core.c 194.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
508
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
509 510
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743
static void update_rq_clock_task(struct rq *rq, s64 delta)
744
{
745 746 747 748 749 750 751 752
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
775 776
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777
	if (static_key_false((&paravirt_steal_rq_enabled))) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

795 796
	rq->clock_task += delta;

797 798 799 800
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

833
/*
I
Ingo Molnar 已提交
834
 * __normal_prio - return the priority that is based on the static prio
835 836 837
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
838
	return p->static_prio;
839 840
}

841 842 843 844 845 846 847
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
848
static inline int normal_prio(struct task_struct *p)
849 850 851
{
	int prio;

852
	if (task_has_rt_policy(p))
853 854 855 856 857 858 859 860 861 862 863 864 865
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
866
static int effective_prio(struct task_struct *p)
867 868 869 870 871 872 873 874 875 876 877 878
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
879 880 881 882
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
883
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
884 885 886 887
{
	return cpu_curr(task_cpu(p)) == p;
}

888 889
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
890
				       int oldprio)
891 892 893
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
894 895 896 897
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
921
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 923 924
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
926
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
927
{
928 929 930 931 932
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
933 934
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935 936

#ifdef CONFIG_LOCKDEP
937 938 939 940 941
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
942
	 * see task_group().
943 944 945 946
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
947 948 949
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
950 951
#endif

952
	trace_sched_migrate_task(p, new_cpu);
953

954 955
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
956
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957
	}
I
Ingo Molnar 已提交
958 959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
960 961
}

962
struct migration_arg {
963
	struct task_struct *task;
L
Linus Torvalds 已提交
964
	int dest_cpu;
965
};
L
Linus Torvalds 已提交
966

967 968
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
969 970 971
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
972 973 974 975 976 977 978
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
979 980 981 982 983 984
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
985
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
986 987
{
	unsigned long flags;
I
Ingo Molnar 已提交
988
	int running, on_rq;
R
Roland McGrath 已提交
989
	unsigned long ncsw;
990
	struct rq *rq;
L
Linus Torvalds 已提交
991

992 993 994 995 996 997 998 999
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1012 1013 1014
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1015
			cpu_relax();
R
Roland McGrath 已提交
1016
		}
1017

1018 1019 1020 1021 1022 1023
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1024
		trace_sched_wait_task(p);
1025
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1026
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1027
		ncsw = 0;
1028
		if (!match_state || p->state == match_state)
1029
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030
		task_rq_unlock(rq, p, &flags);
1031

R
Roland McGrath 已提交
1032 1033 1034 1035 1036 1037
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1048

1049 1050 1051 1052 1053
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1054
		 * So if it was still runnable (but just not actively
1055 1056 1057 1058
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1059 1060 1061 1062
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 1064
			continue;
		}
1065

1066 1067 1068 1069 1070 1071 1072
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1073 1074

	return ncsw;
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1084
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1085 1086 1087 1088 1089
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1090
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1100
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1101
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1102

1103
#ifdef CONFIG_SMP
1104
/*
1105
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106
 */
1107 1108 1109
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 1111
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1112 1113

	/* Look for allowed, online CPU in same node. */
1114
	for_each_cpu(dest_cpu, nodemask) {
1115 1116 1117 1118
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1119
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120
			return dest_cpu;
1121
	}
1122

1123 1124
	for (;;) {
		/* Any allowed, online CPU? */
1125
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 1127 1128 1129 1130 1131
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1162 1163 1164 1165 1166
	}

	return dest_cpu;
}

1167
/*
1168
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169
 */
1170
static inline
1171
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172
{
1173
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1185
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1186
		     !cpu_online(cpu)))
1187
		cpu = select_fallback_rq(task_cpu(p), p);
1188 1189

	return cpu;
1190
}
1191 1192 1193 1194 1195 1196

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1197 1198
#endif

P
Peter Zijlstra 已提交
1199
static void
1200
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1201
{
P
Peter Zijlstra 已提交
1202
#ifdef CONFIG_SCHEDSTATS
1203 1204
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215
		rcu_read_lock();
P
Peter Zijlstra 已提交
1216 1217 1218 1219 1220 1221
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1222
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1223
	}
1224 1225 1226 1227

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1228 1229 1230
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1231
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1232 1233

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1234
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1241
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1242
	p->on_rq = 1;
1243 1244 1245 1246

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1247 1248
}

1249 1250 1251
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1252
static void
1253
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1254
{
1255
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1256 1257 1258 1259 1260 1261 1262
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1263
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1309
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1310
static void sched_ttwu_pending(void)
1311 1312
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1313 1314
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1315 1316 1317

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1318 1319 1320
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1321 1322 1323 1324 1325 1326 1327 1328
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1329
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1346
	sched_ttwu_pending();
1347 1348 1349 1350

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1351 1352
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1353
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354
	}
1355
	irq_exit();
1356 1357 1358 1359
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1360
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 1362
		smp_send_reschedule(cpu);
}
1363

1364
bool cpus_share_cache(int this_cpu, int that_cpu)
1365 1366 1367
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1368
#endif /* CONFIG_SMP */
1369

1370 1371 1372 1373
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1374
#if defined(CONFIG_SMP)
1375
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377 1378 1379 1380 1381
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1382 1383 1384
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1385 1386 1387
}

/**
L
Linus Torvalds 已提交
1388
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1389
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1390
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1391
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396 1397 1398
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1399 1400
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1401
 */
1402 1403
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1404 1405
{
	unsigned long flags;
1406
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1407

1408
	smp_wmb();
1409
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1410
	if (!(p->state & state))
L
Linus Torvalds 已提交
1411 1412
		goto out;

1413
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1414 1415
	cpu = task_cpu(p);

1416 1417
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1418 1419

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1420
	/*
1421 1422
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1423
	 */
1424
	while (p->on_cpu)
1425
		cpu_relax();
1426
	/*
1427
	 * Pairs with the smp_wmb() in finish_lock_switch().
1428
	 */
1429
	smp_rmb();
L
Linus Torvalds 已提交
1430

1431
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1432
	p->state = TASK_WAKING;
1433

1434
	if (p->sched_class->task_waking)
1435
		p->sched_class->task_waking(p);
1436

1437
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438 1439
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1440
		set_task_cpu(p, cpu);
1441
	}
L
Linus Torvalds 已提交
1442 1443
#endif /* CONFIG_SMP */

1444 1445
	ttwu_queue(p, cpu);
stat:
1446
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1447
out:
1448
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1449 1450 1451 1452

	return success;
}

T
Tejun Heo 已提交
1453 1454 1455 1456
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1457
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1458
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459
 * the current task.
T
Tejun Heo 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1469 1470 1471 1472 1473 1474
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1475
	if (!(p->state & TASK_NORMAL))
1476
		goto out;
T
Tejun Heo 已提交
1477

P
Peter Zijlstra 已提交
1478
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1479 1480
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1481
	ttwu_do_wakeup(rq, p, 0);
1482
	ttwu_stat(p, smp_processor_id(), 0);
1483 1484
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1498
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1499
{
1500
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1501 1502 1503
}
EXPORT_SYMBOL(wake_up_process);

1504
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1512 1513 1514 1515 1516
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1517 1518 1519
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1520 1521
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1522
	p->se.prev_sum_exec_runtime	= 0;
1523
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1524
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1525
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1526 1527

#ifdef CONFIG_SCHEDSTATS
1528
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1529
#endif
N
Nick Piggin 已提交
1530

P
Peter Zijlstra 已提交
1531
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1532

1533 1534 1535
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
	p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1549 1550 1551 1552 1553
}

/*
 * fork()/clone()-time setup:
 */
1554
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1555
{
1556
	unsigned long flags;
I
Ingo Molnar 已提交
1557 1558 1559
	int cpu = get_cpu();

	__sched_fork(p);
1560
	/*
1561
	 * We mark the process as running here. This guarantees that
1562 1563 1564
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1565
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1566

1567 1568 1569 1570 1571
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1572 1573 1574 1575
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1576
		if (task_has_rt_policy(p)) {
1577
			p->policy = SCHED_NORMAL;
1578
			p->static_prio = NICE_TO_PRIO(0);
1579 1580 1581 1582 1583 1584
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1585

1586 1587 1588 1589 1590 1591
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1592

H
Hiroshi Shimamoto 已提交
1593 1594
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1595

P
Peter Zijlstra 已提交
1596 1597 1598
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1599 1600 1601 1602 1603 1604 1605
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1606
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1607
	set_task_cpu(p, cpu);
1608
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1609

1610
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1611
	if (likely(sched_info_on()))
1612
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1613
#endif
P
Peter Zijlstra 已提交
1614 1615
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1616
#endif
1617
#ifdef CONFIG_PREEMPT_COUNT
1618
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1619
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1620
#endif
1621
#ifdef CONFIG_SMP
1622
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1623
#endif
1624

N
Nick Piggin 已提交
1625
	put_cpu();
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1635
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1636 1637
{
	unsigned long flags;
I
Ingo Molnar 已提交
1638
	struct rq *rq;
1639

1640
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1641 1642 1643 1644 1645 1646
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1647
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1648 1649
#endif

1650
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1651
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1652
	p->on_rq = 1;
1653
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1654
	check_preempt_curr(rq, p, WF_FORK);
1655
#ifdef CONFIG_SMP
1656 1657
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1658
#endif
1659
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1660 1661
}

1662 1663 1664
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1665
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1666
 * @notifier: notifier struct to register
1667 1668 1669 1670 1671 1672 1673 1674 1675
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1676
 * @notifier: notifier struct to unregister
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1706
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1718
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1719

1720 1721 1722
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1723
 * @prev: the current task that is being switched out
1724 1725 1726 1727 1728 1729 1730 1731 1732
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1733 1734 1735
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1736
{
1737
	trace_sched_switch(prev, next);
1738 1739
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1740
	fire_sched_out_preempt_notifiers(prev, next);
1741 1742 1743 1744
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1745 1746
/**
 * finish_task_switch - clean up after a task-switch
1747
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1748 1749
 * @prev: the thread we just switched away from.
 *
1750 1751 1752 1753
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1754 1755
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1756
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1757 1758 1759
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1760
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1761 1762 1763
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1764
	long prev_state;
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1770
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1771 1772
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1773
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1779
	prev_state = prev->state;
1780
	vtime_task_switch(prev);
1781
	finish_arch_switch(prev);
1782
	perf_event_task_sched_in(prev, current);
1783
	finish_lock_switch(rq, prev);
1784
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1785

1786
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1787 1788
	if (mm)
		mmdrop(mm);
1789
	if (unlikely(prev_state == TASK_DEAD)) {
1790 1791 1792
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1793
		 */
1794
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1795
		put_task_struct(prev);
1796
	}
L
Linus Torvalds 已提交
1797 1798
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1814
		raw_spin_lock_irqsave(&rq->lock, flags);
1815 1816
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1817
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 1819 1820 1821 1822 1823

		rq->post_schedule = 0;
	}
}

#else
1824

1825 1826 1827 1828 1829 1830
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1831 1832
}

1833 1834
#endif

L
Linus Torvalds 已提交
1835 1836 1837 1838
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1839
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1840 1841
	__releases(rq->lock)
{
1842 1843
	struct rq *rq = this_rq();

1844
	finish_task_switch(rq, prev);
1845

1846 1847 1848 1849 1850
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1851

1852 1853 1854 1855
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1856
	if (current->set_child_tid)
1857
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862 1863
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1864
static inline void
1865
context_switch(struct rq *rq, struct task_struct *prev,
1866
	       struct task_struct *next)
L
Linus Torvalds 已提交
1867
{
I
Ingo Molnar 已提交
1868
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1869

