core.c 193.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743
static void update_rq_clock_task(struct rq *rq, s64 delta)
744
{
745 746 747 748 749 750 751 752
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
775 776
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777
	if (static_key_false((&paravirt_steal_rq_enabled))) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

795 796
	rq->clock_task += delta;

797 798 799 800
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

833
/*
I
Ingo Molnar 已提交
834
 * __normal_prio - return the priority that is based on the static prio
835 836 837
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
838
	return p->static_prio;
839 840
}

841 842 843 844 845 846 847
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
848
static inline int normal_prio(struct task_struct *p)
849 850 851
{
	int prio;

852
	if (task_has_rt_policy(p))
853 854 855 856 857 858 859 860 861 862 863 864 865
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
866
static int effective_prio(struct task_struct *p)
867 868 869 870 871 872 873 874 875 876 877 878
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
879 880 881 882
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
883
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
884 885 886 887
{
	return cpu_curr(task_cpu(p)) == p;
}

888 889
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
890
				       int oldprio)
891 892 893
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
894 895 896 897
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
921
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 923 924
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
926
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
927
{
928 929 930 931 932
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
933 934
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935 936

#ifdef CONFIG_LOCKDEP
937 938 939 940 941
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
942
	 * see task_group().
943 944 945 946
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
947 948 949
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
950 951
#endif

952
	trace_sched_migrate_task(p, new_cpu);
953

954 955
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
956
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957
	}
I
Ingo Molnar 已提交
958 959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
960 961
}

962
struct migration_arg {
963
	struct task_struct *task;
L
Linus Torvalds 已提交
964
	int dest_cpu;
965
};
L
Linus Torvalds 已提交
966

967 968
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
969 970 971
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
972 973 974 975 976 977 978
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
979 980 981 982 983 984
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
985
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
986 987
{
	unsigned long flags;
I
Ingo Molnar 已提交
988
	int running, on_rq;
R
Roland McGrath 已提交
989
	unsigned long ncsw;
990
	struct rq *rq;
L
Linus Torvalds 已提交
991

992 993 994 995 996 997 998 999
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1012 1013 1014
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1015
			cpu_relax();
R
Roland McGrath 已提交
1016
		}
1017

1018 1019 1020 1021 1022 1023
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1024
		trace_sched_wait_task(p);
1025
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1026
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1027
		ncsw = 0;
1028
		if (!match_state || p->state == match_state)
1029
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030
		task_rq_unlock(rq, p, &flags);
1031

R
Roland McGrath 已提交
1032 1033 1034 1035 1036 1037
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1048

1049 1050 1051 1052 1053
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1054
		 * So if it was still runnable (but just not actively
1055 1056 1057 1058
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1059 1060 1061 1062
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 1064
			continue;
		}
1065

1066 1067 1068 1069 1070 1071 1072
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1073 1074

	return ncsw;
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1084
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1085 1086 1087 1088 1089
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1090
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1100
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1101
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1102

1103
#ifdef CONFIG_SMP
1104
/*
1105
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106
 */
1107 1108 1109
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 1111
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1112 1113

	/* Look for allowed, online CPU in same node. */
1114
	for_each_cpu(dest_cpu, nodemask) {
1115 1116 1117 1118
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1119
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120
			return dest_cpu;
1121
	}
1122

1123 1124
	for (;;) {
		/* Any allowed, online CPU? */
1125
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 1127 1128 1129 1130 1131
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1162 1163 1164 1165 1166
	}

	return dest_cpu;
}

1167
/*
1168
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169
 */
1170
static inline
1171
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172
{
1173
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1185
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1186
		     !cpu_online(cpu)))
1187
		cpu = select_fallback_rq(task_cpu(p), p);
1188 1189

	return cpu;
1190
}
1191 1192 1193 1194 1195 1196

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1197 1198
#endif

P
Peter Zijlstra 已提交
1199
static void
1200
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1201
{
P
Peter Zijlstra 已提交
1202
#ifdef CONFIG_SCHEDSTATS
1203 1204
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215
		rcu_read_lock();
P
Peter Zijlstra 已提交
1216 1217 1218 1219 1220 1221
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1222
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1223
	}
1224 1225 1226 1227

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1228 1229 1230
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1231
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1232 1233

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1234
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1241
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1242
	p->on_rq = 1;
1243 1244 1245 1246

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1247 1248
}

1249 1250 1251
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1252
static void
1253
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1254
{
1255
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1256 1257 1258 1259 1260 1261 1262
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1263
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1309
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1310
static void sched_ttwu_pending(void)
1311 1312
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1313 1314
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1315 1316 1317

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1318 1319 1320
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1321 1322 1323 1324 1325 1326 1327 1328
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1329
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1346
	sched_ttwu_pending();
1347 1348 1349 1350

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1351 1352
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1353
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354
	}
1355
	irq_exit();
1356 1357 1358 1359
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1360
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 1362
		smp_send_reschedule(cpu);
}
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1382

1383
bool cpus_share_cache(int this_cpu, int that_cpu)
1384 1385 1386
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1387
#endif /* CONFIG_SMP */
1388

1389 1390 1391 1392
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1393
#if defined(CONFIG_SMP)
1394
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1395
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1396 1397 1398 1399 1400
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1401 1402 1403
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1404 1405 1406
}

/**
L
Linus Torvalds 已提交
1407
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1408
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1409
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1410
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1418 1419
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1420
 */
1421 1422
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1423 1424
{
	unsigned long flags;
1425
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1426

1427
	smp_wmb();
1428
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1429
	if (!(p->state & state))
L
Linus Torvalds 已提交
1430 1431
		goto out;

1432
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1433 1434
	cpu = task_cpu(p);

1435 1436
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1437 1438

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1439
	/*
1440 1441
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1442
	 */
1443 1444 1445
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1446 1447 1448 1449 1450
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1451
		 */
1452
		if (ttwu_activate_remote(p, wake_flags))
1453
			goto stat;
1454
#else
1455
		cpu_relax();
1456
#endif
1457
	}
1458
	/*
1459
	 * Pairs with the smp_wmb() in finish_lock_switch().
1460
	 */
1461
	smp_rmb();
L
Linus Torvalds 已提交
1462

1463
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1464
	p->state = TASK_WAKING;
1465

1466
	if (p->sched_class->task_waking)
1467
		p->sched_class->task_waking(p);
1468

1469
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1470 1471
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1472
		set_task_cpu(p, cpu);
1473
	}
L
Linus Torvalds 已提交
1474 1475
#endif /* CONFIG_SMP */

1476 1477
	ttwu_queue(p, cpu);
stat:
1478
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1479
out:
1480
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1481 1482 1483 1484

	return success;
}

T
Tejun Heo 已提交
1485 1486 1487 1488
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1489
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1490
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1491
 * the current task.
T
Tejun Heo 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1501 1502 1503 1504 1505 1506
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1507
	if (!(p->state & TASK_NORMAL))
1508
		goto out;
T
Tejun Heo 已提交
1509

P
Peter Zijlstra 已提交
1510
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1511 1512
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1513
	ttwu_do_wakeup(rq, p, 0);
1514
	ttwu_stat(p, smp_processor_id(), 0);
1515 1516
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1530
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1531
{
1532
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1533 1534 1535
}
EXPORT_SYMBOL(wake_up_process);

1536
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1544 1545 1546 1547 1548
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1549 1550 1551
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1552 1553
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1554
	p->se.prev_sum_exec_runtime	= 0;
1555
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1556
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1557
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1558 1559

#ifdef CONFIG_SCHEDSTATS
1560
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1561
#endif
N
Nick Piggin 已提交
1562

P
Peter Zijlstra 已提交
1563
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1564

1565 1566 1567
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1568 1569 1570 1571 1572
}

/*
 * fork()/clone()-time setup:
 */
1573
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1574
{
1575
	unsigned long flags;
I
Ingo Molnar 已提交
1576 1577 1578
	int cpu = get_cpu();

	__sched_fork(p);
1579
	/*
1580
	 * We mark the process as running here. This guarantees that
1581 1582 1583
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1584
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1585

1586 1587 1588 1589 1590
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1591 1592 1593 1594
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1595
		if (task_has_rt_policy(p)) {
1596
			p->policy = SCHED_NORMAL;
1597
			p->static_prio = NICE_TO_PRIO(0);
1598 1599 1600 1601 1602 1603
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1604

1605 1606 1607 1608 1609 1610
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1611

H
Hiroshi Shimamoto 已提交
1612 1613
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1614

P
Peter Zijlstra 已提交
1615 1616 1617
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1618 1619 1620 1621 1622 1623 1624
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1625
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1626
	set_task_cpu(p, cpu);
1627
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1628

1629
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1630
	if (likely(sched_info_on()))
1631
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1632
#endif
P
Peter Zijlstra 已提交
1633 1634
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1635
#endif
1636
#ifdef CONFIG_PREEMPT_COUNT
1637
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1638
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1639
#endif
1640
#ifdef CONFIG_SMP
1641
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1642
#endif
1643

N
Nick Piggin 已提交
1644
	put_cpu();
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1654
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1655 1656
{
	unsigned long flags;
I
Ingo Molnar 已提交
1657
	struct rq *rq;
1658

1659
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1660 1661 1662 1663 1664 1665
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1666
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1667 1668
#endif

1669
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1670
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1671
	p->on_rq = 1;
1672
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1673
	check_preempt_curr(rq, p, WF_FORK);
1674
#ifdef CONFIG_SMP
1675 1676
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1677
#endif
1678
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1679 1680
}

1681 1682 1683
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1684
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1685
 * @notifier: notifier struct to register
1686 1687 1688 1689 1690 1691 1692 1693 1694
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1695
 * @notifier: notifier struct to unregister
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1725
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1737
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1738

1739 1740 1741
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1742
 * @prev: the current task that is being switched out
1743 1744 1745 1746 1747 1748 1749 1750 1751
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1752 1753 1754
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1755
{
1756
	trace_sched_switch(prev, next);
1757 1758
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1759
	fire_sched_out_preempt_notifiers(prev, next);
1760 1761 1762 1763
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1764 1765
/**
 * finish_task_switch - clean up after a task-switch
1766
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1767 1768
 * @prev: the thread we just switched away from.
 *
1769 1770 1771 1772
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1773 1774
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1775
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1776 1777 1778
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1779
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1780 1781 1782
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1783
	long prev_state;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1789
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1790 1791
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1792
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1798
	prev_state = prev->state;
1799
	account_switch_vtime(prev);
1800
	finish_arch_switch(prev);
1801 1802 1803
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1804
	perf_event_task_sched_in(prev, current);
1805 1806 1807
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1808
	finish_lock_switch(rq, prev);
1809
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1810

1811
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1812 1813
	if (mm)
		mmdrop(mm);
1814
	if (unlikely(prev_state == TASK_DEAD)) {
1815 1816 1817
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1818
		 */
1819
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1820
		put_task_struct(prev);
1821
	}
L
Linus Torvalds 已提交
1822 1823
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1839
		raw_spin_lock_irqsave(&rq->lock, flags);
1840 1841
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1842
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1843 1844 1845 1846 1847 1848

		rq->post_schedule = 0;
	}
}

#else
1849

1850 1851 1852 1853 1854 1855
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1856 1857
}

1858 1859
#endif

L
Linus Torvalds 已提交
1860 1861 1862 1863
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1864
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1865 1866
	__releases(rq->lock)
{
1867 1868
	struct rq *rq = this_rq();

1869
	finish_task_switch(rq, prev);
1870

1871 1872 1873 1874 1875
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1876

1877 1878 1879 1880
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1881
	if (current->set_child_tid)
1882
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1889
static inline void
1890
context_switch(struct rq *rq, struct task_struct *prev,
1891
	       struct task_struct *next)
L
Linus Torvalds 已提交
1892
{
I
Ingo Molnar 已提交
1893
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1894

