core.c 194.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_sched.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
196 197 198 199 200
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
201
	char *cmp;
P
Peter Zijlstra 已提交
202 203 204 205 206 207 208 209 210 211
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
212
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
213

H
Hillf Danton 已提交
214
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
215 216 217 218
		neg = 1;
		cmp += 3;
	}

219
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
220
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
221
			if (neg) {
P
Peter Zijlstra 已提交
222
				sysctl_sched_features &= ~(1UL << i);
223 224
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
225
				sysctl_sched_features |= (1UL << i);
226 227
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
228 229 230 231
			break;
		}
	}

232
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
233 234
		return -EINVAL;

235
	*ppos += cnt;
P
Peter Zijlstra 已提交
236 237 238 239

	return cnt;
}

L
Li Zefan 已提交
240 241 242 243 244
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

245
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
246 247 248 249 250
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
251 252 253 254 255 256 257 258 259 260
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
261
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
262

263 264 265 266 267 268
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

269 270 271 272 273 274 275 276
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
277
/*
P
Peter Zijlstra 已提交
278
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
279 280
 * default: 1s
 */
P
Peter Zijlstra 已提交
281
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
282

283
__read_mostly int scheduler_running;
284

P
Peter Zijlstra 已提交
285 286 287 288 289
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
290 291


L
Linus Torvalds 已提交
292

293
/*
294
 * __task_rq_lock - lock the rq @p resides on.
295
 */
296
static inline struct rq *__task_rq_lock(struct task_struct *p)
297 298
	__acquires(rq->lock)
{
299 300
	struct rq *rq;

301 302
	lockdep_assert_held(&p->pi_lock);

303
	for (;;) {
304
		rq = task_rq(p);
305
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
306
		if (likely(rq == task_rq(p)))
307
			return rq;
308
		raw_spin_unlock(&rq->lock);
309 310 311
	}
}

L
Linus Torvalds 已提交
312
/*
313
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
314
 */
315
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
316
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
317 318
	__acquires(rq->lock)
{
319
	struct rq *rq;
L
Linus Torvalds 已提交
320

321
	for (;;) {
322
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
323
		rq = task_rq(p);
324
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
325
		if (likely(rq == task_rq(p)))
326
			return rq;
327 328
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
329 330 331
	}
}

A
Alexey Dobriyan 已提交
332
static void __task_rq_unlock(struct rq *rq)
333 334
	__releases(rq->lock)
{
335
	raw_spin_unlock(&rq->lock);
336 337
}

338 339
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
340
	__releases(rq->lock)
341
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
342
{
343 344
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
345 346 347
}

/*
348
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
349
 */
A
Alexey Dobriyan 已提交
350
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
351 352
	__acquires(rq->lock)
{
353
	struct rq *rq;
L
Linus Torvalds 已提交
354 355 356

	local_irq_disable();
	rq = this_rq();
357
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
358 359 360 361

	return rq;
}

P
Peter Zijlstra 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

390
	raw_spin_lock(&rq->lock);
391
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
392
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
394 395 396 397

	return HRTIMER_NORESTART;
}

398
#ifdef CONFIG_SMP
399 400 401 402
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
403
{
404
	struct rq *rq = arg;
405

406
	raw_spin_lock(&rq->lock);
407 408
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
409
	raw_spin_unlock(&rq->lock);
410 411
}

412 413 414 415 416
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
417
void hrtick_start(struct rq *rq, u64 delay)
418
{
419 420
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421

422
	hrtimer_set_expires(timer, time);
423 424 425 426

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
427
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
428 429
		rq->hrtick_csd_pending = 1;
	}
430 431 432 433 434 435 436 437 438 439 440 441 442 443
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
444
		hrtick_clear(cpu_rq(cpu));
445 446 447 448 449 450
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

451
static __init void init_hrtick(void)
452 453 454
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
455 456 457 458 459 460
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
461
void hrtick_start(struct rq *rq, u64 delay)
462
{
463
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
464
			HRTIMER_MODE_REL_PINNED, 0);
465
}
466

A
Andrew Morton 已提交
467
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
468 469
{
}
470
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
471

472
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
473
{
474 475
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
476

477 478 479 480
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
481

482 483
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
484
}
A
Andrew Morton 已提交
485
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
486 487 488 489 490 491 492 493
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

494 495 496
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
497
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
498

I
Ingo Molnar 已提交
499 500 501 502 503 504 505 506 507 508
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
509
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
510 511
#endif

512
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
513 514 515
{
	int cpu;

516
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
517

518
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
519 520
		return;

521
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
522 523 524 525 526 527 528 529 530 531 532

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

533
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
534 535 536 537
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

538
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
539 540
		return;
	resched_task(cpu_curr(cpu));
541
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
542
}
543 544

#ifdef CONFIG_NO_HZ
545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

559
	rcu_read_lock();
560
	for_each_domain(cpu, sd) {
561 562 563 564 565 566
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
567
	}
568 569
unlock:
	rcu_read_unlock();
570 571
	return cpu;
}
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
598 599

	/*
600 601 602
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
603
	 */
604
	set_tsk_need_resched(rq->idle);
605

606 607 608 609
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
610 611
}

612
static inline bool got_nohz_idle_kick(void)
613
{
614 615
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
616 617
}

618
#else /* CONFIG_NO_HZ */
619

620
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
621
{
622
	return false;
P
Peter Zijlstra 已提交
623 624
}

625
#endif /* CONFIG_NO_HZ */
626

627
void sched_avg_update(struct rq *rq)
628
{
629 630 631
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
632 633 634 635 636 637
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
638 639 640
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
641 642
}

643
#else /* !CONFIG_SMP */
644
void resched_task(struct task_struct *p)
645
{
646
	assert_raw_spin_locked(&task_rq(p)->lock);
647
	set_tsk_need_resched(p);
648
}
649
#endif /* CONFIG_SMP */
650

651 652
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653
/*
654 655 656 657
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
658
 */
659
int walk_tg_tree_from(struct task_group *from,
660
			     tg_visitor down, tg_visitor up, void *data)
661 662
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
663
	int ret;
664

665 666
	parent = from;

667
down:
P
Peter Zijlstra 已提交
668 669
	ret = (*down)(parent, data);
	if (ret)
670
		goto out;
671 672 673 674 675 676 677
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
678
	ret = (*up)(parent, data);
679 680
	if (ret || parent == from)
		goto out;
681 682 683 684 685

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
686
out:
P
Peter Zijlstra 已提交
687
	return ret;
688 689
}

690
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
691
{
692
	return 0;
P
Peter Zijlstra 已提交
693
}
694 695
#endif

696 697
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
698 699 700
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
701 702 703 704
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
705
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
706
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
707 708
		return;
	}
709

710
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
711
	load->inv_weight = prio_to_wmult[prio];
712 713
}

714
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715
{
716
	update_rq_clock(rq);
I
Ingo Molnar 已提交
717
	sched_info_queued(p);
718
	p->sched_class->enqueue_task(rq, p, flags);
719 720
}

721
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722
{
723
	update_rq_clock(rq);
724
	sched_info_dequeued(p);
725
	p->sched_class->dequeue_task(rq, p, flags);
726 727
}

728
void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 730 731 732
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

733
	enqueue_task(rq, p, flags);
734 735
}

736
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 738 739 740
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

741
	dequeue_task(rq, p, flags);
742 743
}

744
static void update_rq_clock_task(struct rq *rq, s64 delta)
745
{
746 747 748 749 750 751 752 753
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
754
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
776 777
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
778
	if (static_key_false((&paravirt_steal_rq_enabled))) {
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

796 797
	rq->clock_task += delta;

798 799 800 801
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

834
/*
I
Ingo Molnar 已提交
835
 * __normal_prio - return the priority that is based on the static prio
836 837 838
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
839
	return p->static_prio;
840 841
}

842 843 844 845 846 847 848
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
849
static inline int normal_prio(struct task_struct *p)
850 851 852
{
	int prio;

853
	if (task_has_rt_policy(p))
854 855 856 857 858 859 860 861 862 863 864 865 866
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
867
static int effective_prio(struct task_struct *p)
868 869 870 871 872 873 874 875 876 877 878 879
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
880 881 882 883
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
884
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
885 886 887 888
{
	return cpu_curr(task_cpu(p)) == p;
}

889 890
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
891
				       int oldprio)
892 893 894
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
895 896 897 898
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
899 900
}

901
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
922
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
923 924 925
		rq->skip_clock_update = 1;
}

926 927 928 929 930 931 932
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
933
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
934
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
935
{
936 937 938 939 940
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
941 942
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
943 944

#ifdef CONFIG_LOCKDEP
945 946 947 948 949
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
950
	 * see task_group().
951 952 953 954
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
955 956 957
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
958 959
#endif

960
	trace_sched_migrate_task(p, new_cpu);
961

962
	if (task_cpu(p) != new_cpu) {
963 964
		struct task_migration_notifier tmn;

965 966
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
967
		p->se.nr_migrations++;
968
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
969 970 971 972 973 974

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
975
	}
I
Ingo Molnar 已提交
976 977

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
978 979
}

980
struct migration_arg {
981
	struct task_struct *task;
L
Linus Torvalds 已提交
982
	int dest_cpu;
983
};
L
Linus Torvalds 已提交
984

985 986
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
987 988 989
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
990 991 992 993 994 995 996
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
997 998 999 1000 1001 1002
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1003
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1004 1005
{
	unsigned long flags;
I
Ingo Molnar 已提交
1006
	int running, on_rq;
R
Roland McGrath 已提交
1007
	unsigned long ncsw;
1008
	struct rq *rq;
L
Linus Torvalds 已提交
1009

1010 1011 1012 1013 1014 1015 1016 1017
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1030 1031 1032
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1033
			cpu_relax();
R
Roland McGrath 已提交
1034
		}
1035

1036 1037 1038 1039 1040 1041
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1042
		trace_sched_wait_task(p);
1043
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1044
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1045
		ncsw = 0;
1046
		if (!match_state || p->state == match_state)
1047
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1048
		task_rq_unlock(rq, p, &flags);
1049

R
Roland McGrath 已提交
1050 1051 1052 1053 1054 1055
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1066

1067 1068 1069 1070 1071
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1072
		 * So if it was still runnable (but just not actively
1073 1074 1075 1076
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1077 1078 1079 1080
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1081 1082
			continue;
		}
1083

1084 1085 1086 1087 1088 1089 1090
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1091 1092

	return ncsw;
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1102
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1103 1104 1105 1106 1107
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1108
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1118
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1119
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1120

1121
#ifdef CONFIG_SMP
1122
/*
1123
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1124
 */
1125 1126 1127
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1128 1129
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1130 1131

	/* Look for allowed, online CPU in same node. */
1132
	for_each_cpu(dest_cpu, nodemask) {
1133 1134 1135 1136
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1137
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1138
			return dest_cpu;
1139
	}
1140

1141 1142
	for (;;) {
		/* Any allowed, online CPU? */
1143
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1144 1145 1146 1147 1148 1149
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1180 1181 1182 1183 1184
	}

	return dest_cpu;
}

1185
/*
1186
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1187
 */
1188
static inline
1189
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1190
{
1191
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1203
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1204
		     !cpu_online(cpu)))
1205
		cpu = select_fallback_rq(task_cpu(p), p);
1206 1207

	return cpu;
1208
}
1209 1210 1211 1212 1213 1214

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1215 1216
#endif

P
Peter Zijlstra 已提交
1217
static void
1218
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1219
{
P
Peter Zijlstra 已提交
1220
#ifdef CONFIG_SCHEDSTATS
1221 1222
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1233
		rcu_read_lock();
P
Peter Zijlstra 已提交
1234 1235 1236 1237 1238 1239
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1240
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1241
	}
1242 1243 1244 1245

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1246 1247 1248
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1249
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1250 1251

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1252
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1253 1254 1255 1256 1257 1258

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1259
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1260
	p->on_rq = 1;
1261 1262 1263 1264

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1265 1266
}

1267 1268 1269
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1270
static void
1271
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1272
{
1273
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1274 1275 1276 1277 1278 1279 1280
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1281
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1327
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1328
static void sched_ttwu_pending(void)
1329 1330
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1331 1332
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1333 1334 1335

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1336 1337 1338
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1339 1340 1341 1342 1343 1344 1345 1346
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1347
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1364
	sched_ttwu_pending();
1365 1366 1367 1368

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1369 1370
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1371
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1372
	}
1373
	irq_exit();
1374 1375 1376 1377
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1378
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1379 1380
		smp_send_reschedule(cpu);
}
1381

1382
bool cpus_share_cache(int this_cpu, int that_cpu)
1383 1384 1385
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1386
#endif /* CONFIG_SMP */
1387