1870
	prepare_task_switch(rq, prev, next);
1871

I
Ingo Molnar 已提交
1872 1873
	mm = next->mm;
	oldmm = prev->active_mm;
1874 1875 1876 1877 1878
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1879
	arch_start_context_switch(prev);
1880

1881
	if (!mm) {
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1888
	if (!prev->mm) {
L
Linus Torvalds 已提交
1889 1890 1891
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1892 1893 1894 1895 1896 1897 1898
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1899
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1900
#endif
L
Linus Torvalds 已提交
1901 1902

	/* Here we just switch the register state and the stack. */
1903
	rcu_switch(prev, next);
L
Linus Torvalds 已提交
1904 1905
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1906 1907 1908 1909 1910 1911 1912
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1930
}
L
Linus Torvalds 已提交
1931 1932

unsigned long nr_uninterruptible(void)
1933
{
L
Linus Torvalds 已提交
1934
	unsigned long i, sum = 0;
1935

1936
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1937
		sum += cpu_rq(i)->nr_uninterruptible;
1938 1939

	/*
L
Linus Torvalds 已提交
1940 1941
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1942
	 */
L
Linus Torvalds 已提交
1943 1944
	if (unlikely((long)sum < 0))
		sum = 0;
1945

L
Linus Torvalds 已提交
1946
	return sum;
1947 1948
}

L
Linus Torvalds 已提交
1949
unsigned long long nr_context_switches(void)
1950
{
1951 1952
	int i;
	unsigned long long sum = 0;
1953

1954
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1955
		sum += cpu_rq(i)->nr_switches;
1956

L
Linus Torvalds 已提交
1957 1958
	return sum;
}
1959

L
Linus Torvalds 已提交
1960 1961 1962
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1963

1964
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1965
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1966

L
Linus Torvalds 已提交
1967 1968
	return sum;
}
1969

1970
unsigned long nr_iowait_cpu(int cpu)
1971
{
1972
	struct rq *this = cpu_rq(cpu);
1973 1974
	return atomic_read(&this->nr_iowait);
}
1975

1976 1977 1978 1979 1980
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
1981

1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2030 2031 2032 2033
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2066 2067 2068
/*
 * a1 = a0 * e + a * (1 - e)
 */
2069 2070 2071 2072 2073 2074 2075 2076 2077
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2078 2079
#ifdef CONFIG_NO_HZ
/*
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2118 2119 2120
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2121 2122
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2123

2124
static inline int calc_load_write_idx(void)
2125
{
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2152 2153
	long delta;

2154 2155 2156 2157
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2158
	delta = calc_load_fold_active(this_rq);
2159 2160 2161 2162
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2163 2164
}

2165
void calc_load_exit_idle(void)
2166
{
2167 2168 2169 2170 2171 2172 2173
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2174 2175

	/*
2176 2177 2178
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2179
	 */
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2192 2193 2194

	return delta;
}
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2273
static void calc_global_nohz(void)
2274 2275 2276
{
	long delta, active, n;

2277 2278 2279 2280 2281 2282
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2283

2284 2285
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2286

2287 2288 2289
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2290

2291 2292
		calc_load_update += n * LOAD_FREQ;
	}
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2303
}
2304
#else /* !CONFIG_NO_HZ */
2305

2306 2307
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2308

2309
#endif /* CONFIG_NO_HZ */
2310 2311

/*
2312 2313
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2314
 */
2315
void calc_global_load(unsigned long ticks)
2316
{
2317
	long active, delta;
L
Linus Torvalds 已提交
2318

2319
	if (time_before(jiffies, calc_load_update + 10))
2320
		return;
L
Linus Torvalds 已提交
2321

2322 2323 2324 2325 2326 2327 2328
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2329 2330
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2331

2332 2333 2334
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2335

2336
	calc_load_update += LOAD_FREQ;
2337 2338

	/*
2339
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2340 2341
	 */
	calc_global_nohz();
2342
}
L
Linus Torvalds 已提交
2343

2344
/*
2345 2346
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2347 2348 2349
 */
static void calc_load_account_active(struct rq *this_rq)
{
2350
	long delta;
2351

2352 2353
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2354

2355 2356
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2357
		atomic_long_add(delta, &calc_load_tasks);
2358 2359

	this_rq->calc_load_update += LOAD_FREQ;
2360 2361
}

2362 2363 2364 2365
/*
 * End of global load-average stuff
 */

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2433
/*
I
Ingo Molnar 已提交
2434
 * Update rq->cpu_load[] statistics. This function is usually called every
2435 2436
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2437
 */
2438 2439
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2440
{
I
Ingo Molnar 已提交
2441
	int i, scale;
2442

I
Ingo Molnar 已提交
2443
	this_rq->nr_load_updates++;
2444

I
Ingo Molnar 已提交
2445
	/* Update our load: */
2446 2447
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2448
		unsigned long old_load, new_load;
2449

I
Ingo Molnar 已提交
2450
		/* scale is effectively 1 << i now, and >> i divides by scale */
2451

I
Ingo Molnar 已提交
2452
		old_load = this_rq->cpu_load[i];
2453
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2454
		new_load = this_load;
I
Ingo Molnar 已提交
2455 2456 2457 2458 2459 2460
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2461 2462 2463
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2464
	}
2465 2466

	sched_avg_update(this_rq);
2467 2468
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2483 2484 2485 2486 2487 2488
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2489
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2490 2491 2492 2493
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2494
	 * bail if there's load or we're actually up-to-date.
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2531 2532 2533
/*
 * Called from scheduler_tick()
 */
2534 2535
static void update_cpu_load_active(struct rq *this_rq)
{
2536
	/*
2537
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2538 2539 2540
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2541

2542
	calc_load_account_active(this_rq);
2543 2544
}

I
Ingo Molnar 已提交
2545
#ifdef CONFIG_SMP
2546

2547
/*
P
Peter Zijlstra 已提交
2548 2549
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2550
 */
P
Peter Zijlstra 已提交
2551
void sched_exec(void)
2552
{
P
Peter Zijlstra 已提交
2553
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2554
	unsigned long flags;
2555
	int dest_cpu;
2556

2557
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2558
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2559 2560
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2561

2562
	if (likely(cpu_active(dest_cpu))) {
2563
		struct migration_arg arg = { p, dest_cpu };
2564

2565 2566
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2567 2568
		return;
	}
2569
unlock:
2570
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2571
}
I
Ingo Molnar 已提交
2572

L
Linus Torvalds 已提交
2573 2574 2575
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2576
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2577 2578

EXPORT_PER_CPU_SYMBOL(kstat);
2579
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2580 2581

/*
2582
 * Return any ns on the sched_clock that have not yet been accounted in
2583
 * @p in case that task is currently running.
2584 2585
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2586
 */
2587 2588 2589 2590 2591 2592
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2593
		ns = rq->clock_task - p->se.exec_start;
2594 2595 2596 2597 2598 2599 2600
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2601
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2602 2603
{
	unsigned long flags;
2604
	struct rq *rq;
2605
	u64 ns = 0;
2606

2607
	rq = task_rq_lock(p, &flags);
2608
	ns = do_task_delta_exec(p, rq);
2609
	task_rq_unlock(rq, p, &flags);
2610

2611 2612
	return ns;
}
2613

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2627
	task_rq_unlock(rq, p, &flags);
2628 2629 2630

	return ns;
}
2631

2632 2633 2634 2635 2636 2637 2638 2639
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2640
	struct task_struct *curr = rq->curr;
2641 2642

	sched_clock_tick();
I
Ingo Molnar 已提交
2643

2644
	raw_spin_lock(&rq->lock);
2645
	update_rq_clock(rq);
2646
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2647
	curr->sched_class->task_tick(rq, curr, 0);
2648
	raw_spin_unlock(&rq->lock);
2649

2650
	perf_event_task_tick();
2651

2652
#ifdef CONFIG_SMP
2653
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2654
	trigger_load_balance(rq, cpu);
2655
#endif
L
Linus Torvalds 已提交
2656 2657
}

2658
notrace unsigned long get_parent_ip(unsigned long addr)
2659 2660 2661 2662 2663 2664 2665 2666
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2667

2668 2669 2670
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2671
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2672
{
2673
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2674 2675 2676
	/*
	 * Underflow?
	 */
2677 2678
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2679
#endif
L
Linus Torvalds 已提交
2680
	preempt_count() += val;
2681
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2682 2683 2684
	/*
	 * Spinlock count overflowing soon?
	 */
2685 2686
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2687 2688 2689
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2690 2691 2692
}
EXPORT_SYMBOL(add_preempt_count);

2693
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2694
{
2695
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2696 2697 2698
	/*
	 * Underflow?
	 */
2699
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2700
		return;
L
Linus Torvalds 已提交
2701 2702 2703
	/*
	 * Is the spinlock portion underflowing?
	 */
2704 2705 2706
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2707
#endif
2708

2709 2710
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716 2717
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2718
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2719
 */
I
Ingo Molnar 已提交
2720
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2721
{
2722 2723 2724
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2725 2726
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2727

I
Ingo Molnar 已提交
2728
	debug_show_held_locks(prev);
2729
	print_modules();
I
Ingo Molnar 已提交
2730 2731
	if (irqs_disabled())
		print_irqtrace_events(prev);
2732
	dump_stack();
2733
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2734
}
L
Linus Torvalds 已提交
2735

I
Ingo Molnar 已提交
2736 2737 2738 2739 2740
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2741
	/*
I
Ingo Molnar 已提交
2742
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2743 2744 2745
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2746
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2747
		__schedule_bug(prev);
2748
	rcu_sleep_check();
I
Ingo Molnar 已提交
2749

L
Linus Torvalds 已提交
2750 2751
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2752
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2753 2754
}

P
Peter Zijlstra 已提交
2755
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2756
{
2757
	if (prev->on_rq || rq->skip_clock_update < 0)
2758
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2759
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2760 2761
}

I
Ingo Molnar 已提交
2762 2763 2764 2765
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2766
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2767
{
2768
	const struct sched_class *class;
I
Ingo Molnar 已提交
2769
	struct task_struct *p;
L
Linus Torvalds 已提交
2770 2771

	/*
I
Ingo Molnar 已提交
2772 2773
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2774
	 */
2775
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2776
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2777 2778
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2779 2780
	}

2781
	for_each_class(class) {
2782
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2783 2784 2785
		if (p)
			return p;
	}
2786 2787

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2788
}
L
Linus Torvalds 已提交
2789

I
Ingo Molnar 已提交
2790
/*
2791
 * __schedule() is the main scheduler function.
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2826
 */
2827
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2828 2829
{
	struct task_struct *prev, *next;
2830
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2831
	struct rq *rq;
2832
	int cpu;
I
Ingo Molnar 已提交
2833

2834 2835
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2836 2837
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2838
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2839 2840 2841
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2842

2843
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2844
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2845

2846
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2847

2848
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2849
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2850
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2851
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2852
		} else {
2853 2854 2855
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2856
			/*
2857 2858 2859
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2869
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2870 2871
	}

2872
	pre_schedule(rq, prev);
2873

I
Ingo Molnar 已提交
2874
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2875 2876
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2877
	put_prev_task(rq, prev);
2878
	next = pick_next_task(rq);
2879 2880
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2887
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2888
		/*
2889 2890 2891 2892
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2893 2894 2895
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2896
	} else
2897
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2898

2899
	post_schedule(rq);
L
Linus Torvalds 已提交
2900

2901
	sched_preempt_enable_no_resched();
2902
	if (need_resched())
L
Linus Torvalds 已提交
2903 2904
		goto need_resched;
}
2905

