struct to unregister
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1774
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1775 1776 1777 1778 1779 1780 1781 1782 1783
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1784
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1785 1786 1787
		notifier->ops->sched_out(notifier, next);
}

1788
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1800
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1801

1802 1803 1804
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1805
 * @prev: the current task that is being switched out
1806 1807 1808 1809 1810 1811 1812 1813 1814
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1815 1816 1817
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1818
{
1819
	trace_sched_switch(prev, next);
1820 1821
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1822
	fire_sched_out_preempt_notifiers(prev, next);
1823 1824 1825 1826
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1827 1828
/**
 * finish_task_switch - clean up after a task-switch
1829
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1830 1831
 * @prev: the thread we just switched away from.
 *
1832 1833 1834 1835
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1836 1837
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1838
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1839 1840 1841
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1842
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1843 1844 1845
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1846
	long prev_state;
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1852
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1853 1854
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1855
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1861
	prev_state = prev->state;
1862
	vtime_task_switch(prev);
1863
	finish_arch_switch(prev);
1864
	perf_event_task_sched_in(prev, current);
1865
	finish_lock_switch(rq, prev);
1866
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1867

1868
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1869 1870
	if (mm)
		mmdrop(mm);
1871
	if (unlikely(prev_state == TASK_DEAD)) {
1872 1873 1874
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1875
		 */
1876
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1877
		put_task_struct(prev);
1878
	}
L
Linus Torvalds 已提交
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1896
		raw_spin_lock_irqsave(&rq->lock, flags);
1897 1898
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1899
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1900 1901 1902 1903 1904 1905

		rq->post_schedule = 0;
	}
}

#else
1906

1907 1908 1909 1910 1911 1912
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1913 1914
}

1915 1916
#endif

L
Linus Torvalds 已提交
1917 1918 1919 1920
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1921
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1922 1923
	__releases(rq->lock)
{
1924 1925
	struct rq *rq = this_rq();

1926
	finish_task_switch(rq, prev);
1927

1928 1929 1930 1931 1932
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1933

1934 1935 1936 1937
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1938
	if (current->set_child_tid)
1939
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944 1945
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1946
static inline void
1947
context_switch(struct rq *rq, struct task_struct *prev,
1948
	       struct task_struct *next)
L
Linus Torvalds 已提交
1949
{
I
Ingo Molnar 已提交
1950
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1951

1952
	prepare_task_switch(rq, prev, next);
1953

I
Ingo Molnar 已提交
1954 1955
	mm = next->mm;
	oldmm = prev->active_mm;
1956 1957 1958 1959 1960
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1961
	arch_start_context_switch(prev);
1962

1963
	if (!mm) {
L
Linus Torvalds 已提交
1964 1965 1966 1967 1968 1969
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1970
	if (!prev->mm) {
L
Linus Torvalds 已提交
1971 1972 1973
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1974 1975 1976 1977 1978 1979 1980
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1981
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1982
#endif
L
Linus Torvalds 已提交
1983

1984
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
1985 1986 1987
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1988 1989 1990 1991 1992 1993 1994
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1995 1996 1997
}

/*
1998
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
1999 2000
 *
 * externally visible scheduler statistics: current number of runnable
2001
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2011
}
L
Linus Torvalds 已提交
2012 2013

unsigned long long nr_context_switches(void)
2014
{
2015 2016
	int i;
	unsigned long long sum = 0;
2017

2018
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2019
		sum += cpu_rq(i)->nr_switches;
2020

L
Linus Torvalds 已提交
2021 2022
	return sum;
}
2023

L
Linus Torvalds 已提交
2024 2025 2026
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2027

2028
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2029
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2030

L
Linus Torvalds 已提交
2031 2032
	return sum;
}
2033

2034
unsigned long nr_iowait_cpu(int cpu)
2035
{
2036
	struct rq *this = cpu_rq(cpu);
2037 2038
	return atomic_read(&this->nr_iowait);
}
2039

2040 2041 2042 2043 2044
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2045

2046

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2094 2095 2096 2097
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2114

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2130 2131 2132
/*
 * a1 = a0 * e + a * (1 - e)
 */
2133 2134 2135 2136 2137 2138 2139 2140 2141
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2142 2143
#ifdef CONFIG_NO_HZ
/*
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2182 2183 2184
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2185 2186
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2187

2188
static inline int calc_load_write_idx(void)
2189
{
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2216 2217
	long delta;

2218 2219 2220 2221
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2222
	delta = calc_load_fold_active(this_rq);
2223 2224 2225 2226
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2227 2228
}

2229
void calc_load_exit_idle(void)
2230
{
2231 2232 2233 2234 2235 2236 2237
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2238 2239

	/*
2240 2241 2242
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2243
	 */
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2256 2257 2258

	return delta;
}
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2337
static void calc_global_nohz(void)
2338 2339 2340
{
	long delta, active, n;

2341 2342 2343 2344 2345 2346
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2347

2348 2349
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2350

2351 2352 2353
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2354

2355 2356
		calc_load_update += n * LOAD_FREQ;
	}
2357

2358 2359 2360 2361 2362 2363 2364 2365 2366
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2367
}
2368
#else /* !CONFIG_NO_HZ */
2369

2370 2371
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2372

2373
#endif /* CONFIG_NO_HZ */
2374 2375

/*
2376 2377
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2378
 */
2379
void calc_global_load(unsigned long ticks)
2380
{
2381
	long active, delta;
L
Linus Torvalds 已提交
2382

2383
	if (time_before(jiffies, calc_load_update + 10))
2384
		return;
L
Linus Torvalds 已提交
2385

2386 2387 2388 2389 2390 2391 2392
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2393 2394
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2395

2396 2397 2398
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2399

2400
	calc_load_update += LOAD_FREQ;
2401 2402

	/*
2403
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2404 2405
	 */
	calc_global_nohz();
2406
}
L
Linus Torvalds 已提交
2407

2408
/*
2409 2410
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2411 2412 2413
 */
static void calc_load_account_active(struct rq *this_rq)
{
2414
	long delta;
2415

2416 2417
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2418

2419 2420
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2421
		atomic_long_add(delta, &calc_load_tasks);
2422 2423

	this_rq->calc_load_update += LOAD_FREQ;
2424 2425
}

2426 2427 2428 2429
/*
 * End of global load-average stuff
 */

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2497
/*
I
Ingo Molnar 已提交
2498
 * Update rq->cpu_load[] statistics. This function is usually called every
2499 2500
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2501
 */
2502 2503
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2504
{
I
Ingo Molnar 已提交
2505
	int i, scale;
2506

I
Ingo Molnar 已提交
2507
	this_rq->nr_load_updates++;
2508

I
Ingo Molnar 已提交
2509
	/* Update our load: */
2510 2511
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2512
		unsigned long old_load, new_load;
2513

I
Ingo Molnar 已提交
2514
		/* scale is effectively 1 << i now, and >> i divides by scale */
2515

I
Ingo Molnar 已提交
2516
		old_load = this_rq->cpu_load[i];
2517
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2518
		new_load = this_load;
I
Ingo Molnar 已提交
2519 2520 2521 2522 2523 2524
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2525 2526 2527
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2528
	}
2529 2530

	sched_avg_update(this_rq);
2531 2532
}

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2547 2548 2549 2550 2551 2552
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2553
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2554 2555 2556 2557
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2558
	 * bail if there's load or we're actually up-to-date.
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2595 2596 2597
/*
 * Called from scheduler_tick()
 */
2598 2599
static void update_cpu_load_active(struct rq *this_rq)
{
2600
	/*
2601
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2602 2603 2604
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2605

2606
	calc_load_account_active(this_rq);
2607 2608
}

I
Ingo Molnar 已提交
2609
#ifdef CONFIG_SMP
2610

2611
/*
P
Peter Zijlstra 已提交
2612 2613
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2614
 */
P
Peter Zijlstra 已提交
2615
void sched_exec(void)
2616
{
P
Peter Zijlstra 已提交
2617
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2618
	unsigned long flags;
2619
	int dest_cpu;
2620

2621
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2622
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2623 2624
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2625

2626
	if (likely(cpu_active(dest_cpu))) {
2627
		struct migration_arg arg = { p, dest_cpu };
2628

2629 2630
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2631 2632
		return;
	}
2633
unlock:
2634
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2635
}
I
Ingo Molnar 已提交
2636

L
Linus Torvalds 已提交
2637 2638 2639
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2640
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2641 2642

EXPORT_PER_CPU_SYMBOL(kstat);
2643
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2644 2645

/*
2646
 * Return any ns on the sched_clock that have not yet been accounted in
2647
 * @p in case that task is currently running.
2648 2649
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2650
 */
2651 2652 2653 2654 2655 2656
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2657
		ns = rq->clock_task - p->se.exec_start;
2658 2659 2660 2661 2662 2663 2664
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2665
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2666 2667
{
	unsigned long flags;
2668
	struct rq *rq;
2669
	u64 ns = 0;
2670

2671
	rq = task_rq_lock(p, &flags);
2672
	ns = do_task_delta_exec(p, rq);
2673
	task_rq_unlock(rq, p, &flags);
2674

2675 2676
	return ns;
}
2677

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2691
	task_rq_unlock(rq, p, &flags);
2692 2693 2694

	return ns;
}
2695

2696 2697 2698 2699 2700 2701 2702 2703
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2704
	struct task_struct *curr = rq->curr;
2705 2706

	sched_clock_tick();
I
Ingo Molnar 已提交
2707

2708
	raw_spin_lock(&rq->lock);
2709
	update_rq_clock(rq);
2710
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2711
	curr->sched_class->task_tick(rq, curr, 0);
2712
	raw_spin_unlock(&rq->lock);
2713

2714
	perf_event_task_tick();
2715

2716
#ifdef CONFIG_SMP
2717
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2718
	trigger_load_balance(rq, cpu);
2719
#endif
L
Linus Torvalds 已提交
2720 2721
}

2722
notrace unsigned long get_parent_ip(unsigned long addr)
2723 2724 2725 2726 2727 2728 2729 2730
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2731

2732 2733 2734
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2735
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2736
{
2737
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2738 2739 2740
	/*
	 * Underflow?
	 */
2741 2742
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2743
#endif
L
Linus Torvalds 已提交
2744
	preempt_count() += val;
2745
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2746 2747 2748
	/*
	 * Spinlock count overflowing soon?
	 */
2749 2750
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2751 2752 2753
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2754 2755 2756
}
EXPORT_SYMBOL(add_preempt_count);

2757
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2758
{
2759
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2760 2761 2762
	/*
	 * Underflow?
	 */
2763
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2764
		return;
L
Linus Torvalds 已提交
2765 2766 2767
	/*
	 * Is the spinlock portion underflowing?
	 */
2768 2769 2770
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2771
#endif
2772