1388 1389 1390 1391
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1392
#if defined(CONFIG_SMP)
1393
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1394
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1395 1396 1397 1398 1399
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1400 1401 1402
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1403 1404 1405
}

/**
L
Linus Torvalds 已提交
1406
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1407
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1408
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1409
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414 1415 1416
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1417 1418
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1419
 */
1420 1421
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1422 1423
{
	unsigned long flags;
1424
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1425

1426
	smp_wmb();
1427
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1428
	if (!(p->state & state))
L
Linus Torvalds 已提交
1429 1430
		goto out;

1431
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1432 1433
	cpu = task_cpu(p);

1434 1435
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1436 1437

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1438
	/*
1439 1440
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1441
	 */
1442
	while (p->on_cpu)
1443
		cpu_relax();
1444
	/*
1445
	 * Pairs with the smp_wmb() in finish_lock_switch().
1446
	 */
1447
	smp_rmb();
L
Linus Torvalds 已提交
1448

1449
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1450
	p->state = TASK_WAKING;
1451

1452
	if (p->sched_class->task_waking)
1453
		p->sched_class->task_waking(p);
1454

1455
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1456 1457
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1458
		set_task_cpu(p, cpu);
1459
	}
L
Linus Torvalds 已提交
1460 1461
#endif /* CONFIG_SMP */

1462 1463
	ttwu_queue(p, cpu);
stat:
1464
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1465
out:
1466
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1467 1468 1469 1470

	return success;
}

T
Tejun Heo 已提交
1471 1472 1473 1474
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1475
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1476
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1477
 * the current task.
T
Tejun Heo 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1487 1488 1489 1490 1491 1492
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1493
	if (!(p->state & TASK_NORMAL))
1494
		goto out;
T
Tejun Heo 已提交
1495

P
Peter Zijlstra 已提交
1496
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1497 1498
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1499
	ttwu_do_wakeup(rq, p, 0);
1500
	ttwu_stat(p, smp_processor_id(), 0);
1501 1502
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1503 1504
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1516
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1517
{
1518
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1519 1520 1521
}
EXPORT_SYMBOL(wake_up_process);

1522
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527 1528 1529
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1530 1531 1532 1533 1534
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1535 1536 1537
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1538 1539
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1540
	p->se.prev_sum_exec_runtime	= 0;
1541
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1542
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1543
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1544

1545 1546 1547 1548 1549 1550
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1551 1552 1553
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1554
#ifdef CONFIG_SCHEDSTATS
1555
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1556
#endif
N
Nick Piggin 已提交
1557

P
Peter Zijlstra 已提交
1558
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1559

1560 1561 1562
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1563 1564 1565 1566 1567
}

/*
 * fork()/clone()-time setup:
 */
1568
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1569
{
1570
	unsigned long flags;
I
Ingo Molnar 已提交
1571 1572 1573
	int cpu = get_cpu();

	__sched_fork(p);
1574
	/*
1575
	 * We mark the process as running here. This guarantees that
1576 1577 1578
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1579
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1580

1581 1582 1583 1584 1585
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1586 1587 1588 1589
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1590
		if (task_has_rt_policy(p)) {
1591
			p->policy = SCHED_NORMAL;
1592
			p->static_prio = NICE_TO_PRIO(0);
1593 1594 1595 1596 1597 1598
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1599

1600 1601 1602 1603 1604 1605
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1606

H
Hiroshi Shimamoto 已提交
1607 1608
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1609

P
Peter Zijlstra 已提交
1610 1611 1612
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1613 1614 1615 1616 1617 1618 1619
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1620
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1621
	set_task_cpu(p, cpu);
1622
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1623

1624
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1625
	if (likely(sched_info_on()))
1626
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1627
#endif
P
Peter Zijlstra 已提交
1628 1629
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1630
#endif
1631
#ifdef CONFIG_PREEMPT_COUNT
1632
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1633
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1634
#endif
1635
#ifdef CONFIG_SMP
1636
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1637
#endif
1638

N
Nick Piggin 已提交
1639
	put_cpu();
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1649
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1650 1651
{
	unsigned long flags;
I
Ingo Molnar 已提交
1652
	struct rq *rq;
1653

1654
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1655 1656 1657 1658 1659 1660
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1661
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1662 1663
#endif

1664
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1665
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1666
	p->on_rq = 1;
1667
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1668
	check_preempt_curr(rq, p, WF_FORK);
1669
#ifdef CONFIG_SMP
1670 1671
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1672
#endif
1673
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1674 1675
}

1676 1677 1678
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1679
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1680
 * @notifier: notifier struct to register
1681 1682 1683 1684 1685 1686 1687 1688 1689
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1690
 * @notifier: notifier struct to unregister
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1720
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1732
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1733

1734 1735 1736
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1737
 * @prev: the current task that is being switched out
1738 1739 1740 1741 1742 1743 1744 1745 1746
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1747 1748 1749
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1750
{
1751
	trace_sched_switch(prev, next);
1752 1753
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1754
	fire_sched_out_preempt_notifiers(prev, next);
1755 1756 1757 1758
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1759 1760
/**
 * finish_task_switch - clean up after a task-switch
1761
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1762 1763
 * @prev: the thread we just switched away from.
 *
1764 1765 1766 1767
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1768 1769
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1770
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1771 1772 1773
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1774
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1775 1776 1777
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1778
	long prev_state;
L
Linus Torvalds 已提交
1779 1780 1781 1782 1783

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1784
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1785 1786
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1787
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1788 1789 1790 1791 1792
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1793
	prev_state = prev->state;
1794
	vtime_task_switch(prev);
1795
	finish_arch_switch(prev);
1796
	perf_event_task_sched_in(prev, current);
1797
	finish_lock_switch(rq, prev);
1798
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1799

1800
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1801 1802
	if (mm)
		mmdrop(mm);
1803
	if (unlikely(prev_state == TASK_DEAD)) {
1804 1805 1806
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1807
		 */
1808
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1809
		put_task_struct(prev);
1810
	}
L
Linus Torvalds 已提交
1811 1812
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1828
		raw_spin_lock_irqsave(&rq->lock, flags);
1829 1830
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1831
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1832 1833 1834 1835 1836 1837

		rq->post_schedule = 0;
	}
}

#else
1838

1839 1840 1841 1842 1843 1844
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1845 1846
}

1847 1848
#endif

L
Linus Torvalds 已提交
1849 1850 1851 1852
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1853
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1854 1855
	__releases(rq->lock)
{
1856 1857
	struct rq *rq = this_rq();

1858
	finish_task_switch(rq, prev);
1859

1860 1861 1862 1863 1864
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1865

1866 1867 1868 1869
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1870
	if (current->set_child_tid)
1871
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876 1877
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1878
static inline void
1879
context_switch(struct rq *rq, struct task_struct *prev,
1880
	       struct task_struct *next)
L
Linus Torvalds 已提交
1881
{
I
Ingo Molnar 已提交
1882
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1883

1884
	prepare_task_switch(rq, prev, next);
1885

I
Ingo Molnar 已提交
1886 1887
	mm = next->mm;
	oldmm = prev->active_mm;
1888 1889 1890 1891 1892
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1893
	arch_start_context_switch(prev);
1894

1895
	if (!mm) {
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900 1901
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1902
	if (!prev->mm) {
L
Linus Torvalds 已提交
1903 1904 1905
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1906 1907 1908 1909 1910 1911 1912
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1913
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1914
#endif
L
Linus Torvalds 已提交
1915

1916
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
1917 1918 1919
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1920 1921 1922 1923 1924 1925 1926
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1944
}
L
Linus Torvalds 已提交
1945 1946

unsigned long nr_uninterruptible(void)
1947
{
L
Linus Torvalds 已提交
1948
	unsigned long i, sum = 0;
1949

1950
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1951
		sum += cpu_rq(i)->nr_uninterruptible;
1952 1953

	/*
L
Linus Torvalds 已提交
1954 1955
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1956
	 */
L
Linus Torvalds 已提交
1957 1958
	if (unlikely((long)sum < 0))
		sum = 0;
1959

L
Linus Torvalds 已提交
1960
	return sum;
1961 1962
}

L
Linus Torvalds 已提交
1963
unsigned long long nr_context_switches(void)
1964
{
1965 1966
	int i;
	unsigned long long sum = 0;
1967

1968
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1969
		sum += cpu_rq(i)->nr_switches;
1970

L
Linus Torvalds 已提交
1971 1972
	return sum;
}
1973

L
Linus Torvalds 已提交
1974 1975 1976
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1977

1978
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1979
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1980

L
Linus Torvalds 已提交
1981 1982
	return sum;
}
1983

1984
unsigned long nr_iowait_cpu(int cpu)
1985
{
1986
	struct rq *this = cpu_rq(cpu);
1987 1988
	return atomic_read(&this->nr_iowait);
}
1989

1990 1991 1992 1993 1994
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
1995

1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2044 2045 2046 2047
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2080 2081 2082
/*
 * a1 = a0 * e + a * (1 - e)
 */
2083 2084 2085 2086 2087 2088 2089 2090 2091
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2092 2093
#ifdef CONFIG_NO_HZ
/*
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2132 2133 2134
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2135 2136
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2137

2138
static inline int calc_load_write_idx(void)
2139
{
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2166 2167
	long delta;

2168 2169 2170 2171
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2172
	delta = calc_load_fold_active(this_rq);
2173 2174 2175 2176
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2177 2178
}

2179
void calc_load_exit_idle(void)
2180
{
2181 2182 2183 2184 2185 2186 2187
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2188 2189

	/*
2190 2191 2192
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2193
	 */
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2206 2207 2208

	return delta;
}
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2287
static void calc_global_nohz(void)
2288 2289 2290
{
	long delta, active, n;

2291 2292 2293 2294 2295 2296
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2297

2298 2299
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2300

2301 2302 2303
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2304

2305 2306
		calc_load_update += n * LOAD_FREQ;
	}
2307

2308 2309 2310 2311 2312 2313 2314 2315 2316
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2317
}
2318
#else /* !CONFIG_NO_HZ */
2319

2320 2321
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2322

2323
#endif /* CONFIG_NO_HZ */
2324 2325

/*
2326 2327
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2328
 */
2329
void calc_global_load(unsigned long ticks)
2330
{
2331
	long active, delta;
L
Linus Torvalds 已提交
2332

2333
	if (time_before(jiffies, calc_load_update + 10))
2334
		return;
L
Linus Torvalds 已提交
2335

2336 2337 2338 2339 2340 2341 2342
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2343 2344
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2345

2346 2347 2348
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2349

2350
	calc_load_update += LOAD_FREQ;
2351 2352

	/*
2353
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2354 2355
	 */
	calc_global_nohz();
2356
}
L
Linus Torvalds 已提交
2357

2358
/*
2359 2360
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2361 2362 2363
 */
static void calc_load_account_active(struct rq *this_rq)
{
2364
	long delta;
2365

2366 2367
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2368

2369 2370
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2371
		atomic_long_add(delta, &calc_load_tasks);
2372 2373

	this_rq->calc_load_update += LOAD_FREQ;
2374 2375
}

2376 2377 2378 2379
/*
 * End of global load-average stuff
 */

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2447
/*
I
Ingo Molnar 已提交
2448
 * Update rq->cpu_load[] statistics. This function is usually called every
2449 2450
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2451
 */
2452 2453
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2454
{
I
Ingo Molnar 已提交
2455
	int i, scale;
2456

I
Ingo Molnar 已提交
2457
	this_rq->nr_load_updates++;
2458

I
Ingo Molnar 已提交
2459
	/* Update our load: */
2460 2461
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2462
		unsigned long old_load, new_load;
2463

I
Ingo Molnar 已提交
2464
		/* scale is effectively 1 << i now, and >> i divides by scale */
2465

I
Ingo Molnar 已提交
2466
		old_load = this_rq->cpu_load[i];
2467
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2468
		new_load = this_load;
I
Ingo Molnar 已提交
2469 2470 2471 2472 2473 2474
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2475 2476 2477
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2478
	}
2479 2480

	sched_avg_update(this_rq);
2481 2482
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2497 2498 2499 2500 2501 2502
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2503
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2504 2505 2506 2507
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2508
	 * bail if there's load or we're actually up-to-date.
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2545 2546 2547
/*
 * Called from scheduler_tick()
 */
2548 2549
static void update_cpu_load_active(struct rq *this_rq)
{
2550
	/*
2551
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2552 2553 2554
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2555

2556
	calc_load_account_active(this_rq);
2557 2558
}

I
Ingo Molnar 已提交
2559
#ifdef CONFIG_SMP
2560

2561
/*
P
Peter Zijlstra 已提交
2562 2563
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2564
 */
P
Peter Zijlstra 已提交
2565
void sched_exec(void)
2566
{
P
Peter Zijlstra 已提交
2567
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2568
	unsigned long flags;
2569
	int dest_cpu;
2570