1895
	prepare_task_switch(rq, prev, next);
1896

I
Ingo Molnar 已提交
1897 1898
	mm = next->mm;
	oldmm = prev->active_mm;
1899 1900 1901 1902 1903
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1904
	arch_start_context_switch(prev);
1905

1906
	if (!mm) {
L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1913
	if (!prev->mm) {
L
Linus Torvalds 已提交
1914 1915 1916
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1917 1918 1919 1920 1921 1922 1923
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1924
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1925
#endif
L
Linus Torvalds 已提交
1926 1927 1928 1929

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1930 1931 1932 1933 1934 1935 1936
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1954
}
L
Linus Torvalds 已提交
1955 1956

unsigned long nr_uninterruptible(void)
1957
{
L
Linus Torvalds 已提交
1958
	unsigned long i, sum = 0;
1959

1960
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1961
		sum += cpu_rq(i)->nr_uninterruptible;
1962 1963

	/*
L
Linus Torvalds 已提交
1964 1965
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1966
	 */
L
Linus Torvalds 已提交
1967 1968
	if (unlikely((long)sum < 0))
		sum = 0;
1969

L
Linus Torvalds 已提交
1970
	return sum;
1971 1972
}

L
Linus Torvalds 已提交
1973
unsigned long long nr_context_switches(void)
1974
{
1975 1976
	int i;
	unsigned long long sum = 0;
1977

1978
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1979
		sum += cpu_rq(i)->nr_switches;
1980

L
Linus Torvalds 已提交
1981 1982
	return sum;
}
1983

L
Linus Torvalds 已提交
1984 1985 1986
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1987

1988
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1989
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1990

L
Linus Torvalds 已提交
1991 1992
	return sum;
}
1993

1994
unsigned long nr_iowait_cpu(int cpu)
1995
{
1996
	struct rq *this = cpu_rq(cpu);
1997 1998
	return atomic_read(&this->nr_iowait);
}
1999

2000 2001 2002 2003 2004
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2005

2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2054 2055 2056 2057
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2090 2091 2092
/*
 * a1 = a0 * e + a * (1 - e)
 */
2093 2094 2095 2096 2097 2098 2099 2100 2101
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2102 2103
#ifdef CONFIG_NO_HZ
/*
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2142 2143 2144
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2145 2146
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2147

2148
static inline int calc_load_write_idx(void)
2149
{
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2176 2177
	long delta;

2178 2179 2180 2181
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2182
	delta = calc_load_fold_active(this_rq);
2183 2184 2185 2186
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2187 2188
}

2189
void calc_load_exit_idle(void)
2190
{
2191 2192 2193 2194 2195 2196 2197
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2198 2199

	/*
2200 2201 2202
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2203
	 */
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2216 2217 2218

	return delta;
}
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2297
static void calc_global_nohz(void)
2298 2299 2300
{
	long delta, active, n;

2301 2302 2303 2304 2305 2306
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2307

2308 2309
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2310

2311 2312 2313
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2314

2315 2316
		calc_load_update += n * LOAD_FREQ;
	}
2317

2318 2319 2320 2321 2322 2323 2324 2325 2326
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2327
}
2328
#else /* !CONFIG_NO_HZ */
2329

2330 2331
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2332

2333
#endif /* CONFIG_NO_HZ */
2334 2335

/*
2336 2337
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2338
 */
2339
void calc_global_load(unsigned long ticks)
2340
{
2341
	long active, delta;
L
Linus Torvalds 已提交
2342

2343
	if (time_before(jiffies, calc_load_update + 10))
2344
		return;
L
Linus Torvalds 已提交
2345

2346 2347 2348 2349 2350 2351 2352
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2353 2354
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2355

2356 2357 2358
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2359

2360
	calc_load_update += LOAD_FREQ;
2361 2362

	/*
2363
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2364 2365
	 */
	calc_global_nohz();
2366
}
L
Linus Torvalds 已提交
2367

2368
/*
2369 2370
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2371 2372 2373
 */
static void calc_load_account_active(struct rq *this_rq)
{
2374
	long delta;
2375

2376 2377
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2378

2379 2380
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2381
		atomic_long_add(delta, &calc_load_tasks);
2382 2383

	this_rq->calc_load_update += LOAD_FREQ;
2384 2385
}

2386 2387 2388 2389
/*
 * End of global load-average stuff
 */

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2457
/*
I
Ingo Molnar 已提交
2458
 * Update rq->cpu_load[] statistics. This function is usually called every
2459 2460
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2461
 */
2462 2463
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2464
{
I
Ingo Molnar 已提交
2465
	int i, scale;
2466

I
Ingo Molnar 已提交
2467
	this_rq->nr_load_updates++;
2468

I
Ingo Molnar 已提交
2469
	/* Update our load: */
2470 2471
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2472
		unsigned long old_load, new_load;
2473

I
Ingo Molnar 已提交
2474
		/* scale is effectively 1 << i now, and >> i divides by scale */
2475

I
Ingo Molnar 已提交
2476
		old_load = this_rq->cpu_load[i];
2477
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2478
		new_load = this_load;
I
Ingo Molnar 已提交
2479 2480 2481 2482 2483 2484
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2485 2486 2487
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2488
	}
2489 2490

	sched_avg_update(this_rq);
2491 2492
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2507 2508 2509 2510 2511 2512
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2513
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2514 2515 2516 2517
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2518
	 * bail if there's load or we're actually up-to-date.
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2555 2556 2557
/*
 * Called from scheduler_tick()
 */
2558 2559
static void update_cpu_load_active(struct rq *this_rq)
{
2560
	/*
2561
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2562 2563 2564
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2565

2566
	calc_load_account_active(this_rq);
2567 2568
}

I
Ingo Molnar 已提交
2569
#ifdef CONFIG_SMP
2570

2571
/*
P
Peter Zijlstra 已提交
2572 2573
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2574
 */
P
Peter Zijlstra 已提交
2575
void sched_exec(void)
2576
{
P
Peter Zijlstra 已提交
2577
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2578
	unsigned long flags;
2579
	int dest_cpu;
2580

2581
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2582
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2583 2584
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2585

2586
	if (likely(cpu_active(dest_cpu))) {
2587
		struct migration_arg arg = { p, dest_cpu };
2588

2589 2590
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2591 2592
		return;
	}
2593
unlock:
2594
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2595
}
I
Ingo Molnar 已提交
2596

L
Linus Torvalds 已提交
2597 2598 2599
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2600
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2601 2602

EXPORT_PER_CPU_SYMBOL(kstat);
2603
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2604 2605

/*
2606
 * Return any ns on the sched_clock that have not yet been accounted in
2607
 * @p in case that task is currently running.
2608 2609
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2610
 */
2611 2612 2613 2614 2615 2616
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2617
		ns = rq->clock_task - p->se.exec_start;
2618 2619 2620 2621 2622 2623 2624
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2625
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2626 2627
{
	unsigned long flags;
2628
	struct rq *rq;
2629
	u64 ns = 0;
2630

2631
	rq = task_rq_lock(p, &flags);
2632
	ns = do_task_delta_exec(p, rq);
2633
	task_rq_unlock(rq, p, &flags);
2634

2635 2636
	return ns;
}
2637

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2651
	task_rq_unlock(rq, p, &flags);
2652 2653 2654

	return ns;
}
2655

2656 2657 2658 2659 2660 2661 2662 2663
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2664
	struct task_struct *curr = rq->curr;
2665 2666

	sched_clock_tick();
I
Ingo Molnar 已提交
2667

2668
	raw_spin_lock(&rq->lock);
2669
	update_rq_clock(rq);
2670
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2671
	curr->sched_class->task_tick(rq, curr, 0);
2672
	raw_spin_unlock(&rq->lock);
2673

2674
	perf_event_task_tick();
2675

2676
#ifdef CONFIG_SMP
2677
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2678
	trigger_load_balance(rq, cpu);
2679
#endif
L
Linus Torvalds 已提交
2680 2681
}

2682
notrace unsigned long get_parent_ip(unsigned long addr)
2683 2684 2685 2686 2687 2688 2689 2690
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2691

2692 2693 2694
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2695
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2696
{
2697
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2698 2699 2700
	/*
	 * Underflow?
	 */
2701 2702
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2703
#endif
L
Linus Torvalds 已提交
2704
	preempt_count() += val;
2705
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2706 2707 2708
	/*
	 * Spinlock count overflowing soon?
	 */
2709 2710
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2711 2712 2713
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2714 2715 2716
}
EXPORT_SYMBOL(add_preempt_count);

2717
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2718
{
2719
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2720 2721 2722
	/*
	 * Underflow?
	 */
2723
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2724
		return;
L
Linus Torvalds 已提交
2725 2726 2727
	/*
	 * Is the spinlock portion underflowing?
	 */
2728 2729 2730
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2731
#endif
2732

2733 2734
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740 2741
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2742
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2743
 */
I
Ingo Molnar 已提交
2744
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2745
{
2746 2747 2748
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2749 2750
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2751

I
Ingo Molnar 已提交
2752
	debug_show_held_locks(prev);
2753
	print_modules();
I
Ingo Molnar 已提交
2754 2755
	if (irqs_disabled())
		print_irqtrace_events(prev);
2756
	dump_stack();
2757
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2758
}
L
Linus Torvalds 已提交
2759

I
Ingo Molnar 已提交
2760 2761 2762 2763 2764
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2765
	/*
I
Ingo Molnar 已提交
2766
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2767 2768 2769
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2770
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2771
		__schedule_bug(prev);
2772
	rcu_sleep_check();
I
Ingo Molnar 已提交
2773

L
Linus Torvalds 已提交
2774 2775
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2776
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2777 2778
}

P
Peter Zijlstra 已提交
2779
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2780
{
2781
	if (prev->on_rq || rq->skip_clock_update < 0)
2782
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2783
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2784 2785
}

I
Ingo Molnar 已提交
2786 2787 2788 2789
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2790
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2791
{
2792
	const struct sched_class *class;
I
Ingo Molnar 已提交
2793
	struct task_struct *p;
L
Linus Torvalds 已提交
2794 2795

	/*
I
Ingo Molnar 已提交
2796 2797
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2798
	 */
2799
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2800
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2801 2802
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2803 2804
	}

2805
	for_each_class(class) {
2806
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2807 2808 2809
		if (p)
			return p;
	}
2810 2811

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2812
}
L
Linus Torvalds 已提交
2813

I
Ingo Molnar 已提交
2814
/*
2815
 * __schedule() is the main scheduler function.
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2850
 */
2851
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2852 2853
{
	struct task_struct *prev, *next;
2854
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2855
	struct rq *rq;
2856
	int cpu;
I
Ingo Molnar 已提交
2857

2858 2859
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2860 2861
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2862
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2863 2864 2865
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2866

2867
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2868
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2869

2870
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2871

2872
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2873
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2874
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2875
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2876
		} else {
2877 2878 2879
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2880
			/*
2881 2882 2883
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2893
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2894 2895
	}

2896
	pre_schedule(rq, prev);
2897

I
Ingo Molnar 已提交
2898
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2899 2900
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2901
	put_prev_task(rq, prev);
2902
	next = pick_next_task(rq);
2903 2904
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2911
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2912
		/*
2913 2914 2915 2916
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2917 2918 2919
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2920
	} else
2921
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2922

2923
	post_schedule(rq);
L
Linus Torvalds 已提交
2924

2925
	sched_preempt_enable_no_resched();
2926
	if (need_resched())
L
Linus Torvalds 已提交
2927 2928
		goto need_resched;
}
2929

2930 2931
static inline void sched_submit_work(struct task_struct *tsk)
{
2932
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2933 2934 2935 2936 2937 2938 2939 2940 2941
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2942
asmlinkage void __sched schedule(void)
2943
{
2944 2945 2946
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2947 2948
	__schedule();
}
L
Linus Torvalds 已提交
2949 2950
EXPORT_SYMBOL(schedule);