2773 2774
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2775 2776 2777 2778 2779 2780 2781
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2782
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2783
 */
I
Ingo Molnar 已提交
2784
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2785
{
2786 2787 2788
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2789 2790
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2791

I
Ingo Molnar 已提交
2792
	debug_show_held_locks(prev);
2793
	print_modules();
I
Ingo Molnar 已提交
2794 2795
	if (irqs_disabled())
		print_irqtrace_events(prev);
2796
	dump_stack();
2797
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2798
}
L
Linus Torvalds 已提交
2799

I
Ingo Molnar 已提交
2800 2801 2802 2803 2804
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2805
	/*
I
Ingo Molnar 已提交
2806
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2807 2808 2809
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2810
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2811
		__schedule_bug(prev);
2812
	rcu_sleep_check();
I
Ingo Molnar 已提交
2813

L
Linus Torvalds 已提交
2814 2815
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2816
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2817 2818
}

P
Peter Zijlstra 已提交
2819
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2820
{
2821
	if (prev->on_rq || rq->skip_clock_update < 0)
2822
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2823
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2824 2825
}

I
Ingo Molnar 已提交
2826 2827 2828 2829
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2830
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2831
{
2832
	const struct sched_class *class;
I
Ingo Molnar 已提交
2833
	struct task_struct *p;
L
Linus Torvalds 已提交
2834 2835

	/*
I
Ingo Molnar 已提交
2836 2837
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2838
	 */
2839
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2840
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2841 2842
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2843 2844
	}

2845
	for_each_class(class) {
2846
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2847 2848 2849
		if (p)
			return p;
	}
2850 2851

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2852
}
L
Linus Torvalds 已提交
2853

I
Ingo Molnar 已提交
2854
/*
2855
 * __schedule() is the main scheduler function.
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2890
 */
2891
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2892 2893
{
	struct task_struct *prev, *next;
2894
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2895
	struct rq *rq;
2896
	int cpu;
I
Ingo Molnar 已提交
2897

2898 2899
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2900 2901
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2902
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2903 2904 2905
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2906

2907
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2908
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2909

2910
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2911

2912
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2913
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2914
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2915
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2916
		} else {
2917 2918 2919
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2920
			/*
2921 2922 2923
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2933
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2934 2935
	}

2936
	pre_schedule(rq, prev);
2937

I
Ingo Molnar 已提交
2938
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2939 2940
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2941
	put_prev_task(rq, prev);
2942
	next = pick_next_task(rq);
2943 2944
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2951
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2952
		/*
2953 2954 2955 2956
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2957 2958 2959
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2960
	} else
2961
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2962

2963
	post_schedule(rq);
L
Linus Torvalds 已提交
2964

2965
	sched_preempt_enable_no_resched();
2966
	if (need_resched())
L
Linus Torvalds 已提交
2967 2968
		goto need_resched;
}
2969

2970 2971
static inline void sched_submit_work(struct task_struct *tsk)
{
2972
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2973 2974 2975 2976 2977 2978 2979 2980 2981
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2982
asmlinkage void __sched schedule(void)
2983
{
2984 2985 2986
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2987 2988
	__schedule();
}
L
Linus Torvalds 已提交
2989 2990
EXPORT_SYMBOL(schedule);

2991
#ifdef CONFIG_CONTEXT_TRACKING
2992 2993 2994 2995 2996 2997 2998 2999
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
3000
	user_exit();
3001
	schedule();
3002
	user_enter();
3003 3004 3005
}
#endif

3006 3007 3008 3009 3010 3011 3012
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3013
	sched_preempt_enable_no_resched();
3014 3015 3016 3017
	schedule();
	preempt_disable();
}

3018
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3019

3020 3021 3022
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3023
		return false;
3024 3025

	/*
3026 3027 3028 3029
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3030
	 */
3031
	barrier();
3032

3033
	return owner->on_cpu;
3034
}
3035

3036 3037 3038 3039 3040 3041 3042 3043
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3044

3045
	rcu_read_lock();
3046 3047
	while (owner_running(lock, owner)) {
		if (need_resched())
3048
			break;
3049

3050
		arch_mutex_cpu_relax();
3051
	}
3052
	rcu_read_unlock();
3053

3054
	/*
3055 3056 3057
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3058
	 */
3059
	return lock->owner == NULL;
3060 3061 3062
}
#endif

L
Linus Torvalds 已提交
3063 3064
#ifdef CONFIG_PREEMPT
/*
3065
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3066
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3067 3068
 * occur there and call schedule directly.
 */
3069
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3070 3071
{
	struct thread_info *ti = current_thread_info();
3072

L
Linus Torvalds 已提交
3073 3074
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3075
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3076
	 */
N
Nick Piggin 已提交
3077
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3078 3079
		return;

3080
	do {
3081
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3082
		__schedule();
3083
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3084

3085 3086 3087 3088 3089
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3090
	} while (need_resched());
L
Linus Torvalds 已提交
3091 3092 3093 3094
}
EXPORT_SYMBOL(preempt_schedule);

/*
3095
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3096 3097 3098 3099 3100 3101 3102
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3103
	enum ctx_state prev_state;
3104

3105
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3106 3107
	BUG_ON(ti->preempt_count || !irqs_disabled());

3108 3109
	prev_state = exception_enter();

3110 3111 3112
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3113
		__schedule();
3114 3115
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3116

3117 3118 3119 3120 3121
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3122
	} while (need_resched());
3123 3124

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3125 3126 3127 3128
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3129
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3130
			  void *key)
L
Linus Torvalds 已提交
3131
{
P
Peter Zijlstra 已提交
3132
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3133 3134 3135 3136
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3137 3138
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3139 3140 3141
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3142
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3143 3144
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3145
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3146
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3147
{
3148
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3149

3150
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3151 3152
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3153
		if (curr->func(curr, mode, wake_flags, key) &&
3154
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3164
 * @key: is directly passed to the wakeup function
3165 3166 3167
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3168
 */
3169
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3170
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3183
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3184
{
3185
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3186
}
3187
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3188

3189 3190 3191 3192
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3193
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3194

L
Linus Torvalds 已提交
3195
/**
3196
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3197 3198 3199
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3200
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3201 3202 3203 3204 3205 3206 3207
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3208 3209 3210
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3211
 */
3212 3213
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3214 3215
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3216
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3217 3218 3219 3220 3221

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3222
		wake_flags = 0;
L
Linus Torvalds 已提交
3223 3224

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3225
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3226 3227
	spin_unlock_irqrestore(&q->lock, flags);
}
3228 3229 3230 3231 3232 3233 3234 3235 3236
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3237 3238
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3239 3240 3241 3242 3243 3244 3245 3246
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3247 3248 3249
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3250
 */
3251
void complete(struct completion *x)
L
Linus Torvalds 已提交
3252 3253 3254 3255 3256
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3257
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3258 3259 3260 3261
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3262 3263 3264 3265 3266
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3267 3268 3269
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3270
 */
3271
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3272 3273 3274 3275 3276
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3277
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3278 3279 3280 3281
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3282
static inline long __sched
3283 3284
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3285 3286 3287 3288
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3289
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3290
		do {
3291
			if (signal_pending_state(state, current)) {
3292 3293
				timeout = -ERESTARTSYS;
				break;
3294 3295
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3296
			spin_unlock_irq(&x->wait.lock);
3297
			timeout = action(timeout);
L
Linus Torvalds 已提交
3298
			spin_lock_irq(&x->wait.lock);
3299
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3300
		__remove_wait_queue(&x->wait, &wait);
3301 3302
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3303 3304
	}
	x->done--;
3305
	return timeout ?: 1;
L
Linus Torvalds 已提交
3306 3307
}

3308 3309 3310
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3311 3312 3313 3314
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3315
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
3316
	spin_unlock_irq(&x->wait.lock);
3317 3318
	return timeout;
}
L
Linus Torvalds 已提交
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3342
void __sched wait_for_completion(struct completion *x)
3343 3344
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3345
}
3346
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3347

3348 3349 3350 3351 3352 3353 3354 3355
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3356 3357 3358
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3359
 */
3360
unsigned long __sched
3361
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3362
{
3363
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3364
}
3365
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3366

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

3400 3401 3402 3403 3404 3405
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3406 3407
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3408
 */
3409
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3410
{
3411 3412 3413 3414
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3415
}
3416
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3417

3418 3419 3420 3421 3422 3423 3424
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3425 3426 3427
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3428
 */
3429
long __sched
3430 3431
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3432
{
3433
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3434
}
3435
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3436

3437 3438 3439 3440 3441 3442
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3443 3444
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3445
 */
M
Matthew Wilcox 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3455 3456 3457 3458 3459 3460 3461 3462
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3463 3464 3465
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3466
 */
3467
long __sched
3468 3469 3470 3471 3472 3473 3474
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3489
	unsigned long flags;
3490 3491
	int ret = 1;

3492
	spin_lock_irqsave(&x->wait.lock, flags);
3493 3494 3495 3496
	if (!x->done)
		ret = 0;
	else
		x->done--;
3497
	spin_unlock_irqrestore(&x->wait.lock, flags);
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3512
	unsigned long flags;
3513 3514
	int ret = 1;

3515
	spin_lock_irqsave(&x->wait.lock, flags);
3516 3517
	if (!x->done)
		ret = 0;
3518
	spin_unlock_irqrestore(&x->wait.lock, flags);
3519 3520 3521 3522
	return ret;
}
EXPORT_SYMBOL(completion_done);

3523 3524
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3525
{
I
Ingo Molnar 已提交
3526 3527 3528 3529
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3530

3531
	__set_current_state(state);
L
Linus Torvalds 已提交
3532

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3547 3548 3549
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3550
long __sched
I
Ingo Molnar 已提交
3551
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3552
{
3553
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3554 3555 3556
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3557
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3558
{
3559
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3560 3561 3562
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3563
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3564
{
3565
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3566 3567 3568
}
EXPORT_SYMBOL(sleep_on_timeout);

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3581
void rt_mutex_setprio(struct task_struct *p, int prio)
3582
{
3583
	int oldprio, on_rq, running;
3584
	struct rq *rq;
3585
	const struct sched_class *prev_class;
3586 3587 3588

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3589
	rq = __task_rq_lock(p);
3590

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3609
	trace_sched_pi_setprio(p, prio);
3610
	oldprio = p->prio;
3611
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3612
	on_rq = p->on_rq;
3613
	running = task_current(rq, p);
3614
	if (on_rq)
3615
		dequeue_task(rq, p, 0);
3616 3617
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3618 3619 3620 3621 3622 3623

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3624 3625
	p->prio = prio;