2571
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2572
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2573 2574
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2575

2576
	if (likely(cpu_active(dest_cpu))) {
2577
		struct migration_arg arg = { p, dest_cpu };
2578

2579 2580
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2581 2582
		return;
	}
2583
unlock:
2584
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2585
}
I
Ingo Molnar 已提交
2586

L
Linus Torvalds 已提交
2587 2588 2589
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2590
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2591 2592

EXPORT_PER_CPU_SYMBOL(kstat);
2593
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2594 2595

/*
2596
 * Return any ns on the sched_clock that have not yet been accounted in
2597
 * @p in case that task is currently running.
2598 2599
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2600
 */
2601 2602 2603 2604 2605 2606
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2607
		ns = rq->clock_task - p->se.exec_start;
2608 2609 2610 2611 2612 2613 2614
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2615
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2616 2617
{
	unsigned long flags;
2618
	struct rq *rq;
2619
	u64 ns = 0;
2620

2621
	rq = task_rq_lock(p, &flags);
2622
	ns = do_task_delta_exec(p, rq);
2623
	task_rq_unlock(rq, p, &flags);
2624

2625 2626
	return ns;
}
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2641
	task_rq_unlock(rq, p, &flags);
2642 2643 2644

	return ns;
}
2645

2646 2647 2648 2649 2650 2651 2652 2653
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2654
	struct task_struct *curr = rq->curr;
2655 2656

	sched_clock_tick();
I
Ingo Molnar 已提交
2657

2658
	raw_spin_lock(&rq->lock);
2659
	update_rq_clock(rq);
2660
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2661
	curr->sched_class->task_tick(rq, curr, 0);
2662
	raw_spin_unlock(&rq->lock);
2663

2664
	perf_event_task_tick();
2665

2666
#ifdef CONFIG_SMP
2667
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2668
	trigger_load_balance(rq, cpu);
2669
#endif
L
Linus Torvalds 已提交
2670 2671
}

2672
notrace unsigned long get_parent_ip(unsigned long addr)
2673 2674 2675 2676 2677 2678 2679 2680
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2681

2682 2683 2684
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2685
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2686
{
2687
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2688 2689 2690
	/*
	 * Underflow?
	 */
2691 2692
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2693
#endif
L
Linus Torvalds 已提交
2694
	preempt_count() += val;
2695
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2696 2697 2698
	/*
	 * Spinlock count overflowing soon?
	 */
2699 2700
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2701 2702 2703
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2704 2705 2706
}
EXPORT_SYMBOL(add_preempt_count);

2707
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2708
{
2709
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2710 2711 2712
	/*
	 * Underflow?
	 */
2713
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2714
		return;
L
Linus Torvalds 已提交
2715 2716 2717
	/*
	 * Is the spinlock portion underflowing?
	 */
2718 2719 2720
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2721
#endif
2722

2723 2724
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730 2731
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2732
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2733
 */
I
Ingo Molnar 已提交
2734
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2735
{
2736 2737 2738
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2739 2740
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2741

I
Ingo Molnar 已提交
2742
	debug_show_held_locks(prev);
2743
	print_modules();
I
Ingo Molnar 已提交
2744 2745
	if (irqs_disabled())
		print_irqtrace_events(prev);
2746
	dump_stack();
2747
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2748
}
L
Linus Torvalds 已提交
2749

I
Ingo Molnar 已提交
2750 2751 2752 2753 2754
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2755
	/*
I
Ingo Molnar 已提交
2756
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2757 2758 2759
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2760
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2761
		__schedule_bug(prev);
2762
	rcu_sleep_check();
I
Ingo Molnar 已提交
2763

L
Linus Torvalds 已提交
2764 2765
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2766
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2767 2768
}

P
Peter Zijlstra 已提交
2769
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2770
{
2771
	if (prev->on_rq || rq->skip_clock_update < 0)
2772
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2773
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2774 2775
}

I
Ingo Molnar 已提交
2776 2777 2778 2779
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2780
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2781
{
2782
	const struct sched_class *class;
I
Ingo Molnar 已提交
2783
	struct task_struct *p;
L
Linus Torvalds 已提交
2784 2785

	/*
I
Ingo Molnar 已提交
2786 2787
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2788
	 */
2789
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2790
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2791 2792
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2793 2794
	}

2795
	for_each_class(class) {
2796
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2797 2798 2799
		if (p)
			return p;
	}
2800 2801

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2802
}
L
Linus Torvalds 已提交
2803

I
Ingo Molnar 已提交
2804
/*
2805
 * __schedule() is the main scheduler function.
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2840
 */
2841
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2842 2843
{
	struct task_struct *prev, *next;
2844
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2845
	struct rq *rq;
2846
	int cpu;
I
Ingo Molnar 已提交
2847

2848 2849
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2850 2851
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2852
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2853 2854 2855
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2856

2857
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2858
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2859

2860
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2861

2862
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2863
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2864
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2865
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2866
		} else {
2867 2868 2869
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2870
			/*
2871 2872 2873
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2883
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2884 2885
	}

2886
	pre_schedule(rq, prev);
2887

I
Ingo Molnar 已提交
2888
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2889 2890
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2891
	put_prev_task(rq, prev);
2892
	next = pick_next_task(rq);
2893 2894
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2895 2896 2897 2898 2899 2900

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2901
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2902
		/*
2903 2904 2905 2906
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2907 2908 2909
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2910
	} else
2911
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2912

2913
	post_schedule(rq);
L
Linus Torvalds 已提交
2914

2915
	sched_preempt_enable_no_resched();
2916
	if (need_resched())
L
Linus Torvalds 已提交
2917 2918
		goto need_resched;
}
2919

2920 2921
static inline void sched_submit_work(struct task_struct *tsk)
{
2922
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2923 2924 2925 2926 2927 2928 2929 2930 2931
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2932
asmlinkage void __sched schedule(void)
2933
{
2934 2935 2936
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2937 2938
	__schedule();
}
L
Linus Torvalds 已提交
2939 2940
EXPORT_SYMBOL(schedule);

2941
#ifdef CONFIG_CONTEXT_TRACKING
2942 2943 2944 2945 2946 2947 2948 2949
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2950
	user_exit();
2951
	schedule();
2952
	user_enter();
2953 2954 2955
}
#endif

2956 2957 2958 2959 2960 2961 2962
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2963
	sched_preempt_enable_no_resched();
2964 2965 2966 2967
	schedule();
	preempt_disable();
}

2968
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2969

2970 2971 2972
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2973
		return false;
2974 2975

	/*
2976 2977 2978 2979
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2980
	 */
2981
	barrier();
2982

2983
	return owner->on_cpu;
2984
}
2985

2986 2987 2988 2989 2990 2991 2992 2993
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2994

2995
	rcu_read_lock();
2996 2997
	while (owner_running(lock, owner)) {
		if (need_resched())
2998
			break;
2999

3000
		arch_mutex_cpu_relax();
3001
	}
3002
	rcu_read_unlock();
3003

3004
	/*
3005 3006 3007
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3008
	 */
3009
	return lock->owner == NULL;
3010 3011 3012
}
#endif

L
Linus Torvalds 已提交
3013 3014
#ifdef CONFIG_PREEMPT
/*
3015
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3016
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3017 3018
 * occur there and call schedule directly.
 */
3019
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3020 3021
{
	struct thread_info *ti = current_thread_info();
3022

L
Linus Torvalds 已提交
3023 3024
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3025
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3026
	 */
N
Nick Piggin 已提交
3027
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3028 3029
		return;

3030
	do {
3031
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3032
		__schedule();
3033
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3034

3035 3036 3037 3038 3039
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3040
	} while (need_resched());
L
Linus Torvalds 已提交
3041 3042 3043 3044
}
EXPORT_SYMBOL(preempt_schedule);

/*
3045
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3046 3047 3048 3049 3050 3051 3052
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3053

3054
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3055 3056
	BUG_ON(ti->preempt_count || !irqs_disabled());

3057
	user_exit();
3058 3059 3060
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3061
		__schedule();
3062 3063
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3064

3065 3066 3067 3068 3069
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3070
	} while (need_resched());
L
Linus Torvalds 已提交
3071 3072 3073 3074
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3075
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3076
			  void *key)
L
Linus Torvalds 已提交
3077
{
P
Peter Zijlstra 已提交
3078
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3079 3080 3081 3082
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3083 3084
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3085 3086 3087
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3088
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3089 3090
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3091
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3092
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3093
{
3094
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3095

3096
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3097 3098
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3099
		if (curr->func(curr, mode, wake_flags, key) &&
3100
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3110
 * @key: is directly passed to the wakeup function
3111 3112 3113
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3114
 */
3115
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3116
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3129
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3130
{
3131
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3132
}
3133
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3134

3135 3136 3137 3138
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3139
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3140

L
Linus Torvalds 已提交
3141
/**
3142
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3143 3144 3145
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3146
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3147 3148 3149 3150 3151 3152 3153
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3154 3155 3156
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3157
 */
3158 3159
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3160 3161
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3162
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3168
		wake_flags = 0;
L
Linus Torvalds 已提交
3169 3170

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3171
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3172 3173
	spin_unlock_irqrestore(&q->lock, flags);
}
3174 3175 3176 3177 3178 3179 3180 3181 3182
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3183 3184
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3185 3186 3187 3188 3189 3190 3191 3192
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3193 3194 3195
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3196
 */
3197
void complete(struct completion *x)
L
Linus Torvalds 已提交
3198 3199 3200 3201 3202
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3203
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3204 3205 3206 3207
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3208 3209 3210 3211 3212
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3213 3214 3215
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3216
 */
3217
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3218 3219 3220 3221 3222
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3223
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3224 3225 3226 3227
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3228 3229
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3230 3231 3232 3233
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3234
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3235
		do {
3236
			if (signal_pending_state(state, current)) {
3237 3238
				timeout = -ERESTARTSYS;
				break;
3239 3240
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3241 3242 3243
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3244
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3245
		__remove_wait_queue(&x->wait, &wait);
3246 3247
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3248 3249
	}
	x->done--;
3250
	return timeout ?: 1;
L
Linus Torvalds 已提交
3251 3252
}

3253 3254
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3255 3256 3257 3258
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3259
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3260
	spin_unlock_irq(&x->wait.lock);
3261 3262
	return timeout;
}
L
Linus Torvalds 已提交
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3274
void __sched wait_for_completion(struct completion *x)
3275 3276
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3277
}
3278
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3279

3280 3281 3282 3283 3284 3285 3286 3287
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3288 3289 3290
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3291
 */
3292
unsigned long __sched
3293
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3294
{
3295
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3296
}
3297
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3298

3299 3300 3301 3302 3303 3304
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3305 3306
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3307
 */
3308
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3309
{
3310 3311 3312 3313
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3314
}
3315
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3316

3317 3318 3319 3320 3321 3322 3323
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3324 3325 3326
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3327
 */
3328
long __sched
3329 3330
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3331
{
3332
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3333
}
3334
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3335

3336 3337 3338 3339 3340 3341
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3342 3343
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3344
 */
M
Matthew Wilcox 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3354 3355 3356 3357 3358 3359 3360 3361
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3362 3363 3364
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3365
 */
3366
long __sched
3367 3368 3369 3370 3371 3372 3373
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3388
	unsigned long flags;
3389 3390
	int ret = 1;

3391
	spin_lock_irqsave(&x->wait.lock, flags);
3392 3393 3394 3395
	if (!x->done)
		ret = 0;
	else
		x->done--;
3396
	spin_unlock_irqrestore(&x->wait.lock, flags);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3411
	unsigned long flags;
3412 3413
	int ret = 1;

3414
	spin_lock_irqsave(&x->wait.lock, flags);
3415 3416
	if (!x->done)
		ret = 0;
3417
	spin_unlock_irqrestore(&x->wait.lock, flags);
3418 3419 3420 3421
	return ret;
}
EXPORT_SYMBOL(completion_done);

3422 3423
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3424
{
I
Ingo Molnar 已提交
3425 3426 3427 3428
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3429

3430
	__set_current_state(state);
L
Linus Torvalds 已提交
3431

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3446 3447 3448
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3449
long __sched
I
Ingo Molnar 已提交
3450
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3451
{
3452
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3453 3454 3455
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3456
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3457
{
3458
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3459 3460 3461
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3462
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3463
{
3464
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3465 3466 3467
}
EXPORT_SYMBOL(sleep_on_timeout);

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3480
void rt_mutex_setprio(struct task_struct *p, int prio)
3481
{
3482
	int oldprio, on_rq, running;
3483
	struct rq *rq;
3484
	const struct sched_class *prev_class;
3485 3486 3487