2906 2907
static inline void sched_submit_work(struct task_struct *tsk)
{
2908
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2909 2910 2911 2912 2913 2914 2915 2916 2917
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2918
asmlinkage void __sched schedule(void)
2919
{
2920 2921 2922
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2923 2924
	__schedule();
}
L
Linus Torvalds 已提交
2925 2926
EXPORT_SYMBOL(schedule);

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
#ifdef CONFIG_RCU_USER_QS
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
	rcu_user_exit();
	schedule();
	rcu_user_enter();
}
#endif

2942 2943 2944 2945 2946 2947 2948
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2949
	sched_preempt_enable_no_resched();
2950 2951 2952 2953
	schedule();
	preempt_disable();
}

2954
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2955

2956 2957 2958
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2959
		return false;
2960 2961

	/*
2962 2963 2964 2965
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2966
	 */
2967
	barrier();
2968

2969
	return owner->on_cpu;
2970
}
2971

2972 2973 2974 2975 2976 2977 2978 2979
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2980

2981
	rcu_read_lock();
2982 2983
	while (owner_running(lock, owner)) {
		if (need_resched())
2984
			break;
2985

2986
		arch_mutex_cpu_relax();
2987
	}
2988
	rcu_read_unlock();
2989

2990
	/*
2991 2992 2993
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
2994
	 */
2995
	return lock->owner == NULL;
2996 2997 2998
}
#endif

L
Linus Torvalds 已提交
2999 3000
#ifdef CONFIG_PREEMPT
/*
3001
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3002
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3003 3004
 * occur there and call schedule directly.
 */
3005
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3006 3007
{
	struct thread_info *ti = current_thread_info();
3008

L
Linus Torvalds 已提交
3009 3010
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3011
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3012
	 */
N
Nick Piggin 已提交
3013
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3014 3015
		return;

3016
	do {
3017
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3018
		__schedule();
3019
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3020

3021 3022 3023 3024 3025
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3026
	} while (need_resched());
L
Linus Torvalds 已提交
3027 3028 3029 3030
}
EXPORT_SYMBOL(preempt_schedule);

/*
3031
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037 3038
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3039

3040
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3041 3042
	BUG_ON(ti->preempt_count || !irqs_disabled());

3043
	rcu_user_exit();
3044 3045 3046
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3047
		__schedule();
3048 3049
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3050

3051 3052 3053 3054 3055
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3056
	} while (need_resched());
L
Linus Torvalds 已提交
3057 3058 3059 3060
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3061
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3062
			  void *key)
L
Linus Torvalds 已提交
3063
{
P
Peter Zijlstra 已提交
3064
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3065 3066 3067 3068
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3069 3070
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3071 3072 3073
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3074
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3075 3076
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3077
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3078
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3079
{
3080
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3081

3082
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3083 3084
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3085
		if (curr->func(curr, mode, wake_flags, key) &&
3086
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3096
 * @key: is directly passed to the wakeup function
3097 3098 3099
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3100
 */
3101
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3102
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3115
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3116
{
3117
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3118
}
3119
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3120

3121 3122 3123 3124
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3125
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3126

L
Linus Torvalds 已提交
3127
/**
3128
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3129 3130 3131
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3132
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138 3139
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3140 3141 3142
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3143
 */
3144 3145
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3146 3147
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3148
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3149 3150 3151 3152 3153

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3154
		wake_flags = 0;
L
Linus Torvalds 已提交
3155 3156

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3157
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3158 3159
	spin_unlock_irqrestore(&q->lock, flags);
}
3160 3161 3162 3163 3164 3165 3166 3167 3168
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3169 3170
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3171 3172 3173 3174 3175 3176 3177 3178
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3179 3180 3181
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3182
 */
3183
void complete(struct completion *x)
L
Linus Torvalds 已提交
3184 3185 3186 3187 3188
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3189
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3190 3191 3192 3193
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3194 3195 3196 3197 3198
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3199 3200 3201
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3202
 */
3203
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3204 3205 3206 3207 3208
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3209
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3210 3211 3212 3213
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3214 3215
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3216 3217 3218 3219
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3220
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3221
		do {
3222
			if (signal_pending_state(state, current)) {
3223 3224
				timeout = -ERESTARTSYS;
				break;
3225 3226
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3227 3228 3229
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3230
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3231
		__remove_wait_queue(&x->wait, &wait);
3232 3233
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3234 3235
	}
	x->done--;
3236
	return timeout ?: 1;
L
Linus Torvalds 已提交
3237 3238
}

3239 3240
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3241 3242 3243 3244
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3245
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3246
	spin_unlock_irq(&x->wait.lock);
3247 3248
	return timeout;
}
L
Linus Torvalds 已提交
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3260
void __sched wait_for_completion(struct completion *x)
3261 3262
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3263
}
3264
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3265

3266 3267 3268 3269 3270 3271 3272 3273
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3274 3275 3276
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3277
 */
3278
unsigned long __sched
3279
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3280
{
3281
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3282
}
3283
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3284

3285 3286 3287 3288 3289 3290
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3291 3292
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3293
 */
3294
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3295
{
3296 3297 3298 3299
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3300
}
3301
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3302

3303 3304 3305 3306 3307 3308 3309
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3310 3311 3312
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3313
 */
3314
long __sched
3315 3316
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3317
{
3318
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3319
}
3320
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3321

3322 3323 3324 3325 3326 3327
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3328 3329
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3330
 */
M
Matthew Wilcox 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3340 3341 3342 3343 3344 3345 3346 3347
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3348 3349 3350
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3351
 */
3352
long __sched
3353 3354 3355 3356 3357 3358 3359
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3374
	unsigned long flags;
3375 3376
	int ret = 1;

3377
	spin_lock_irqsave(&x->wait.lock, flags);
3378 3379 3380 3381
	if (!x->done)
		ret = 0;
	else
		x->done--;
3382
	spin_unlock_irqrestore(&x->wait.lock, flags);
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3397
	unsigned long flags;
3398 3399
	int ret = 1;

3400
	spin_lock_irqsave(&x->wait.lock, flags);
3401 3402
	if (!x->done)
		ret = 0;
3403
	spin_unlock_irqrestore(&x->wait.lock, flags);
3404 3405 3406 3407
	return ret;
}
EXPORT_SYMBOL(completion_done);

3408 3409
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3410
{
I
Ingo Molnar 已提交
3411 3412 3413 3414
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3415

3416
	__set_current_state(state);
L
Linus Torvalds 已提交
3417

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3432 3433 3434
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3435
long __sched
I
Ingo Molnar 已提交
3436
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3437
{
3438
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3439 3440 3441
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3442
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3443
{
3444
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3445 3446 3447
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3448
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3449
{
3450
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3451 3452 3453
}
EXPORT_SYMBOL(sleep_on_timeout);

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3466
void rt_mutex_setprio(struct task_struct *p, int prio)
3467
{
3468
	int oldprio, on_rq, running;
3469
	struct rq *rq;
3470
	const struct sched_class *prev_class;
3471 3472 3473

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3474
	rq = __task_rq_lock(p);
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3494
	trace_sched_pi_setprio(p, prio);
3495
	oldprio = p->prio;
3496
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3497
	on_rq = p->on_rq;
3498
	running = task_current(rq, p);
3499
	if (on_rq)
3500
		dequeue_task(rq, p, 0);
3501 3502
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3503 3504 3505 3506 3507 3508

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3509 3510
	p->prio = prio;

3511 3512
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3513
	if (on_rq)
3514
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3515

P
Peter Zijlstra 已提交
3516
	check_class_changed(rq, p, prev_class, oldprio);
3517
out_unlock:
3518
	__task_rq_unlock(rq);
3519 3520
}
#endif
3521
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3522
{
I
Ingo Molnar 已提交
3523
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3524
	unsigned long flags;
3525
	struct rq *rq;
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3538
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3539
	 */
3540
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3541 3542 3543
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3544
	on_rq = p->on_rq;
3545
	if (on_rq)
3546
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3547 3548

	p->static_prio = NICE_TO_PRIO(nice);
3549
	set_load_weight(p);
3550 3551 3552
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3553

I
Ingo Molnar 已提交
3554
	if (on_rq) {
3555
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3556
		/*
3557 3558
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3559
		 */
3560
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3561 3562 3563
			resched_task(rq->curr);
	}
out_unlock:
3564
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3565 3566 3567
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3568 3569 3570 3571 3572
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3573
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3574
{
3575 3576
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3577

3578
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3579 3580 3581
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3591
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3592
{
3593
	long nice, retval;
L
Linus Torvalds 已提交
3594 3595 3596 3597 3598 3599

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3600 3601
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3602 3603 3604
	if (increment > 40)
		increment = 40;

3605
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3606 3607 3608 3609 3610
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3611 3612 3613
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3632
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638 3639 3640
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3641
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3642 3643 3644
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3645
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3646 3647 3648 3649 3650 3651 3652

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3667 3668 3669 3670 3671 3672
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3673
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679 3680 3681
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3682
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3683
{
3684
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3685 3686 3687
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3688 3689
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3690 3691 3692
{
	p->policy = policy;
	p->rt_priority = prio;
3693 3694 3695
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3696 3697 3698 3699
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3700
	set_load_weight(p);
L
Linus Torvalds 已提交
3701 3702
}

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3713 3714
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3715 3716 3717 3718
	rcu_read_unlock();
	return match;
}

3719
static int __sched_setscheduler(struct task_struct *p, int policy,
3720
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3721
{
3722
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3723
	unsigned long flags;
3724
	const struct sched_class *prev_class;
3725
	struct rq *rq;
3726
	int reset_on_fork;
L
Linus Torvalds 已提交
3727

3728 3729
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3730 3731
recheck:
	/* double check policy once rq lock held */
3732 3733
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3734
		policy = oldpolicy = p->policy;
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3745 3746
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3747 3748
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3749 3750
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3751
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3752
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3753
		return -EINVAL;
3754
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3755 3756
		return -EINVAL;

3757 3758 3759
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3760
	if (user && !capable(CAP_SYS_NICE)) {
3761
		if (rt_policy(policy)) {
3762 3763
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3774

I
Ingo Molnar 已提交
3775
		/*
3776 3777
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3778
		 */
3779 3780 3781 3782
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3783

3784
		/* can't change other user's priorities */
3785
		if (!check_same_owner(p))
3786
			return -EPERM;
3787 3788 3789 3790

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3791
	}
L
Linus Torvalds 已提交
3792

3793
	if (user) {
3794
		retval = security_task_setscheduler(p);
3795 3796 3797 3798
		if (retval)
			return retval;
	}

3799 3800 3801
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3802
	 *
L
Lucas De Marchi 已提交
3803
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3804 3805
	 * runqueue lock must be held.
	 */
3806
	rq = task_rq_lock(p, &flags);
3807

3808 3809 3810 3811
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3812
		task_rq_unlock(rq, p, &flags);
3813 3814 3815
		return -EINVAL;
	}

3816 3817 3818 3819 3820
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3821
		task_rq_unlock(rq, p, &flags);
3822 3823 3824
		return 0;
	}

3825 3826 3827 3828 3829 3830 3831
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3832 3833
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3834
			task_rq_unlock(rq, p, &flags);
3835 3836 3837 3838 3839
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3840 3841 3842
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3843
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3844 3845
		goto recheck;
	}
P
Peter Zijlstra 已提交
3846
	on_rq = p->on_rq;
3847
	running = task_current(rq, p);
3848
	if (on_rq)
3849
		dequeue_task(rq, p, 0);
3850 3851
	if (running)
		p->sched_class->put_prev_task(rq, p);
3852

3853 3854
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3855
	oldprio = p->prio;
3856
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3857
	__setscheduler(rq, p, policy, param->sched_priority);
3858

3859 3860
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3861
	if (on_rq)
3862
		enqueue_task(rq, p, 0);
3863