3626 3627
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3628
	if (on_rq)
3629
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3630

P
Peter Zijlstra 已提交
3631
	check_class_changed(rq, p, prev_class, oldprio);
3632
out_unlock:
3633
	__task_rq_unlock(rq);
3634 3635
}
#endif
3636
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3637
{
I
Ingo Molnar 已提交
3638
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3639
	unsigned long flags;
3640
	struct rq *rq;
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3653
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3654
	 */
3655
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3656 3657 3658
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3659
	on_rq = p->on_rq;
3660
	if (on_rq)
3661
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3662 3663

	p->static_prio = NICE_TO_PRIO(nice);
3664
	set_load_weight(p);
3665 3666 3667
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3668

I
Ingo Molnar 已提交
3669
	if (on_rq) {
3670
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3671
		/*
3672 3673
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3674
		 */
3675
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3676 3677 3678
			resched_task(rq->curr);
	}
out_unlock:
3679
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3680 3681 3682
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3683 3684 3685 3686 3687
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3688
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3689
{
3690 3691
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3692

3693
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3694 3695 3696
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3706
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3707
{
3708
	long nice, retval;
L
Linus Torvalds 已提交
3709 3710 3711 3712 3713 3714

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3715 3716
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3717 3718 3719
	if (increment > 40)
		increment = 40;

3720
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3721 3722 3723 3724 3725
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3726 3727 3728
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3747
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3748 3749 3750 3751 3752 3753 3754 3755
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3756
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3757 3758 3759
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3760
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3761 3762 3763 3764 3765 3766 3767

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3782 3783 3784 3785 3786 3787
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3788
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793 3794 3795 3796
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3797
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3798
{
3799
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3800 3801 3802
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3803 3804
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3805 3806 3807
{
	p->policy = policy;
	p->rt_priority = prio;
3808 3809 3810
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3811 3812 3813 3814
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3815
	set_load_weight(p);
L
Linus Torvalds 已提交
3816 3817
}

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3828 3829
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3830 3831 3832 3833
	rcu_read_unlock();
	return match;
}

3834
static int __sched_setscheduler(struct task_struct *p, int policy,
3835
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3836
{
3837
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3838
	unsigned long flags;
3839
	const struct sched_class *prev_class;
3840
	struct rq *rq;
3841
	int reset_on_fork;
L
Linus Torvalds 已提交
3842

3843 3844
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3845 3846
recheck:
	/* double check policy once rq lock held */
3847 3848
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3849
		policy = oldpolicy = p->policy;
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3860 3861
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3862 3863
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3864 3865
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3866
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3867
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3868
		return -EINVAL;
3869
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3870 3871
		return -EINVAL;

3872 3873 3874
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3875
	if (user && !capable(CAP_SYS_NICE)) {
3876
		if (rt_policy(policy)) {
3877 3878
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3889

I
Ingo Molnar 已提交
3890
		/*
3891 3892
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3893
		 */
3894 3895 3896 3897
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3898

3899
		/* can't change other user's priorities */
3900
		if (!check_same_owner(p))
3901
			return -EPERM;
3902 3903 3904 3905

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3906
	}
L
Linus Torvalds 已提交
3907

3908
	if (user) {
3909
		retval = security_task_setscheduler(p);
3910 3911 3912 3913
		if (retval)
			return retval;
	}

3914 3915 3916
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3917
	 *
L
Lucas De Marchi 已提交
3918
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3919 3920
	 * runqueue lock must be held.
	 */
3921
	rq = task_rq_lock(p, &flags);
3922

3923 3924 3925 3926
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3927
		task_rq_unlock(rq, p, &flags);
3928 3929 3930
		return -EINVAL;
	}

3931 3932 3933 3934 3935
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3936
		task_rq_unlock(rq, p, &flags);
3937 3938 3939
		return 0;
	}

3940 3941 3942 3943 3944 3945 3946
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3947 3948
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3949
			task_rq_unlock(rq, p, &flags);
3950 3951 3952 3953 3954
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3955 3956 3957
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3958
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3959 3960
		goto recheck;
	}
P
Peter Zijlstra 已提交
3961
	on_rq = p->on_rq;
3962
	running = task_current(rq, p);
3963
	if (on_rq)
3964
		dequeue_task(rq, p, 0);
3965 3966
	if (running)
		p->sched_class->put_prev_task(rq, p);
3967

3968 3969
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3970
	oldprio = p->prio;
3971
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3972
	__setscheduler(rq, p, policy, param->sched_priority);
3973

3974 3975
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3976
	if (on_rq)
3977
		enqueue_task(rq, p, 0);
3978

P
Peter Zijlstra 已提交
3979
	check_class_changed(rq, p, prev_class, oldprio);
3980
	task_rq_unlock(rq, p, &flags);
3981

3982 3983
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3984 3985
	return 0;
}
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3996
		       const struct sched_param *param)
3997 3998 3999
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4000 4001
EXPORT_SYMBOL_GPL(sched_setscheduler);

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4014
			       const struct sched_param *param)
4015 4016 4017 4018
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4019 4020
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4021 4022 4023
{
	struct sched_param lparam;
	struct task_struct *p;
4024
	int retval;
L
Linus Torvalds 已提交
4025 4026 4027 4028 4029

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4030 4031 4032

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4033
	p = find_process_by_pid(pid);
4034 4035 4036
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4037

L
Linus Torvalds 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4047 4048
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4049
{
4050 4051 4052 4053
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4054 4055 4056 4057 4058 4059 4060 4061
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4062
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068 4069 4070
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4071
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4072
{
4073
	struct task_struct *p;
4074
	int retval;
L
Linus Torvalds 已提交
4075 4076

	if (pid < 0)
4077
		return -EINVAL;
L
Linus Torvalds 已提交
4078 4079

	retval = -ESRCH;
4080
	rcu_read_lock();
L
Linus Torvalds 已提交
4081 4082 4083 4084
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4085 4086
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4087
	}
4088
	rcu_read_unlock();
L
Linus Torvalds 已提交
4089 4090 4091 4092
	return retval;
}

/**
4093
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4094 4095 4096
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4097
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4098 4099
{
	struct sched_param lp;
4100
	struct task_struct *p;
4101
	int retval;
L
Linus Torvalds 已提交
4102 4103

	if (!param || pid < 0)
4104
		return -EINVAL;
L
Linus Torvalds 已提交
4105

4106
	rcu_read_lock();
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4117
	rcu_read_unlock();
L
Linus Torvalds 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4127
	rcu_read_unlock();
L
Linus Torvalds 已提交
4128 4129 4130
	return retval;
}

4131
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4132
{
4133
	cpumask_var_t cpus_allowed, new_mask;
4134 4135
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4136

4137
	get_online_cpus();
4138
	rcu_read_lock();
L
Linus Torvalds 已提交
4139 4140 4141

	p = find_process_by_pid(pid);
	if (!p) {
4142
		rcu_read_unlock();
4143
		put_online_cpus();
L
Linus Torvalds 已提交
4144 4145 4146
		return -ESRCH;
	}

4147
	/* Prevent p going away */
L
Linus Torvalds 已提交
4148
	get_task_struct(p);
4149
	rcu_read_unlock();
L
Linus Torvalds 已提交
4150

4151 4152 4153 4154 4155 4156 4157 4158
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4159
	retval = -EPERM;
E
Eric W. Biederman 已提交
4160 4161 4162 4163 4164 4165 4166 4167
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4168

4169
	retval = security_task_setscheduler(p);
4170 4171 4172
	if (retval)
		goto out_unlock;

4173 4174
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4175
again:
4176
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4177

P
Paul Menage 已提交
4178
	if (!retval) {
4179 4180
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4181 4182 4183 4184 4185
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4186
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4187 4188 4189
			goto again;
		}
	}
L
Linus Torvalds 已提交
4190
out_unlock:
4191 4192 4193 4194
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4195
	put_task_struct(p);
4196
	put_online_cpus();
L
Linus Torvalds 已提交
4197 4198 4199 4200
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4201
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4202
{
4203 4204 4205 4206 4207
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4217 4218
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4219
{
4220
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4221 4222
	int retval;

4223 4224
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4225

4226 4227 4228 4229 4230
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4231 4232
}

4233
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4234
{
4235
	struct task_struct *p;
4236
	unsigned long flags;
L
Linus Torvalds 已提交
4237 4238
	int retval;

4239
	get_online_cpus();
4240
	rcu_read_lock();
L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4247 4248 4249 4250
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4251
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4252
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4253
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4254 4255

out_unlock:
4256
	rcu_read_unlock();
4257
	put_online_cpus();
L
Linus Torvalds 已提交
4258

4259
	return retval;
L
Linus Torvalds 已提交
4260 4261 4262 4263 4264 4265 4266 4267
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4268 4269
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4270 4271
{
	int ret;
4272
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4273

A
Anton Blanchard 已提交
4274
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4275 4276
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4277 4278
		return -EINVAL;

4279 4280
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4281

4282 4283
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4284
		size_t retlen = min_t(size_t, len, cpumask_size());
4285 4286

		if (copy_to_user(user_mask_ptr, mask, retlen))
4287 4288
			ret = -EFAULT;
		else
4289
			ret = retlen;
4290 4291
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4292

4293
	return ret;
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4299 4300
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4301
 */
4302
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4303
{
4304
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4305

4306
	schedstat_inc(rq, yld_count);
4307
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4308 4309 4310 4311 4312 4313

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4314
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4315
	do_raw_spin_unlock(&rq->lock);
4316
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4323 4324 4325 4326 4327
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4328
static void __cond_resched(void)
L
Linus Torvalds 已提交
4329
{
4330
	add_preempt_count(PREEMPT_ACTIVE);
4331
	__schedule();
4332
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4333 4334
}

4335
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4336
{
P
Peter Zijlstra 已提交
4337
	if (should_resched()) {
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342
		__cond_resched();
		return 1;
	}
	return 0;
}
4343
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4344 4345

/*
4346
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4347 4348
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4349
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4350 4351 4352
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4353
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4354
{
P
Peter Zijlstra 已提交
4355
	int resched = should_resched();
J
Jan Kara 已提交
4356 4357
	int ret = 0;

4358 4359
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4360
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4361
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4362
		if (resched)
N
Nick Piggin 已提交
4363 4364 4365
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4366
		ret = 1;
L
Linus Torvalds 已提交
4367 4368
		spin_lock(lock);
	}
J
Jan Kara 已提交
4369
	return ret;
L
Linus Torvalds 已提交
4370
}
4371
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4372

4373
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4374 4375 4376
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4377
	if (should_resched()) {
4378
		local_bh_enable();
L
Linus Torvalds 已提交
4379 4380 4381 4382 4383 4384
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4385
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4386 4387 4388 4389