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3488
	rq = __task_rq_lock(p);
3489

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3508
	trace_sched_pi_setprio(p, prio);
3509
	oldprio = p->prio;
3510
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3511
	on_rq = p->on_rq;
3512
	running = task_current(rq, p);
3513
	if (on_rq)
3514
		dequeue_task(rq, p, 0);
3515 3516
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3517 3518 3519 3520 3521 3522

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3523 3524
	p->prio = prio;

3525 3526
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3527
	if (on_rq)
3528
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3529

P
Peter Zijlstra 已提交
3530
	check_class_changed(rq, p, prev_class, oldprio);
3531
out_unlock:
3532
	__task_rq_unlock(rq);
3533 3534
}
#endif
3535
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3536
{
I
Ingo Molnar 已提交
3537
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3538
	unsigned long flags;
3539
	struct rq *rq;
L
Linus Torvalds 已提交
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3552
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3553
	 */
3554
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3555 3556 3557
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3558
	on_rq = p->on_rq;
3559
	if (on_rq)
3560
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3561 3562

	p->static_prio = NICE_TO_PRIO(nice);
3563
	set_load_weight(p);
3564 3565 3566
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3567

I
Ingo Molnar 已提交
3568
	if (on_rq) {
3569
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3570
		/*
3571 3572
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3573
		 */
3574
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3575 3576 3577
			resched_task(rq->curr);
	}
out_unlock:
3578
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3579 3580 3581
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3582 3583 3584 3585 3586
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3587
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3588
{
3589 3590
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3591

3592
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3593 3594 3595
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3605
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3606
{
3607
	long nice, retval;
L
Linus Torvalds 已提交
3608 3609 3610 3611 3612 3613

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3614 3615
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3616 3617 3618
	if (increment > 40)
		increment = 40;

3619
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3625 3626 3627
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3646
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3647 3648 3649 3650 3651 3652 3653 3654
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3655
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3656 3657 3658
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3659
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3660 3661 3662 3663 3664 3665 3666

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3681 3682 3683 3684 3685 3686
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3687
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3688 3689 3690 3691 3692 3693 3694 3695
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3696
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3697
{
3698
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3699 3700 3701
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3702 3703
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3704 3705 3706
{
	p->policy = policy;
	p->rt_priority = prio;
3707 3708 3709
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3710 3711 3712 3713
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3714
	set_load_weight(p);
L
Linus Torvalds 已提交
3715 3716
}

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3727 3728
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3729 3730 3731 3732
	rcu_read_unlock();
	return match;
}

3733
static int __sched_setscheduler(struct task_struct *p, int policy,
3734
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3735
{
3736
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3737
	unsigned long flags;
3738
	const struct sched_class *prev_class;
3739
	struct rq *rq;
3740
	int reset_on_fork;
L
Linus Torvalds 已提交
3741

3742 3743
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3744 3745
recheck:
	/* double check policy once rq lock held */
3746 3747
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3748
		policy = oldpolicy = p->policy;
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3759 3760
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3761 3762
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3763 3764
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3765
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3766
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3767
		return -EINVAL;
3768
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3769 3770
		return -EINVAL;

3771 3772 3773
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3774
	if (user && !capable(CAP_SYS_NICE)) {
3775
		if (rt_policy(policy)) {
3776 3777
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3788

I
Ingo Molnar 已提交
3789
		/*
3790 3791
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3792
		 */
3793 3794 3795 3796
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3797

3798
		/* can't change other user's priorities */
3799
		if (!check_same_owner(p))
3800
			return -EPERM;
3801 3802 3803 3804

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3805
	}
L
Linus Torvalds 已提交
3806

3807
	if (user) {
3808
		retval = security_task_setscheduler(p);
3809 3810 3811 3812
		if (retval)
			return retval;
	}

3813 3814 3815
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3816
	 *
L
Lucas De Marchi 已提交
3817
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3818 3819
	 * runqueue lock must be held.
	 */
3820
	rq = task_rq_lock(p, &flags);
3821

3822 3823 3824 3825
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3826
		task_rq_unlock(rq, p, &flags);
3827 3828 3829
		return -EINVAL;
	}

3830 3831 3832 3833 3834
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3835
		task_rq_unlock(rq, p, &flags);
3836 3837 3838
		return 0;
	}

3839 3840 3841 3842 3843 3844 3845
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3846 3847
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3848
			task_rq_unlock(rq, p, &flags);
3849 3850 3851 3852 3853
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3854 3855 3856
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3857
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3858 3859
		goto recheck;
	}
P
Peter Zijlstra 已提交
3860
	on_rq = p->on_rq;
3861
	running = task_current(rq, p);
3862
	if (on_rq)
3863
		dequeue_task(rq, p, 0);
3864 3865
	if (running)
		p->sched_class->put_prev_task(rq, p);
3866

3867 3868
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3869
	oldprio = p->prio;
3870
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3871
	__setscheduler(rq, p, policy, param->sched_priority);
3872

3873 3874
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3875
	if (on_rq)
3876
		enqueue_task(rq, p, 0);
3877

P
Peter Zijlstra 已提交
3878
	check_class_changed(rq, p, prev_class, oldprio);
3879
	task_rq_unlock(rq, p, &flags);
3880

3881 3882
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3883 3884
	return 0;
}
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3895
		       const struct sched_param *param)
3896 3897 3898
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3899 3900
EXPORT_SYMBOL_GPL(sched_setscheduler);

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3913
			       const struct sched_param *param)
3914 3915 3916 3917
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3918 3919
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3920 3921 3922
{
	struct sched_param lparam;
	struct task_struct *p;
3923
	int retval;
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3929 3930 3931

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3932
	p = find_process_by_pid(pid);
3933 3934 3935
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3936

L
Linus Torvalds 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3946 3947
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3948
{
3949 3950 3951 3952
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3953 3954 3955 3956 3957 3958 3959 3960
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3961
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3962 3963 3964 3965 3966 3967 3968 3969
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3970
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3971
{
3972
	struct task_struct *p;
3973
	int retval;
L
Linus Torvalds 已提交
3974 3975

	if (pid < 0)
3976
		return -EINVAL;
L
Linus Torvalds 已提交
3977 3978

	retval = -ESRCH;
3979
	rcu_read_lock();
L
Linus Torvalds 已提交
3980 3981 3982 3983
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3984 3985
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3986
	}
3987
	rcu_read_unlock();
L
Linus Torvalds 已提交
3988 3989 3990 3991
	return retval;
}

/**
3992
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3993 3994 3995
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3996
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3997 3998
{
	struct sched_param lp;
3999
	struct task_struct *p;
4000
	int retval;
L
Linus Torvalds 已提交
4001 4002

	if (!param || pid < 0)
4003
		return -EINVAL;
L
Linus Torvalds 已提交
4004

4005
	rcu_read_lock();
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4016
	rcu_read_unlock();
L
Linus Torvalds 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4026
	rcu_read_unlock();
L
Linus Torvalds 已提交
4027 4028 4029
	return retval;
}

4030
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4031
{
4032
	cpumask_var_t cpus_allowed, new_mask;
4033 4034
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4035

4036
	get_online_cpus();
4037
	rcu_read_lock();
L
Linus Torvalds 已提交
4038 4039 4040

	p = find_process_by_pid(pid);
	if (!p) {
4041
		rcu_read_unlock();
4042
		put_online_cpus();
L
Linus Torvalds 已提交
4043 4044 4045
		return -ESRCH;
	}

4046
	/* Prevent p going away */
L
Linus Torvalds 已提交
4047
	get_task_struct(p);
4048
	rcu_read_unlock();
L
Linus Torvalds 已提交
4049

4050 4051 4052 4053 4054 4055 4056 4057
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4058
	retval = -EPERM;
4059
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4060 4061
		goto out_unlock;

4062
	retval = security_task_setscheduler(p);
4063 4064 4065
	if (retval)
		goto out_unlock;

4066 4067
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4068
again:
4069
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4070

P
Paul Menage 已提交
4071
	if (!retval) {
4072 4073
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4074 4075 4076 4077 4078
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4079
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4080 4081 4082
			goto again;
		}
	}
L
Linus Torvalds 已提交
4083
out_unlock:
4084 4085 4086 4087
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4088
	put_task_struct(p);
4089
	put_online_cpus();
L
Linus Torvalds 已提交
4090 4091 4092 4093
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4094
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4095
{
4096 4097 4098 4099 4100
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4110 4111
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4112
{
4113
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4114 4115
	int retval;

4116 4117
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4118

4119 4120 4121 4122 4123
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4124 4125
}

4126
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4127
{
4128
	struct task_struct *p;
4129
	unsigned long flags;
L
Linus Torvalds 已提交
4130 4131
	int retval;

4132
	get_online_cpus();
4133
	rcu_read_lock();
L
Linus Torvalds 已提交
4134 4135 4136 4137 4138 4139

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4140 4141 4142 4143
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4144
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4145
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4146
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4147 4148

out_unlock:
4149
	rcu_read_unlock();
4150
	put_online_cpus();
L
Linus Torvalds 已提交
4151

4152
	return retval;
L
Linus Torvalds 已提交
4153 4154 4155 4156 4157 4158 4159 4160
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4161 4162
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4163 4164
{
	int ret;
4165
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4166

A
Anton Blanchard 已提交
4167
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4168 4169
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4170 4171
		return -EINVAL;

4172 4173
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4174

4175 4176
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4177
		size_t retlen = min_t(size_t, len, cpumask_size());
4178 4179

		if (copy_to_user(user_mask_ptr, mask, retlen))
4180 4181
			ret = -EFAULT;
		else
4182
			ret = retlen;
4183 4184
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4185

4186
	return ret;
L
Linus Torvalds 已提交
4187 4188 4189 4190 4191
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4192 4193
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4194
 */
4195
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4196
{
4197
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4198

4199
	schedstat_inc(rq, yld_count);
4200
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4201 4202 4203 4204 4205 4206

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4207
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4208
	do_raw_spin_unlock(&rq->lock);
4209
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4216 4217 4218 4219 4220
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4221
static void __cond_resched(void)
L
Linus Torvalds 已提交
4222
{
4223
	add_preempt_count(PREEMPT_ACTIVE);
4224
	__schedule();
4225
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4226 4227
}

4228
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4229
{
P
Peter Zijlstra 已提交
4230
	if (should_resched()) {
L
Linus Torvalds 已提交
4231 4232 4233 4234 4235
		__cond_resched();
		return 1;
	}
	return 0;
}
4236
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4237 4238

/*
4239
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4240 4241
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4242
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4243 4244 4245
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4246
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4247
{
P
Peter Zijlstra 已提交
4248
	int resched = should_resched();
J
Jan Kara 已提交
4249 4250
	int ret = 0;

4251 4252
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4253
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4254
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4255
		if (resched)
N
Nick Piggin 已提交
4256 4257 4258
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4259
		ret = 1;
L
Linus Torvalds 已提交
4260 4261
		spin_lock(lock);
	}
J
Jan Kara 已提交
4262
	return ret;
L
Linus Torvalds 已提交
4263
}
4264
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4265

4266
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4267 4268 4269
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4270
	if (should_resched()) {
4271
		local_bh_enable();
L
Linus Torvalds 已提交
4272 4273 4274 4275 4276 4277
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4278
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4279 4280 4281 4282

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4301 4302 4303 4304 4305 4306 4307 4308
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4309 4310 4311 4312
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4313 4314
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4349
	if (yielded) {
4350
		schedstat_inc(rq, yld_count);
4351 4352 4353 4354 4355 4356 4357
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4370
/*
I
Ingo Molnar 已提交
4371
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4372 4373 4374 4375
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4376
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4377

4378
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4379
	atomic_inc(&rq->nr_iowait);
4380
	blk_flush_plug(current);
4381
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4382
	schedule();
4383
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4384
	atomic_dec(&rq->nr_iowait);
4385
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4391
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4392 4393
	long ret;

4394
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4395
	atomic_inc(&rq->nr_iowait);
4396
	blk_flush_plug(current);
4397
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4398
	ret = schedule_timeout(timeout);
4399
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4400
	atomic_dec(&rq->nr_iowait);
4401
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4412
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4422
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4423
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4437
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4438 4439 4440 4441 4442 4443 4444 4445 4446
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4447
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4448
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4462
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4463
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4464
{
4465
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4466
	unsigned int time_slice;
4467 4468
	unsigned long flags;
	struct rq *rq;
4469
	int retval;
L
Linus Torvalds 已提交
4470 4471 4472
	struct timespec t;

	if (pid < 0)
4473
		return -EINVAL;
L
Linus Torvalds 已提交
4474 4475

	retval = -ESRCH;
4476
	rcu_read_lock();
L
Linus Torvalds 已提交
4477 4478 4479 4480 4481 4482 4483 4484
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4485 4486
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4487
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4488