2951 2952 2953 2954 2955 2956 2957
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2958
	sched_preempt_enable_no_resched();
2959 2960 2961 2962
	schedule();
	preempt_disable();
}

2963
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2964

2965 2966 2967
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2968
		return false;
2969 2970

	/*
2971 2972 2973 2974
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2975
	 */
2976
	barrier();
2977

2978
	return owner->on_cpu;
2979
}
2980

2981 2982 2983 2984 2985 2986 2987 2988
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2989

2990
	rcu_read_lock();
2991 2992
	while (owner_running(lock, owner)) {
		if (need_resched())
2993
			break;
2994

2995
		arch_mutex_cpu_relax();
2996
	}
2997
	rcu_read_unlock();
2998

2999
	/*
3000 3001 3002
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3003
	 */
3004
	return lock->owner == NULL;
3005 3006 3007
}
#endif

L
Linus Torvalds 已提交
3008 3009
#ifdef CONFIG_PREEMPT
/*
3010
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3011
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3012 3013
 * occur there and call schedule directly.
 */
3014
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3015 3016
{
	struct thread_info *ti = current_thread_info();
3017

L
Linus Torvalds 已提交
3018 3019
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3020
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3021
	 */
N
Nick Piggin 已提交
3022
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3023 3024
		return;

3025
	do {
3026
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3027
		__schedule();
3028
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3029

3030 3031 3032 3033 3034
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3035
	} while (need_resched());
L
Linus Torvalds 已提交
3036 3037 3038 3039
}
EXPORT_SYMBOL(preempt_schedule);

/*
3040
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3041 3042 3043 3044 3045 3046 3047
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3048

3049
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3050 3051
	BUG_ON(ti->preempt_count || !irqs_disabled());

3052 3053 3054
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3055
		__schedule();
3056 3057
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3058

3059 3060 3061 3062 3063
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3064
	} while (need_resched());
L
Linus Torvalds 已提交
3065 3066 3067 3068
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3069
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3070
			  void *key)
L
Linus Torvalds 已提交
3071
{
P
Peter Zijlstra 已提交
3072
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3073 3074 3075 3076
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3077 3078
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3079 3080 3081
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3082
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3083 3084
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3085
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3086
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3087
{
3088
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3089

3090
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3091 3092
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3093
		if (curr->func(curr, mode, wake_flags, key) &&
3094
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3095 3096 3097 3098 3099 3100 3101 3102 3103
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3104
 * @key: is directly passed to the wakeup function
3105 3106 3107
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3108
 */
3109
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3110
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3123
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3124
{
3125
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3126
}
3127
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3128

3129 3130 3131 3132
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3133
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3134

L
Linus Torvalds 已提交
3135
/**
3136
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3137 3138 3139
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3140
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146 3147
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3148 3149 3150
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3151
 */
3152 3153
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3154 3155
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3156
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3157 3158 3159 3160 3161

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3162
		wake_flags = 0;
L
Linus Torvalds 已提交
3163 3164

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3165
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3166 3167
	spin_unlock_irqrestore(&q->lock, flags);
}
3168 3169 3170 3171 3172 3173 3174 3175 3176
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3177 3178
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3179 3180 3181 3182 3183 3184 3185 3186
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3187 3188 3189
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3190
 */
3191
void complete(struct completion *x)
L
Linus Torvalds 已提交
3192 3193 3194 3195 3196
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3197
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3198 3199 3200 3201
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3202 3203 3204 3205 3206
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3207 3208 3209
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3210
 */
3211
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3212 3213 3214 3215 3216
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3217
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3218 3219 3220 3221
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3222 3223
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3224 3225 3226 3227
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3228
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3229
		do {
3230
			if (signal_pending_state(state, current)) {
3231 3232
				timeout = -ERESTARTSYS;
				break;
3233 3234
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3235 3236 3237
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3238
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3239
		__remove_wait_queue(&x->wait, &wait);
3240 3241
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3242 3243
	}
	x->done--;
3244
	return timeout ?: 1;
L
Linus Torvalds 已提交
3245 3246
}

3247 3248
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3249 3250 3251 3252
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3253
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3254
	spin_unlock_irq(&x->wait.lock);
3255 3256
	return timeout;
}
L
Linus Torvalds 已提交
3257

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3268
void __sched wait_for_completion(struct completion *x)
3269 3270
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3271
}
3272
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3273

3274 3275 3276 3277 3278 3279 3280 3281
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3282 3283 3284
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3285
 */
3286
unsigned long __sched
3287
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3288
{
3289
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3290
}
3291
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3292

3293 3294 3295 3296 3297 3298
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3299 3300
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3301
 */
3302
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3303
{
3304 3305 3306 3307
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3308
}
3309
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3310

3311 3312 3313 3314 3315 3316 3317
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3318 3319 3320
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3321
 */
3322
long __sched
3323 3324
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3325
{
3326
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3327
}
3328
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3329

3330 3331 3332 3333 3334 3335
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3336 3337
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3338
 */
M
Matthew Wilcox 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3348 3349 3350 3351 3352 3353 3354 3355
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3356 3357 3358
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3359
 */
3360
long __sched
3361 3362 3363 3364 3365 3366 3367
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3382
	unsigned long flags;
3383 3384
	int ret = 1;

3385
	spin_lock_irqsave(&x->wait.lock, flags);
3386 3387 3388 3389
	if (!x->done)
		ret = 0;
	else
		x->done--;
3390
	spin_unlock_irqrestore(&x->wait.lock, flags);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3405
	unsigned long flags;
3406 3407
	int ret = 1;

3408
	spin_lock_irqsave(&x->wait.lock, flags);
3409 3410
	if (!x->done)
		ret = 0;
3411
	spin_unlock_irqrestore(&x->wait.lock, flags);
3412 3413 3414 3415
	return ret;
}
EXPORT_SYMBOL(completion_done);

3416 3417
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3418
{
I
Ingo Molnar 已提交
3419 3420 3421 3422
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3423

3424
	__set_current_state(state);
L
Linus Torvalds 已提交
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3440 3441 3442
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3443
long __sched
I
Ingo Molnar 已提交
3444
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3445
{
3446
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3447 3448 3449
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3450
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3451
{
3452
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3453 3454 3455
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3456
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3457
{
3458
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3459 3460 3461
}
EXPORT_SYMBOL(sleep_on_timeout);

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3474
void rt_mutex_setprio(struct task_struct *p, int prio)
3475
{
3476
	int oldprio, on_rq, running;
3477
	struct rq *rq;
3478
	const struct sched_class *prev_class;
3479 3480 3481

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3482
	rq = __task_rq_lock(p);
3483

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3502
	trace_sched_pi_setprio(p, prio);
3503
	oldprio = p->prio;
3504
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3505
	on_rq = p->on_rq;
3506
	running = task_current(rq, p);
3507
	if (on_rq)
3508
		dequeue_task(rq, p, 0);
3509 3510
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3511 3512 3513 3514 3515 3516

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3517 3518
	p->prio = prio;

3519 3520
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3521
	if (on_rq)
3522
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3523

P
Peter Zijlstra 已提交
3524
	check_class_changed(rq, p, prev_class, oldprio);
3525
out_unlock:
3526
	__task_rq_unlock(rq);
3527 3528
}
#endif
3529
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3530
{
I
Ingo Molnar 已提交
3531
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3532
	unsigned long flags;
3533
	struct rq *rq;
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3546
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3547
	 */
3548
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3549 3550 3551
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3552
	on_rq = p->on_rq;
3553
	if (on_rq)
3554
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3555 3556

	p->static_prio = NICE_TO_PRIO(nice);
3557
	set_load_weight(p);
3558 3559 3560
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3561

I
Ingo Molnar 已提交
3562
	if (on_rq) {
3563
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3564
		/*
3565 3566
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3567
		 */
3568
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3569 3570 3571
			resched_task(rq->curr);
	}
out_unlock:
3572
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3573 3574 3575
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3576 3577 3578 3579 3580
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3581
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3582
{
3583 3584
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3585

3586
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3587 3588 3589
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3599
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3600
{
3601
	long nice, retval;
L
Linus Torvalds 已提交
3602 3603 3604 3605 3606 3607

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3608 3609
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3610 3611 3612
	if (increment > 40)
		increment = 40;

3613
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3614 3615 3616 3617 3618
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3619 3620 3621
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3640
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3649
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3650 3651 3652
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3653
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659 3660

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3681
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3682 3683 3684 3685 3686 3687 3688 3689
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3690
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3691
{
3692
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3693 3694 3695
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3696 3697
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3698 3699 3700
{
	p->policy = policy;
	p->rt_priority = prio;
3701 3702 3703
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3704 3705 3706 3707
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3708
	set_load_weight(p);
L
Linus Torvalds 已提交
3709 3710
}

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3721 3722
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3723 3724 3725 3726
	rcu_read_unlock();
	return match;
}

3727
static int __sched_setscheduler(struct task_struct *p, int policy,
3728
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3729
{
3730
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3731
	unsigned long flags;
3732
	const struct sched_class *prev_class;
3733
	struct rq *rq;
3734
	int reset_on_fork;
L
Linus Torvalds 已提交
3735

3736 3737
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3738 3739
recheck:
	/* double check policy once rq lock held */
3740 3741
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3742
		policy = oldpolicy = p->policy;
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3753 3754
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3755 3756
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3757 3758
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3759
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3760
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3761
		return -EINVAL;
3762
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3763 3764
		return -EINVAL;

3765 3766 3767
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3768
	if (user && !capable(CAP_SYS_NICE)) {
3769
		if (rt_policy(policy)) {
3770 3771
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3782

I
Ingo Molnar 已提交
3783
		/*
3784 3785
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3786
		 */
3787 3788 3789 3790
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3791

3792
		/* can't change other user's priorities */
3793
		if (!check_same_owner(p))
3794
			return -EPERM;
3795 3796 3797 3798

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3799
	}
L
Linus Torvalds 已提交
3800

3801
	if (user) {
3802
		retval = security_task_setscheduler(p);
3803 3804 3805 3806
		if (retval)
			return retval;
	}

3807 3808 3809
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3810
	 *
L
Lucas De Marchi 已提交
3811
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3812 3813
	 * runqueue lock must be held.
	 */
3814
	rq = task_rq_lock(p, &flags);
3815

3816 3817 3818 3819
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3820
		task_rq_unlock(rq, p, &flags);
3821 3822 3823
		return -EINVAL;
	}

3824 3825 3826 3827 3828
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3829
		task_rq_unlock(rq, p, &flags);
3830 3831 3832
		return 0;
	}

3833 3834 3835 3836 3837 3838 3839
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3840 3841
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3842
			task_rq_unlock(rq, p, &flags);
3843 3844 3845 3846 3847
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3848 3849 3850
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3851
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3852 3853
		goto recheck;
	}
P
Peter Zijlstra 已提交
3854
	on_rq = p->on_rq;
3855
	running = task_current(rq, p);
3856
	if (on_rq)
3857
		dequeue_task(rq, p, 0);
3858 3859
	if (running)
		p->sched_class->put_prev_task(rq, p);
3860

3861 3862
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3863
	oldprio = p->prio;
3864
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3865
	__setscheduler(rq, p, policy, param->sched_priority);
3866

3867 3868
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3869
	if (on_rq)
3870
		enqueue_task(rq, p, 0);
3871

P
Peter Zijlstra 已提交
3872
	check_class_changed(rq, p, prev_class, oldprio);
3873
	task_rq_unlock(rq, p, &flags);
3874

3875 3876
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3877 3878
	return 0;
}
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3889
		       const struct sched_param *param)
3890 3891 3892
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3893 3894
EXPORT_SYMBOL_GPL(sched_setscheduler);