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4408 4409 4410 4411 4412 4413 4414 4415
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4416 4417 4418 4419
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4420 4421
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4422 4423 4424 4425
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4426 4427 4428 4429
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4430 4431 4432 4433 4434 4435
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4436
	int yielded = 0;
4437 4438 4439 4440 4441 4442

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4443 4444 4445 4446 4447 4448 4449 4450 4451
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4452 4453 4454 4455 4456 4457 4458
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4459
		goto out_unlock;
4460 4461

	if (curr->sched_class != p->sched_class)
4462
		goto out_unlock;
4463 4464

	if (task_running(p_rq, p) || p->state)
4465
		goto out_unlock;
4466 4467

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4468
	if (yielded) {
4469
		schedstat_inc(rq, yld_count);
4470 4471 4472 4473 4474 4475 4476
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4477

4478
out_unlock:
4479
	double_rq_unlock(rq, p_rq);
4480
out_irq:
4481 4482
	local_irq_restore(flags);

4483
	if (yielded > 0)
4484 4485 4486 4487 4488 4489
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4490
/*
I
Ingo Molnar 已提交
4491
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4492 4493 4494 4495
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4496
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4497

4498
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4499
	atomic_inc(&rq->nr_iowait);
4500
	blk_flush_plug(current);
4501
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4502
	schedule();
4503
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4504
	atomic_dec(&rq->nr_iowait);
4505
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4506 4507 4508 4509 4510
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4511
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4512 4513
	long ret;

4514
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4515
	atomic_inc(&rq->nr_iowait);
4516
	blk_flush_plug(current);
4517
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4518
	ret = schedule_timeout(timeout);
4519
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4520
	atomic_dec(&rq->nr_iowait);
4521
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4532
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538 4539 4540 4541
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4542
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4543
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4557
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4567
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4568
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4582
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4583
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4584
{
4585
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4586
	unsigned int time_slice;
4587 4588
	unsigned long flags;
	struct rq *rq;
4589
	int retval;
L
Linus Torvalds 已提交
4590 4591 4592
	struct timespec t;

	if (pid < 0)
4593
		return -EINVAL;
L
Linus Torvalds 已提交
4594 4595

	retval = -ESRCH;
4596
	rcu_read_lock();
L
Linus Torvalds 已提交
4597 4598 4599 4600 4601 4602 4603 4604
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4605 4606
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4607
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4608

4609
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4610
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4611 4612
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4613

L
Linus Torvalds 已提交
4614
out_unlock:
4615
	rcu_read_unlock();
L
Linus Torvalds 已提交
4616 4617 4618
	return retval;
}

4619
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4620

4621
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4622 4623
{
	unsigned long free = 0;
4624
	int ppid;
4625
	unsigned state;
L
Linus Torvalds 已提交
4626 4627

	state = p->state ? __ffs(p->state) + 1 : 0;
4628
	printk(KERN_INFO "%-15.15s %c", p->comm,
4629
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4630
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4631
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4632
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4633
	else
P
Peter Zijlstra 已提交
4634
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4635 4636
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4637
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4638
	else
P
Peter Zijlstra 已提交
4639
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4640 4641
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4642
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4643
#endif
4644 4645 4646
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4647
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4648
		task_pid_nr(p), ppid,
4649
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4650

4651
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4652 4653
}

I
Ingo Molnar 已提交
4654
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4655
{
4656
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4657

4658
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4659 4660
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4661
#else
P
Peter Zijlstra 已提交
4662 4663
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4664
#endif
4665
	rcu_read_lock();
L
Linus Torvalds 已提交
4666 4667 4668
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4669
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4670 4671
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4672
		if (!state_filter || (p->state & state_filter))
4673
			sched_show_task(p);
L
Linus Torvalds 已提交
4674 4675
	} while_each_thread(g, p);

4676 4677
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4678 4679 4680
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4681
	rcu_read_unlock();
I
Ingo Molnar 已提交
4682 4683 4684
	/*
	 * Only show locks if all tasks are dumped:
	 */
4685
	if (!state_filter)
I
Ingo Molnar 已提交
4686
		debug_show_all_locks();
L
Linus Torvalds 已提交
4687 4688
}

I
Ingo Molnar 已提交
4689 4690
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4691
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4692 4693
}

4694 4695 4696 4697 4698 4699 4700 4701
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4702
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4703
{
4704
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4705 4706
	unsigned long flags;

4707
	raw_spin_lock_irqsave(&rq->lock, flags);
4708

I
Ingo Molnar 已提交
4709
	__sched_fork(idle);
4710
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4711 4712
	idle->se.exec_start = sched_clock();

4713
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4725
	__set_task_cpu(idle, cpu);
4726
	rcu_read_unlock();
L
Linus Torvalds 已提交
4727 4728

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4729 4730
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4731
#endif
4732
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4733 4734

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4735
	task_thread_info(idle)->preempt_count = 0;
4736

I
Ingo Molnar 已提交
4737 4738 4739 4740
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4741
	ftrace_graph_init_idle_task(idle, cpu);
4742
	vtime_init_idle(idle);
4743 4744 4745
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4746 4747
}

L
Linus Torvalds 已提交
4748
#ifdef CONFIG_SMP
4749 4750 4751 4752
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4753 4754

	cpumask_copy(&p->cpus_allowed, new_mask);
4755
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4756 4757
}

L
Linus Torvalds 已提交
4758 4759 4760
/*
 * This is how migration works:
 *
4761 4762 4763 4764 4765 4766
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4767
 *    it and puts it into the right queue.
4768 4769
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774 4775 4776 4777
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4778
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4779 4780
 * call is not atomic; no spinlocks may be held.
 */
4781
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4782 4783
{
	unsigned long flags;
4784
	struct rq *rq;
4785
	unsigned int dest_cpu;
4786
	int ret = 0;
L
Linus Torvalds 已提交
4787 4788

	rq = task_rq_lock(p, &flags);
4789

4790 4791 4792
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4793
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4794 4795 4796 4797
		ret = -EINVAL;
		goto out;
	}

4798
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4799 4800 4801 4802
		ret = -EINVAL;
		goto out;
	}

4803
	do_set_cpus_allowed(p, new_mask);
4804

L
Linus Torvalds 已提交
4805
	/* Can the task run on the task's current CPU? If so, we're done */
4806
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4807 4808
		goto out;

4809
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4810
	if (p->on_rq) {
4811
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4812
		/* Need help from migration thread: drop lock and wait. */
4813
		task_rq_unlock(rq, p, &flags);
4814
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4815 4816 4817 4818
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4819
	task_rq_unlock(rq, p, &flags);
4820

L
Linus Torvalds 已提交
4821 4822
	return ret;
}
4823
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4824 4825

/*
I
Ingo Molnar 已提交
4826
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831 4832
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4833 4834
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4835
 */
4836
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4837
{
4838
	struct rq *rq_dest, *rq_src;
4839
	int ret = 0;
L
Linus Torvalds 已提交
4840

4841
	if (unlikely(!cpu_active(dest_cpu)))
4842
		return ret;
L
Linus Torvalds 已提交
4843 4844 4845 4846

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4847
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4848 4849 4850
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4851
		goto done;
L
Linus Torvalds 已提交
4852
	/* Affinity changed (again). */
4853
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4854
		goto fail;
L
Linus Torvalds 已提交
4855

4856 4857 4858 4859
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4860
	if (p->on_rq) {
4861
		dequeue_task(rq_src, p, 0);
4862
		set_task_cpu(p, dest_cpu);
4863
		enqueue_task(rq_dest, p, 0);
4864
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4865
	}
L
Linus Torvalds 已提交
4866
done:
4867
	ret = 1;
L
Linus Torvalds 已提交
4868
fail:
L
Linus Torvalds 已提交
4869
	double_rq_unlock(rq_src, rq_dest);
4870
	raw_spin_unlock(&p->pi_lock);
4871
	return ret;
L
Linus Torvalds 已提交
4872 4873 4874
}

/*
4875 4876 4877
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4878
 */
4879
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4880
{
4881
	struct migration_arg *arg = data;
4882

4883 4884 4885 4886
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4887
	local_irq_disable();
4888
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4889
	local_irq_enable();
L
Linus Torvalds 已提交
4890
	return 0;
4891 4892
}

L
Linus Torvalds 已提交
4893
#ifdef CONFIG_HOTPLUG_CPU
4894

4895
/*
4896 4897
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4898
 */
4899
void idle_task_exit(void)
L
Linus Torvalds 已提交
4900
{
4901
	struct mm_struct *mm = current->active_mm;
4902

4903
	BUG_ON(cpu_online(smp_processor_id()));
4904

4905 4906 4907
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4908 4909 4910
}

/*
4911 4912 4913 4914 4915
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4916
 */
4917
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4918
{
4919 4920 4921
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4922 4923
}

4924
/*
4925 4926 4927 4928 4929 4930
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4931
 */
4932
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4933
{
4934
	struct rq *rq = cpu_rq(dead_cpu);
4935 4936
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4937 4938

	/*
4939 4940 4941 4942 4943 4944 4945
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4946
	 */
4947
	rq->stop = NULL;
4948

I
Ingo Molnar 已提交
4949
	for ( ; ; ) {
4950 4951 4952 4953 4954
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4955
			break;
4956

4957
		next = pick_next_task(rq);
4958
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4959
		next->sched_class->put_prev_task(rq, next);
4960

4961 4962 4963 4964 4965 4966 4967
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4968
	}
4969

4970
	rq->stop = stop;
4971
}
4972

L
Linus Torvalds 已提交
4973 4974
#endif /* CONFIG_HOTPLUG_CPU */

4975 4976 4977
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4978 4979
	{
		.procname	= "sched_domain",
4980
		.mode		= 0555,
4981
	},
4982
	{}
4983 4984 4985
};

static struct ctl_table sd_ctl_root[] = {
4986 4987
	{
		.procname	= "kernel",
4988
		.mode		= 0555,
4989 4990
		.child		= sd_ctl_dir,
	},
4991
	{}
4992 4993 4994 4995 4996
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4997
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4998 4999 5000 5001

	return entry;
}

5002 5003
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5004
	struct ctl_table *entry;
5005

5006 5007 5008
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5009
	 * will always be set. In the lowest directory the names are
5010 5011 5012
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5013 5014
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5015 5016 5017
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5018 5019 5020 5021 5022

	kfree(*tablep);
	*tablep = NULL;
}

5023 5024 5025
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

5026
static void
5027
set_table_entry(struct ctl_table *entry,
5028
		const char *procname, void *data, int maxlen,
5029 5030
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5031 5032 5033 5034 5035 5036
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5037 5038 5039 5040 5041