4489
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4490
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4491 4492
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4493

L
Linus Torvalds 已提交
4494
out_unlock:
4495
	rcu_read_unlock();
L
Linus Torvalds 已提交
4496 4497 4498
	return retval;
}

4499
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4500

4501
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4502 4503
{
	unsigned long free = 0;
4504
	int ppid;
4505
	unsigned state;
L
Linus Torvalds 已提交
4506 4507

	state = p->state ? __ffs(p->state) + 1 : 0;
4508
	printk(KERN_INFO "%-15.15s %c", p->comm,
4509
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4510
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4511
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4512
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4513
	else
P
Peter Zijlstra 已提交
4514
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4515 4516
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4517
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4518
	else
P
Peter Zijlstra 已提交
4519
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4520 4521
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4522
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4523
#endif
4524 4525 4526
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4527
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4528
		task_pid_nr(p), ppid,
4529
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4530

4531
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4532 4533
}

I
Ingo Molnar 已提交
4534
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4535
{
4536
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4537

4538
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4539 4540
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4541
#else
P
Peter Zijlstra 已提交
4542 4543
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4544
#endif
4545
	rcu_read_lock();
L
Linus Torvalds 已提交
4546 4547 4548
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4549
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4550 4551
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4552
		if (!state_filter || (p->state & state_filter))
4553
			sched_show_task(p);
L
Linus Torvalds 已提交
4554 4555
	} while_each_thread(g, p);

4556 4557
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4558 4559 4560
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4561
	rcu_read_unlock();
I
Ingo Molnar 已提交
4562 4563 4564
	/*
	 * Only show locks if all tasks are dumped:
	 */
4565
	if (!state_filter)
I
Ingo Molnar 已提交
4566
		debug_show_all_locks();
L
Linus Torvalds 已提交
4567 4568
}

I
Ingo Molnar 已提交
4569 4570
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4571
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4572 4573
}

4574 4575 4576 4577 4578 4579 4580 4581
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4582
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4583
{
4584
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4585 4586
	unsigned long flags;

4587
	raw_spin_lock_irqsave(&rq->lock, flags);
4588

I
Ingo Molnar 已提交
4589
	__sched_fork(idle);
4590
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4591 4592
	idle->se.exec_start = sched_clock();

4593
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4605
	__set_task_cpu(idle, cpu);
4606
	rcu_read_unlock();
L
Linus Torvalds 已提交
4607 4608

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4609 4610
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4611
#endif
4612
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4613 4614

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4615
	task_thread_info(idle)->preempt_count = 0;
4616

I
Ingo Molnar 已提交
4617 4618 4619 4620
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4621
	ftrace_graph_init_idle_task(idle, cpu);
4622 4623 4624
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4625 4626
}

L
Linus Torvalds 已提交
4627
#ifdef CONFIG_SMP
4628 4629 4630 4631
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4632 4633

	cpumask_copy(&p->cpus_allowed, new_mask);
4634
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4635 4636
}

L
Linus Torvalds 已提交
4637 4638 4639
/*
 * This is how migration works:
 *
4640 4641 4642 4643 4644 4645
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4646
 *    it and puts it into the right queue.
4647 4648
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4649 4650 4651 4652 4653 4654 4655 4656
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4657
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4658 4659
 * call is not atomic; no spinlocks may be held.
 */
4660
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4661 4662
{
	unsigned long flags;
4663
	struct rq *rq;
4664
	unsigned int dest_cpu;
4665
	int ret = 0;
L
Linus Torvalds 已提交
4666 4667

	rq = task_rq_lock(p, &flags);
4668

4669 4670 4671
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4672
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4673 4674 4675 4676
		ret = -EINVAL;
		goto out;
	}

4677
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4678 4679 4680 4681
		ret = -EINVAL;
		goto out;
	}

4682
	do_set_cpus_allowed(p, new_mask);
4683

L
Linus Torvalds 已提交
4684
	/* Can the task run on the task's current CPU? If so, we're done */
4685
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4686 4687
		goto out;

4688
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4689
	if (p->on_rq) {
4690
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4691
		/* Need help from migration thread: drop lock and wait. */
4692
		task_rq_unlock(rq, p, &flags);
4693
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4694 4695 4696 4697
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4698
	task_rq_unlock(rq, p, &flags);
4699

L
Linus Torvalds 已提交
4700 4701
	return ret;
}
4702
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4703 4704

/*
I
Ingo Molnar 已提交
4705
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4706 4707 4708 4709 4710 4711
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4712 4713
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4714
 */
4715
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4716
{
4717
	struct rq *rq_dest, *rq_src;
4718
	int ret = 0;
L
Linus Torvalds 已提交
4719

4720
	if (unlikely(!cpu_active(dest_cpu)))
4721
		return ret;
L
Linus Torvalds 已提交
4722 4723 4724 4725

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4726
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4727 4728 4729
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4730
		goto done;
L
Linus Torvalds 已提交
4731
	/* Affinity changed (again). */
4732
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4733
		goto fail;
L
Linus Torvalds 已提交
4734

4735 4736 4737 4738
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4739
	if (p->on_rq) {
4740
		dequeue_task(rq_src, p, 0);
4741
		set_task_cpu(p, dest_cpu);
4742
		enqueue_task(rq_dest, p, 0);
4743
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4744
	}
L
Linus Torvalds 已提交
4745
done:
4746
	ret = 1;
L
Linus Torvalds 已提交
4747
fail:
L
Linus Torvalds 已提交
4748
	double_rq_unlock(rq_src, rq_dest);
4749
	raw_spin_unlock(&p->pi_lock);
4750
	return ret;
L
Linus Torvalds 已提交
4751 4752 4753
}

/*
4754 4755 4756
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4757
 */
4758
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4759
{
4760
	struct migration_arg *arg = data;
4761

4762 4763 4764 4765
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4766
	local_irq_disable();
4767
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4768
	local_irq_enable();
L
Linus Torvalds 已提交
4769
	return 0;
4770 4771
}

L
Linus Torvalds 已提交
4772
#ifdef CONFIG_HOTPLUG_CPU
4773

4774
/*
4775 4776
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4777
 */
4778
void idle_task_exit(void)
L
Linus Torvalds 已提交
4779
{
4780
	struct mm_struct *mm = current->active_mm;
4781

4782
	BUG_ON(cpu_online(smp_processor_id()));
4783

4784 4785 4786
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4787 4788 4789
}

/*
4790 4791 4792 4793 4794
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4795
 */
4796
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4797
{
4798 4799 4800
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4801 4802
}

4803
/*
4804 4805 4806 4807 4808 4809
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4810
 */
4811
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4812
{
4813
	struct rq *rq = cpu_rq(dead_cpu);
4814 4815
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4816 4817

	/*
4818 4819 4820 4821 4822 4823 4824
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4825
	 */
4826
	rq->stop = NULL;
4827

I
Ingo Molnar 已提交
4828
	for ( ; ; ) {
4829 4830 4831 4832 4833
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4834
			break;
4835

4836
		next = pick_next_task(rq);
4837
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4838
		next->sched_class->put_prev_task(rq, next);
4839

4840 4841 4842 4843 4844 4845 4846
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4847
	}
4848

4849
	rq->stop = stop;
4850
}
4851

L
Linus Torvalds 已提交
4852 4853
#endif /* CONFIG_HOTPLUG_CPU */

4854 4855 4856
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4857 4858
	{
		.procname	= "sched_domain",
4859
		.mode		= 0555,
4860
	},
4861
	{}
4862 4863 4864
};

static struct ctl_table sd_ctl_root[] = {
4865 4866
	{
		.procname	= "kernel",
4867
		.mode		= 0555,
4868 4869
		.child		= sd_ctl_dir,
	},
4870
	{}
4871 4872 4873 4874 4875
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4876
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4877 4878 4879 4880

	return entry;
}

4881 4882
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4883
	struct ctl_table *entry;
4884

4885 4886 4887
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4888
	 * will always be set. In the lowest directory the names are
4889 4890 4891
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4892 4893
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4894 4895 4896
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4897 4898 4899 4900 4901

	kfree(*tablep);
	*tablep = NULL;
}

4902 4903 4904
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4905
static void
4906
set_table_entry(struct ctl_table *entry,
4907
		const char *procname, void *data, int maxlen,
4908 4909
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4910 4911 4912 4913 4914 4915
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4916 4917 4918 4919 4920

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4921 4922 4923 4924 4925
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4926
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4927

4928 4929 4930
	if (table == NULL)
		return NULL;

4931
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4932
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4933
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4934
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4935
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4936
		sizeof(int), 0644, proc_dointvec_minmax, true);
4937
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4938
		sizeof(int), 0644, proc_dointvec_minmax, true);
4939
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4940
		sizeof(int), 0644, proc_dointvec_minmax, true);
4941
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4942
		sizeof(int), 0644, proc_dointvec_minmax, true);
4943
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4944
		sizeof(int), 0644, proc_dointvec_minmax, true);
4945
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4946
		sizeof(int), 0644, proc_dointvec_minmax, false);
4947
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4948
		sizeof(int), 0644, proc_dointvec_minmax, false);
4949
	set_table_entry(&table[9], "cache_nice_tries",
4950
		&sd->cache_nice_tries,
4951
		sizeof(int), 0644, proc_dointvec_minmax, false);
4952
	set_table_entry(&table[10], "flags", &sd->flags,
4953
		sizeof(int), 0644, proc_dointvec_minmax, false);
4954
	set_table_entry(&table[11], "name", sd->name,
4955
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4956
	/* &table[12] is terminator */
4957 4958 4959 4960

	return table;
}

4961
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4962 4963 4964 4965 4966 4967 4968 4969 4970
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4971 4972
	if (table == NULL)
		return NULL;
4973 4974 4975 4976 4977

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4978
		entry->mode = 0555;
4979 4980 4981 4982 4983 4984 4985 4986
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4987
static void register_sched_domain_sysctl(void)
4988
{
4989
	int i, cpu_num = num_possible_cpus();
4990 4991 4992
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4993 4994 4995
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4996 4997 4998
	if (entry == NULL)
		return;

4999
	for_each_possible_cpu(i) {
5000 5001
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5002
		entry->mode = 0555;
5003
		entry->child = sd_alloc_ctl_cpu_table(i);
5004
		entry++;
5005
	}
5006 5007

	WARN_ON(sd_sysctl_header);
5008 5009
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5010

5011
/* may be called multiple times per register */
5012 5013
static void unregister_sched_domain_sysctl(void)
{
5014 5015
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5016
	sd_sysctl_header = NULL;
5017 5018
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5019
}
5020
#else
5021 5022 5023 5024
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5025 5026 5027 5028
{
}
#endif

5029 5030 5031 5032 5033
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5034
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5054
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5055 5056 5057 5058
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5059 5060 5061 5062
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5063 5064
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5065
{
5066
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5067
	unsigned long flags;
5068
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5069

5070
	switch (action & ~CPU_TASKS_FROZEN) {
5071

L
Linus Torvalds 已提交
5072
	case CPU_UP_PREPARE:
5073
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5074
		break;
5075

L
Linus Torvalds 已提交
5076
	case CPU_ONLINE:
5077
		/* Update our root-domain */
5078
		raw_spin_lock_irqsave(&rq->lock, flags);
5079
		if (rq->rd) {
5080
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5081 5082

			set_rq_online(rq);
5083
		}
5084
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5085
		break;
5086

L
Linus Torvalds 已提交
5087
#ifdef CONFIG_HOTPLUG_CPU
5088
	case CPU_DYING:
5089
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5090
		/* Update our root-domain */
5091
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5092
		if (rq->rd) {
5093
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5094
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5095
		}
5096 5097
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5098
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5099
		break;
5100

5101
	case CPU_DEAD:
5102
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5103
		break;
L
Linus Torvalds 已提交
5104 5105
#endif
	}
5106 5107 5108

	update_max_interval();

L
Linus Torvalds 已提交
5109 5110 5111
	return NOTIFY_OK;
}

5112 5113 5114
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5115
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5116
 */
5117
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5118
	.notifier_call = migration_call,
5119
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5120 5121
};

5122 5123 5124 5125
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5126
	case CPU_STARTING:
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5147
static int __init migration_init(void)
L
Linus Torvalds 已提交
5148 5149
{
	void *cpu = (void *)(long)smp_processor_id();
5150
	int err;
5151

5152
	/* Initialize migration for the boot CPU */
5153 5154
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5155 5156
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5157

5158 5159 5160 5161
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5162
	return 0;
L
Linus Torvalds 已提交
5163
}
5164
early_initcall(migration_init);
L
Linus Torvalds 已提交
5165 5166 5167
#endif