P
Peter Zijlstra 已提交
3864
	check_class_changed(rq, p, prev_class, oldprio);
3865
	task_rq_unlock(rq, p, &flags);
3866

3867 3868
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3869 3870
	return 0;
}
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3881
		       const struct sched_param *param)
3882 3883 3884
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3885 3886
EXPORT_SYMBOL_GPL(sched_setscheduler);

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3899
			       const struct sched_param *param)
3900 3901 3902 3903
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3904 3905
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3906 3907 3908
{
	struct sched_param lparam;
	struct task_struct *p;
3909
	int retval;
L
Linus Torvalds 已提交
3910 3911 3912 3913 3914

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3915 3916 3917

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3918
	p = find_process_by_pid(pid);
3919 3920 3921
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3922

L
Linus Torvalds 已提交
3923 3924 3925 3926 3927 3928 3929 3930 3931
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3932 3933
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3934
{
3935 3936 3937 3938
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3939 3940 3941 3942 3943 3944 3945 3946
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3947
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952 3953 3954 3955
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3956
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3957
{
3958
	struct task_struct *p;
3959
	int retval;
L
Linus Torvalds 已提交
3960 3961

	if (pid < 0)
3962
		return -EINVAL;
L
Linus Torvalds 已提交
3963 3964

	retval = -ESRCH;
3965
	rcu_read_lock();
L
Linus Torvalds 已提交
3966 3967 3968 3969
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3970 3971
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3972
	}
3973
	rcu_read_unlock();
L
Linus Torvalds 已提交
3974 3975 3976 3977
	return retval;
}

/**
3978
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3979 3980 3981
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3982
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3983 3984
{
	struct sched_param lp;
3985
	struct task_struct *p;
3986
	int retval;
L
Linus Torvalds 已提交
3987 3988

	if (!param || pid < 0)
3989
		return -EINVAL;
L
Linus Torvalds 已提交
3990

3991
	rcu_read_lock();
L
Linus Torvalds 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4002
	rcu_read_unlock();
L
Linus Torvalds 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4012
	rcu_read_unlock();
L
Linus Torvalds 已提交
4013 4014 4015
	return retval;
}

4016
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4017
{
4018
	cpumask_var_t cpus_allowed, new_mask;
4019 4020
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4021

4022
	get_online_cpus();
4023
	rcu_read_lock();
L
Linus Torvalds 已提交
4024 4025 4026

	p = find_process_by_pid(pid);
	if (!p) {
4027
		rcu_read_unlock();
4028
		put_online_cpus();
L
Linus Torvalds 已提交
4029 4030 4031
		return -ESRCH;
	}

4032
	/* Prevent p going away */
L
Linus Torvalds 已提交
4033
	get_task_struct(p);
4034
	rcu_read_unlock();
L
Linus Torvalds 已提交
4035

4036 4037 4038 4039 4040 4041 4042 4043
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4044
	retval = -EPERM;
4045
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4046 4047
		goto out_unlock;

4048
	retval = security_task_setscheduler(p);
4049 4050 4051
	if (retval)
		goto out_unlock;

4052 4053
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4054
again:
4055
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4056

P
Paul Menage 已提交
4057
	if (!retval) {
4058 4059
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4060 4061 4062 4063 4064
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4065
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4066 4067 4068
			goto again;
		}
	}
L
Linus Torvalds 已提交
4069
out_unlock:
4070 4071 4072 4073
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4074
	put_task_struct(p);
4075
	put_online_cpus();
L
Linus Torvalds 已提交
4076 4077 4078 4079
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4080
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4081
{
4082 4083 4084 4085 4086
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4096 4097
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4098
{
4099
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4100 4101
	int retval;

4102 4103
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4104

4105 4106 4107 4108 4109
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4110 4111
}

4112
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4113
{
4114
	struct task_struct *p;
4115
	unsigned long flags;
L
Linus Torvalds 已提交
4116 4117
	int retval;

4118
	get_online_cpus();
4119
	rcu_read_lock();
L
Linus Torvalds 已提交
4120 4121 4122 4123 4124 4125

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4126 4127 4128 4129
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4130
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4131
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4132
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4133 4134

out_unlock:
4135
	rcu_read_unlock();
4136
	put_online_cpus();
L
Linus Torvalds 已提交
4137

4138
	return retval;
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144 4145 4146
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4147 4148
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4149 4150
{
	int ret;
4151
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4152

A
Anton Blanchard 已提交
4153
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4154 4155
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4156 4157
		return -EINVAL;

4158 4159
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4160

4161 4162
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4163
		size_t retlen = min_t(size_t, len, cpumask_size());
4164 4165

		if (copy_to_user(user_mask_ptr, mask, retlen))
4166 4167
			ret = -EFAULT;
		else
4168
			ret = retlen;
4169 4170
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4171

4172
	return ret;
L
Linus Torvalds 已提交
4173 4174 4175 4176 4177
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4178 4179
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4180
 */
4181
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4182
{
4183
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4184

4185
	schedstat_inc(rq, yld_count);
4186
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4187 4188 4189 4190 4191 4192

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4193
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4194
	do_raw_spin_unlock(&rq->lock);
4195
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4196 4197 4198 4199 4200 4201

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4202 4203 4204 4205 4206
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4207
static void __cond_resched(void)
L
Linus Torvalds 已提交
4208
{
4209
	add_preempt_count(PREEMPT_ACTIVE);
4210
	__schedule();
4211
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4212 4213
}

4214
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4215
{
P
Peter Zijlstra 已提交
4216
	if (should_resched()) {
L
Linus Torvalds 已提交
4217 4218 4219 4220 4221
		__cond_resched();
		return 1;
	}
	return 0;
}
4222
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4223 4224

/*
4225
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4226 4227
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4228
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4229 4230 4231
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4232
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4233
{
P
Peter Zijlstra 已提交
4234
	int resched = should_resched();
J
Jan Kara 已提交
4235 4236
	int ret = 0;

4237 4238
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4239
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4240
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4241
		if (resched)
N
Nick Piggin 已提交
4242 4243 4244
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4245
		ret = 1;
L
Linus Torvalds 已提交
4246 4247
		spin_lock(lock);
	}
J
Jan Kara 已提交
4248
	return ret;
L
Linus Torvalds 已提交
4249
}
4250
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4251

4252
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4253 4254 4255
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4256
	if (should_resched()) {
4257
		local_bh_enable();
L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4264
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4265 4266 4267 4268

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4287 4288 4289 4290 4291 4292 4293 4294
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4295 4296 4297 4298
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4299 4300
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4335
	if (yielded) {
4336
		schedstat_inc(rq, yld_count);
4337 4338 4339 4340 4341 4342 4343
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4356
/*
I
Ingo Molnar 已提交
4357
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4358 4359 4360 4361
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4362
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4363

4364
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4365
	atomic_inc(&rq->nr_iowait);
4366
	blk_flush_plug(current);
4367
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4368
	schedule();
4369
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4370
	atomic_dec(&rq->nr_iowait);
4371
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4372 4373 4374 4375 4376
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4377
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4378 4379
	long ret;

4380
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4381
	atomic_inc(&rq->nr_iowait);
4382
	blk_flush_plug(current);
4383
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4384
	ret = schedule_timeout(timeout);
4385
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4386
	atomic_dec(&rq->nr_iowait);
4387
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4398
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4408
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4409
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4423
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4433
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4434
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4448
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4449
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4450
{
4451
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4452
	unsigned int time_slice;
4453 4454
	unsigned long flags;
	struct rq *rq;
4455
	int retval;
L
Linus Torvalds 已提交
4456 4457 4458
	struct timespec t;

	if (pid < 0)
4459
		return -EINVAL;
L
Linus Torvalds 已提交
4460 4461

	retval = -ESRCH;
4462
	rcu_read_lock();
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469 4470
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4471 4472
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4473
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4474

4475
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4476
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4477 4478
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4479

L
Linus Torvalds 已提交
4480
out_unlock:
4481
	rcu_read_unlock();
L
Linus Torvalds 已提交
4482 4483 4484
	return retval;
}

4485
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4486

4487
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4488 4489
{
	unsigned long free = 0;
4490
	unsigned state;
L
Linus Torvalds 已提交
4491 4492

	state = p->state ? __ffs(p->state) + 1 : 0;
4493
	printk(KERN_INFO "%-15.15s %c", p->comm,
4494
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4495
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4496
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4497
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4498
	else
P
Peter Zijlstra 已提交
4499
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4500 4501
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4502
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4503
	else
P
Peter Zijlstra 已提交
4504
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4505 4506
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4507
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4508
#endif
P
Peter Zijlstra 已提交
4509
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4510
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4511
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4512

4513
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4514 4515
}

I
Ingo Molnar 已提交
4516
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4517
{
4518
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4519

4520
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4521 4522
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4523
#else
P
Peter Zijlstra 已提交
4524 4525
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4526
#endif
4527
	rcu_read_lock();
L
Linus Torvalds 已提交
4528 4529 4530
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4531
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4532 4533
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4534
		if (!state_filter || (p->state & state_filter))
4535
			sched_show_task(p);
L
Linus Torvalds 已提交
4536 4537
	} while_each_thread(g, p);

4538 4539
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4540 4541 4542
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4543
	rcu_read_unlock();
I
Ingo Molnar 已提交
4544 4545 4546
	/*
	 * Only show locks if all tasks are dumped:
	 */
4547
	if (!state_filter)
I
Ingo Molnar 已提交
4548
		debug_show_all_locks();
L
Linus Torvalds 已提交
4549 4550
}

I
Ingo Molnar 已提交
4551 4552
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4553
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4554 4555
}

4556 4557 4558 4559 4560 4561 4562 4563
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4564
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4565
{
4566
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4567 4568
	unsigned long flags;

4569
	raw_spin_lock_irqsave(&rq->lock, flags);
4570

I
Ingo Molnar 已提交
4571
	__sched_fork(idle);
4572
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4573 4574
	idle->se.exec_start = sched_clock();

4575
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4587
	__set_task_cpu(idle, cpu);
4588
	rcu_read_unlock();
L
Linus Torvalds 已提交
4589 4590

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4591 4592
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4593
#endif
4594
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4595 4596

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4597
	task_thread_info(idle)->preempt_count = 0;
4598

I
Ingo Molnar 已提交
4599 4600 4601 4602
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4603
	ftrace_graph_init_idle_task(idle, cpu);
4604 4605 4606
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4607 4608
}

L
Linus Torvalds 已提交
4609
#ifdef CONFIG_SMP
4610 4611 4612 4613
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4614 4615

	cpumask_copy(&p->cpus_allowed, new_mask);
4616
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4617 4618
}

L
Linus Torvalds 已提交
4619 4620 4621
/*
 * This is how migration works:
 *
4622 4623 4624 4625 4626 4627
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4628
 *    it and puts it into the right queue.
4629 4630
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4639
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4640 4641
 * call is not atomic; no spinlocks may be held.
 */
4642
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4643 4644
{
	unsigned long flags;
4645
	struct rq *rq;
4646
	unsigned int dest_cpu;
4647
	int ret = 0;
L
Linus Torvalds 已提交
4648 4649

	rq = task_rq_lock(p, &flags);
4650

4651 4652 4653
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4654
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4655 4656 4657 4658
		ret = -EINVAL;
		goto out;
	}

4659
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4660 4661 4662 4663
		ret = -EINVAL;
		goto out;
	}

4664
	do_set_cpus_allowed(p, new_mask);
4665

L
Linus Torvalds 已提交
4666
	/* Can the task run on the task's current CPU? If so, we're done */
4667
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4668 4669
		goto out;