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5042 5043 5044 5045 5046
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5047
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5048

5049 5050 5051
	if (table == NULL)
		return NULL;

5052
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5053
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5054
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5055
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5056
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5057
		sizeof(int), 0644, proc_dointvec_minmax, true);
5058
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5059
		sizeof(int), 0644, proc_dointvec_minmax, true);
5060
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5061
		sizeof(int), 0644, proc_dointvec_minmax, true);
5062
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5063
		sizeof(int), 0644, proc_dointvec_minmax, true);
5064
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5065
		sizeof(int), 0644, proc_dointvec_minmax, true);
5066
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5067
		sizeof(int), 0644, proc_dointvec_minmax, false);
5068
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5069
		sizeof(int), 0644, proc_dointvec_minmax, false);
5070
	set_table_entry(&table[9], "cache_nice_tries",
5071
		&sd->cache_nice_tries,
5072
		sizeof(int), 0644, proc_dointvec_minmax, false);
5073
	set_table_entry(&table[10], "flags", &sd->flags,
5074
		sizeof(int), 0644, proc_dointvec_minmax, false);
5075
	set_table_entry(&table[11], "name", sd->name,
5076
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5077
	/* &table[12] is terminator */
5078 5079 5080 5081

	return table;
}

5082
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5083 5084 5085 5086 5087 5088 5089 5090 5091
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5092 5093
	if (table == NULL)
		return NULL;
5094 5095 5096 5097 5098

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5099
		entry->mode = 0555;
5100 5101 5102 5103 5104 5105 5106 5107
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5108
static void register_sched_domain_sysctl(void)
5109
{
5110
	int i, cpu_num = num_possible_cpus();
5111 5112 5113
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5114 5115 5116
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5117 5118 5119
	if (entry == NULL)
		return;

5120
	for_each_possible_cpu(i) {
5121 5122
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5123
		entry->mode = 0555;
5124
		entry->child = sd_alloc_ctl_cpu_table(i);
5125
		entry++;
5126
	}
5127 5128

	WARN_ON(sd_sysctl_header);
5129 5130
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5131

5132
/* may be called multiple times per register */
5133 5134
static void unregister_sched_domain_sysctl(void)
{
5135 5136
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5137
	sd_sysctl_header = NULL;
5138 5139
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5140
}
5141
#else
5142 5143 5144 5145
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5146 5147 5148 5149
{
}
#endif

5150 5151 5152 5153 5154
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5155
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5175
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5176 5177 5178 5179
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5180 5181 5182 5183
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5184 5185
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5186
{
5187
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5188
	unsigned long flags;
5189
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5190

5191
	switch (action & ~CPU_TASKS_FROZEN) {
5192

L
Linus Torvalds 已提交
5193
	case CPU_UP_PREPARE:
5194
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5195
		break;
5196

L
Linus Torvalds 已提交
5197
	case CPU_ONLINE:
5198
		/* Update our root-domain */
5199
		raw_spin_lock_irqsave(&rq->lock, flags);
5200
		if (rq->rd) {
5201
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5202 5203

			set_rq_online(rq);
5204
		}
5205
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5206
		break;
5207

L
Linus Torvalds 已提交
5208
#ifdef CONFIG_HOTPLUG_CPU
5209
	case CPU_DYING:
5210
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5211
		/* Update our root-domain */
5212
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5213
		if (rq->rd) {
5214
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5215
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5216
		}
5217 5218
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5219
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5220
		break;
5221

5222
	case CPU_DEAD:
5223
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5224
		break;
L
Linus Torvalds 已提交
5225 5226
#endif
	}
5227 5228 5229

	update_max_interval();

L
Linus Torvalds 已提交
5230 5231 5232
	return NOTIFY_OK;
}

5233 5234 5235
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5236
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5237
 */
5238
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5239
	.notifier_call = migration_call,
5240
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5241 5242
};

5243 5244 5245 5246
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5247
	case CPU_STARTING:
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5268
static int __init migration_init(void)
L
Linus Torvalds 已提交
5269 5270
{
	void *cpu = (void *)(long)smp_processor_id();
5271
	int err;
5272

5273
	/* Initialize migration for the boot CPU */
5274 5275
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5276 5277
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5278

5279 5280 5281 5282
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5283
	return 0;
L
Linus Torvalds 已提交
5284
}
5285
early_initcall(migration_init);
L
Linus Torvalds 已提交
5286 5287 5288
#endif

#ifdef CONFIG_SMP
5289

5290 5291
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5292
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5293

5294
static __read_mostly int sched_debug_enabled;
5295

5296
static int __init sched_debug_setup(char *str)
5297
{
5298
	sched_debug_enabled = 1;
5299 5300 5301

	return 0;
}
5302 5303 5304 5305 5306 5307
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5308

5309
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5310
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5311
{
I
Ingo Molnar 已提交
5312
	struct sched_group *group = sd->groups;
5313
	char str[256];
L
Linus Torvalds 已提交
5314

R
Rusty Russell 已提交
5315
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5316
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5317 5318 5319 5320

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5321
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5322
		if (sd->parent)
P
Peter Zijlstra 已提交
5323 5324
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5325
		return -1;
N
Nick Piggin 已提交
5326 5327
	}

P
Peter Zijlstra 已提交
5328
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5329

5330
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5331 5332
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5333
	}
5334
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5335 5336
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5337
	}
L
Linus Torvalds 已提交
5338

I
Ingo Molnar 已提交
5339
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5340
	do {
I
Ingo Molnar 已提交
5341
		if (!group) {
P
Peter Zijlstra 已提交
5342 5343
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5344 5345 5346
			break;
		}

5347 5348 5349 5350 5351 5352
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5353 5354 5355
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5356 5357
			break;
		}
L
Linus Torvalds 已提交
5358

5359
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5360 5361
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5362 5363
			break;
		}
L
Linus Torvalds 已提交
5364

5365 5366
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5367 5368
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5369 5370
			break;
		}
L
Linus Torvalds 已提交
5371

5372
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5373

R
Rusty Russell 已提交
5374
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5375

P
Peter Zijlstra 已提交
5376
		printk(KERN_CONT " %s", str);
5377
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5378
			printk(KERN_CONT " (cpu_power = %d)",
5379
				group->sgp->power);
5380
		}
L
Linus Torvalds 已提交
5381

I
Ingo Molnar 已提交
5382 5383
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5384
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5385

5386
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5387
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5388

5389 5390
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5391 5392
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5393 5394
	return 0;
}
L
Linus Torvalds 已提交
5395

I
Ingo Molnar 已提交
5396 5397 5398
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5399

5400
	if (!sched_debug_enabled)
5401 5402
		return;

I
Ingo Molnar 已提交
5403 5404 5405 5406
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5407

I
Ingo Molnar 已提交
5408 5409 5410
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5411
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5412
			break;
L
Linus Torvalds 已提交
5413 5414
		level++;
		sd = sd->parent;
5415
		if (!sd)
I
Ingo Molnar 已提交
5416 5417
			break;
	}
L
Linus Torvalds 已提交
5418
}
5419
#else /* !CONFIG_SCHED_DEBUG */
5420
# define sched_domain_debug(sd, cpu) do { } while (0)
5421 5422 5423 5424
static inline bool sched_debug(void)
{
	return false;
}
5425
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5426

5427
static int sd_degenerate(struct sched_domain *sd)
5428
{
5429
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5430 5431 5432 5433 5434 5435
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5436 5437 5438
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5439 5440 5441 5442 5443
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5444
	if (sd->flags & (SD_WAKE_AFFINE))
5445 5446 5447 5448 5449
		return 0;

	return 1;
}

5450 5451
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5452 5453 5454 5455 5456 5457
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5458
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5459 5460 5461 5462 5463 5464 5465
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5466 5467 5468
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5469 5470
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5471 5472 5473 5474 5475 5476 5477
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5478
static void free_rootdomain(struct rcu_head *rcu)
5479
{
5480
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5481

5482
	cpupri_cleanup(&rd->cpupri);
5483 5484 5485 5486 5487 5488
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5489 5490
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5491
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5492 5493
	unsigned long flags;

5494
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5495 5496

	if (rq->rd) {
I
Ingo Molnar 已提交
5497
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5498

5499
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5500
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5501

5502
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5503

I
Ingo Molnar 已提交
5504 5505 5506 5507 5508 5509 5510
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5511 5512 5513 5514 5515
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5516
	cpumask_set_cpu(rq->cpu, rd->span);
5517
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5518
		set_rq_online(rq);
G
Gregory Haskins 已提交
5519

5520
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5521 5522

	if (old_rd)
5523
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5524 5525
}

5526
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5527 5528 5529
{
	memset(rd, 0, sizeof(*rd));

5530
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5531
		goto out;
5532
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5533
		goto free_span;
5534
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5535
		goto free_online;
5536

5537
	if (cpupri_init(&rd->cpupri) != 0)
5538
		goto free_rto_mask;
5539
	return 0;
5540

5541 5542
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5543 5544 5545 5546
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5547
out:
5548
	return -ENOMEM;
G
Gregory Haskins 已提交
5549 5550
}

5551 5552 5553 5554 5555 5556
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5557 5558
static void init_defrootdomain(void)
{
5559
	init_rootdomain(&def_root_domain);
5560

G
Gregory Haskins 已提交
5561 5562 5563
	atomic_set(&def_root_domain.refcount, 1);
}

5564
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5565 5566 5567 5568 5569 5570 5571
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5572
	if (init_rootdomain(rd) != 0) {
5573 5574 5575
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5576 5577 5578 5579

	return rd;
}

5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5599 5600 5601
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5602 5603 5604 5605 5606 5607 5608 5609

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5610
		kfree(sd->groups->sgp);
5611
		kfree(sd->groups);
5612
	}
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5627 5628 5629 5630 5631 5632 5633
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5634
 * two cpus are in the same cache domain, see cpus_share_cache().
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5645
	if (sd)
5646 5647 5648 5649 5650 5651
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5652
/*
I
Ingo Molnar 已提交
5653
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5654 5655
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5656 5657
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5658
{
5659
	struct rq *rq = cpu_rq(cpu);
5660 5661 5662
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5663
	for (tmp = sd; tmp; ) {
5664 5665 5666
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5667

5668
		if (sd_parent_degenerate(tmp, parent)) {
5669
			tmp->parent = parent->parent;
5670 5671
			if (parent->parent)
				parent->parent->child = tmp;
5672
			destroy_sched_domain(parent, cpu);
5673 5674
		} else
			tmp = tmp->parent;
5675 5676
	}

5677
	if (sd && sd_degenerate(sd)) {
5678
		tmp = sd;
5679
		sd = sd->parent;
5680
		destroy_sched_domain(tmp, cpu);
5681 5682 5683
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5684