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3907
			       const struct sched_param *param)
3908 3909 3910 3911
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3912 3913
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3914 3915 3916
{
	struct sched_param lparam;
	struct task_struct *p;
3917
	int retval;
L
Linus Torvalds 已提交
3918 3919 3920 3921 3922

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3923 3924 3925

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3926
	p = find_process_by_pid(pid);
3927 3928 3929
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3930

L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3940 3941
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3942
{
3943 3944 3945 3946
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3947 3948 3949 3950 3951 3952 3953 3954
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3955
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3956 3957 3958 3959 3960 3961 3962 3963
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3964
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3965
{
3966
	struct task_struct *p;
3967
	int retval;
L
Linus Torvalds 已提交
3968 3969

	if (pid < 0)
3970
		return -EINVAL;
L
Linus Torvalds 已提交
3971 3972

	retval = -ESRCH;
3973
	rcu_read_lock();
L
Linus Torvalds 已提交
3974 3975 3976 3977
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3978 3979
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3980
	}
3981
	rcu_read_unlock();
L
Linus Torvalds 已提交
3982 3983 3984 3985
	return retval;
}

/**
3986
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3987 3988 3989
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3990
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3991 3992
{
	struct sched_param lp;
3993
	struct task_struct *p;
3994
	int retval;
L
Linus Torvalds 已提交
3995 3996

	if (!param || pid < 0)
3997
		return -EINVAL;
L
Linus Torvalds 已提交
3998

3999
	rcu_read_lock();
L
Linus Torvalds 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4010
	rcu_read_unlock();
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4020
	rcu_read_unlock();
L
Linus Torvalds 已提交
4021 4022 4023
	return retval;
}

4024
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4025
{
4026
	cpumask_var_t cpus_allowed, new_mask;
4027 4028
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4029

4030
	get_online_cpus();
4031
	rcu_read_lock();
L
Linus Torvalds 已提交
4032 4033 4034

	p = find_process_by_pid(pid);
	if (!p) {
4035
		rcu_read_unlock();
4036
		put_online_cpus();
L
Linus Torvalds 已提交
4037 4038 4039
		return -ESRCH;
	}

4040
	/* Prevent p going away */
L
Linus Torvalds 已提交
4041
	get_task_struct(p);
4042
	rcu_read_unlock();
L
Linus Torvalds 已提交
4043

4044 4045 4046 4047 4048 4049 4050 4051
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4052
	retval = -EPERM;
4053
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4054 4055
		goto out_unlock;

4056
	retval = security_task_setscheduler(p);
4057 4058 4059
	if (retval)
		goto out_unlock;

4060 4061
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4062
again:
4063
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4064

P
Paul Menage 已提交
4065
	if (!retval) {
4066 4067
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4068 4069 4070 4071 4072
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4073
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4074 4075 4076
			goto again;
		}
	}
L
Linus Torvalds 已提交
4077
out_unlock:
4078 4079 4080 4081
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4082
	put_task_struct(p);
4083
	put_online_cpus();
L
Linus Torvalds 已提交
4084 4085 4086 4087
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4088
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4089
{
4090 4091 4092 4093 4094
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4095 4096 4097 4098 4099 4100 4101 4102 4103
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4104 4105
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4106
{
4107
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4108 4109
	int retval;

4110 4111
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4112

4113 4114 4115 4116 4117
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4118 4119
}

4120
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4121
{
4122
	struct task_struct *p;
4123
	unsigned long flags;
L
Linus Torvalds 已提交
4124 4125
	int retval;

4126
	get_online_cpus();
4127
	rcu_read_lock();
L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4134 4135 4136 4137
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4138
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4139
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4140
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4141 4142

out_unlock:
4143
	rcu_read_unlock();
4144
	put_online_cpus();
L
Linus Torvalds 已提交
4145

4146
	return retval;
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4155 4156
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4157 4158
{
	int ret;
4159
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4160

A
Anton Blanchard 已提交
4161
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4162 4163
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4164 4165
		return -EINVAL;

4166 4167
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4168

4169 4170
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4171
		size_t retlen = min_t(size_t, len, cpumask_size());
4172 4173

		if (copy_to_user(user_mask_ptr, mask, retlen))
4174 4175
			ret = -EFAULT;
		else
4176
			ret = retlen;
4177 4178
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4179

4180
	return ret;
L
Linus Torvalds 已提交
4181 4182 4183 4184 4185
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4186 4187
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4188
 */
4189
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4190
{
4191
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4192

4193
	schedstat_inc(rq, yld_count);
4194
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4195 4196 4197 4198 4199 4200

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4201
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4202
	do_raw_spin_unlock(&rq->lock);
4203
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4204 4205 4206 4207 4208 4209

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4210 4211 4212 4213 4214
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4215
static void __cond_resched(void)
L
Linus Torvalds 已提交
4216
{
4217
	add_preempt_count(PREEMPT_ACTIVE);
4218
	__schedule();
4219
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4220 4221
}

4222
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4223
{
P
Peter Zijlstra 已提交
4224
	if (should_resched()) {
L
Linus Torvalds 已提交
4225 4226 4227 4228 4229
		__cond_resched();
		return 1;
	}
	return 0;
}
4230
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4231 4232

/*
4233
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4234 4235
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4236
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4237 4238 4239
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4240
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4241
{
P
Peter Zijlstra 已提交
4242
	int resched = should_resched();
J
Jan Kara 已提交
4243 4244
	int ret = 0;

4245 4246
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4247
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4248
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4249
		if (resched)
N
Nick Piggin 已提交
4250 4251 4252
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4253
		ret = 1;
L
Linus Torvalds 已提交
4254 4255
		spin_lock(lock);
	}
J
Jan Kara 已提交
4256
	return ret;
L
Linus Torvalds 已提交
4257
}
4258
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4259

4260
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4261 4262 4263
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4264
	if (should_resched()) {
4265
		local_bh_enable();
L
Linus Torvalds 已提交
4266 4267 4268 4269 4270 4271
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4272
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4273 4274 4275 4276

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300 4301 4302
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4303 4304 4305 4306
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4307 4308
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4343
	if (yielded) {
4344
		schedstat_inc(rq, yld_count);
4345 4346 4347 4348 4349 4350 4351
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4364
/*
I
Ingo Molnar 已提交
4365
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4366 4367 4368 4369
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4370
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4371

4372
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4373
	atomic_inc(&rq->nr_iowait);
4374
	blk_flush_plug(current);
4375
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4376
	schedule();
4377
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4378
	atomic_dec(&rq->nr_iowait);
4379
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4380 4381 4382 4383 4384
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4385
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4386 4387
	long ret;

4388
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4389
	atomic_inc(&rq->nr_iowait);
4390
	blk_flush_plug(current);
4391
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4392
	ret = schedule_timeout(timeout);
4393
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4394
	atomic_dec(&rq->nr_iowait);
4395
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4406
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4416
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4417
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4431
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4441
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4442
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4456
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4457
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4458
{
4459
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4460
	unsigned int time_slice;
4461 4462
	unsigned long flags;
	struct rq *rq;
4463
	int retval;
L
Linus Torvalds 已提交
4464 4465 4466
	struct timespec t;

	if (pid < 0)
4467
		return -EINVAL;
L
Linus Torvalds 已提交
4468 4469

	retval = -ESRCH;
4470
	rcu_read_lock();
L
Linus Torvalds 已提交
4471 4472 4473 4474 4475 4476 4477 4478
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4479 4480
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4481
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4482

4483
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4484
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4485 4486
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4487

L
Linus Torvalds 已提交
4488
out_unlock:
4489
	rcu_read_unlock();
L
Linus Torvalds 已提交
4490 4491 4492
	return retval;
}

4493
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4494

4495
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4496 4497
{
	unsigned long free = 0;
4498
	unsigned state;
L
Linus Torvalds 已提交
4499 4500

	state = p->state ? __ffs(p->state) + 1 : 0;
4501
	printk(KERN_INFO "%-15.15s %c", p->comm,
4502
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4503
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4504
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4505
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4506
	else
P
Peter Zijlstra 已提交
4507
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4508 4509
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4510
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4511
	else
P
Peter Zijlstra 已提交
4512
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4513 4514
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4515
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4516
#endif
P
Peter Zijlstra 已提交
4517
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4518
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4519
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4520

4521
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4522 4523
}

I
Ingo Molnar 已提交
4524
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4525
{
4526
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4527

4528
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4529 4530
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4531
#else
P
Peter Zijlstra 已提交
4532 4533
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4534
#endif
4535
	rcu_read_lock();
L
Linus Torvalds 已提交
4536 4537 4538
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4539
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4540 4541
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4542
		if (!state_filter || (p->state & state_filter))
4543
			sched_show_task(p);
L
Linus Torvalds 已提交
4544 4545
	} while_each_thread(g, p);

4546 4547
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4548 4549 4550
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4551
	rcu_read_unlock();
I
Ingo Molnar 已提交
4552 4553 4554
	/*
	 * Only show locks if all tasks are dumped:
	 */
4555
	if (!state_filter)
I
Ingo Molnar 已提交
4556
		debug_show_all_locks();
L
Linus Torvalds 已提交
4557 4558
}

I
Ingo Molnar 已提交
4559 4560
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4561
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4562 4563
}

4564 4565 4566 4567 4568 4569 4570 4571
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4572
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4573
{
4574
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4575 4576
	unsigned long flags;

4577
	raw_spin_lock_irqsave(&rq->lock, flags);
4578

I
Ingo Molnar 已提交
4579
	__sched_fork(idle);
4580
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4581 4582
	idle->se.exec_start = sched_clock();

4583
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4595
	__set_task_cpu(idle, cpu);
4596
	rcu_read_unlock();
L
Linus Torvalds 已提交
4597 4598

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4599 4600
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4601
#endif
4602
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4603 4604

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4605
	task_thread_info(idle)->preempt_count = 0;
4606

I
Ingo Molnar 已提交
4607 4608 4609 4610
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4611
	ftrace_graph_init_idle_task(idle, cpu);
4612 4613 4614
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4615 4616
}

L
Linus Torvalds 已提交
4617
#ifdef CONFIG_SMP
4618 4619 4620 4621
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4622 4623

	cpumask_copy(&p->cpus_allowed, new_mask);
4624
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4625 4626
}

L
Linus Torvalds 已提交
4627 4628 4629
/*
 * This is how migration works:
 *
4630 4631 4632 4633 4634 4635
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4636
 *    it and puts it into the right queue.
4637 4638
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643 4644 4645 4646
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4647
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4648 4649
 * call is not atomic; no spinlocks may be held.
 */
4650
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4651 4652
{
	unsigned long flags;
4653
	struct rq *rq;
4654
	unsigned int dest_cpu;
4655
	int ret = 0;
L
Linus Torvalds 已提交
4656 4657

	rq = task_rq_lock(p, &flags);
4658

4659 4660 4661
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4662
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4663 4664 4665 4666
		ret = -EINVAL;
		goto out;
	}

4667
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4668 4669 4670 4671
		ret = -EINVAL;
		goto out;
	}

4672
	do_set_cpus_allowed(p, new_mask);
4673

L
Linus Torvalds 已提交
4674
	/* Can the task run on the task's current CPU? If so, we're done */
4675
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4676 4677
		goto out;

4678
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4679
	if (p->on_rq) {
4680
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4681
		/* Need help from migration thread: drop lock and wait. */
4682
		task_rq_unlock(rq, p, &flags);
4683
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4684 4685 4686 4687
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4688
	task_rq_unlock(rq, p, &flags);
4689

L
Linus Torvalds 已提交
4690 4691
	return ret;
}
4692
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4693 4694

/*
I
Ingo Molnar 已提交
4695
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4696 4697 4698 4699 4700 4701
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4702 4703
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4704
 */
4705
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4706
{
4707
	struct rq *rq_dest, *rq_src;
4708
	int ret = 0;
L
Linus Torvalds 已提交
4709