4670
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4671
	if (p->on_rq) {
4672
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4673
		/* Need help from migration thread: drop lock and wait. */
4674
		task_rq_unlock(rq, p, &flags);
4675
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4676 4677 4678 4679
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4680
	task_rq_unlock(rq, p, &flags);
4681

L
Linus Torvalds 已提交
4682 4683
	return ret;
}
4684
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4685 4686

/*
I
Ingo Molnar 已提交
4687
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4694 4695
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4696
 */
4697
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4698
{
4699
	struct rq *rq_dest, *rq_src;
4700
	int ret = 0;
L
Linus Torvalds 已提交
4701

4702
	if (unlikely(!cpu_active(dest_cpu)))
4703
		return ret;
L
Linus Torvalds 已提交
4704 4705 4706 4707

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4708
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4709 4710 4711
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4712
		goto done;
L
Linus Torvalds 已提交
4713
	/* Affinity changed (again). */
4714
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4715
		goto fail;
L
Linus Torvalds 已提交
4716

4717 4718 4719 4720
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4721
	if (p->on_rq) {
4722
		dequeue_task(rq_src, p, 0);
4723
		set_task_cpu(p, dest_cpu);
4724
		enqueue_task(rq_dest, p, 0);
4725
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4726
	}
L
Linus Torvalds 已提交
4727
done:
4728
	ret = 1;
L
Linus Torvalds 已提交
4729
fail:
L
Linus Torvalds 已提交
4730
	double_rq_unlock(rq_src, rq_dest);
4731
	raw_spin_unlock(&p->pi_lock);
4732
	return ret;
L
Linus Torvalds 已提交
4733 4734 4735
}

/*
4736 4737 4738
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4739
 */
4740
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4741
{
4742
	struct migration_arg *arg = data;
4743

4744 4745 4746 4747
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4748
	local_irq_disable();
4749
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4750
	local_irq_enable();
L
Linus Torvalds 已提交
4751
	return 0;
4752 4753
}

L
Linus Torvalds 已提交
4754
#ifdef CONFIG_HOTPLUG_CPU
4755

4756
/*
4757 4758
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4759
 */
4760
void idle_task_exit(void)
L
Linus Torvalds 已提交
4761
{
4762
	struct mm_struct *mm = current->active_mm;
4763

4764
	BUG_ON(cpu_online(smp_processor_id()));
4765

4766 4767 4768
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4769 4770 4771
}

/*
4772 4773 4774 4775 4776
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4777
 */
4778
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4779
{
4780 4781 4782
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4783 4784
}

4785
/*
4786 4787 4788 4789 4790 4791
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4792
 */
4793
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4794
{
4795
	struct rq *rq = cpu_rq(dead_cpu);
4796 4797
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4798 4799

	/*
4800 4801 4802 4803 4804 4805 4806
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4807
	 */
4808
	rq->stop = NULL;
4809

I
Ingo Molnar 已提交
4810
	for ( ; ; ) {
4811 4812 4813 4814 4815
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4816
			break;
4817

4818
		next = pick_next_task(rq);
4819
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4820
		next->sched_class->put_prev_task(rq, next);
4821

4822 4823 4824 4825 4826 4827 4828
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4829
	}
4830

4831
	rq->stop = stop;
4832
}
4833

L
Linus Torvalds 已提交
4834 4835
#endif /* CONFIG_HOTPLUG_CPU */

4836 4837 4838
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4839 4840
	{
		.procname	= "sched_domain",
4841
		.mode		= 0555,
4842
	},
4843
	{}
4844 4845 4846
};

static struct ctl_table sd_ctl_root[] = {
4847 4848
	{
		.procname	= "kernel",
4849
		.mode		= 0555,
4850 4851
		.child		= sd_ctl_dir,
	},
4852
	{}
4853 4854 4855 4856 4857
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4858
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4859 4860 4861 4862

	return entry;
}

4863 4864
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4865
	struct ctl_table *entry;
4866

4867 4868 4869
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4870
	 * will always be set. In the lowest directory the names are
4871 4872 4873
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4874 4875
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4876 4877 4878
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4879 4880 4881 4882 4883

	kfree(*tablep);
	*tablep = NULL;
}

4884 4885 4886
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4887
static void
4888
set_table_entry(struct ctl_table *entry,
4889
		const char *procname, void *data, int maxlen,
4890 4891
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4892 4893 4894 4895 4896 4897
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4898 4899 4900 4901 4902

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4903 4904 4905 4906 4907
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4908
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4909

4910 4911 4912
	if (table == NULL)
		return NULL;

4913
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4914
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4915
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4916
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4917
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4918
		sizeof(int), 0644, proc_dointvec_minmax, true);
4919
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4920
		sizeof(int), 0644, proc_dointvec_minmax, true);
4921
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4922
		sizeof(int), 0644, proc_dointvec_minmax, true);
4923
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4924
		sizeof(int), 0644, proc_dointvec_minmax, true);
4925
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4926
		sizeof(int), 0644, proc_dointvec_minmax, true);
4927
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4928
		sizeof(int), 0644, proc_dointvec_minmax, false);
4929
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4930
		sizeof(int), 0644, proc_dointvec_minmax, false);
4931
	set_table_entry(&table[9], "cache_nice_tries",
4932
		&sd->cache_nice_tries,
4933
		sizeof(int), 0644, proc_dointvec_minmax, false);
4934
	set_table_entry(&table[10], "flags", &sd->flags,
4935
		sizeof(int), 0644, proc_dointvec_minmax, false);
4936
	set_table_entry(&table[11], "name", sd->name,
4937
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4938
	/* &table[12] is terminator */
4939 4940 4941 4942

	return table;
}

4943
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4944 4945 4946 4947 4948 4949 4950 4951 4952
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4953 4954
	if (table == NULL)
		return NULL;
4955 4956 4957 4958 4959

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4960
		entry->mode = 0555;
4961 4962 4963 4964 4965 4966 4967 4968
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4969
static void register_sched_domain_sysctl(void)
4970
{
4971
	int i, cpu_num = num_possible_cpus();
4972 4973 4974
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4975 4976 4977
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4978 4979 4980
	if (entry == NULL)
		return;

4981
	for_each_possible_cpu(i) {
4982 4983
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4984
		entry->mode = 0555;
4985
		entry->child = sd_alloc_ctl_cpu_table(i);
4986
		entry++;
4987
	}
4988 4989

	WARN_ON(sd_sysctl_header);
4990 4991
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4992

4993
/* may be called multiple times per register */
4994 4995
static void unregister_sched_domain_sysctl(void)
{
4996 4997
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4998
	sd_sysctl_header = NULL;
4999 5000
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5001
}
5002
#else
5003 5004 5005 5006
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5007 5008 5009 5010
{
}
#endif

5011 5012 5013 5014 5015
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5016
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5036
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5037 5038 5039 5040
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5041 5042 5043 5044
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5045 5046
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5047
{
5048
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5049
	unsigned long flags;
5050
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5051

5052
	switch (action & ~CPU_TASKS_FROZEN) {
5053

L
Linus Torvalds 已提交
5054
	case CPU_UP_PREPARE:
5055
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5056
		break;
5057

L
Linus Torvalds 已提交
5058
	case CPU_ONLINE:
5059
		/* Update our root-domain */
5060
		raw_spin_lock_irqsave(&rq->lock, flags);
5061
		if (rq->rd) {
5062
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5063 5064

			set_rq_online(rq);
5065
		}
5066
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5067
		break;
5068

L
Linus Torvalds 已提交
5069
#ifdef CONFIG_HOTPLUG_CPU
5070
	case CPU_DYING:
5071
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5072
		/* Update our root-domain */
5073
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5074
		if (rq->rd) {
5075
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5076
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5077
		}
5078 5079
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5080
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5081
		break;
5082

5083
	case CPU_DEAD:
5084
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5085
		break;
L
Linus Torvalds 已提交
5086 5087
#endif
	}
5088 5089 5090

	update_max_interval();

L
Linus Torvalds 已提交
5091 5092 5093
	return NOTIFY_OK;
}

5094 5095 5096
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5097
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5098
 */
5099
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5100
	.notifier_call = migration_call,
5101
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5102 5103
};

5104 5105 5106 5107
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5108
	case CPU_STARTING:
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5129
static int __init migration_init(void)
L
Linus Torvalds 已提交
5130 5131
{
	void *cpu = (void *)(long)smp_processor_id();
5132
	int err;
5133

5134
	/* Initialize migration for the boot CPU */
5135 5136
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5137 5138
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5139

5140 5141 5142 5143
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5144
	return 0;
L
Linus Torvalds 已提交
5145
}
5146
early_initcall(migration_init);
L
Linus Torvalds 已提交
5147 5148 5149
#endif

#ifdef CONFIG_SMP
5150

5151 5152
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5153
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5154

5155
static __read_mostly int sched_debug_enabled;
5156

5157
static int __init sched_debug_setup(char *str)
5158
{
5159
	sched_debug_enabled = 1;
5160 5161 5162

	return 0;
}
5163 5164 5165 5166 5167 5168
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5169

5170
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5171
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5172
{
I
Ingo Molnar 已提交
5173
	struct sched_group *group = sd->groups;
5174
	char str[256];
L
Linus Torvalds 已提交
5175

R
Rusty Russell 已提交
5176
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5177
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5178 5179 5180 5181

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5182
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5183
		if (sd->parent)
P
Peter Zijlstra 已提交
5184 5185
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5186
		return -1;
N
Nick Piggin 已提交
5187 5188
	}

P
Peter Zijlstra 已提交
5189
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5190

5191
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5192 5193
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5194
	}
5195
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5196 5197
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5198
	}
L
Linus Torvalds 已提交
5199

I
Ingo Molnar 已提交
5200
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5201
	do {
I
Ingo Molnar 已提交
5202
		if (!group) {
P
Peter Zijlstra 已提交
5203 5204
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5205 5206 5207
			break;
		}

5208 5209 5210 5211 5212 5213
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5214 5215 5216
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5217 5218
			break;
		}
L
Linus Torvalds 已提交
5219

5220
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5221 5222
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5223 5224
			break;
		}
L
Linus Torvalds 已提交
5225

5226 5227
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5228 5229
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5230 5231
			break;
		}
L
Linus Torvalds 已提交
5232

5233
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5234

R
Rusty Russell 已提交
5235
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5236

P
Peter Zijlstra 已提交
5237
		printk(KERN_CONT " %s", str);
5238
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5239
			printk(KERN_CONT " (cpu_power = %d)",
5240
				group->sgp->power);
5241
		}
L
Linus Torvalds 已提交
5242

I
Ingo Molnar 已提交
5243 5244
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5245
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5246

5247
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5248
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5249

5250 5251
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5252 5253
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5254 5255
	return 0;
}
L
Linus Torvalds 已提交
5256

I
Ingo Molnar 已提交
5257 5258 5259
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5260

5261
	if (!sched_debug_enabled)
5262 5263
		return;

I
Ingo Molnar 已提交
5264 5265 5266 5267
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5268

I
Ingo Molnar 已提交
5269 5270 5271
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5272
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5273
			break;
L
Linus Torvalds 已提交
5274 5275
		level++;
		sd = sd->parent;
5276
		if (!sd)
I
Ingo Molnar 已提交
5277 5278
			break;
	}
L
Linus Torvalds 已提交
5279
}
5280
#else /* !CONFIG_SCHED_DEBUG */
5281
# define sched_domain_debug(sd, cpu) do { } while (0)
5282 5283 5284 5285
static inline bool sched_debug(void)
{
	return false;
}
5286
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5287