5685
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5686

G
Gregory Haskins 已提交
5687
	rq_attach_root(rq, rd);
5688
	tmp = rq->sd;
N
Nick Piggin 已提交
5689
	rcu_assign_pointer(rq->sd, sd);
5690
	destroy_sched_domains(tmp, cpu);
5691 5692

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5693 5694 5695
}

/* cpus with isolated domains */
5696
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5697 5698 5699 5700

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5701
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5702
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5703 5704 5705
	return 1;
}

I
Ingo Molnar 已提交
5706
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5707

5708 5709 5710 5711 5712
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5713 5714 5715
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5716
	struct sched_group_power **__percpu sgp;
5717 5718
};

5719
struct s_data {
5720
	struct sched_domain ** __percpu sd;
5721 5722 5723
	struct root_domain	*rd;
};

5724 5725
enum s_alloc {
	sa_rootdomain,
5726
	sa_sd,
5727
	sa_sd_storage,
5728 5729 5730
	sa_none,
};

5731 5732 5733
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5734 5735
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5736 5737
#define SDTL_OVERLAP	0x01

5738
struct sched_domain_topology_level {
5739 5740
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5741
	int		    flags;
5742
	int		    numa_level;
5743
	struct sd_data      data;
5744 5745
};

P
Peter Zijlstra 已提交
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5802 5803 5804 5805 5806 5807
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5808
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5809
				GFP_KERNEL, cpu_to_node(cpu));
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5823
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5824 5825 5826
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5827 5828 5829 5830 5831 5832
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5833

P
Peter Zijlstra 已提交
5834 5835 5836 5837 5838
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5839
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5840
		    group_balance_cpu(sg) == cpu)
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5860
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5861
{
5862 5863
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5864

5865 5866
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5867

5868
	if (sg) {
5869
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5870
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5871
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5872
	}
5873 5874

	return cpu;
5875 5876
}

5877
/*
5878 5879 5880
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5881 5882
 *
 * Assumes the sched_domain tree is fully constructed
5883
 */
5884 5885
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5886
{
5887 5888 5889
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5890
	struct cpumask *covered;
5891
	int i;
5892

5893 5894 5895 5896 5897 5898
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5899 5900 5901
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5902
	cpumask_clear(covered);
5903

5904 5905 5906 5907
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5908

5909 5910
		if (cpumask_test_cpu(i, covered))
			continue;
5911

5912
		cpumask_clear(sched_group_cpus(sg));
5913
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5914
		cpumask_setall(sched_group_mask(sg));
5915

5916 5917 5918
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5919

5920 5921 5922
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5923

5924 5925 5926 5927 5928 5929 5930
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5931 5932

	return 0;
5933
}
5934

5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5947
	struct sched_group *sg = sd->groups;
5948

5949 5950 5951 5952 5953 5954
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5955

P
Peter Zijlstra 已提交
5956
	if (cpu != group_balance_cpu(sg))
5957
		return;
5958

5959
	update_group_power(sd, cpu);
5960
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5961 5962
}

5963 5964 5965
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5966 5967
}

5968 5969 5970 5971 5972
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5973 5974 5975 5976 5977 5978
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5979 5980 5981 5982 5983 5984 5985 5986 5987
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5988 5989 5990 5991 5992 5993 5994 5995 5996
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5997 5998 5999
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6000

6001
static int default_relax_domain_level = -1;
6002
int sched_domain_level_max;
6003 6004 6005

static int __init setup_relax_domain_level(char *str)
{
6006 6007
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6008

6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6027
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6028 6029
	} else {
		/* turn on idle balance on this domain */
6030
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6031 6032 6033
	}
}

6034 6035 6036
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6037 6038 6039 6040 6041
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6042 6043
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6044 6045
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6046
	case sa_sd_storage:
6047
		__sdt_free(cpu_map); /* fall through */
6048 6049 6050 6051
	case sa_none:
		break;
	}
}
6052

6053 6054 6055
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6056 6057
	memset(d, 0, sizeof(*d));

6058 6059
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6060 6061 6062
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6063
	d->rd = alloc_rootdomain();
6064
	if (!d->rd)
6065
		return sa_sd;
6066 6067
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6068

6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6081
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6082
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6083 6084

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6085
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6086 6087
}

6088 6089
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6090
{
6091
	return topology_thread_cpumask(cpu);
6092
}
6093
#endif
6094

6095 6096 6097
/*
 * Topology list, bottom-up.
 */
6098
static struct sched_domain_topology_level default_topology[] = {
6099 6100
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6101
#endif
6102
#ifdef CONFIG_SCHED_MC
6103
	{ sd_init_MC, cpu_coregroup_mask, },
6104
#endif
6105 6106 6107 6108
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6109 6110 6111 6112 6113
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6114 6115 6116 6117 6118 6119 6120 6121 6122
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6123
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6141
		.imbalance_pct		= 125,
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6261
		}
6262 6263 6264 6265 6266 6267

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6268 6269 6270 6271 6272 6273 6274 6275 6276
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6303
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6304 6305 6306 6307 6308 6309
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6310
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6342 6343

	sched_domains_numa_levels = level;
6344
}
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6392 6393 6394 6395 6396
}
#else
static inline void sched_init_numa(void)
{
}
6397 6398 6399 6400 6401 6402 6403

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6404 6405
#endif /* CONFIG_NUMA */

6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6422 6423 6424 6425
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6426 6427 6428
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6429
			struct sched_group_power *sgp;
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6443 6444
			sg->next = sg;

6445
			*per_cpu_ptr(sdd->sg, j) = sg;
6446

P
Peter Zijlstra 已提交
6447
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6448 6449 6450 6451 6452
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6481 6482
		}
		free_percpu(sdd->sd);
6483
		sdd->sd = NULL;
6484
		free_percpu(sdd->sg);
6485
		sdd->sg = NULL;
6486
		free_percpu(sdd->sgp);
6487
		sdd->sgp = NULL;
6488 6489 6490
	}
}

6491 6492
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6493
		struct sched_domain_attr *attr, struct sched_domain *child,
6494 6495
		int cpu)
{
6496
	struct sched_domain *sd = tl->init(tl, cpu);
6497
	if (!sd)
6498
		return child;
6499 6500

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6501 6502 6503
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6504
		child->parent = sd;
6505
	}
6506
	sd->child = child;
6507
	set_domain_attribute(sd, attr);
6508 6509 6510 6511

	return sd;
}

6512 6513 6514 6515
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6516 6517
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6518 6519
{
	enum s_alloc alloc_state = sa_none;
6520
	struct sched_domain *sd;
6521
	struct s_data d;
6522
	int i, ret = -ENOMEM;
6523

6524 6525 6526
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6527

6528
	/* Set up domains for cpus specified by the cpu_map. */
6529
	for_each_cpu(i, cpu_map) {
6530 6531
		struct sched_domain_topology_level *tl;

6532
		sd = NULL;
6533
		for (tl = sched_domain_topology; tl->init; tl++) {
6534
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6535 6536
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6537 6538
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6539
		}
6540

6541 6542 6543
		while (sd->child)
			sd = sd->child;

6544
		*per_cpu_ptr(d.sd, i) = sd;
6545 6546 6547 6548 6549 6550
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6551 6552 6553 6554 6555 6556 6557
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6558
		}
6559
	}
6560

L
Linus Torvalds 已提交
6561
	/* Calculate CPU power for physical packages and nodes */
6562 6563 6564
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6565

6566 6567
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6568
			init_sched_groups_power(i, sd);
6569
		}
6570
	}
6571

L
Linus Torvalds 已提交
6572
	/* Attach the domains */
6573
	rcu_read_lock();
6574
	for_each_cpu(i, cpu_map) {
6575
		sd = *per_cpu_ptr(d.sd, i);
6576
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6577
	}
6578
	rcu_read_unlock();
6579

6580
	ret = 0;
6581
error:
6582
	__free_domain_allocs(&d, alloc_state, cpu_map);
6583
	return ret;
L
Linus Torvalds 已提交
6584
}
P
Paul Jackson 已提交
6585

6586
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6587
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6588 6589
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6590 6591 6592

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6593 6594
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6595
 */
6596
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6597

6598 6599 6600 6601 6602 6603
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6604
{
6605
	return 0;
6606 6607
}

6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6633
/*
I
Ingo Molnar 已提交
6634
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6635 6636
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6637
 */
6638
static int init_sched_domains(const struct cpumask *cpu_map)
6639
{
6640 6641
	int err;

6642
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6643
	ndoms_cur = 1;
6644
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6645
	if (!doms_cur)
6646 6647
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6648
	err = build_sched_domains(doms_cur[0], NULL);
6649
	register_sched_domain_sysctl();
6650 6651

	return err;
6652 6653 6654 6655 6656 6657
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6658
static void detach_destroy_domains(const struct cpumask *cpu_map)
6659 6660 6661
{
	int i;

6662
	rcu_read_lock();
6663
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6664
		cpu_attach_domain(NULL, &def_root_domain, i);
6665
	rcu_read_unlock();
6666 6667
}

6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6684 6685
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6686
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6687 6688 6689
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6690
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6691 6692 6693
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6694 6695 6696
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6697 6698 6699 6700 6701 6702
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6703
 *
6704
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6705 6706
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6707
 *
P
Paul Jackson 已提交
6708 6709
 * Call with hotplug lock held
 */
6710
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6711
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6712
{
6713
	int i, j, n;
6714
	int new_topology;
P
Paul Jackson 已提交
6715

6716
	mutex_lock(&sched_domains_mutex);
6717

6718 6719 6720
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6721 6722 6723
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6724
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6725 6726 6727

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6728
		for (j = 0; j < n && !new_topology; j++) {
6729
			if (cpumask_equal(doms_cur[i], doms_new[j])
6730
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6731 6732 6733
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6734
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6735 6736 6737 6738
match1:
		;
	}

6739 6740
	if (doms_new == NULL) {
		ndoms_cur = 0;
6741
		doms_new = &fallback_doms;
6742
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6743
		WARN_ON_ONCE(dattr_new);
6744 6745
	}

P
Paul Jackson 已提交
6746 6747
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6748
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6749
			if (cpumask_equal(doms_new[i], doms_cur[j])
6750
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6751 6752 6753
				goto match2;
		}
		/* no match - add a new doms_new */
6754
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6755 6756 6757 6758 6759
match2:
		;
	}