4710
	if (unlikely(!cpu_active(dest_cpu)))
4711
		return ret;
L
Linus Torvalds 已提交
4712 4713 4714 4715

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4716
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4717 4718 4719
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4720
		goto done;
L
Linus Torvalds 已提交
4721
	/* Affinity changed (again). */
4722
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4723
		goto fail;
L
Linus Torvalds 已提交
4724

4725 4726 4727 4728
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4729
	if (p->on_rq) {
4730
		dequeue_task(rq_src, p, 0);
4731
		set_task_cpu(p, dest_cpu);
4732
		enqueue_task(rq_dest, p, 0);
4733
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4734
	}
L
Linus Torvalds 已提交
4735
done:
4736
	ret = 1;
L
Linus Torvalds 已提交
4737
fail:
L
Linus Torvalds 已提交
4738
	double_rq_unlock(rq_src, rq_dest);
4739
	raw_spin_unlock(&p->pi_lock);
4740
	return ret;
L
Linus Torvalds 已提交
4741 4742 4743
}

/*
4744 4745 4746
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4747
 */
4748
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4749
{
4750
	struct migration_arg *arg = data;
4751

4752 4753 4754 4755
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4756
	local_irq_disable();
4757
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4758
	local_irq_enable();
L
Linus Torvalds 已提交
4759
	return 0;
4760 4761
}

L
Linus Torvalds 已提交
4762
#ifdef CONFIG_HOTPLUG_CPU
4763

4764
/*
4765 4766
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4767
 */
4768
void idle_task_exit(void)
L
Linus Torvalds 已提交
4769
{
4770
	struct mm_struct *mm = current->active_mm;
4771

4772
	BUG_ON(cpu_online(smp_processor_id()));
4773

4774 4775 4776
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4777 4778 4779
}

/*
4780 4781 4782 4783 4784
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4785
 */
4786
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4787
{
4788 4789 4790
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4791 4792
}

4793
/*
4794 4795 4796 4797 4798 4799
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4800
 */
4801
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4802
{
4803
	struct rq *rq = cpu_rq(dead_cpu);
4804 4805
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4806 4807

	/*
4808 4809 4810 4811 4812 4813 4814
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4815
	 */
4816
	rq->stop = NULL;
4817

I
Ingo Molnar 已提交
4818
	for ( ; ; ) {
4819 4820 4821 4822 4823
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4824
			break;
4825

4826
		next = pick_next_task(rq);
4827
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4828
		next->sched_class->put_prev_task(rq, next);
4829

4830 4831 4832 4833 4834 4835 4836
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4837
	}
4838

4839
	rq->stop = stop;
4840
}
4841

L
Linus Torvalds 已提交
4842 4843
#endif /* CONFIG_HOTPLUG_CPU */

4844 4845 4846
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4847 4848
	{
		.procname	= "sched_domain",
4849
		.mode		= 0555,
4850
	},
4851
	{}
4852 4853 4854
};

static struct ctl_table sd_ctl_root[] = {
4855 4856
	{
		.procname	= "kernel",
4857
		.mode		= 0555,
4858 4859
		.child		= sd_ctl_dir,
	},
4860
	{}
4861 4862 4863 4864 4865
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4866
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4867 4868 4869 4870

	return entry;
}

4871 4872
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4873
	struct ctl_table *entry;
4874

4875 4876 4877
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4878
	 * will always be set. In the lowest directory the names are
4879 4880 4881
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4882 4883
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4884 4885 4886
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4887 4888 4889 4890 4891

	kfree(*tablep);
	*tablep = NULL;
}

4892 4893 4894
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4895
static void
4896
set_table_entry(struct ctl_table *entry,
4897
		const char *procname, void *data, int maxlen,
4898 4899
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4900 4901 4902 4903 4904 4905
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4906 4907 4908 4909 4910

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4911 4912 4913 4914 4915
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4916
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4917

4918 4919 4920
	if (table == NULL)
		return NULL;

4921
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4922
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4923
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4924
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4925
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4926
		sizeof(int), 0644, proc_dointvec_minmax, true);
4927
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4928
		sizeof(int), 0644, proc_dointvec_minmax, true);
4929
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4930
		sizeof(int), 0644, proc_dointvec_minmax, true);
4931
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4932
		sizeof(int), 0644, proc_dointvec_minmax, true);
4933
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4934
		sizeof(int), 0644, proc_dointvec_minmax, true);
4935
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4936
		sizeof(int), 0644, proc_dointvec_minmax, false);
4937
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4938
		sizeof(int), 0644, proc_dointvec_minmax, false);
4939
	set_table_entry(&table[9], "cache_nice_tries",
4940
		&sd->cache_nice_tries,
4941
		sizeof(int), 0644, proc_dointvec_minmax, false);
4942
	set_table_entry(&table[10], "flags", &sd->flags,
4943
		sizeof(int), 0644, proc_dointvec_minmax, false);
4944
	set_table_entry(&table[11], "name", sd->name,
4945
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4946
	/* &table[12] is terminator */
4947 4948 4949 4950

	return table;
}

4951
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4952 4953 4954 4955 4956 4957 4958 4959 4960
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4961 4962
	if (table == NULL)
		return NULL;
4963 4964 4965 4966 4967

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4968
		entry->mode = 0555;
4969 4970 4971 4972 4973 4974 4975 4976
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4977
static void register_sched_domain_sysctl(void)
4978
{
4979
	int i, cpu_num = num_possible_cpus();
4980 4981 4982
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4983 4984 4985
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4986 4987 4988
	if (entry == NULL)
		return;

4989
	for_each_possible_cpu(i) {
4990 4991
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4992
		entry->mode = 0555;
4993
		entry->child = sd_alloc_ctl_cpu_table(i);
4994
		entry++;
4995
	}
4996 4997

	WARN_ON(sd_sysctl_header);
4998 4999
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5000

5001
/* may be called multiple times per register */
5002 5003
static void unregister_sched_domain_sysctl(void)
{
5004 5005
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5006
	sd_sysctl_header = NULL;
5007 5008
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5009
}
5010
#else
5011 5012 5013 5014
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5015 5016 5017 5018
{
}
#endif

5019 5020 5021 5022 5023
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5024
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5044
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5045 5046 5047 5048
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5049 5050 5051 5052
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5053 5054
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5055
{
5056
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5057
	unsigned long flags;
5058
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5059

5060
	switch (action & ~CPU_TASKS_FROZEN) {
5061

L
Linus Torvalds 已提交
5062
	case CPU_UP_PREPARE:
5063
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5064
		break;
5065

L
Linus Torvalds 已提交
5066
	case CPU_ONLINE:
5067
		/* Update our root-domain */
5068
		raw_spin_lock_irqsave(&rq->lock, flags);
5069
		if (rq->rd) {
5070
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5071 5072

			set_rq_online(rq);
5073
		}
5074
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5075
		break;
5076

L
Linus Torvalds 已提交
5077
#ifdef CONFIG_HOTPLUG_CPU
5078
	case CPU_DYING:
5079
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5080
		/* Update our root-domain */
5081
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5082
		if (rq->rd) {
5083
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5084
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5085
		}
5086 5087
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5088
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5089

5090
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5091
		break;
L
Linus Torvalds 已提交
5092 5093
#endif
	}
5094 5095 5096

	update_max_interval();

L
Linus Torvalds 已提交
5097 5098 5099
	return NOTIFY_OK;
}

5100 5101 5102
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5103
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5104
 */
5105
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5106
	.notifier_call = migration_call,
5107
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5108 5109
};

5110 5111 5112 5113
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5114
	case CPU_STARTING:
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5135
static int __init migration_init(void)
L
Linus Torvalds 已提交
5136 5137
{
	void *cpu = (void *)(long)smp_processor_id();
5138
	int err;
5139

5140
	/* Initialize migration for the boot CPU */
5141 5142
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5143 5144
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5145

5146 5147 5148 5149
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5150
	return 0;
L
Linus Torvalds 已提交
5151
}
5152
early_initcall(migration_init);
L
Linus Torvalds 已提交
5153 5154 5155
#endif

#ifdef CONFIG_SMP
5156

5157 5158
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5159
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5160

5161
static __read_mostly int sched_debug_enabled;
5162

5163
static int __init sched_debug_setup(char *str)
5164
{
5165
	sched_debug_enabled = 1;
5166 5167 5168

	return 0;
}
5169 5170 5171 5172 5173 5174
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5175

5176
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5177
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5178
{
I
Ingo Molnar 已提交
5179
	struct sched_group *group = sd->groups;
5180
	char str[256];
L
Linus Torvalds 已提交
5181

R
Rusty Russell 已提交
5182
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5183
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5184 5185 5186 5187

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5188
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5189
		if (sd->parent)
P
Peter Zijlstra 已提交
5190 5191
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5192
		return -1;
N
Nick Piggin 已提交
5193 5194
	}

P
Peter Zijlstra 已提交
5195
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5196

5197
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5198 5199
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5200
	}
5201
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5202 5203
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5204
	}
L
Linus Torvalds 已提交
5205

I
Ingo Molnar 已提交
5206
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5207
	do {
I
Ingo Molnar 已提交
5208
		if (!group) {
P
Peter Zijlstra 已提交
5209 5210
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5211 5212 5213
			break;
		}

5214 5215 5216 5217 5218 5219
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5220 5221 5222
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5223 5224
			break;
		}
L
Linus Torvalds 已提交
5225

5226
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5227 5228
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5229 5230
			break;
		}
L
Linus Torvalds 已提交
5231

5232 5233
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5234 5235
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5236 5237
			break;
		}
L
Linus Torvalds 已提交
5238

5239
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5240

R
Rusty Russell 已提交
5241
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5242

P
Peter Zijlstra 已提交
5243
		printk(KERN_CONT " %s", str);
5244
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5245
			printk(KERN_CONT " (cpu_power = %d)",
5246
				group->sgp->power);
5247
		}
L
Linus Torvalds 已提交
5248

I
Ingo Molnar 已提交
5249 5250
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5251
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5252

5253
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5254
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5255

5256 5257
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5258 5259
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5260 5261
	return 0;
}
L
Linus Torvalds 已提交
5262

I
Ingo Molnar 已提交
5263 5264 5265
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5266

5267
	if (!sched_debug_enabled)
5268 5269
		return;

I
Ingo Molnar 已提交
5270 5271 5272 5273
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5274

I
Ingo Molnar 已提交
5275 5276 5277
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5278
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5279
			break;
L
Linus Torvalds 已提交
5280 5281
		level++;
		sd = sd->parent;
5282
		if (!sd)
I
Ingo Molnar 已提交
5283 5284
			break;
	}
L
Linus Torvalds 已提交
5285
}
5286
#else /* !CONFIG_SCHED_DEBUG */
5287
# define sched_domain_debug(sd, cpu) do { } while (0)
5288 5289 5290 5291
static inline bool sched_debug(void)
{
	return false;
}
5292
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5293

5294
static int sd_degenerate(struct sched_domain *sd)
5295
{
5296
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5297 5298 5299 5300 5301 5302
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5303 5304 5305
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5306 5307 5308 5309 5310
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5311
	if (sd->flags & (SD_WAKE_AFFINE))
5312 5313 5314 5315 5316
		return 0;

	return 1;
}

5317 5318
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5319 5320 5321 5322 5323 5324
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5325
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5326 5327 5328 5329 5330 5331 5332
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5333 5334 5335
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5336 5337
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5338 5339 5340 5341 5342 5343 5344
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5345
static void free_rootdomain(struct rcu_head *rcu)
5346
{
5347
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5348

5349
	cpupri_cleanup(&rd->cpupri);
5350 5351 5352 5353 5354 5355
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5356 5357
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5358
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5359 5360
	unsigned long flags;