5288
static int sd_degenerate(struct sched_domain *sd)
5289
{
5290
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5291 5292 5293 5294 5295 5296
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5297 5298 5299
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5300 5301 5302 5303 5304
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5305
	if (sd->flags & (SD_WAKE_AFFINE))
5306 5307 5308 5309 5310
		return 0;

	return 1;
}

5311 5312
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5313 5314 5315 5316 5317 5318
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5319
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5320 5321 5322 5323 5324 5325 5326
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5327 5328 5329
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5330 5331
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5332 5333 5334 5335 5336 5337 5338
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5339
static void free_rootdomain(struct rcu_head *rcu)
5340
{
5341
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5342

5343
	cpupri_cleanup(&rd->cpupri);
5344 5345 5346 5347 5348 5349
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5350 5351
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5352
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5353 5354
	unsigned long flags;

5355
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5356 5357

	if (rq->rd) {
I
Ingo Molnar 已提交
5358
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5359

5360
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5361
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5362

5363
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5364

I
Ingo Molnar 已提交
5365 5366 5367 5368 5369 5370 5371
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5372 5373 5374 5375 5376
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5377
	cpumask_set_cpu(rq->cpu, rd->span);
5378
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5379
		set_rq_online(rq);
G
Gregory Haskins 已提交
5380

5381
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5382 5383

	if (old_rd)
5384
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5385 5386
}

5387
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5388 5389 5390
{
	memset(rd, 0, sizeof(*rd));

5391
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5392
		goto out;
5393
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5394
		goto free_span;
5395
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5396
		goto free_online;
5397

5398
	if (cpupri_init(&rd->cpupri) != 0)
5399
		goto free_rto_mask;
5400
	return 0;
5401

5402 5403
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5404 5405 5406 5407
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5408
out:
5409
	return -ENOMEM;
G
Gregory Haskins 已提交
5410 5411
}

5412 5413 5414 5415 5416 5417
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5418 5419
static void init_defrootdomain(void)
{
5420
	init_rootdomain(&def_root_domain);
5421

G
Gregory Haskins 已提交
5422 5423 5424
	atomic_set(&def_root_domain.refcount, 1);
}

5425
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5426 5427 5428 5429 5430 5431 5432
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5433
	if (init_rootdomain(rd) != 0) {
5434 5435 5436
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5437 5438 5439 5440

	return rd;
}

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5460 5461 5462
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5463 5464 5465 5466 5467 5468 5469 5470

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5471
		kfree(sd->groups->sgp);
5472
		kfree(sd->groups);
5473
	}
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5488 5489 5490 5491 5492 5493 5494
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5495
 * two cpus are in the same cache domain, see cpus_share_cache().
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5506
	if (sd)
5507 5508 5509 5510 5511 5512
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5513
/*
I
Ingo Molnar 已提交
5514
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5515 5516
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5517 5518
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5519
{
5520
	struct rq *rq = cpu_rq(cpu);
5521 5522 5523
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5524
	for (tmp = sd; tmp; ) {
5525 5526 5527
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5528

5529
		if (sd_parent_degenerate(tmp, parent)) {
5530
			tmp->parent = parent->parent;
5531 5532
			if (parent->parent)
				parent->parent->child = tmp;
5533
			destroy_sched_domain(parent, cpu);
5534 5535
		} else
			tmp = tmp->parent;
5536 5537
	}

5538
	if (sd && sd_degenerate(sd)) {
5539
		tmp = sd;
5540
		sd = sd->parent;
5541
		destroy_sched_domain(tmp, cpu);
5542 5543 5544
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5545

5546
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5547

G
Gregory Haskins 已提交
5548
	rq_attach_root(rq, rd);
5549
	tmp = rq->sd;
N
Nick Piggin 已提交
5550
	rcu_assign_pointer(rq->sd, sd);
5551
	destroy_sched_domains(tmp, cpu);
5552 5553

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5554 5555 5556
}

/* cpus with isolated domains */
5557
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5558 5559 5560 5561

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5562
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5563
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5564 5565 5566
	return 1;
}

I
Ingo Molnar 已提交
5567
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5568

5569 5570 5571 5572 5573
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5574 5575 5576
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5577
	struct sched_group_power **__percpu sgp;
5578 5579
};

5580
struct s_data {
5581
	struct sched_domain ** __percpu sd;
5582 5583 5584
	struct root_domain	*rd;
};

5585 5586
enum s_alloc {
	sa_rootdomain,
5587
	sa_sd,
5588
	sa_sd_storage,
5589 5590 5591
	sa_none,
};

5592 5593 5594
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5595 5596
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5597 5598
#define SDTL_OVERLAP	0x01

5599
struct sched_domain_topology_level {
5600 5601
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5602
	int		    flags;
5603
	int		    numa_level;
5604
	struct sd_data      data;
5605 5606
};

P
Peter Zijlstra 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5663 5664 5665 5666 5667 5668
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5669
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5670
				GFP_KERNEL, cpu_to_node(cpu));
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5684
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5685 5686 5687
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5688 5689 5690 5691 5692 5693
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5694

P
Peter Zijlstra 已提交
5695 5696 5697 5698 5699
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5700
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5701
		    group_balance_cpu(sg) == cpu)
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5721
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5722
{
5723 5724
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5725

5726 5727
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5728

5729
	if (sg) {
5730
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5731
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5732
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5733
	}
5734 5735

	return cpu;
5736 5737
}

5738
/*
5739 5740 5741
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5742 5743
 *
 * Assumes the sched_domain tree is fully constructed
5744
 */
5745 5746
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5747
{
5748 5749 5750
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5751
	struct cpumask *covered;
5752
	int i;
5753

5754 5755 5756 5757 5758 5759
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5760 5761 5762
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5763
	cpumask_clear(covered);
5764

5765 5766 5767 5768
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5769

5770 5771
		if (cpumask_test_cpu(i, covered))
			continue;
5772

5773
		cpumask_clear(sched_group_cpus(sg));
5774
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5775
		cpumask_setall(sched_group_mask(sg));
5776

5777 5778 5779
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5780

5781 5782 5783
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5784

5785 5786 5787 5788 5789 5790 5791
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5792 5793

	return 0;
5794
}
5795

5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5808
	struct sched_group *sg = sd->groups;
5809

5810 5811 5812 5813 5814 5815
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5816

P
Peter Zijlstra 已提交
5817
	if (cpu != group_balance_cpu(sg))
5818
		return;
5819

5820
	update_group_power(sd, cpu);
5821
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5822 5823
}

5824 5825 5826
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5827 5828
}

5829 5830 5831 5832 5833
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5834 5835 5836 5837 5838 5839
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5840 5841 5842 5843 5844 5845 5846 5847 5848
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5849 5850 5851 5852 5853 5854 5855 5856 5857
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5858 5859 5860
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5861

5862
static int default_relax_domain_level = -1;
5863
int sched_domain_level_max;
5864 5865 5866

static int __init setup_relax_domain_level(char *str)
{
5867 5868
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5869

5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5888
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5889 5890
	} else {
		/* turn on idle balance on this domain */
5891
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5892 5893 5894
	}
}

5895 5896 5897
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5898 5899 5900 5901 5902
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5903 5904
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5905 5906
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5907
	case sa_sd_storage:
5908
		__sdt_free(cpu_map); /* fall through */
5909 5910 5911 5912
	case sa_none:
		break;
	}
}
5913

5914 5915 5916
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5917 5918
	memset(d, 0, sizeof(*d));

5919 5920
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5921 5922 5923
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5924
	d->rd = alloc_rootdomain();
5925
	if (!d->rd)
5926
		return sa_sd;
5927 5928
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5929

5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5942
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5943
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5944 5945

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5946
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5947 5948
}

5949 5950
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5951
{
5952
	return topology_thread_cpumask(cpu);
5953
}
5954
#endif
5955

5956 5957 5958
/*
 * Topology list, bottom-up.
 */
5959
static struct sched_domain_topology_level default_topology[] = {
5960 5961
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5962
#endif
5963
#ifdef CONFIG_SCHED_MC
5964
	{ sd_init_MC, cpu_coregroup_mask, },
5965
#endif
5966 5967 5968 5969
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5970 5971 5972 5973 5974
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5975 5976 5977 5978 5979 5980 5981 5982 5983
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5984
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6002
		.imbalance_pct		= 125,
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6122
		}
6123 6124 6125 6126 6127 6128

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6129 6130 6131 6132 6133 6134 6135 6136 6137
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6164
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6165 6166 6167 6168 6169 6170
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6171
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6203 6204

	sched_domains_numa_levels = level;
6205
}
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6253 6254 6255 6256 6257
}
#else
static inline void sched_init_numa(void)
{
}
6258 6259 6260 6261 6262 6263 6264

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6265 6266
#endif /* CONFIG_NUMA */

6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6283 6284 6285 6286
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6287 6288 6289
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6290
			struct sched_group_power *sgp;
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6304 6305
			sg->next = sg;

6306
			*per_cpu_ptr(sdd->sg, j) = sg;
6307

P
Peter Zijlstra 已提交
6308
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6309 6310 6311 6312 6313
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6342 6343
		}
		free_percpu(sdd->sd);
6344
		sdd->sd = NULL;
6345
		free_percpu(sdd->sg);
6346
		sdd->sg = NULL;
6347
		free_percpu(sdd->sgp);
6348
		sdd->sgp = NULL;
6349 6350 6351
	}
}

6352 6353
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6354
		struct sched_domain_attr *attr, struct sched_domain *child,
6355 6356
		int cpu)
{
6357
	struct sched_domain *sd = tl->init(tl, cpu);
6358
	if (!sd)
6359
		return child;
6360 6361

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6362 6363 6364
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6365
		child->parent = sd;
6366
	}
6367
	sd->child = child;
6368
	set_domain_attribute(sd, attr);
6369 6370 6371 6372

	return sd;
}

6373 6374 6375 6376
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6377 6378
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6379 6380
{
	enum s_alloc alloc_state = sa_none;
6381
	struct sched_domain *sd;
6382
	struct s_data d;
6383
	int i, ret = -ENOMEM;
6384

6385 6386 6387
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6388

6389
	/* Set up domains for cpus specified by the cpu_map. */
6390
	for_each_cpu(i, cpu_map) {
6391 6392
		struct sched_domain_topology_level *tl;

6393
		sd = NULL;
6394
		for (tl = sched_domain_topology; tl->init; tl++) {
6395
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6396 6397
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6398 6399
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6400
		}
6401

6402 6403 6404
		while (sd->child)
			sd = sd->child;

6405
		*per_cpu_ptr(d.sd, i) = sd;
6406 6407 6408 6409 6410 6411
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6412 6413 6414 6415 6416 6417 6418
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6419
		}
6420
	}
6421

L
Linus Torvalds 已提交
6422
	/* Calculate CPU power for physical packages and nodes */
6423 6424 6425
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6426

6427 6428
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6429
			init_sched_groups_power(i, sd);
6430
		}
6431
	}
6432

L
Linus Torvalds 已提交
6433
	/* Attach the domains */
6434
	rcu_read_lock();
6435
	for_each_cpu(i, cpu_map) {
6436
		sd = *per_cpu_ptr(d.sd, i);
6437
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6438
	}
6439
	rcu_read_unlock();
6440

6441
	ret = 0;
6442
error:
6443
	__free_domain_allocs(&d, alloc_state, cpu_map);
6444
	return ret;
L
Linus Torvalds 已提交
6445
}
P
Paul Jackson 已提交
6446

6447
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6448
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6449 6450
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6451 6452 6453

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6454 6455
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6456
 */
6457
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6458

6459 6460 6461 6462 6463 6464
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6465
{
6466
	return 0;
6467 6468
}

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6494
/*
I
Ingo Molnar 已提交
6495
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6496 6497
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6498
 */
6499
static int init_sched_domains(const struct cpumask *cpu_map)
6500
{
6501 6502
	int err;