#ifdef CONFIG_SMP
5168

5169 5170
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5171
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5172

5173
static __read_mostly int sched_debug_enabled;
5174

5175
static int __init sched_debug_setup(char *str)
5176
{
5177
	sched_debug_enabled = 1;
5178 5179 5180

	return 0;
}
5181 5182 5183 5184 5185 5186
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5187

5188
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5189
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5190
{
I
Ingo Molnar 已提交
5191
	struct sched_group *group = sd->groups;
5192
	char str[256];
L
Linus Torvalds 已提交
5193

R
Rusty Russell 已提交
5194
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5195
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5196 5197 5198 5199

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5200
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5201
		if (sd->parent)
P
Peter Zijlstra 已提交
5202 5203
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5204
		return -1;
N
Nick Piggin 已提交
5205 5206
	}

P
Peter Zijlstra 已提交
5207
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5208

5209
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5210 5211
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5212
	}
5213
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5214 5215
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5216
	}
L
Linus Torvalds 已提交
5217

I
Ingo Molnar 已提交
5218
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5219
	do {
I
Ingo Molnar 已提交
5220
		if (!group) {
P
Peter Zijlstra 已提交
5221 5222
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5223 5224 5225
			break;
		}

5226 5227 5228 5229 5230 5231
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5232 5233 5234
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5235 5236
			break;
		}
L
Linus Torvalds 已提交
5237

5238
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5239 5240
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5241 5242
			break;
		}
L
Linus Torvalds 已提交
5243

5244 5245
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5246 5247
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5248 5249
			break;
		}
L
Linus Torvalds 已提交
5250

5251
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5252

R
Rusty Russell 已提交
5253
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5254

P
Peter Zijlstra 已提交
5255
		printk(KERN_CONT " %s", str);
5256
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5257
			printk(KERN_CONT " (cpu_power = %d)",
5258
				group->sgp->power);
5259
		}
L
Linus Torvalds 已提交
5260

I
Ingo Molnar 已提交
5261 5262
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5263
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5264

5265
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5266
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5267

5268 5269
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5270 5271
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5272 5273
	return 0;
}
L
Linus Torvalds 已提交
5274

I
Ingo Molnar 已提交
5275 5276 5277
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5278

5279
	if (!sched_debug_enabled)
5280 5281
		return;

I
Ingo Molnar 已提交
5282 5283 5284 5285
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5286

I
Ingo Molnar 已提交
5287 5288 5289
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5290
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5291
			break;
L
Linus Torvalds 已提交
5292 5293
		level++;
		sd = sd->parent;
5294
		if (!sd)
I
Ingo Molnar 已提交
5295 5296
			break;
	}
L
Linus Torvalds 已提交
5297
}
5298
#else /* !CONFIG_SCHED_DEBUG */
5299
# define sched_domain_debug(sd, cpu) do { } while (0)
5300 5301 5302 5303
static inline bool sched_debug(void)
{
	return false;
}
5304
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5305

5306
static int sd_degenerate(struct sched_domain *sd)
5307
{
5308
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5309 5310 5311 5312 5313 5314
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5315 5316 5317
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5318 5319 5320 5321 5322
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5323
	if (sd->flags & (SD_WAKE_AFFINE))
5324 5325 5326 5327 5328
		return 0;

	return 1;
}

5329 5330
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5331 5332 5333 5334 5335 5336
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5337
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5338 5339 5340 5341 5342 5343 5344
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5345 5346 5347
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5348 5349
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5350 5351 5352 5353 5354 5355 5356
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5357
static void free_rootdomain(struct rcu_head *rcu)
5358
{
5359
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5360

5361
	cpupri_cleanup(&rd->cpupri);
5362 5363 5364 5365 5366 5367
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5368 5369
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5370
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5371 5372
	unsigned long flags;

5373
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5374 5375

	if (rq->rd) {
I
Ingo Molnar 已提交
5376
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5377

5378
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5379
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5380

5381
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5382

I
Ingo Molnar 已提交
5383 5384 5385 5386 5387 5388 5389
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5390 5391 5392 5393 5394
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5395
	cpumask_set_cpu(rq->cpu, rd->span);
5396
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5397
		set_rq_online(rq);
G
Gregory Haskins 已提交
5398

5399
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5400 5401

	if (old_rd)
5402
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5403 5404
}

5405
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5406 5407 5408
{
	memset(rd, 0, sizeof(*rd));

5409
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5410
		goto out;
5411
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5412
		goto free_span;
5413
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5414
		goto free_online;
5415

5416
	if (cpupri_init(&rd->cpupri) != 0)
5417
		goto free_rto_mask;
5418
	return 0;
5419

5420 5421
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5422 5423 5424 5425
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5426
out:
5427
	return -ENOMEM;
G
Gregory Haskins 已提交
5428 5429
}

5430 5431 5432 5433 5434 5435
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5436 5437
static void init_defrootdomain(void)
{
5438
	init_rootdomain(&def_root_domain);
5439

G
Gregory Haskins 已提交
5440 5441 5442
	atomic_set(&def_root_domain.refcount, 1);
}

5443
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5444 5445 5446 5447 5448 5449 5450
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5451
	if (init_rootdomain(rd) != 0) {
5452 5453 5454
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5455 5456 5457 5458

	return rd;
}

5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5478 5479 5480
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5481 5482 5483 5484 5485 5486 5487 5488

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5489
		kfree(sd->groups->sgp);
5490
		kfree(sd->groups);
5491
	}
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5506 5507 5508 5509 5510 5511 5512
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5513
 * two cpus are in the same cache domain, see cpus_share_cache().
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5524
	if (sd)
5525 5526 5527 5528 5529 5530
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5531
/*
I
Ingo Molnar 已提交
5532
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5533 5534
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5535 5536
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5537
{
5538
	struct rq *rq = cpu_rq(cpu);
5539 5540 5541
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5542
	for (tmp = sd; tmp; ) {
5543 5544 5545
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5546

5547
		if (sd_parent_degenerate(tmp, parent)) {
5548
			tmp->parent = parent->parent;
5549 5550
			if (parent->parent)
				parent->parent->child = tmp;
5551
			destroy_sched_domain(parent, cpu);
5552 5553
		} else
			tmp = tmp->parent;
5554 5555
	}

5556
	if (sd && sd_degenerate(sd)) {
5557
		tmp = sd;
5558
		sd = sd->parent;
5559
		destroy_sched_domain(tmp, cpu);
5560 5561 5562
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5563

5564
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5565

G
Gregory Haskins 已提交
5566
	rq_attach_root(rq, rd);
5567
	tmp = rq->sd;
N
Nick Piggin 已提交
5568
	rcu_assign_pointer(rq->sd, sd);
5569
	destroy_sched_domains(tmp, cpu);
5570 5571

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5572 5573 5574
}

/* cpus with isolated domains */
5575
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5576 5577 5578 5579

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5580
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5581
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5582 5583 5584
	return 1;
}

I
Ingo Molnar 已提交
5585
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5586

5587 5588 5589 5590 5591
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5592 5593 5594
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5595
	struct sched_group_power **__percpu sgp;
5596 5597
};

5598
struct s_data {
5599
	struct sched_domain ** __percpu sd;
5600 5601 5602
	struct root_domain	*rd;
};

5603 5604
enum s_alloc {
	sa_rootdomain,
5605
	sa_sd,
5606
	sa_sd_storage,
5607 5608 5609
	sa_none,
};

5610 5611 5612
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5613 5614
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5615 5616
#define SDTL_OVERLAP	0x01

5617
struct sched_domain_topology_level {
5618 5619
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5620
	int		    flags;
5621
	int		    numa_level;
5622
	struct sd_data      data;
5623 5624
};

P
Peter Zijlstra 已提交
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5681 5682 5683 5684 5685 5686
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5687
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5688
				GFP_KERNEL, cpu_to_node(cpu));
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5702
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5703 5704 5705
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5706 5707 5708 5709 5710 5711
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5712

P
Peter Zijlstra 已提交
5713 5714 5715 5716 5717
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5718
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5719
		    group_balance_cpu(sg) == cpu)
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5739
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5740
{
5741 5742
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5743

5744 5745
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5746

5747
	if (sg) {
5748
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5749
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5750
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5751
	}
5752 5753

	return cpu;
5754 5755
}

5756
/*
5757 5758 5759
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5760 5761
 *
 * Assumes the sched_domain tree is fully constructed
5762
 */
5763 5764
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5765
{
5766 5767 5768
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5769
	struct cpumask *covered;
5770
	int i;
5771

5772 5773 5774 5775 5776 5777
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5778 5779 5780
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5781
	cpumask_clear(covered);
5782

5783 5784 5785 5786
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5787

5788 5789
		if (cpumask_test_cpu(i, covered))
			continue;
5790

5791
		cpumask_clear(sched_group_cpus(sg));
5792
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5793
		cpumask_setall(sched_group_mask(sg));
5794

5795 5796 5797
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5798

5799 5800 5801
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5802

5803 5804 5805 5806 5807 5808 5809
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5810 5811

	return 0;
5812
}
5813

5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5826
	struct sched_group *sg = sd->groups;
5827

5828 5829 5830 5831 5832 5833
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5834

P
Peter Zijlstra 已提交
5835
	if (cpu != group_balance_cpu(sg))
5836
		return;
5837

5838
	update_group_power(sd, cpu);
5839
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5840 5841
}

5842 5843 5844
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5845 5846
}

5847 5848 5849 5850 5851
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5852 5853 5854 5855 5856 5857
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5858 5859 5860 5861 5862 5863 5864 5865 5866
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5867 5868 5869 5870 5871 5872 5873 5874 5875
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5876 5877 5878
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5879

5880
static int default_relax_domain_level = -1;
5881
int sched_domain_level_max;
5882 5883 5884

static int __init setup_relax_domain_level(char *str)
{
5885 5886
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5887

5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5906
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5907 5908
	} else {
		/* turn on idle balance on this domain */
5909
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5910 5911 5912
	}
}

5913 5914 5915
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5916 5917 5918 5919 5920
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5921 5922
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5923 5924
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5925
	case sa_sd_storage:
5926
		__sdt_free(cpu_map); /* fall through */
5927 5928 5929 5930
	case sa_none:
		break;
	}
}
5931

5932 5933 5934
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5935 5936
	memset(d, 0, sizeof(*d));

5937 5938
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5939 5940 5941
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5942
	d->rd = alloc_rootdomain();
5943
	if (!d->rd)
5944
		return sa_sd;
5945 5946
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5947

5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5960
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5961
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5962 5963

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5964
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5965 5966
}

5967 5968
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5969
{
5970
	return topology_thread_cpumask(cpu);
5971
}
5972
#endif
5973

5974 5975 5976
/*
 * Topology list, bottom-up.
 */
5977
static struct sched_domain_topology_level default_topology[] = {
5978 5979
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5980
#endif
5981
#ifdef CONFIG_SCHED_MC
5982
	{ sd_init_MC, cpu_coregroup_mask, },
5983
#endif
5984 5985 5986 5987
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5988 5989 5990 5991 5992
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5993 5994 5995 5996 5997 5998 5999 6000 6001
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6002
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6020
		.imbalance_pct		= 125,
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6140
		}
6141 6142 6143 6144 6145 6146

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6147 6148 6149 6150 6151 6152 6153 6154 6155
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6182
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6183 6184 6185 6186 6187 6188
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6189
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6221 6222

	sched_domains_numa_levels = level;
6223
}
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6271 6272 6273 6274 6275
}
#else
static inline void sched_init_numa(void)
{
}
6276 6277 6278 6279 6280 6281 6282

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6283 6284
#endif /* CONFIG_NUMA */

6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6301 6302 6303 6304
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6305 6306 6307
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6308
			struct sched_group_power *sgp;
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6322 6323
			sg->next = sg;

6324
			*per_cpu_ptr(sdd->sg, j) = sg;
6325

P
Peter Zijlstra 已提交
6326
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6327 6328 6329 6330 6331
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6360 6361
		}
		free_percpu(sdd->sd);
6362
		sdd->sd = NULL;
6363
		free_percpu(sdd->sg);
6364
		sdd->sg = NULL;
6365
		free_percpu(sdd->sgp);
6366
		sdd->sgp = NULL;
6367 6368 6369
	}
}

6370 6371
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6372
		struct sched_domain_attr *attr, struct sched_domain *child,
6373 6374
		int cpu)
{
6375
	struct sched_domain *sd = tl->init(tl, cpu);
6376
	if (!sd)
6377
		return child;
6378 6379