5361
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5362 5363

	if (rq->rd) {
I
Ingo Molnar 已提交
5364
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5365

5366
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5367
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5368

5369
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5370

I
Ingo Molnar 已提交
5371 5372 5373 5374 5375 5376 5377
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5378 5379 5380 5381 5382
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5383
	cpumask_set_cpu(rq->cpu, rd->span);
5384
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5385
		set_rq_online(rq);
G
Gregory Haskins 已提交
5386

5387
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5388 5389

	if (old_rd)
5390
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5391 5392
}

5393
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5394 5395 5396
{
	memset(rd, 0, sizeof(*rd));

5397
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5398
		goto out;
5399
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5400
		goto free_span;
5401
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5402
		goto free_online;
5403

5404
	if (cpupri_init(&rd->cpupri) != 0)
5405
		goto free_rto_mask;
5406
	return 0;
5407

5408 5409
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5410 5411 5412 5413
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5414
out:
5415
	return -ENOMEM;
G
Gregory Haskins 已提交
5416 5417
}

5418 5419 5420 5421 5422 5423
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5424 5425
static void init_defrootdomain(void)
{
5426
	init_rootdomain(&def_root_domain);
5427

G
Gregory Haskins 已提交
5428 5429 5430
	atomic_set(&def_root_domain.refcount, 1);
}

5431
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5432 5433 5434 5435 5436 5437 5438
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5439
	if (init_rootdomain(rd) != 0) {
5440 5441 5442
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5443 5444 5445 5446

	return rd;
}

5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5466 5467 5468
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5469 5470 5471 5472 5473 5474 5475 5476

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5477
		kfree(sd->groups->sgp);
5478
		kfree(sd->groups);
5479
	}
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5494 5495 5496 5497 5498
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
5499 5500 5501 5502 5503
 * Iterate domains and sched_groups downward, assigning CPUs to be
 * select_idle_sibling() hw buddy.  Cross-wiring hw makes bouncing
 * due to random perturbation self canceling, ie sw buddies pull
 * their counterpart to their CPU's hw counterpart.
 *
5504 5505
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5506
 * two cpus are in the same cache domain, see cpus_share_cache().
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
	if (sd) {
		struct sched_domain *tmp = sd;
		struct sched_group *sg, *prev;
		bool right;

		/*
		 * Traverse to first CPU in group, and count hops
		 * to cpu from there, switching direction on each
		 * hop, never ever pointing the last CPU rightward.
		 */
		do {
			id = cpumask_first(sched_domain_span(tmp));
			prev = sg = tmp->groups;
			right = 1;

			while (cpumask_first(sched_group_cpus(sg)) != id)
				sg = sg->next;

			while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
				prev = sg;
				sg = sg->next;
				right = !right;
			}

			/* A CPU went down, never point back to domain start. */
			if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
				right = false;

			sg = right ? sg->next : prev;
			tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
		} while ((tmp = tmp->child));

5549
		id = cpumask_first(sched_domain_span(sd));
5550
	}
5551 5552 5553 5554 5555

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5556
/*
I
Ingo Molnar 已提交
5557
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5558 5559
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5560 5561
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5562
{
5563
	struct rq *rq = cpu_rq(cpu);
5564 5565 5566
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5567
	for (tmp = sd; tmp; ) {
5568 5569 5570
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5571

5572
		if (sd_parent_degenerate(tmp, parent)) {
5573
			tmp->parent = parent->parent;
5574 5575
			if (parent->parent)
				parent->parent->child = tmp;
5576
			destroy_sched_domain(parent, cpu);
5577 5578
		} else
			tmp = tmp->parent;
5579 5580
	}

5581
	if (sd && sd_degenerate(sd)) {
5582
		tmp = sd;
5583
		sd = sd->parent;
5584
		destroy_sched_domain(tmp, cpu);
5585 5586 5587
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5588

5589
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5590

G
Gregory Haskins 已提交
5591
	rq_attach_root(rq, rd);
5592
	tmp = rq->sd;
N
Nick Piggin 已提交
5593
	rcu_assign_pointer(rq->sd, sd);
5594
	destroy_sched_domains(tmp, cpu);
5595 5596

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5597 5598 5599
}

/* cpus with isolated domains */
5600
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5601 5602 5603 5604

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5605
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5606
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5607 5608 5609
	return 1;
}

I
Ingo Molnar 已提交
5610
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5611

5612 5613 5614 5615 5616
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5617 5618 5619
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5620
	struct sched_group_power **__percpu sgp;
5621 5622
};

5623
struct s_data {
5624
	struct sched_domain ** __percpu sd;
5625 5626 5627
	struct root_domain	*rd;
};

5628 5629
enum s_alloc {
	sa_rootdomain,
5630
	sa_sd,
5631
	sa_sd_storage,
5632 5633 5634
	sa_none,
};

5635 5636 5637
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5638 5639
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5640 5641
#define SDTL_OVERLAP	0x01

5642
struct sched_domain_topology_level {
5643 5644
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5645
	int		    flags;
5646
	int		    numa_level;
5647
	struct sd_data      data;
5648 5649
};

P
Peter Zijlstra 已提交
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5706 5707 5708 5709 5710 5711
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5712
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5713
				GFP_KERNEL, cpu_to_node(cpu));
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5727
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5728 5729 5730
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5731 5732 5733 5734 5735 5736
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5737

P
Peter Zijlstra 已提交
5738 5739 5740 5741 5742
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5743
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5744
		    group_balance_cpu(sg) == cpu)
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5764
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5765
{
5766 5767
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5768

5769 5770
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5771

5772
	if (sg) {
5773
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5774
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5775
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5776
	}
5777 5778

	return cpu;
5779 5780
}

5781
/*
5782 5783 5784
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5785 5786
 *
 * Assumes the sched_domain tree is fully constructed
5787
 */
5788 5789
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5790
{
5791 5792 5793
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5794
	struct cpumask *covered;
5795
	int i;
5796

5797 5798 5799 5800 5801 5802
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5803 5804 5805
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5806
	cpumask_clear(covered);
5807

5808 5809 5810 5811
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5812

5813 5814
		if (cpumask_test_cpu(i, covered))
			continue;
5815

5816
		cpumask_clear(sched_group_cpus(sg));
5817
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5818
		cpumask_setall(sched_group_mask(sg));
5819

5820 5821 5822
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5823

5824 5825 5826
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5827

5828 5829 5830 5831 5832 5833 5834
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5835 5836

	return 0;
5837
}
5838

5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5851
	struct sched_group *sg = sd->groups;
5852

5853 5854 5855 5856 5857 5858
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5859

P
Peter Zijlstra 已提交
5860
	if (cpu != group_balance_cpu(sg))
5861
		return;
5862

5863
	update_group_power(sd, cpu);
5864
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5865 5866
}

5867 5868 5869
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5870 5871
}

5872 5873 5874 5875 5876
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5877 5878 5879 5880 5881 5882
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5883 5884 5885 5886 5887 5888 5889 5890 5891
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5892 5893 5894 5895 5896 5897 5898 5899 5900
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5901 5902 5903
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5904

5905
static int default_relax_domain_level = -1;
5906
int sched_domain_level_max;
5907 5908 5909

static int __init setup_relax_domain_level(char *str)
{
5910 5911
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5912

5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5931
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5932 5933
	} else {
		/* turn on idle balance on this domain */
5934
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5935 5936 5937
	}
}

5938 5939 5940
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5941 5942 5943 5944 5945
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5946 5947
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5948 5949
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5950
	case sa_sd_storage:
5951
		__sdt_free(cpu_map); /* fall through */
5952 5953 5954 5955
	case sa_none:
		break;
	}
}
5956

5957 5958 5959
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5960 5961
	memset(d, 0, sizeof(*d));

5962 5963
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5964 5965 5966
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5967
	d->rd = alloc_rootdomain();
5968
	if (!d->rd)
5969
		return sa_sd;
5970 5971
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5972

5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5985
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5986
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5987 5988

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5989
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5990 5991
}

5992 5993
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5994
{
5995
	return topology_thread_cpumask(cpu);
5996
}
5997
#endif
5998

5999 6000 6001
/*
 * Topology list, bottom-up.
 */
6002
static struct sched_domain_topology_level default_topology[] = {
6003 6004
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6005
#endif
6006
#ifdef CONFIG_SCHED_MC
6007
	{ sd_init_MC, cpu_coregroup_mask, },
6008
#endif
6009 6010 6011 6012
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6013 6014 6015 6016 6017
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6018 6019 6020 6021 6022 6023 6024 6025 6026
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6027
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6045
		.imbalance_pct		= 125,
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6165
		}
6166 6167 6168 6169 6170 6171

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6196
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6197 6198 6199 6200 6201 6202
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6203
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
}
#else
static inline void sched_init_numa(void)
{
}
#endif /* CONFIG_NUMA */

6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6258 6259 6260 6261
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6262 6263 6264
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6265
			struct sched_group_power *sgp;
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6279 6280
			sg->next = sg;

6281
			*per_cpu_ptr(sdd->sg, j) = sg;
6282

P
Peter Zijlstra 已提交
6283
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6284 6285 6286 6287 6288
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6317 6318
		}
		free_percpu(sdd->sd);
6319
		sdd->sd = NULL;
6320
		free_percpu(sdd->sg);
6321
		sdd->sg = NULL;
6322
		free_percpu(sdd->sgp);
6323
		sdd->sgp = NULL;
6324 6325 6326
	}
}

6327 6328
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6329
		struct sched_domain_attr *attr, struct sched_domain *child,
6330 6331
		int cpu)
{
6332
	struct sched_domain *sd = tl->init(tl, cpu);
6333
	if (!sd)
6334
		return child;
6335 6336

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6337 6338 6339
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6340
		child->parent = sd;
6341
	}
6342
	sd->child = child;
6343
	set_domain_attribute(sd, attr);
6344 6345 6346 6347

	return sd;
}

6348 6349 6350 6351
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6352 6353
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6354 6355
{
	enum s_alloc alloc_state = sa_none;
6356
	struct sched_domain *sd;
6357
	struct s_data d;
6358
	int i, ret = -ENOMEM;
6359

6360 6361 6362
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6363

6364
	/* Set up domains for cpus specified by the cpu_map. */
6365
	for_each_cpu(i, cpu_map) {
6366 6367
		struct sched_domain_topology_level *tl;

6368
		sd = NULL;
6369
		for (tl = sched_domain_topology; tl->init; tl++) {
6370
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6371 6372
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6373 6374
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6375
		}
6376

6377 6378 6379
		while (sd->child)
			sd = sd->child;

6380
		*per_cpu_ptr(d.sd, i) = sd;
6381 6382 6383 6384 6385 6386
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6387 6388 6389 6390 6391 6392 6393
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6394
		}
6395
	}
6396

L
Linus Torvalds 已提交
6397
	/* Calculate CPU power for physical packages and nodes */
6398 6399 6400
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6401

6402 6403
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6404
			init_sched_groups_power(i, sd);
6405
		}
6406
	}
6407

L
Linus Torvalds 已提交
6408
	/* Attach the domains */
6409
	rcu_read_lock();
6410
	for_each_cpu(i, cpu_map) {
6411
		sd = *per_cpu_ptr(d.sd, i);
6412
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6413
	}
6414
	rcu_read_unlock();
6415

6416
	ret = 0;
6417
error:
6418
	__free_domain_allocs(&d, alloc_state, cpu_map);
6419
	return ret;
L
Linus Torvalds 已提交
6420
}
P
Paul Jackson 已提交
6421

6422
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6423
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6424 6425
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6426 6427 6428

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6429 6430
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6431
 */
6432
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6433

6434 6435 6436 6437 6438 6439
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6440
{
6441
	return 0;
6442 6443
}