6503
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6504
	ndoms_cur = 1;
6505
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6506
	if (!doms_cur)
6507 6508
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6509
	err = build_sched_domains(doms_cur[0], NULL);
6510
	register_sched_domain_sysctl();
6511 6512

	return err;
6513 6514 6515 6516 6517 6518
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6519
static void detach_destroy_domains(const struct cpumask *cpu_map)
6520 6521 6522
{
	int i;

6523
	rcu_read_lock();
6524
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6525
		cpu_attach_domain(NULL, &def_root_domain, i);
6526
	rcu_read_unlock();
6527 6528
}

6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6545 6546
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6547
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6548 6549 6550
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6551
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6552 6553 6554
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6555 6556 6557
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6558 6559 6560 6561 6562 6563
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6564
 *
6565
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6566 6567
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6568
 *
P
Paul Jackson 已提交
6569 6570
 * Call with hotplug lock held
 */
6571
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6572
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6573
{
6574
	int i, j, n;
6575
	int new_topology;
P
Paul Jackson 已提交
6576

6577
	mutex_lock(&sched_domains_mutex);
6578

6579 6580 6581
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6582 6583 6584
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6585
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6586 6587 6588

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6589
		for (j = 0; j < n && !new_topology; j++) {
6590
			if (cpumask_equal(doms_cur[i], doms_new[j])
6591
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6592 6593 6594
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6595
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6596 6597 6598 6599
match1:
		;
	}

6600 6601
	if (doms_new == NULL) {
		ndoms_cur = 0;
6602
		doms_new = &fallback_doms;
6603
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6604
		WARN_ON_ONCE(dattr_new);
6605 6606
	}

P
Paul Jackson 已提交
6607 6608
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6609
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6610
			if (cpumask_equal(doms_new[i], doms_cur[j])
6611
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6612 6613 6614
				goto match2;
		}
		/* no match - add a new doms_new */
6615
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6616 6617 6618 6619 6620
match2:
		;
	}

	/* Remember the new sched domains */
6621 6622
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6623
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6624
	doms_cur = doms_new;
6625
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6626
	ndoms_cur = ndoms_new;
6627 6628

	register_sched_domain_sysctl();
6629

6630
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6631 6632
}

6633 6634
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6635
/*
6636 6637 6638
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6639 6640 6641
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6642
 */
6643 6644
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6645
{
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6668
	case CPU_ONLINE:
6669
	case CPU_DOWN_FAILED:
6670
		cpuset_update_active_cpus(true);
6671
		break;
6672 6673 6674
	default:
		return NOTIFY_DONE;
	}
6675
	return NOTIFY_OK;
6676
}
6677

6678 6679
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6680
{
6681
	switch (action) {
6682
	case CPU_DOWN_PREPARE:
6683
		cpuset_update_active_cpus(false);
6684 6685 6686 6687 6688
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6689 6690 6691
	default:
		return NOTIFY_DONE;
	}
6692
	return NOTIFY_OK;
6693 6694
}

L
Linus Torvalds 已提交
6695 6696
void __init sched_init_smp(void)
{
6697 6698 6699
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6700
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6701

6702 6703
	sched_init_numa();

6704
	get_online_cpus();
6705
	mutex_lock(&sched_domains_mutex);
6706
	init_sched_domains(cpu_active_mask);
6707 6708 6709
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6710
	mutex_unlock(&sched_domains_mutex);
6711
	put_online_cpus();
6712

6713
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6714 6715
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6716 6717 6718 6719

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6720
	init_hrtick();
6721 6722

	/* Move init over to a non-isolated CPU */
6723
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6724
		BUG();
I
Ingo Molnar 已提交
6725
	sched_init_granularity();
6726
	free_cpumask_var(non_isolated_cpus);
6727

6728
	init_sched_rt_class();
L
Linus Torvalds 已提交
6729 6730 6731 6732
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6733
	sched_init_granularity();
L
Linus Torvalds 已提交
6734 6735 6736
}
#endif /* CONFIG_SMP */

6737 6738
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6739 6740 6741 6742 6743 6744 6745
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6746 6747
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6748
LIST_HEAD(task_groups);
6749
#endif
P
Peter Zijlstra 已提交
6750

6751
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6752

L
Linus Torvalds 已提交
6753 6754
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6755
	int i, j;
6756 6757 6758 6759 6760 6761 6762
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6763
#endif
6764
#ifdef CONFIG_CPUMASK_OFFSTACK
6765
	alloc_size += num_possible_cpus() * cpumask_size();
6766 6767
#endif
	if (alloc_size) {
6768
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6769 6770

#ifdef CONFIG_FAIR_GROUP_SCHED
6771
		root_task_group.se = (struct sched_entity **)ptr;
6772 6773
		ptr += nr_cpu_ids * sizeof(void **);

6774
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6775
		ptr += nr_cpu_ids * sizeof(void **);
6776

6777
#endif /* CONFIG_FAIR_GROUP_SCHED */
6778
#ifdef CONFIG_RT_GROUP_SCHED
6779
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6780 6781
		ptr += nr_cpu_ids * sizeof(void **);

6782
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6783 6784
		ptr += nr_cpu_ids * sizeof(void **);

6785
#endif /* CONFIG_RT_GROUP_SCHED */
6786 6787 6788 6789 6790 6791
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6792
	}
I
Ingo Molnar 已提交
6793

G
Gregory Haskins 已提交
6794 6795 6796 6797
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6798 6799 6800 6801
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6802
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6803
			global_rt_period(), global_rt_runtime());
6804
#endif /* CONFIG_RT_GROUP_SCHED */
6805

D
Dhaval Giani 已提交
6806
#ifdef CONFIG_CGROUP_SCHED
6807 6808
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6809
	INIT_LIST_HEAD(&root_task_group.siblings);
6810
	autogroup_init(&init_task);
6811

D
Dhaval Giani 已提交
6812
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6813

6814 6815 6816 6817 6818 6819
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6820
	for_each_possible_cpu(i) {
6821
		struct rq *rq;
L
Linus Torvalds 已提交
6822 6823

		rq = cpu_rq(i);
6824
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6825
		rq->nr_running = 0;
6826 6827
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6828
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6829
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6830
#ifdef CONFIG_FAIR_GROUP_SCHED
6831
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6832
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6833
		/*
6834
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6835 6836 6837 6838
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6839
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6840 6841 6842
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6843
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6844 6845 6846
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6847
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6848
		 *
6849 6850
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6851
		 */
6852
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6853
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6854 6855 6856
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6857
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6858
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6859
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6860
#endif
L
Linus Torvalds 已提交
6861

I
Ingo Molnar 已提交
6862 6863
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6864 6865 6866

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6867
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6868
		rq->sd = NULL;
G
Gregory Haskins 已提交
6869
		rq->rd = NULL;
6870
		rq->cpu_power = SCHED_POWER_SCALE;
6871
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6872
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6873
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6874
		rq->push_cpu = 0;
6875
		rq->cpu = i;
6876
		rq->online = 0;
6877 6878
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6879 6880 6881

		INIT_LIST_HEAD(&rq->cfs_tasks);

6882
		rq_attach_root(rq, &def_root_domain);
6883
#ifdef CONFIG_NO_HZ
6884
		rq->nohz_flags = 0;
6885
#endif
L
Linus Torvalds 已提交
6886
#endif
P
Peter Zijlstra 已提交
6887
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6888 6889 6890
		atomic_set(&rq->nr_iowait, 0);
	}

6891
	set_load_weight(&init_task);
6892

6893 6894 6895 6896
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6897
#ifdef CONFIG_RT_MUTEXES
6898
	plist_head_init(&init_task.pi_waiters);
6899 6900
#endif

L
Linus Torvalds 已提交
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6914 6915 6916

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6917 6918 6919 6920
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6921

6922
#ifdef CONFIG_SMP
6923
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6924 6925 6926
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6927
	idle_thread_set_boot_cpu();
6928 6929
#endif
	init_sched_fair_class();
6930

6931
	scheduler_running = 1;
L
Linus Torvalds 已提交
6932 6933
}

6934
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6935 6936
static inline int preempt_count_equals(int preempt_offset)
{
6937
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6938

A
Arnd Bergmann 已提交
6939
	return (nested == preempt_offset);
6940 6941
}

6942
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6943 6944 6945
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6946
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6947 6948
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6949 6950 6951 6952 6953
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6954 6955 6956 6957 6958 6959 6960
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6961 6962 6963 6964 6965

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6966 6967 6968 6969 6970
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6971 6972
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6973 6974
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6975
	int on_rq;
6976

P
Peter Zijlstra 已提交
6977
	on_rq = p->on_rq;
6978
	if (on_rq)
6979
		dequeue_task(rq, p, 0);
6980 6981
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6982
		enqueue_task(rq, p, 0);
6983 6984
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6985 6986

	check_class_changed(rq, p, prev_class, old_prio);
6987 6988
}

L
Linus Torvalds 已提交
6989 6990
void normalize_rt_tasks(void)
{
6991
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6992
	unsigned long flags;
6993
	struct rq *rq;
L
Linus Torvalds 已提交
6994

6995
	read_lock_irqsave(&tasklist_lock, flags);
6996
	do_each_thread(g, p) {
6997 6998 6999 7000 7001 7002
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7003 7004
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7005 7006 7007
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7008
#endif
I
Ingo Molnar 已提交
7009 7010 7011 7012 7013 7014 7015 7016

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7017
			continue;
I
Ingo Molnar 已提交
7018
		}
L
Linus Torvalds 已提交
7019

7020
		raw_spin_lock(&p->pi_lock);
7021
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7022

7023
		normalize_task(rq, p);
7024

7025
		__task_rq_unlock(rq);
7026
		raw_spin_unlock(&p->pi_lock);
7027 7028
	} while_each_thread(g, p);

7029
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7030 7031 7032
}

#endif /* CONFIG_MAGIC_SYSRQ */
7033

7034
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7035
/*
7036
 * These functions are only useful for the IA64 MCA handling, or kdb.
7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7051
struct task_struct *curr_task(int cpu)
7052 7053 7054 7055
{
	return cpu_curr(cpu);
}

7056 7057 7058
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7059 7060 7061 7062 7063 7064
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7065 7066
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7067 7068 7069 7070 7071 7072 7073
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7074
void set_curr_task(int cpu, struct task_struct *p)
7075 7076 7077 7078 7079
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7080

D
Dhaval Giani 已提交
7081
#ifdef CONFIG_CGROUP_SCHED
7082 7083 7084
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7085 7086 7087 7088
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7089
	autogroup_free(tg);
7090 7091 7092 7093
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7094
struct task_group *sched_create_group(struct task_group *parent)
7095 7096 7097 7098 7099 7100 7101 7102
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7103
	if (!alloc_fair_sched_group(tg, parent))
7104 7105
		goto err;

7106
	if (!alloc_rt_sched_group(tg, parent))
7107 7108
		goto err;

7109
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7110
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7111 7112 7113 7114 7115

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7116
	list_add_rcu(&tg->siblings, &parent->children);
7117
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7118

7119
	return tg;
S
Srivatsa Vaddagiri 已提交
7120 7121

err:
P
Peter Zijlstra 已提交
7122
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7123 7124 7125
	return ERR_PTR(-ENOMEM);
}

7126
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7127
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7128 7129
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7130
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7131 7132
}

7133
/* Destroy runqueue etc associated with a task group */
7134
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7135
{
7136
	unsigned long flags;
7137
	int i;
S
Srivatsa Vaddagiri 已提交
7138

7139 7140
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7141
		unregister_fair_sched_group(tg, i);
7142 7143