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6380 6381 6382
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6383
		child->parent = sd;
6384
	}
6385
	sd->child = child;
6386
	set_domain_attribute(sd, attr);
6387 6388 6389 6390

	return sd;
}

6391 6392 6393 6394
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6395 6396
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6397 6398
{
	enum s_alloc alloc_state = sa_none;
6399
	struct sched_domain *sd;
6400
	struct s_data d;
6401
	int i, ret = -ENOMEM;
6402

6403 6404 6405
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6406

6407
	/* Set up domains for cpus specified by the cpu_map. */
6408
	for_each_cpu(i, cpu_map) {
6409 6410
		struct sched_domain_topology_level *tl;

6411
		sd = NULL;
6412
		for (tl = sched_domain_topology; tl->init; tl++) {
6413
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6414 6415
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6416 6417
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6418
		}
6419

6420 6421 6422
		while (sd->child)
			sd = sd->child;

6423
		*per_cpu_ptr(d.sd, i) = sd;
6424 6425 6426 6427 6428 6429
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6430 6431 6432 6433 6434 6435 6436
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6437
		}
6438
	}
6439

L
Linus Torvalds 已提交
6440
	/* Calculate CPU power for physical packages and nodes */
6441 6442 6443
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6444

6445 6446
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6447
			init_sched_groups_power(i, sd);
6448
		}
6449
	}
6450

L
Linus Torvalds 已提交
6451
	/* Attach the domains */
6452
	rcu_read_lock();
6453
	for_each_cpu(i, cpu_map) {
6454
		sd = *per_cpu_ptr(d.sd, i);
6455
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6456
	}
6457
	rcu_read_unlock();
6458

6459
	ret = 0;
6460
error:
6461
	__free_domain_allocs(&d, alloc_state, cpu_map);
6462
	return ret;
L
Linus Torvalds 已提交
6463
}
P
Paul Jackson 已提交
6464

6465
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6466
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6467 6468
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6469 6470 6471

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6472 6473
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6474
 */
6475
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6476

6477 6478 6479 6480 6481 6482
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6483
{
6484
	return 0;
6485 6486
}

6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6512
/*
I
Ingo Molnar 已提交
6513
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6514 6515
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6516
 */
6517
static int init_sched_domains(const struct cpumask *cpu_map)
6518
{
6519 6520
	int err;

6521
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6522
	ndoms_cur = 1;
6523
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6524
	if (!doms_cur)
6525 6526
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6527
	err = build_sched_domains(doms_cur[0], NULL);
6528
	register_sched_domain_sysctl();
6529 6530

	return err;
6531 6532 6533 6534 6535 6536
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6537
static void detach_destroy_domains(const struct cpumask *cpu_map)
6538 6539 6540
{
	int i;

6541
	rcu_read_lock();
6542
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6543
		cpu_attach_domain(NULL, &def_root_domain, i);
6544
	rcu_read_unlock();
6545 6546
}

6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6563 6564
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6565
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6566 6567 6568
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6569
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6570 6571 6572
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6573 6574 6575
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6576 6577 6578 6579 6580 6581
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6582
 *
6583
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6584 6585
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6586
 *
P
Paul Jackson 已提交
6587 6588
 * Call with hotplug lock held
 */
6589
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6590
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6591
{
6592
	int i, j, n;
6593
	int new_topology;
P
Paul Jackson 已提交
6594

6595
	mutex_lock(&sched_domains_mutex);
6596

6597 6598 6599
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6600 6601 6602
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6603
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6604 6605 6606

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6607
		for (j = 0; j < n && !new_topology; j++) {
6608
			if (cpumask_equal(doms_cur[i], doms_new[j])
6609
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6610 6611 6612
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6613
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6614 6615 6616 6617
match1:
		;
	}

6618 6619
	if (doms_new == NULL) {
		ndoms_cur = 0;
6620
		doms_new = &fallback_doms;
6621
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6622
		WARN_ON_ONCE(dattr_new);
6623 6624
	}

P
Paul Jackson 已提交
6625 6626
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6627
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6628
			if (cpumask_equal(doms_new[i], doms_cur[j])
6629
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6630 6631 6632
				goto match2;
		}
		/* no match - add a new doms_new */
6633
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6634 6635 6636 6637 6638
match2:
		;
	}

	/* Remember the new sched domains */
6639 6640
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6641
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6642
	doms_cur = doms_new;
6643
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6644
	ndoms_cur = ndoms_new;
6645 6646

	register_sched_domain_sysctl();
6647

6648
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6649 6650
}

6651 6652
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6653
/*
6654 6655 6656
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6657 6658 6659
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6660
 */
6661 6662
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6663
{
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6686
	case CPU_ONLINE:
6687
	case CPU_DOWN_FAILED:
6688
		cpuset_update_active_cpus(true);
6689
		break;
6690 6691 6692
	default:
		return NOTIFY_DONE;
	}
6693
	return NOTIFY_OK;
6694
}
6695

6696 6697
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6698
{
6699
	switch (action) {
6700
	case CPU_DOWN_PREPARE:
6701
		cpuset_update_active_cpus(false);
6702 6703 6704 6705 6706
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6707 6708 6709
	default:
		return NOTIFY_DONE;
	}
6710
	return NOTIFY_OK;
6711 6712
}

L
Linus Torvalds 已提交
6713 6714
void __init sched_init_smp(void)
{
6715 6716 6717
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6718
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6719

6720 6721
	sched_init_numa();

6722
	get_online_cpus();
6723
	mutex_lock(&sched_domains_mutex);
6724
	init_sched_domains(cpu_active_mask);
6725 6726 6727
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6728
	mutex_unlock(&sched_domains_mutex);
6729
	put_online_cpus();
6730

6731
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6732 6733
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6734 6735 6736 6737

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6738
	init_hrtick();
6739 6740

	/* Move init over to a non-isolated CPU */
6741
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6742
		BUG();
I
Ingo Molnar 已提交
6743
	sched_init_granularity();
6744
	free_cpumask_var(non_isolated_cpus);
6745

6746
	init_sched_rt_class();
L
Linus Torvalds 已提交
6747 6748 6749 6750
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6751
	sched_init_granularity();
L
Linus Torvalds 已提交
6752 6753 6754
}
#endif /* CONFIG_SMP */

6755 6756
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6757 6758 6759 6760 6761 6762 6763
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6764 6765
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6766
LIST_HEAD(task_groups);
6767
#endif
P
Peter Zijlstra 已提交
6768

6769
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6770

L
Linus Torvalds 已提交
6771 6772
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6773
	int i, j;
6774 6775 6776 6777 6778 6779 6780
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6781
#endif
6782
#ifdef CONFIG_CPUMASK_OFFSTACK
6783
	alloc_size += num_possible_cpus() * cpumask_size();
6784 6785
#endif
	if (alloc_size) {
6786
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6787 6788

#ifdef CONFIG_FAIR_GROUP_SCHED
6789
		root_task_group.se = (struct sched_entity **)ptr;
6790 6791
		ptr += nr_cpu_ids * sizeof(void **);

6792
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6793
		ptr += nr_cpu_ids * sizeof(void **);
6794

6795
#endif /* CONFIG_FAIR_GROUP_SCHED */
6796
#ifdef CONFIG_RT_GROUP_SCHED
6797
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6798 6799
		ptr += nr_cpu_ids * sizeof(void **);

6800
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6801 6802
		ptr += nr_cpu_ids * sizeof(void **);

6803
#endif /* CONFIG_RT_GROUP_SCHED */
6804 6805 6806 6807 6808 6809
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6810
	}
I
Ingo Molnar 已提交
6811

G
Gregory Haskins 已提交
6812 6813 6814 6815
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6816 6817 6818 6819
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6820
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6821
			global_rt_period(), global_rt_runtime());
6822
#endif /* CONFIG_RT_GROUP_SCHED */
6823

D
Dhaval Giani 已提交
6824
#ifdef CONFIG_CGROUP_SCHED
6825 6826
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6827
	INIT_LIST_HEAD(&root_task_group.siblings);
6828
	autogroup_init(&init_task);
6829

D
Dhaval Giani 已提交
6830
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6831

6832 6833 6834 6835 6836 6837
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6838
	for_each_possible_cpu(i) {
6839
		struct rq *rq;
L
Linus Torvalds 已提交
6840 6841

		rq = cpu_rq(i);
6842
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6843
		rq->nr_running = 0;
6844 6845
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6846
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6847
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6848
#ifdef CONFIG_FAIR_GROUP_SCHED
6849
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6850
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6851
		/*
6852
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6853 6854 6855 6856
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6857
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6858 6859 6860
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6861
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6862 6863 6864
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6865
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6866
		 *
6867 6868
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6869
		 */
6870
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6871
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6872 6873 6874
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6875
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6876
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6877
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6878
#endif
L
Linus Torvalds 已提交
6879

I
Ingo Molnar 已提交
6880 6881
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6882 6883 6884

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6885
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6886
		rq->sd = NULL;
G
Gregory Haskins 已提交
6887
		rq->rd = NULL;
6888
		rq->cpu_power = SCHED_POWER_SCALE;
6889
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6890
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6891
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6892
		rq->push_cpu = 0;
6893
		rq->cpu = i;
6894
		rq->online = 0;
6895 6896
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6897 6898 6899

		INIT_LIST_HEAD(&rq->cfs_tasks);

6900
		rq_attach_root(rq, &def_root_domain);
6901
#ifdef CONFIG_NO_HZ
6902
		rq->nohz_flags = 0;
6903
#endif
L
Linus Torvalds 已提交
6904
#endif
P
Peter Zijlstra 已提交
6905
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6906 6907 6908
		atomic_set(&rq->nr_iowait, 0);
	}

6909
	set_load_weight(&init_task);
6910

6911 6912 6913 6914
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6915
#ifdef CONFIG_RT_MUTEXES
6916
	plist_head_init(&init_task.pi_waiters);
6917 6918
#endif

L
Linus Torvalds 已提交
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6932 6933 6934

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6935 6936 6937 6938
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6939

6940
#ifdef CONFIG_SMP
6941
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6942 6943 6944
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6945
	idle_thread_set_boot_cpu();
6946 6947
#endif
	init_sched_fair_class();
6948

6949
	scheduler_running = 1;
L
Linus Torvalds 已提交
6950 6951
}

6952
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6953 6954
static inline int preempt_count_equals(int preempt_offset)
{
6955
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6956

A
Arnd Bergmann 已提交
6957
	return (nested == preempt_offset);
6958 6959
}

6960
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6961 6962 6963
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6964
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6965 6966
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6967 6968 6969 6970 6971
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6972 6973 6974 6975 6976 6977 6978
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6979 6980 6981 6982 6983

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6984 6985 6986 6987 6988
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6989 6990
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6991 6992
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6993
	int on_rq;
6994

P
Peter Zijlstra 已提交
6995
	on_rq = p->on_rq;
6996
	if (on_rq)
6997
		dequeue_task(rq, p, 0);
6998 6999
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7000
		enqueue_task(rq, p, 0);
7001 7002
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7003 7004

	check_class_changed(rq, p, prev_class, old_prio);
7005 7006
}

L
Linus Torvalds 已提交
7007 7008
void normalize_rt_tasks(void)
{
7009
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7010
	unsigned long flags;
7011
	struct rq *rq;
L
Linus Torvalds 已提交
7012

7013
	read_lock_irqsave(&tasklist_lock, flags);
7014
	do_each_thread(g, p) {
7015 7016 7017 7018 7019 7020
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7021 7022
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7023 7024 7025
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7026
#endif
I
Ingo Molnar 已提交
7027 7028 7029 7030 7031 7032 7033 7034

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7035
			continue;
I
Ingo Molnar 已提交
7036
		}
L
Linus Torvalds 已提交
7037

7038
		raw_spin_lock(&p->pi_lock);
7039
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7040

7041
		normalize_task(rq, p);
7042

7043
		__task_rq_unlock(rq);
7044
		raw_spin_unlock(&p->pi_lock);
7045 7046
	} while_each_thread(g, p);

7047
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7048 7049 7050
}

#endif /* CONFIG_MAGIC_SYSRQ */
7051

7052
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7053
/*
7054
 * These functions are only useful for the IA64 MCA handling, or kdb.
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7069
struct task_struct *curr_task(int cpu)
7070 7071 7072 7073
{
	return cpu_curr(cpu);
}

7074 7075 7076
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7077 7078 7079 7080 7081 7082
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7083 7084
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7085 7086 7087 7088 7089 7090 7091
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7092
void set_curr_task(int cpu, struct task_struct *p)
7093 7094 7095 7096 7097
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7098

D
Dhaval Giani 已提交
7099
#ifdef CONFIG_CGROUP_SCHED
7100 7101 7102
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7103 7104 7105 7106
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7107
	autogroup_free(tg);
7108 7109 7110 7111
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7112
struct task_group *sched_create_group(struct task_group *parent)
7113 7114 7115 7116 7117 7118 7119 7120
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7121
	if (!alloc_fair_sched_group(tg, parent))
7122 7123
		goto err;