6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6469
/*
I
Ingo Molnar 已提交
6470
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6471 6472
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6473
 */
6474
static int init_sched_domains(const struct cpumask *cpu_map)
6475
{
6476 6477
	int err;

6478
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6479
	ndoms_cur = 1;
6480
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6481
	if (!doms_cur)
6482 6483
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6484
	err = build_sched_domains(doms_cur[0], NULL);
6485
	register_sched_domain_sysctl();
6486 6487

	return err;
6488 6489 6490 6491 6492 6493
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6494
static void detach_destroy_domains(const struct cpumask *cpu_map)
6495 6496 6497
{
	int i;

6498
	rcu_read_lock();
6499
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6500
		cpu_attach_domain(NULL, &def_root_domain, i);
6501
	rcu_read_unlock();
6502 6503
}

6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6520 6521
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6522
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6523 6524 6525
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6526
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6527 6528 6529
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6530 6531 6532
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6533 6534 6535 6536 6537 6538
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6539
 *
6540
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6541 6542
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6543
 *
P
Paul Jackson 已提交
6544 6545
 * Call with hotplug lock held
 */
6546
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6547
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6548
{
6549
	int i, j, n;
6550
	int new_topology;
P
Paul Jackson 已提交
6551

6552
	mutex_lock(&sched_domains_mutex);
6553

6554 6555 6556
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6557 6558 6559
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6560
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6561 6562 6563

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6564
		for (j = 0; j < n && !new_topology; j++) {
6565
			if (cpumask_equal(doms_cur[i], doms_new[j])
6566
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6567 6568 6569
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6570
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6571 6572 6573 6574
match1:
		;
	}

6575 6576
	if (doms_new == NULL) {
		ndoms_cur = 0;
6577
		doms_new = &fallback_doms;
6578
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6579
		WARN_ON_ONCE(dattr_new);
6580 6581
	}

P
Paul Jackson 已提交
6582 6583
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6584
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6585
			if (cpumask_equal(doms_new[i], doms_cur[j])
6586
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6587 6588 6589
				goto match2;
		}
		/* no match - add a new doms_new */
6590
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6591 6592 6593 6594 6595
match2:
		;
	}

	/* Remember the new sched domains */
6596 6597
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6598
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6599
	doms_cur = doms_new;
6600
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6601
	ndoms_cur = ndoms_new;
6602 6603

	register_sched_domain_sysctl();
6604

6605
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6606 6607
}

6608 6609
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6610
/*
6611 6612 6613
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6614 6615 6616
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6617
 */
6618 6619
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6620
{
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6643
	case CPU_ONLINE:
6644
	case CPU_DOWN_FAILED:
6645
		cpuset_update_active_cpus(true);
6646
		break;
6647 6648 6649
	default:
		return NOTIFY_DONE;
	}
6650
	return NOTIFY_OK;
6651
}
6652

6653 6654
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6655
{
6656
	switch (action) {
6657
	case CPU_DOWN_PREPARE:
6658
		cpuset_update_active_cpus(false);
6659 6660 6661 6662 6663
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6664 6665 6666
	default:
		return NOTIFY_DONE;
	}
6667
	return NOTIFY_OK;
6668 6669
}

L
Linus Torvalds 已提交
6670 6671
void __init sched_init_smp(void)
{
6672 6673 6674
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6675
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6676

6677 6678
	sched_init_numa();

6679
	get_online_cpus();
6680
	mutex_lock(&sched_domains_mutex);
6681
	init_sched_domains(cpu_active_mask);
6682 6683 6684
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6685
	mutex_unlock(&sched_domains_mutex);
6686
	put_online_cpus();
6687

6688 6689
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6690 6691 6692 6693

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6694
	init_hrtick();
6695 6696

	/* Move init over to a non-isolated CPU */
6697
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6698
		BUG();
I
Ingo Molnar 已提交
6699
	sched_init_granularity();
6700
	free_cpumask_var(non_isolated_cpus);
6701

6702
	init_sched_rt_class();
L
Linus Torvalds 已提交
6703 6704 6705 6706
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6707
	sched_init_granularity();
L
Linus Torvalds 已提交
6708 6709 6710
}
#endif /* CONFIG_SMP */

6711 6712
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6713 6714 6715 6716 6717 6718 6719
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6720 6721
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6722
LIST_HEAD(task_groups);
6723
#endif
P
Peter Zijlstra 已提交
6724

6725
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6726

L
Linus Torvalds 已提交
6727 6728
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6729
	int i, j;
6730 6731 6732 6733 6734 6735 6736
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6737
#endif
6738
#ifdef CONFIG_CPUMASK_OFFSTACK
6739
	alloc_size += num_possible_cpus() * cpumask_size();
6740 6741
#endif
	if (alloc_size) {
6742
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6743 6744

#ifdef CONFIG_FAIR_GROUP_SCHED
6745
		root_task_group.se = (struct sched_entity **)ptr;
6746 6747
		ptr += nr_cpu_ids * sizeof(void **);

6748
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6749
		ptr += nr_cpu_ids * sizeof(void **);
6750

6751
#endif /* CONFIG_FAIR_GROUP_SCHED */
6752
#ifdef CONFIG_RT_GROUP_SCHED
6753
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6754 6755
		ptr += nr_cpu_ids * sizeof(void **);

6756
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6757 6758
		ptr += nr_cpu_ids * sizeof(void **);

6759
#endif /* CONFIG_RT_GROUP_SCHED */
6760 6761 6762 6763 6764 6765
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6766
	}
I
Ingo Molnar 已提交
6767

G
Gregory Haskins 已提交
6768 6769 6770 6771
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6772 6773 6774 6775
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6776
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6777
			global_rt_period(), global_rt_runtime());
6778
#endif /* CONFIG_RT_GROUP_SCHED */
6779

D
Dhaval Giani 已提交
6780
#ifdef CONFIG_CGROUP_SCHED
6781 6782
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6783
	INIT_LIST_HEAD(&root_task_group.siblings);
6784
	autogroup_init(&init_task);
6785

D
Dhaval Giani 已提交
6786
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6787

6788 6789 6790 6791 6792 6793
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6794
	for_each_possible_cpu(i) {
6795
		struct rq *rq;
L
Linus Torvalds 已提交
6796 6797

		rq = cpu_rq(i);
6798
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6799
		rq->nr_running = 0;
6800 6801
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6802
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6803
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6804
#ifdef CONFIG_FAIR_GROUP_SCHED
6805
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6806
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6807
		/*
6808
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6809 6810 6811 6812
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6813
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6814 6815 6816
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6817
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6818 6819 6820
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6821
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6822
		 *
6823 6824
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6825
		 */
6826
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6827
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6828 6829 6830
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6831
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6832
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6833
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6834
#endif
L
Linus Torvalds 已提交
6835

I
Ingo Molnar 已提交
6836 6837
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6838 6839 6840

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6841
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6842
		rq->sd = NULL;
G
Gregory Haskins 已提交
6843
		rq->rd = NULL;
6844
		rq->cpu_power = SCHED_POWER_SCALE;
6845
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6846
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6847
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6848
		rq->push_cpu = 0;
6849
		rq->cpu = i;
6850
		rq->online = 0;
6851 6852
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6853 6854 6855

		INIT_LIST_HEAD(&rq->cfs_tasks);

6856
		rq_attach_root(rq, &def_root_domain);
6857
#ifdef CONFIG_NO_HZ
6858
		rq->nohz_flags = 0;
6859
#endif
L
Linus Torvalds 已提交
6860
#endif
P
Peter Zijlstra 已提交
6861
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6862 6863 6864
		atomic_set(&rq->nr_iowait, 0);
	}

6865
	set_load_weight(&init_task);
6866

6867 6868 6869 6870
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6871
#ifdef CONFIG_RT_MUTEXES
6872
	plist_head_init(&init_task.pi_waiters);
6873 6874
#endif

L
Linus Torvalds 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6888 6889 6890

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6891 6892 6893 6894
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6895

6896
#ifdef CONFIG_SMP
6897
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6898 6899 6900
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6901
	idle_thread_set_boot_cpu();
6902 6903
#endif
	init_sched_fair_class();
6904

6905
	scheduler_running = 1;
L
Linus Torvalds 已提交
6906 6907
}

6908
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6909 6910
static inline int preempt_count_equals(int preempt_offset)
{
6911
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6912

A
Arnd Bergmann 已提交
6913
	return (nested == preempt_offset);
6914 6915
}

6916
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6917 6918 6919
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6920
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6921 6922
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6923 6924 6925 6926 6927
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6928 6929 6930 6931 6932 6933 6934
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6935 6936 6937 6938 6939

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6940 6941 6942 6943 6944
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6945 6946
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6947 6948
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6949
	int on_rq;
6950

P
Peter Zijlstra 已提交
6951
	on_rq = p->on_rq;
6952
	if (on_rq)
6953
		dequeue_task(rq, p, 0);
6954 6955
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6956
		enqueue_task(rq, p, 0);
6957 6958
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6959 6960

	check_class_changed(rq, p, prev_class, old_prio);
6961 6962
}

L
Linus Torvalds 已提交
6963 6964
void normalize_rt_tasks(void)
{
6965
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6966
	unsigned long flags;
6967
	struct rq *rq;
L
Linus Torvalds 已提交
6968

6969
	read_lock_irqsave(&tasklist_lock, flags);
6970
	do_each_thread(g, p) {
6971 6972 6973 6974 6975 6976
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6977 6978
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6979 6980 6981
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6982
#endif
I
Ingo Molnar 已提交
6983 6984 6985 6986 6987 6988 6989 6990

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6991
			continue;
I
Ingo Molnar 已提交
6992
		}
L
Linus Torvalds 已提交
6993

6994
		raw_spin_lock(&p->pi_lock);
6995
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6996

6997
		normalize_task(rq, p);
6998

6999
		__task_rq_unlock(rq);
7000
		raw_spin_unlock(&p->pi_lock);
7001 7002
	} while_each_thread(g, p);

7003
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7004 7005 7006
}

#endif /* CONFIG_MAGIC_SYSRQ */
7007

7008
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7009
/*
7010
 * These functions are only useful for the IA64 MCA handling, or kdb.
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7025
struct task_struct *curr_task(int cpu)
7026 7027 7028 7029
{
	return cpu_curr(cpu);
}

7030 7031 7032
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7033 7034 7035 7036 7037 7038
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7039 7040
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7041 7042 7043 7044 7045 7046 7047
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7048
void set_curr_task(int cpu, struct task_struct *p)
7049 7050 7051 7052 7053
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7054

D
Dhaval Giani 已提交
7055
#ifdef CONFIG_CGROUP_SCHED
7056 7057 7058
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7059 7060 7061 7062
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7063
	autogroup_free(tg);
7064 7065 7066 7067
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7068
struct task_group *sched_create_group(struct task_group *parent)
7069 7070 7071 7072 7073 7074 7075 7076
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7077
	if (!alloc_fair_sched_group(tg, parent))
7078 7079
		goto err;

7080
	if (!alloc_rt_sched_group(tg, parent))
7081 7082
		goto err;

7083
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7084
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7085 7086 7087 7088 7089

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7090
	list_add_rcu(&tg->siblings, &parent->children);
7091
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7092

7093
	return tg;
S
Srivatsa Vaddagiri 已提交
7094 7095

err:
P
Peter Zijlstra 已提交
7096
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7097 7098 7099
	return ERR_PTR(-ENOMEM);
}

7100
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7101
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7102 7103
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7104
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7105 7106
}

7107
/* Destroy runqueue etc associated with a task group */
7108
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7109
{
7110
	unsigned long flags;
7111
	int i;
S
Srivatsa Vaddagiri 已提交
7112

7113 7114
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7115
		unregister_fair_sched_group(tg, i);
7116 7117