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7144
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7145
	list_del_rcu(&tg->siblings);
7146
	spin_unlock_irqrestore(&task_group_lock, flags);
7147 7148

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7149
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7150 7151
}

7152
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7153 7154 7155
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7156 7157
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7158
{
P
Peter Zijlstra 已提交
7159
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7160 7161 7162 7163 7164 7165
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7166
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7167
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7168

7169
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7170
		dequeue_task(rq, tsk, 0);
7171 7172
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7173

P
Peter Zijlstra 已提交
7174 7175 7176 7177 7178 7179
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7180
#ifdef CONFIG_FAIR_GROUP_SCHED
7181 7182 7183
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7184
#endif
7185
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7186

7187 7188 7189
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7190
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7191

7192
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7193
}
D
Dhaval Giani 已提交
7194
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7195

7196
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7197 7198 7199
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7200
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7201

P
Peter Zijlstra 已提交
7202
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7203
}
7204 7205 7206 7207 7208 7209 7210
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7211

P
Peter Zijlstra 已提交
7212 7213
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7214
{
P
Peter Zijlstra 已提交
7215
	struct task_struct *g, *p;
7216

P
Peter Zijlstra 已提交
7217
	do_each_thread(g, p) {
7218
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7219 7220
			return 1;
	} while_each_thread(g, p);
7221

P
Peter Zijlstra 已提交
7222 7223
	return 0;
}
7224

P
Peter Zijlstra 已提交
7225 7226 7227 7228 7229
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7230

7231
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7232 7233 7234 7235 7236
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7237

P
Peter Zijlstra 已提交
7238 7239
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7240

P
Peter Zijlstra 已提交
7241 7242 7243
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7244 7245
	}

7246 7247 7248 7249 7250
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7251

7252 7253 7254
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7255 7256
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7257

P
Peter Zijlstra 已提交
7258
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7259

7260 7261 7262 7263 7264
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7265

7266 7267 7268
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7269 7270 7271
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7272

P
Peter Zijlstra 已提交
7273 7274 7275 7276
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7277

P
Peter Zijlstra 已提交
7278
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7279
	}
P
Peter Zijlstra 已提交
7280

P
Peter Zijlstra 已提交
7281 7282 7283 7284
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7285 7286
}

P
Peter Zijlstra 已提交
7287
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7288
{
7289 7290
	int ret;

P
Peter Zijlstra 已提交
7291 7292 7293 7294 7295 7296
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7297 7298 7299 7300 7301
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7302 7303
}

7304
static int tg_set_rt_bandwidth(struct task_group *tg,
7305
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7306
{
P
Peter Zijlstra 已提交
7307
	int i, err = 0;
P
Peter Zijlstra 已提交
7308 7309

	mutex_lock(&rt_constraints_mutex);
7310
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7311 7312
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7313
		goto unlock;
P
Peter Zijlstra 已提交
7314

7315
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7316 7317
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7318 7319 7320 7321

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7322
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7323
		rt_rq->rt_runtime = rt_runtime;
7324
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7325
	}
7326
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7327
unlock:
7328
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7329 7330 7331
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7332 7333
}

7334 7335 7336 7337 7338 7339 7340 7341 7342
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7343
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7344 7345
}

P
Peter Zijlstra 已提交
7346 7347 7348 7349
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7350
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7351 7352
		return -1;

7353
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7354 7355 7356
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7357 7358 7359 7360 7361 7362 7363 7364

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7365 7366 7367
	if (rt_period == 0)
		return -EINVAL;

7368
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7382
	u64 runtime, period;
7383 7384
	int ret = 0;

7385 7386 7387
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7388 7389 7390 7391 7392 7393 7394 7395
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7396

7397
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7398
	read_lock(&tasklist_lock);
7399
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7400
	read_unlock(&tasklist_lock);
7401 7402 7403 7404
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7415
#else /* !CONFIG_RT_GROUP_SCHED */
7416 7417
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7418 7419 7420
	unsigned long flags;
	int i;

7421 7422 7423
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7424 7425 7426 7427 7428 7429 7430
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7431
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7432 7433 7434
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7435
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7436
		rt_rq->rt_runtime = global_rt_runtime();
7437
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7438
	}
7439
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7440

7441 7442
	return 0;
}
7443
#endif /* CONFIG_RT_GROUP_SCHED */
7444 7445

int sched_rt_handler(struct ctl_table *table, int write,
7446
		void __user *buffer, size_t *lenp,
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7457
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7474

7475
#ifdef CONFIG_CGROUP_SCHED
7476 7477

/* return corresponding task_group object of a cgroup */
7478
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7479
{
7480 7481
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7482 7483
}

7484
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7485
{
7486
	struct task_group *tg, *parent;
7487

7488
	if (!cgrp->parent) {
7489
		/* This is early initialization for the top cgroup */
7490
		return &root_task_group.css;
7491 7492
	}

7493 7494
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7495 7496 7497 7498 7499 7500
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7501
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7502
{
7503
	struct task_group *tg = cgroup_tg(cgrp);
7504 7505 7506 7507

	sched_destroy_group(tg);
}

7508
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7509
				 struct cgroup_taskset *tset)
7510
{
7511 7512 7513
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7514
#ifdef CONFIG_RT_GROUP_SCHED
7515 7516
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7517
#else
7518 7519 7520
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7521
#endif
7522
	}
7523 7524
	return 0;
}
7525

7526
static void cpu_cgroup_attach(struct cgroup *cgrp,
7527
			      struct cgroup_taskset *tset)
7528
{
7529 7530 7531 7532
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7533 7534
}

7535
static void
7536 7537
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7550
#ifdef CONFIG_FAIR_GROUP_SCHED
7551
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7552
				u64 shareval)
7553
{
7554
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7555 7556
}

7557
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7558
{
7559
	struct task_group *tg = cgroup_tg(cgrp);
7560

7561
	return (u64) scale_load_down(tg->shares);
7562
}
7563 7564

#ifdef CONFIG_CFS_BANDWIDTH
7565 7566
static DEFINE_MUTEX(cfs_constraints_mutex);

7567 7568 7569
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7570 7571
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7572 7573
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7574
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7575
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7596 7597 7598 7599 7600
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7601
	runtime_enabled = quota != RUNTIME_INF;
7602 7603
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7604 7605 7606
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7607

P
Paul Turner 已提交
7608
	__refill_cfs_bandwidth_runtime(cfs_b);
7609 7610 7611 7612 7613 7614
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7615 7616 7617 7618
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7619
		struct rq *rq = cfs_rq->rq;
7620 7621

		raw_spin_lock_irq(&rq->lock);
7622
		cfs_rq->runtime_enabled = runtime_enabled;
7623
		cfs_rq->runtime_remaining = 0;
7624

7625
		if (cfs_rq->throttled)
7626
			unthrottle_cfs_rq(cfs_rq);
7627 7628
		raw_spin_unlock_irq(&rq->lock);
	}
7629 7630
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7631

7632
	return ret;
7633 7634 7635 7636 7637 7638
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7639
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7652
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7653 7654
		return -1;

7655
	quota_us = tg->cfs_bandwidth.quota;
7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7666
	quota = tg->cfs_bandwidth.quota;
7667 7668 7669 7670 7671 7672 7673 7674

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7675
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7735
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7736 7737 7738 7739 7740
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7741
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7762
	int ret;
7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7774 7775 7776 7777 7778
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7779
}
7780 7781 7782 7783 7784

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7785
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7786 7787 7788 7789 7790 7791 7792

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7793
#endif /* CONFIG_CFS_BANDWIDTH */
7794
#endif /* CONFIG_FAIR_GROUP_SCHED */
7795

7796
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7797
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7798
				s64 val)
P
Peter Zijlstra 已提交
7799
{
7800
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7801 7802
}

7803
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7804
{
7805
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7806
}
7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7818
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7819

7820
static struct cftype cpu_files[] = {
7821
#ifdef CONFIG_FAIR_GROUP_SCHED
7822 7823
	{
		.name = "shares",
7824 7825
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7826
	},
7827
#endif
7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7839 7840 7841 7842
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7843
#endif
7844
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7845
	{
P
Peter Zijlstra 已提交
7846
		.name = "rt_runtime_us",
7847 7848
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7849
	},
7850 7851
	{
		.name = "rt_period_us",
7852 7853
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7854
	},
7855
#endif
7856
	{ }	/* terminate */
7857 7858 7859
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7860 7861 7862
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7863 7864
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7865
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7866
	.subsys_id	= cpu_cgroup_subsys_id,
7867
	.base_cftypes	= cpu_files,
7868 7869 7870
	.early_init	= 1,
};

7871
#endif	/* CONFIG_CGROUP_SCHED */
7872 7873 7874 7875 7876 7877 7878 7879 7880 7881

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7882 7883
struct cpuacct root_cpuacct;

7884
/* create a new cpu accounting group */
7885
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7886
{
7887
	struct cpuacct *ca;
7888

7889 7890 7891 7892
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7893
	if (!ca)
7894
		goto out;
7895 7896

	ca->cpuusage = alloc_percpu(u64);
7897 7898 7899
	if (!ca->cpuusage)
		goto out_free_ca;

7900 7901 7902
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7903

7904
	return &ca->css;
7905

7906
out_free_cpuusage:
7907 7908 7909 7910 7911
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7912 7913 7914
}

/* destroy an existing cpu accounting group */
7915
static void cpuacct_destroy(struct cgroup *cgrp)
7916
{
7917
	struct cpuacct *ca = cgroup_ca(cgrp);
7918

7919
	free_percpu(ca->cpustat);
7920 7921 7922 7923
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7924 7925
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7926
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7927 7928 7929 7930 7931 7932
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7933
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7934
	data = *cpuusage;
7935
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7936 7937 7938 7939 7940 7941 7942 7943 7944
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7945
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7946 7947 7948 7949 7950

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7951
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7952
	*cpuusage = val;
7953
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7954 7955 7956 7957 7958
#else
	*cpuusage = val;
#endif
}

7959
/* return total cpu usage (in nanoseconds) of a group */
7960
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7961
{
7962
	struct cpuacct *ca = cgroup_ca(cgrp);
7963 7964 7965
	u64 totalcpuusage = 0;
	int i;

7966 7967
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7968 7969 7970 7971

	return totalcpuusage;
}

7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

7984 7985
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
7986 7987 7988 7989 7990

out:
	return err;
}

7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8006 8007 8008 8009 8010 8011
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8012
			      struct cgroup_map_cb *cb)
8013 8014
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8015 8016
	int cpu;
	s64 val = 0;
8017

8018 8019 8020 8021
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8022
	}
8023 8024
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8025

8026 8027 8028 8029 8030 8031
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8032
	}
8033 8034 8035 8036

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8037 8038 8039
	return 0;
}

8040 8041 8042
static struct cftype files[] = {
	{
		.name = "usage",
8043 8044
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8045
	},
8046 8047 8048 8049
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8050 8051 8052 8053
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8054
	{ }	/* terminate */
8055 8056 8057 8058 8059 8060 8061
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8062
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8063 8064
{
	struct cpuacct *ca;
8065
	int cpu;
8066

L
Li Zefan 已提交
8067
	if (unlikely(!cpuacct_subsys.active))
8068 8069
		return;

8070
	cpu = task_cpu(tsk);
8071 8072 8073

	rcu_read_lock();

8074 8075
	ca = task_ca(tsk);

8076
	for (; ca; ca = parent_ca(ca)) {
8077
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8078 8079
		*cpuusage += cputime;
	}
8080 8081

	rcu_read_unlock();
8082 8083 8084 8085 8086 8087 8088
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8089
	.base_cftypes = files,
8090 8091
};
#endif	/* CONFIG_CGROUP_CPUACCT */