7124
	if (!alloc_rt_sched_group(tg, parent))
7125 7126
		goto err;

7127
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7128
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7129 7130 7131 7132 7133

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7134
	list_add_rcu(&tg->siblings, &parent->children);
7135
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7136

7137
	return tg;
S
Srivatsa Vaddagiri 已提交
7138 7139

err:
P
Peter Zijlstra 已提交
7140
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7141 7142 7143
	return ERR_PTR(-ENOMEM);
}

7144
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7145
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7146 7147
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7148
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7149 7150
}

7151
/* Destroy runqueue etc associated with a task group */
7152
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7153
{
7154
	unsigned long flags;
7155
	int i;
S
Srivatsa Vaddagiri 已提交
7156

7157 7158
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7159
		unregister_fair_sched_group(tg, i);
7160 7161

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7162
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7163
	list_del_rcu(&tg->siblings);
7164
	spin_unlock_irqrestore(&task_group_lock, flags);
7165 7166

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7167
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7168 7169
}

7170
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7171 7172 7173
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7174 7175
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7176
{
P
Peter Zijlstra 已提交
7177
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7178 7179 7180 7181 7182 7183
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7184
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7185
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7186

7187
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7188
		dequeue_task(rq, tsk, 0);
7189 7190
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7191

P
Peter Zijlstra 已提交
7192 7193 7194 7195 7196 7197
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7198
#ifdef CONFIG_FAIR_GROUP_SCHED
7199 7200 7201
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7202
#endif
7203
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7204

7205 7206 7207
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7208
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7209

7210
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7211
}
D
Dhaval Giani 已提交
7212
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7213

7214
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7215 7216 7217
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7218
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7219

P
Peter Zijlstra 已提交
7220
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7221
}
7222 7223 7224 7225 7226 7227 7228
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7229

P
Peter Zijlstra 已提交
7230 7231
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7232
{
P
Peter Zijlstra 已提交
7233
	struct task_struct *g, *p;
7234

P
Peter Zijlstra 已提交
7235
	do_each_thread(g, p) {
7236
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7237 7238
			return 1;
	} while_each_thread(g, p);
7239

P
Peter Zijlstra 已提交
7240 7241
	return 0;
}
7242

P
Peter Zijlstra 已提交
7243 7244 7245 7246 7247
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7248

7249
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7250 7251 7252 7253 7254
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7255

P
Peter Zijlstra 已提交
7256 7257
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7258

P
Peter Zijlstra 已提交
7259 7260 7261
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7262 7263
	}

7264 7265 7266 7267 7268
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7269

7270 7271 7272
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7273 7274
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7275

P
Peter Zijlstra 已提交
7276
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7277

7278 7279 7280 7281 7282
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7283

7284 7285 7286
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7287 7288 7289
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7290

P
Peter Zijlstra 已提交
7291 7292 7293 7294
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7295

P
Peter Zijlstra 已提交
7296
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7297
	}
P
Peter Zijlstra 已提交
7298

P
Peter Zijlstra 已提交
7299 7300 7301 7302
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7303 7304
}

P
Peter Zijlstra 已提交
7305
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7306
{
7307 7308
	int ret;

P
Peter Zijlstra 已提交
7309 7310 7311 7312 7313 7314
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7315 7316 7317 7318 7319
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7320 7321
}

7322
static int tg_set_rt_bandwidth(struct task_group *tg,
7323
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7324
{
P
Peter Zijlstra 已提交
7325
	int i, err = 0;
P
Peter Zijlstra 已提交
7326 7327

	mutex_lock(&rt_constraints_mutex);
7328
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7329 7330
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7331
		goto unlock;
P
Peter Zijlstra 已提交
7332

7333
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7334 7335
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7336 7337 7338 7339

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7340
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7341
		rt_rq->rt_runtime = rt_runtime;
7342
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7343
	}
7344
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7345
unlock:
7346
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7347 7348 7349
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7350 7351
}

7352 7353 7354 7355 7356 7357 7358 7359 7360
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7361
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7362 7363
}

P
Peter Zijlstra 已提交
7364 7365 7366 7367
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7368
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7369 7370
		return -1;

7371
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7372 7373 7374
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7375 7376 7377 7378 7379 7380 7381 7382

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7383 7384 7385
	if (rt_period == 0)
		return -EINVAL;

7386
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7400
	u64 runtime, period;
7401 7402
	int ret = 0;

7403 7404 7405
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7406 7407 7408 7409 7410 7411 7412 7413
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7414

7415
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7416
	read_lock(&tasklist_lock);
7417
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7418
	read_unlock(&tasklist_lock);
7419 7420 7421 7422
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7423 7424 7425 7426 7427 7428 7429 7430 7431 7432

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7433
#else /* !CONFIG_RT_GROUP_SCHED */
7434 7435
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7436 7437 7438
	unsigned long flags;
	int i;

7439 7440 7441
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7442 7443 7444 7445 7446 7447 7448
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7449
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7450 7451 7452
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7453
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7454
		rt_rq->rt_runtime = global_rt_runtime();
7455
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7456
	}
7457
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7458

7459 7460
	return 0;
}
7461
#endif /* CONFIG_RT_GROUP_SCHED */
7462 7463

int sched_rt_handler(struct ctl_table *table, int write,
7464
		void __user *buffer, size_t *lenp,
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7475
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7492

7493
#ifdef CONFIG_CGROUP_SCHED
7494 7495

/* return corresponding task_group object of a cgroup */
7496
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7497
{
7498 7499
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7500 7501
}

7502
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7503
{
7504
	struct task_group *tg, *parent;
7505

7506
	if (!cgrp->parent) {
7507
		/* This is early initialization for the top cgroup */
7508
		return &root_task_group.css;
7509 7510
	}

7511 7512
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7513 7514 7515 7516 7517 7518
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7519
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7520
{
7521
	struct task_group *tg = cgroup_tg(cgrp);
7522 7523 7524 7525

	sched_destroy_group(tg);
}

7526
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7527
				 struct cgroup_taskset *tset)
7528
{
7529 7530 7531
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7532
#ifdef CONFIG_RT_GROUP_SCHED
7533 7534
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7535
#else
7536 7537 7538
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7539
#endif
7540
	}
7541 7542
	return 0;
}
7543

7544
static void cpu_cgroup_attach(struct cgroup *cgrp,
7545
			      struct cgroup_taskset *tset)
7546
{
7547 7548 7549 7550
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7551 7552
}

7553
static void
7554 7555
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7568
#ifdef CONFIG_FAIR_GROUP_SCHED
7569
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7570
				u64 shareval)
7571
{
7572
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7573 7574
}

7575
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7576
{
7577
	struct task_group *tg = cgroup_tg(cgrp);
7578

7579
	return (u64) scale_load_down(tg->shares);
7580
}
7581 7582

#ifdef CONFIG_CFS_BANDWIDTH
7583 7584
static DEFINE_MUTEX(cfs_constraints_mutex);

7585 7586 7587
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7588 7589
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7590 7591
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7592
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7593
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7614 7615 7616 7617 7618
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7619
	runtime_enabled = quota != RUNTIME_INF;
7620 7621
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7622 7623 7624
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7625

P
Paul Turner 已提交
7626
	__refill_cfs_bandwidth_runtime(cfs_b);
7627 7628 7629 7630 7631 7632
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7633 7634 7635 7636
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7637
		struct rq *rq = cfs_rq->rq;
7638 7639

		raw_spin_lock_irq(&rq->lock);
7640
		cfs_rq->runtime_enabled = runtime_enabled;
7641
		cfs_rq->runtime_remaining = 0;
7642

7643
		if (cfs_rq->throttled)
7644
			unthrottle_cfs_rq(cfs_rq);
7645 7646
		raw_spin_unlock_irq(&rq->lock);
	}
7647 7648
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7649

7650
	return ret;
7651 7652 7653 7654 7655 7656
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7657
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7670
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7671 7672
		return -1;

7673
	quota_us = tg->cfs_bandwidth.quota;
7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7684
	quota = tg->cfs_bandwidth.quota;
7685 7686 7687 7688 7689 7690 7691 7692

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7693
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7753
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7754 7755 7756 7757 7758
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7759
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7780
	int ret;
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7792 7793 7794 7795 7796
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7797
}
7798 7799 7800 7801 7802

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7803
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7804 7805 7806 7807 7808 7809 7810

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7811
#endif /* CONFIG_CFS_BANDWIDTH */
7812
#endif /* CONFIG_FAIR_GROUP_SCHED */
7813

7814
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7815
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7816
				s64 val)
P
Peter Zijlstra 已提交
7817
{
7818
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7819 7820
}

7821
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7822
{
7823
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7824
}
7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7836
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7837

7838
static struct cftype cpu_files[] = {
7839
#ifdef CONFIG_FAIR_GROUP_SCHED
7840 7841
	{
		.name = "shares",
7842 7843
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7844
	},
7845
#endif
7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7857 7858 7859 7860
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7861
#endif
7862
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7863
	{
P
Peter Zijlstra 已提交
7864
		.name = "rt_runtime_us",
7865 7866
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7867
	},
7868 7869
	{
		.name = "rt_period_us",
7870 7871
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7872
	},
7873
#endif
7874
	{ }	/* terminate */
7875 7876 7877
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7878
	.name		= "cpu",
7879 7880
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7881 7882
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7883
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7884
	.subsys_id	= cpu_cgroup_subsys_id,
7885
	.base_cftypes	= cpu_files,
7886 7887 7888
	.early_init	= 1,
};

7889
#endif	/* CONFIG_CGROUP_SCHED */
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7900 7901
struct cpuacct root_cpuacct;

7902
/* create a new cpu accounting group */
7903
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7904
{
7905
	struct cpuacct *ca;
7906

7907 7908 7909 7910
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7911
	if (!ca)
7912
		goto out;
7913 7914

	ca->cpuusage = alloc_percpu(u64);
7915 7916 7917
	if (!ca->cpuusage)
		goto out_free_ca;

7918 7919 7920
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7921

7922
	return &ca->css;
7923

7924
out_free_cpuusage:
7925 7926 7927 7928 7929
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7930 7931 7932
}

/* destroy an existing cpu accounting group */
7933
static void cpuacct_css_free(struct cgroup *cgrp)
7934
{
7935
	struct cpuacct *ca = cgroup_ca(cgrp);
7936

7937
	free_percpu(ca->cpustat);
7938 7939 7940 7941
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7942 7943
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7944
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7945 7946 7947 7948 7949 7950
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7951
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7952
	data = *cpuusage;
7953
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7954 7955 7956 7957 7958 7959 7960 7961 7962
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7963
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7964 7965 7966 7967 7968

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7969
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7970
	*cpuusage = val;
7971
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7972 7973 7974 7975 7976
#else
	*cpuusage = val;
#endif
}

7977
/* return total cpu usage (in nanoseconds) of a group */
7978
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7979
{
7980
	struct cpuacct *ca = cgroup_ca(cgrp);
7981 7982 7983
	u64 totalcpuusage = 0;
	int i;

7984 7985
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7986 7987 7988 7989

	return totalcpuusage;
}

7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8002 8003
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8004 8005 8006 8007 8008

out:
	return err;
}

8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8024 8025 8026 8027 8028 8029
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8030
			      struct cgroup_map_cb *cb)
8031 8032
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8033 8034
	int cpu;
	s64 val = 0;
8035

8036 8037 8038 8039
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8040
	}
8041 8042
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8043

8044 8045 8046 8047 8048 8049
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8050
	}
8051 8052 8053 8054

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8055 8056 8057
	return 0;
}

8058 8059 8060
static struct cftype files[] = {
	{
		.name = "usage",
8061 8062
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8063
	},
8064 8065 8066 8067
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8068 8069 8070 8071
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8072
	{ }	/* terminate */
8073 8074 8075 8076 8077 8078 8079
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8080
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8081 8082
{
	struct cpuacct *ca;
8083
	int cpu;
8084

L
Li Zefan 已提交
8085
	if (unlikely(!cpuacct_subsys.active))
8086 8087
		return;

8088
	cpu = task_cpu(tsk);
8089 8090 8091

	rcu_read_lock();

8092 8093
	ca = task_ca(tsk);

8094
	for (; ca; ca = parent_ca(ca)) {
8095
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8096 8097
		*cpuusage += cputime;
	}
8098 8099

	rcu_read_unlock();
8100 8101 8102 8103
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8104 8105
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8106
	.subsys_id = cpuacct_subsys_id,
8107
	.base_cftypes = files,
8108 8109
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8110 8111 8112 8113 8114 8115

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}