	/* Remember the new sched domains */
6760 6761
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6762
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6763
	doms_cur = doms_new;
6764
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6765
	ndoms_cur = ndoms_new;
6766 6767

	register_sched_domain_sysctl();
6768

6769
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6770 6771
}

6772 6773
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6774
/*
6775 6776 6777
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6778 6779 6780
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6781
 */
6782 6783
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6784
{
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6807
	case CPU_ONLINE:
6808
	case CPU_DOWN_FAILED:
6809
		cpuset_update_active_cpus(true);
6810
		break;
6811 6812 6813
	default:
		return NOTIFY_DONE;
	}
6814
	return NOTIFY_OK;
6815
}
6816

6817 6818
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6819
{
6820
	switch (action) {
6821
	case CPU_DOWN_PREPARE:
6822
		cpuset_update_active_cpus(false);
6823 6824 6825 6826 6827
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6828 6829 6830
	default:
		return NOTIFY_DONE;
	}
6831
	return NOTIFY_OK;
6832 6833
}

L
Linus Torvalds 已提交
6834 6835
void __init sched_init_smp(void)
{
6836 6837 6838
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6839
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6840

6841 6842
	sched_init_numa();

6843
	get_online_cpus();
6844
	mutex_lock(&sched_domains_mutex);
6845
	init_sched_domains(cpu_active_mask);
6846 6847 6848
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6849
	mutex_unlock(&sched_domains_mutex);
6850
	put_online_cpus();
6851

6852
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6853 6854
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6855 6856 6857 6858

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6859
	init_hrtick();
6860 6861

	/* Move init over to a non-isolated CPU */
6862
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6863
		BUG();
I
Ingo Molnar 已提交
6864
	sched_init_granularity();
6865
	free_cpumask_var(non_isolated_cpus);
6866

6867
	init_sched_rt_class();
L
Linus Torvalds 已提交
6868 6869 6870 6871
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6872
	sched_init_granularity();
L
Linus Torvalds 已提交
6873 6874 6875
}
#endif /* CONFIG_SMP */

6876 6877
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6878 6879 6880 6881 6882 6883 6884
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6885
#ifdef CONFIG_CGROUP_SCHED
6886 6887 6888 6889
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6890
struct task_group root_task_group;
6891
LIST_HEAD(task_groups);
6892
#endif
P
Peter Zijlstra 已提交
6893

6894
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6895

L
Linus Torvalds 已提交
6896 6897
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6898
	int i, j;
6899 6900 6901 6902 6903 6904 6905
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6906
#endif
6907
#ifdef CONFIG_CPUMASK_OFFSTACK
6908
	alloc_size += num_possible_cpus() * cpumask_size();
6909 6910
#endif
	if (alloc_size) {
6911
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6912 6913

#ifdef CONFIG_FAIR_GROUP_SCHED
6914
		root_task_group.se = (struct sched_entity **)ptr;
6915 6916
		ptr += nr_cpu_ids * sizeof(void **);

6917
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6918
		ptr += nr_cpu_ids * sizeof(void **);
6919

6920
#endif /* CONFIG_FAIR_GROUP_SCHED */
6921
#ifdef CONFIG_RT_GROUP_SCHED
6922
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6923 6924
		ptr += nr_cpu_ids * sizeof(void **);

6925
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6926 6927
		ptr += nr_cpu_ids * sizeof(void **);

6928
#endif /* CONFIG_RT_GROUP_SCHED */
6929 6930 6931 6932 6933 6934
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6935
	}
I
Ingo Molnar 已提交
6936

G
Gregory Haskins 已提交
6937 6938 6939 6940
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6941 6942 6943 6944
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6945
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6946
			global_rt_period(), global_rt_runtime());
6947
#endif /* CONFIG_RT_GROUP_SCHED */
6948

D
Dhaval Giani 已提交
6949
#ifdef CONFIG_CGROUP_SCHED
6950 6951
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6952
	INIT_LIST_HEAD(&root_task_group.siblings);
6953
	autogroup_init(&init_task);
6954

D
Dhaval Giani 已提交
6955
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6956

6957 6958 6959 6960 6961 6962
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6963
	for_each_possible_cpu(i) {
6964
		struct rq *rq;
L
Linus Torvalds 已提交
6965 6966

		rq = cpu_rq(i);
6967
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6968
		rq->nr_running = 0;
6969 6970
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6971
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6972
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6973
#ifdef CONFIG_FAIR_GROUP_SCHED
6974
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6975
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6976
		/*
6977
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6978 6979 6980 6981
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6982
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6983 6984 6985
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6986
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6987 6988 6989
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6990
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6991
		 *
6992 6993
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6994
		 */
6995
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6996
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6997 6998 6999
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7000
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7001
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7002
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7003
#endif
L
Linus Torvalds 已提交
7004

I
Ingo Molnar 已提交
7005 7006
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7007 7008 7009

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7010
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7011
		rq->sd = NULL;
G
Gregory Haskins 已提交
7012
		rq->rd = NULL;
7013
		rq->cpu_power = SCHED_POWER_SCALE;
7014
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7015
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7016
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7017
		rq->push_cpu = 0;
7018
		rq->cpu = i;
7019
		rq->online = 0;
7020 7021
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7022 7023 7024

		INIT_LIST_HEAD(&rq->cfs_tasks);

7025
		rq_attach_root(rq, &def_root_domain);
7026
#ifdef CONFIG_NO_HZ
7027
		rq->nohz_flags = 0;
7028
#endif
L
Linus Torvalds 已提交
7029
#endif
P
Peter Zijlstra 已提交
7030
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7031 7032 7033
		atomic_set(&rq->nr_iowait, 0);
	}

7034
	set_load_weight(&init_task);
7035

7036 7037 7038 7039
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7040
#ifdef CONFIG_RT_MUTEXES
7041
	plist_head_init(&init_task.pi_waiters);
7042 7043
#endif

L
Linus Torvalds 已提交
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7057 7058 7059

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7060 7061 7062 7063
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7064

7065
#ifdef CONFIG_SMP
7066
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7067 7068 7069
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7070
	idle_thread_set_boot_cpu();
7071 7072
#endif
	init_sched_fair_class();
7073

7074
	scheduler_running = 1;
L
Linus Torvalds 已提交
7075 7076
}

7077
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7078 7079
static inline int preempt_count_equals(int preempt_offset)
{
7080
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7081

A
Arnd Bergmann 已提交
7082
	return (nested == preempt_offset);
7083 7084
}

7085
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7086 7087 7088
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7089
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7090 7091
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7092 7093 7094 7095 7096
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7097 7098 7099 7100 7101 7102 7103
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7104 7105 7106 7107 7108

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7109 7110 7111 7112 7113
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7114 7115
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7116 7117
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7118
	int on_rq;
7119

P
Peter Zijlstra 已提交
7120
	on_rq = p->on_rq;
7121
	if (on_rq)
7122
		dequeue_task(rq, p, 0);
7123 7124
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7125
		enqueue_task(rq, p, 0);
7126 7127
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7128 7129

	check_class_changed(rq, p, prev_class, old_prio);
7130 7131
}

L
Linus Torvalds 已提交
7132 7133
void normalize_rt_tasks(void)
{
7134
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7135
	unsigned long flags;
7136
	struct rq *rq;
L
Linus Torvalds 已提交
7137

7138
	read_lock_irqsave(&tasklist_lock, flags);
7139
	do_each_thread(g, p) {
7140 7141 7142 7143 7144 7145
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7146 7147
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7148 7149 7150
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7151
#endif
I
Ingo Molnar 已提交
7152 7153 7154 7155 7156 7157 7158 7159

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7160
			continue;
I
Ingo Molnar 已提交
7161
		}
L
Linus Torvalds 已提交
7162

7163
		raw_spin_lock(&p->pi_lock);
7164
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7165

7166
		normalize_task(rq, p);
7167

7168
		__task_rq_unlock(rq);
7169
		raw_spin_unlock(&p->pi_lock);
7170 7171
	} while_each_thread(g, p);

7172
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7173 7174 7175
}

#endif /* CONFIG_MAGIC_SYSRQ */
7176

7177
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7178
/*
7179
 * These functions are only useful for the IA64 MCA handling, or kdb.
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7194
struct task_struct *curr_task(int cpu)
7195 7196 7197 7198
{
	return cpu_curr(cpu);
}

7199 7200 7201
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7202 7203 7204 7205 7206 7207
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7208 7209
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7210 7211 7212 7213 7214 7215 7216
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7217
void set_curr_task(int cpu, struct task_struct *p)
7218 7219 7220 7221 7222
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7223

D
Dhaval Giani 已提交
7224
#ifdef CONFIG_CGROUP_SCHED
7225 7226 7227
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7228 7229 7230 7231
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7232
	autogroup_free(tg);
7233 7234 7235 7236
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7237
struct task_group *sched_create_group(struct task_group *parent)
7238 7239 7240 7241 7242 7243 7244
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7245
	if (!alloc_fair_sched_group(tg, parent))
7246 7247
		goto err;

7248
	if (!alloc_rt_sched_group(tg, parent))
7249 7250
		goto err;

7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7262
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7263
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7264 7265 7266 7267 7268

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7269
	list_add_rcu(&tg->siblings, &parent->children);
7270
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7271 7272
}

7273
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7274
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7275 7276
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7277
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7278 7279
}

7280
/* Destroy runqueue etc associated with a task group */
7281
void sched_destroy_group(struct task_group *tg)
7282 7283 7284 7285 7286 7287
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7288
{
7289
	unsigned long flags;
7290
	int i;
S
Srivatsa Vaddagiri 已提交
7291

7292 7293
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7294
		unregister_fair_sched_group(tg, i);
7295 7296

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7297
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7298
	list_del_rcu(&tg->siblings);
7299
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7300 7301
}

7302
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7303 7304 7305
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7306 7307
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7308
{
P
Peter Zijlstra 已提交
7309
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7310 7311 7312 7313 7314 7315
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7316
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7317
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7318

7319
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7320
		dequeue_task(rq, tsk, 0);
7321 7322
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7323

P
Peter Zijlstra 已提交
7324 7325 7326 7327 7328 7329
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7330
#ifdef CONFIG_FAIR_GROUP_SCHED
7331 7332 7333
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7334
#endif
7335
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7336

7337 7338 7339
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7340
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7341

7342
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7343
}
D
Dhaval Giani 已提交
7344
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7345

7346
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7347 7348 7349
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7350
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7351

P
Peter Zijlstra 已提交
7352
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7353
}
7354 7355 7356 7357 7358 7359 7360
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7361

P
Peter Zijlstra 已提交
7362 7363
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7364
{
P
Peter Zijlstra 已提交
7365
	struct task_struct *g, *p;
7366

P
Peter Zijlstra 已提交
7367
	do_each_thread(g, p) {
7368
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7369 7370
			return 1;
	} while_each_thread(g, p);
7371