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7118
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7119
	list_del_rcu(&tg->siblings);
7120
	spin_unlock_irqrestore(&task_group_lock, flags);
7121 7122

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7123
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7124 7125
}

7126
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7127 7128 7129
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7130 7131
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7132
{
P
Peter Zijlstra 已提交
7133
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7134 7135 7136 7137 7138 7139
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7140
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7141
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7142

7143
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7144
		dequeue_task(rq, tsk, 0);
7145 7146
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7147

P
Peter Zijlstra 已提交
7148 7149 7150 7151 7152 7153
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7154
#ifdef CONFIG_FAIR_GROUP_SCHED
7155 7156 7157
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7158
#endif
7159
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7160

7161 7162 7163
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7164
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7165

7166
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7167
}
D
Dhaval Giani 已提交
7168
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7169

7170
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7171 7172 7173
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7174
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7175

P
Peter Zijlstra 已提交
7176
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7177
}
7178 7179 7180 7181 7182 7183 7184
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7185

P
Peter Zijlstra 已提交
7186 7187
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7188
{
P
Peter Zijlstra 已提交
7189
	struct task_struct *g, *p;
7190

P
Peter Zijlstra 已提交
7191
	do_each_thread(g, p) {
7192
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7193 7194
			return 1;
	} while_each_thread(g, p);
7195

P
Peter Zijlstra 已提交
7196 7197
	return 0;
}
7198

P
Peter Zijlstra 已提交
7199 7200 7201 7202 7203
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7204

7205
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7206 7207 7208 7209 7210
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7211

P
Peter Zijlstra 已提交
7212 7213
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7214

P
Peter Zijlstra 已提交
7215 7216 7217
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7218 7219
	}

7220 7221 7222 7223 7224
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7225

7226 7227 7228
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7229 7230
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7231

P
Peter Zijlstra 已提交
7232
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7233

7234 7235 7236 7237 7238
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7239

7240 7241 7242
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7243 7244 7245
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7246

P
Peter Zijlstra 已提交
7247 7248 7249 7250
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7251

P
Peter Zijlstra 已提交
7252
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7253
	}
P
Peter Zijlstra 已提交
7254

P
Peter Zijlstra 已提交
7255 7256 7257 7258
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7259 7260
}

P
Peter Zijlstra 已提交
7261
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7262
{
7263 7264
	int ret;

P
Peter Zijlstra 已提交
7265 7266 7267 7268 7269 7270
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7271 7272 7273 7274 7275
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7276 7277
}

7278
static int tg_set_rt_bandwidth(struct task_group *tg,
7279
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7280
{
P
Peter Zijlstra 已提交
7281
	int i, err = 0;
P
Peter Zijlstra 已提交
7282 7283

	mutex_lock(&rt_constraints_mutex);
7284
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7285 7286
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7287
		goto unlock;
P
Peter Zijlstra 已提交
7288

7289
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7290 7291
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7292 7293 7294 7295

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7296
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7297
		rt_rq->rt_runtime = rt_runtime;
7298
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7299
	}
7300
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7301
unlock:
7302
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7303 7304 7305
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7306 7307
}

7308 7309 7310 7311 7312 7313 7314 7315 7316
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7317
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7318 7319
}

P
Peter Zijlstra 已提交
7320 7321 7322 7323
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7324
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7325 7326
		return -1;

7327
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7328 7329 7330
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7331 7332 7333 7334 7335 7336 7337 7338

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7339 7340 7341
	if (rt_period == 0)
		return -EINVAL;

7342
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7356
	u64 runtime, period;
7357 7358
	int ret = 0;

7359 7360 7361
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7362 7363 7364 7365 7366 7367 7368 7369
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7370

7371
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7372
	read_lock(&tasklist_lock);
7373
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7374
	read_unlock(&tasklist_lock);
7375 7376 7377 7378
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7379 7380 7381 7382 7383 7384 7385 7386 7387 7388

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7389
#else /* !CONFIG_RT_GROUP_SCHED */
7390 7391
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7392 7393 7394
	unsigned long flags;
	int i;

7395 7396 7397
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7398 7399 7400 7401 7402 7403 7404
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7405
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7406 7407 7408
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7409
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7410
		rt_rq->rt_runtime = global_rt_runtime();
7411
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7412
	}
7413
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7414

7415 7416
	return 0;
}
7417
#endif /* CONFIG_RT_GROUP_SCHED */
7418 7419

int sched_rt_handler(struct ctl_table *table, int write,
7420
		void __user *buffer, size_t *lenp,
7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7431
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7448

7449
#ifdef CONFIG_CGROUP_SCHED
7450 7451

/* return corresponding task_group object of a cgroup */
7452
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7453
{
7454 7455
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7456 7457
}

7458
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7459
{
7460
	struct task_group *tg, *parent;
7461

7462
	if (!cgrp->parent) {
7463
		/* This is early initialization for the top cgroup */
7464
		return &root_task_group.css;
7465 7466
	}

7467 7468
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7469 7470 7471 7472 7473 7474
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7475
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7476
{
7477
	struct task_group *tg = cgroup_tg(cgrp);
7478 7479 7480 7481

	sched_destroy_group(tg);
}

7482
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7483
				 struct cgroup_taskset *tset)
7484
{
7485 7486 7487
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7488
#ifdef CONFIG_RT_GROUP_SCHED
7489 7490
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7491
#else
7492 7493 7494
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7495
#endif
7496
	}
7497 7498
	return 0;
}
7499

7500
static void cpu_cgroup_attach(struct cgroup *cgrp,
7501
			      struct cgroup_taskset *tset)
7502
{
7503 7504 7505 7506
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7507 7508
}

7509
static void
7510 7511
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7524
#ifdef CONFIG_FAIR_GROUP_SCHED
7525
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7526
				u64 shareval)
7527
{
7528
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7529 7530
}

7531
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7532
{
7533
	struct task_group *tg = cgroup_tg(cgrp);
7534

7535
	return (u64) scale_load_down(tg->shares);
7536
}
7537 7538

#ifdef CONFIG_CFS_BANDWIDTH
7539 7540
static DEFINE_MUTEX(cfs_constraints_mutex);

7541 7542 7543
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7544 7545
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7546 7547
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7548
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7549
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7570 7571 7572 7573 7574
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7575
	runtime_enabled = quota != RUNTIME_INF;
7576 7577
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7578 7579 7580
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7581

P
Paul Turner 已提交
7582
	__refill_cfs_bandwidth_runtime(cfs_b);
7583 7584 7585 7586 7587 7588
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7589 7590 7591 7592
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7593
		struct rq *rq = cfs_rq->rq;
7594 7595

		raw_spin_lock_irq(&rq->lock);
7596
		cfs_rq->runtime_enabled = runtime_enabled;
7597
		cfs_rq->runtime_remaining = 0;
7598

7599
		if (cfs_rq->throttled)
7600
			unthrottle_cfs_rq(cfs_rq);
7601 7602
		raw_spin_unlock_irq(&rq->lock);
	}
7603 7604
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7605

7606
	return ret;
7607 7608 7609 7610 7611 7612
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7613
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7626
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7627 7628
		return -1;

7629
	quota_us = tg->cfs_bandwidth.quota;
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7640
	quota = tg->cfs_bandwidth.quota;
7641 7642 7643 7644 7645 7646 7647 7648

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7649
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7709
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7710 7711 7712 7713 7714
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7715
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7736
	int ret;
7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7748 7749 7750 7751 7752
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7753
}
7754 7755 7756 7757 7758

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7759
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7760 7761 7762 7763 7764 7765 7766

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7767
#endif /* CONFIG_CFS_BANDWIDTH */
7768
#endif /* CONFIG_FAIR_GROUP_SCHED */
7769

7770
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7771
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7772
				s64 val)
P
Peter Zijlstra 已提交
7773
{
7774
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7775 7776
}

7777
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7778
{
7779
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7780
}
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7792
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7793

7794
static struct cftype cpu_files[] = {
7795
#ifdef CONFIG_FAIR_GROUP_SCHED
7796 7797
	{
		.name = "shares",
7798 7799
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7800
	},
7801
#endif
7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7813 7814 7815 7816
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7817
#endif
7818
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7819
	{
P
Peter Zijlstra 已提交
7820
		.name = "rt_runtime_us",
7821 7822
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7823
	},
7824 7825
	{
		.name = "rt_period_us",
7826 7827
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7828
	},
7829
#endif
7830
	{ }	/* terminate */
7831 7832 7833
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7834 7835 7836
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7837 7838
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7839
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7840
	.subsys_id	= cpu_cgroup_subsys_id,
7841
	.base_cftypes	= cpu_files,
7842 7843 7844
	.early_init	= 1,
};

7845
#endif	/* CONFIG_CGROUP_SCHED */
7846 7847 7848 7849 7850 7851 7852 7853 7854 7855

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7856 7857
struct cpuacct root_cpuacct;

7858
/* create a new cpu accounting group */
7859
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7860
{
7861
	struct cpuacct *ca;
7862

7863 7864 7865 7866
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7867
	if (!ca)
7868
		goto out;
7869 7870

	ca->cpuusage = alloc_percpu(u64);
7871 7872 7873
	if (!ca->cpuusage)
		goto out_free_ca;

7874 7875 7876
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7877

7878
	return &ca->css;
7879

7880
out_free_cpuusage:
7881 7882 7883 7884 7885
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7886 7887 7888
}

/* destroy an existing cpu accounting group */
7889
static void cpuacct_destroy(struct cgroup *cgrp)
7890
{
7891
	struct cpuacct *ca = cgroup_ca(cgrp);
7892

7893
	free_percpu(ca->cpustat);
7894 7895 7896 7897
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7898 7899
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7900
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7901 7902 7903 7904 7905 7906
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7907
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7908
	data = *cpuusage;
7909
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7910 7911 7912 7913 7914 7915 7916 7917 7918
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7919
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7920 7921 7922 7923 7924

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7925
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7926
	*cpuusage = val;
7927
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7928 7929 7930 7931 7932
#else
	*cpuusage = val;
#endif
}

7933
/* return total cpu usage (in nanoseconds) of a group */
7934
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7935
{
7936
	struct cpuacct *ca = cgroup_ca(cgrp);
7937 7938 7939
	u64 totalcpuusage = 0;
	int i;

7940 7941
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7942 7943 7944 7945

	return totalcpuusage;
}

7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

7958 7959
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
7960 7961 7962 7963 7964

out:
	return err;
}

7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

7980 7981 7982 7983 7984 7985
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7986
			      struct cgroup_map_cb *cb)
7987 7988
{
	struct cpuacct *ca = cgroup_ca(cgrp);
7989 7990
	int cpu;
	s64 val = 0;
7991

7992 7993 7994 7995
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
7996
	}
7997 7998
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
7999

8000 8001 8002 8003 8004 8005
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8006
	}
8007 8008 8009 8010

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8011 8012 8013
	return 0;
}

8014 8015 8016
static struct cftype files[] = {
	{
		.name = "usage",
8017 8018
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8019
	},
8020 8021 8022 8023
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8024 8025 8026 8027
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8028
	{ }	/* terminate */
8029 8030 8031 8032 8033 8034 8035
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8036
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8037 8038
{
	struct cpuacct *ca;
8039
	int cpu;
8040

L
Li Zefan 已提交
8041
	if (unlikely(!cpuacct_subsys.active))
8042 8043
		return;

8044
	cpu = task_cpu(tsk);
8045 8046 8047

	rcu_read_lock();

8048 8049
	ca = task_ca(tsk);

8050
	for (; ca; ca = parent_ca(ca)) {
8051
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8052 8053
		*cpuusage += cputime;
	}
8054 8055

	rcu_read_unlock();
8056 8057 8058 8059 8060 8061 8062
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8063
	.base_cftypes = files,
8064 8065
};
#endif	/* CONFIG_CGROUP_CPUACCT */