P
Peter Zijlstra 已提交
7372 7373
	return 0;
}
7374

P
Peter Zijlstra 已提交
7375 7376 7377 7378 7379
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7380

7381
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7382 7383 7384 7385 7386
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7387

P
Peter Zijlstra 已提交
7388 7389
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7390

P
Peter Zijlstra 已提交
7391 7392 7393
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7394 7395
	}

7396 7397 7398 7399 7400
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7401

7402 7403 7404
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7405 7406
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7407

P
Peter Zijlstra 已提交
7408
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7409

7410 7411 7412 7413 7414
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7415

7416 7417 7418
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7419 7420 7421
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7422

P
Peter Zijlstra 已提交
7423 7424 7425 7426
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7427

P
Peter Zijlstra 已提交
7428
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7429
	}
P
Peter Zijlstra 已提交
7430

P
Peter Zijlstra 已提交
7431 7432 7433 7434
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7435 7436
}

P
Peter Zijlstra 已提交
7437
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7438
{
7439 7440
	int ret;

P
Peter Zijlstra 已提交
7441 7442 7443 7444 7445 7446
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7447 7448 7449 7450 7451
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7452 7453
}

7454
static int tg_set_rt_bandwidth(struct task_group *tg,
7455
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7456
{
P
Peter Zijlstra 已提交
7457
	int i, err = 0;
P
Peter Zijlstra 已提交
7458 7459

	mutex_lock(&rt_constraints_mutex);
7460
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7461 7462
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7463
		goto unlock;
P
Peter Zijlstra 已提交
7464

7465
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7466 7467
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7468 7469 7470 7471

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7472
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7473
		rt_rq->rt_runtime = rt_runtime;
7474
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7475
	}
7476
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7477
unlock:
7478
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7479 7480 7481
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7482 7483
}

7484
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7485 7486 7487 7488 7489 7490 7491 7492
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7493
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7494 7495
}

7496
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7497 7498 7499
{
	u64 rt_runtime_us;

7500
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7501 7502
		return -1;

7503
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7504 7505 7506
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7507

7508
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7509 7510 7511 7512 7513 7514
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7515 7516 7517
	if (rt_period == 0)
		return -EINVAL;

7518
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7519 7520
}

7521
static long sched_group_rt_period(struct task_group *tg)
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7532
	u64 runtime, period;
7533 7534
	int ret = 0;

7535 7536 7537
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7538 7539 7540 7541 7542 7543 7544 7545
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7546

7547
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7548
	read_lock(&tasklist_lock);
7549
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7550
	read_unlock(&tasklist_lock);
7551 7552 7553 7554
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7555

7556
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7557 7558 7559 7560 7561 7562 7563 7564
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7565
#else /* !CONFIG_RT_GROUP_SCHED */
7566 7567
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7568 7569 7570
	unsigned long flags;
	int i;

7571 7572 7573
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7574 7575 7576 7577 7578 7579 7580
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7581
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7582 7583 7584
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7585
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7586
		rt_rq->rt_runtime = global_rt_runtime();
7587
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7588
	}
7589
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7590

7591 7592
	return 0;
}
7593
#endif /* CONFIG_RT_GROUP_SCHED */
7594

7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7614
int sched_rt_handler(struct ctl_table *table, int write,
7615
		void __user *buffer, size_t *lenp,
7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7626
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7643

7644
#ifdef CONFIG_CGROUP_SCHED
7645 7646

/* return corresponding task_group object of a cgroup */
7647
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7648
{
7649 7650
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7651 7652
}

7653
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7654
{
7655
	struct task_group *tg, *parent;
7656

7657
	if (!cgrp->parent) {
7658
		/* This is early initialization for the top cgroup */
7659
		return &root_task_group.css;
7660 7661
	}

7662 7663
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7664 7665 7666 7667 7668 7669
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7683
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7684
{
7685
	struct task_group *tg = cgroup_tg(cgrp);
7686 7687 7688 7689

	sched_destroy_group(tg);
}

7690 7691 7692 7693 7694 7695 7696
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7697
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7698
				 struct cgroup_taskset *tset)
7699
{
7700 7701 7702
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7703
#ifdef CONFIG_RT_GROUP_SCHED
7704 7705
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7706
#else
7707 7708 7709
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7710
#endif
7711
	}
7712 7713
	return 0;
}
7714

7715
static void cpu_cgroup_attach(struct cgroup *cgrp,
7716
			      struct cgroup_taskset *tset)
7717
{
7718 7719 7720 7721
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7722 7723
}

7724
static void
7725 7726
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7739
#ifdef CONFIG_FAIR_GROUP_SCHED
7740
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7741
				u64 shareval)
7742
{
7743
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7744 7745
}

7746
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7747
{
7748
	struct task_group *tg = cgroup_tg(cgrp);
7749

7750
	return (u64) scale_load_down(tg->shares);
7751
}
7752 7753

#ifdef CONFIG_CFS_BANDWIDTH
7754 7755
static DEFINE_MUTEX(cfs_constraints_mutex);

7756 7757 7758
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7759 7760
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7761 7762
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7763
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7764
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7785 7786 7787 7788 7789
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7790
	runtime_enabled = quota != RUNTIME_INF;
7791 7792
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7793 7794 7795
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7796

P
Paul Turner 已提交
7797
	__refill_cfs_bandwidth_runtime(cfs_b);
7798 7799 7800 7801 7802 7803
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7804 7805 7806 7807
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7808
		struct rq *rq = cfs_rq->rq;
7809 7810

		raw_spin_lock_irq(&rq->lock);
7811
		cfs_rq->runtime_enabled = runtime_enabled;
7812
		cfs_rq->runtime_remaining = 0;
7813

7814
		if (cfs_rq->throttled)
7815
			unthrottle_cfs_rq(cfs_rq);
7816 7817
		raw_spin_unlock_irq(&rq->lock);
	}
7818 7819
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7820

7821
	return ret;
7822 7823 7824 7825 7826 7827
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7828
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7841
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7842 7843
		return -1;

7844
	quota_us = tg->cfs_bandwidth.quota;
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7855
	quota = tg->cfs_bandwidth.quota;
7856 7857 7858 7859 7860 7861 7862 7863

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7864
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7924
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7925 7926 7927 7928 7929
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7930
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7951
	int ret;
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7963 7964 7965 7966 7967
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7968
}
7969 7970 7971 7972 7973

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7974
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7975 7976 7977 7978 7979 7980 7981

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7982
#endif /* CONFIG_CFS_BANDWIDTH */
7983
#endif /* CONFIG_FAIR_GROUP_SCHED */
7984

7985
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7986
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7987
				s64 val)
P
Peter Zijlstra 已提交
7988
{
7989
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7990 7991
}

7992
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7993
{
7994
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7995
}
7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8007
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8008

8009
static struct cftype cpu_files[] = {
8010
#ifdef CONFIG_FAIR_GROUP_SCHED
8011 8012
	{
		.name = "shares",
8013 8014
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8015
	},
8016
#endif
8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8028 8029 8030 8031
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8032
#endif
8033
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8034
	{
P
Peter Zijlstra 已提交
8035
		.name = "rt_runtime_us",
8036 8037
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8038
	},
8039 8040
	{
		.name = "rt_period_us",
8041 8042
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8043
	},
8044
#endif
8045
	{ }	/* terminate */
8046 8047 8048
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8049
	.name		= "cpu",
8050 8051
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8052 8053
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8054 8055
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8056
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8057
	.subsys_id	= cpu_cgroup_subsys_id,
8058
	.base_cftypes	= cpu_files,
8059 8060 8061
	.early_init	= 1,
};

8062
#endif	/* CONFIG_CGROUP_SCHED */
8063 8064 8065 8066 8067 8068 8069 8070 8071 8072

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8073 8074
struct cpuacct root_cpuacct;

8075
/* create a new cpu accounting group */
8076
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8077
{
8078
	struct cpuacct *ca;
8079

8080 8081 8082 8083
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8084
	if (!ca)
8085
		goto out;
8086 8087

	ca->cpuusage = alloc_percpu(u64);
8088 8089 8090
	if (!ca->cpuusage)
		goto out_free_ca;

8091 8092 8093
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8094

8095
	return &ca->css;
8096

8097
out_free_cpuusage:
8098 8099 8100 8101 8102
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8103 8104 8105
}

/* destroy an existing cpu accounting group */
8106
static void cpuacct_css_free(struct cgroup *cgrp)
8107
{
8108
	struct cpuacct *ca = cgroup_ca(cgrp);
8109

8110
	free_percpu(ca->cpustat);
8111 8112 8113 8114
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8115 8116
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8117
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8118 8119 8120 8121 8122 8123
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8124
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8125
	data = *cpuusage;
8126
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8127 8128 8129 8130 8131 8132 8133 8134 8135
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8136
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8137 8138 8139 8140 8141

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8142
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8143
	*cpuusage = val;
8144
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8145 8146 8147 8148 8149
#else
	*cpuusage = val;
#endif
}

8150
/* return total cpu usage (in nanoseconds) of a group */
8151
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8152
{
8153
	struct cpuacct *ca = cgroup_ca(cgrp);
8154 8155 8156
	u64 totalcpuusage = 0;
	int i;

8157 8158
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8159 8160 8161 8162

	return totalcpuusage;
}

8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8175 8176
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8177 8178 8179 8180 8181

out:
	return err;
}

8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8197 8198 8199 8200 8201 8202
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8203
			      struct cgroup_map_cb *cb)
8204 8205
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8206 8207
	int cpu;
	s64 val = 0;
8208

8209 8210 8211 8212
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8213
	}
8214 8215
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8216

8217 8218 8219 8220 8221 8222
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8223
	}
8224 8225 8226 8227

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8228 8229 8230
	return 0;
}

8231 8232 8233
static struct cftype files[] = {
	{
		.name = "usage",
8234 8235
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8236
	},
8237 8238 8239 8240
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8241 8242 8243 8244
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8245
	{ }	/* terminate */
8246 8247 8248 8249 8250 8251 8252
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8253
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8254 8255
{
	struct cpuacct *ca;
8256
	int cpu;
8257

L
Li Zefan 已提交
8258
	if (unlikely(!cpuacct_subsys.active))
8259 8260
		return;

8261
	cpu = task_cpu(tsk);
8262 8263 8264

	rcu_read_lock();

8265 8266
	ca = task_ca(tsk);

8267
	for (; ca; ca = parent_ca(ca)) {
8268
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8269 8270
		*cpuusage += cputime;
	}
8271 8272

	rcu_read_unlock();
8273 8274 8275 8276
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8277 8278
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8279
	.subsys_id = cpuacct_subsys_id,
8280
	.base_cftypes = files,
8281 8282
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8283 8284 8285 8286 8287 8288

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}