core.c 196.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743 744
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

745 746 747 748 749 750 751
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
752 753 754
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
755
 */
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
810 811 812
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
813
#endif /* CONFIG_64BIT */
814

815 816 817 818
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
819 820 821
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
822
	s64 delta;
823 824 825 826 827 828 829 830
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
831 832 833
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

834
	irq_time_write_begin();
835 836 837 838 839 840 841
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
842
		__this_cpu_add(cpu_hardirq_time, delta);
843
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844
		__this_cpu_add(cpu_softirq_time, delta);
845

846
	irq_time_write_end();
847 848
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
849
EXPORT_SYMBOL_GPL(account_system_vtime);
850

G
Glauber Costa 已提交
851 852 853 854
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
855
{
G
Glauber Costa 已提交
856 857
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
858

G
Glauber Costa 已提交
859 860 861 862
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

863
static void update_rq_clock_task(struct rq *rq, s64 delta)
864
{
865 866 867 868 869 870 871 872
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
873
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
895 896
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897
	if (static_key_false((&paravirt_steal_rq_enabled))) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

915 916
	rq->clock_task += delta;

917 918 919 920
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
921 922
}

923
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 925
static int irqtime_account_hi_update(void)
{
926
	u64 *cpustat = kcpustat_this_cpu->cpustat;
927 928 929 930 931 932
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
933
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 935 936 937 938 939 940
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
941
	u64 *cpustat = kcpustat_this_cpu->cpustat;
942 943 944 945 946 947
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
948
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 950 951 952 953
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

954
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
955

956 957
#define sched_clock_irqtime	(0)

958
#endif
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

990
/*
I
Ingo Molnar 已提交
991
 * __normal_prio - return the priority that is based on the static prio
992 993 994
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
995
	return p->static_prio;
996 997
}

998 999 1000 1001 1002 1003 1004
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1005
static inline int normal_prio(struct task_struct *p)
1006 1007 1008
{
	int prio;

1009
	if (task_has_rt_policy(p))
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1023
static int effective_prio(struct task_struct *p)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1036 1037 1038 1039
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1040
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1041 1042 1043 1044
{
	return cpu_curr(task_cpu(p)) == p;
}

1045 1046
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1047
				       int oldprio)
1048 1049 1050
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1051 1052 1053 1054
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1055 1056
}

1057
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1078
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 1080 1081
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1082
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1083
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1084
{
1085 1086 1087 1088 1089
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1090 1091
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092 1093

#ifdef CONFIG_LOCKDEP
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1104 1105 1106
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1107 1108
#endif

1109
	trace_sched_migrate_task(p, new_cpu);
1110

1111 1112
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1113
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114
	}
I
Ingo Molnar 已提交
1115 1116

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1117 1118
}

1119
struct migration_arg {
1120
	struct task_struct *task;
L
Linus Torvalds 已提交
1121
	int dest_cpu;
1122
};
L
Linus Torvalds 已提交
1123

1124 1125
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1126 1127 1128
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1129 1130 1131 1132 1133 1134 1135
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1136 1137 1138 1139 1140 1141
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1142
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1143 1144
{
	unsigned long flags;
I
Ingo Molnar 已提交
1145
	int running, on_rq;
R
Roland McGrath 已提交
1146
	unsigned long ncsw;
1147
	struct rq *rq;
L
Linus Torvalds 已提交
1148

1149 1150 1151 1152 1153 1154 1155 1156
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1169 1170 1171
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1172
			cpu_relax();
R
Roland McGrath 已提交
1173
		}
1174

1175 1176 1177 1178 1179 1180
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1181
		trace_sched_wait_task(p);
1182
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1183
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1184
		ncsw = 0;
1185
		if (!match_state || p->state == match_state)
1186
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187
		task_rq_unlock(rq, p, &flags);
1188

R
Roland McGrath 已提交
1189 1190 1191 1192 1193 1194
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1205

1206 1207 1208 1209 1210
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1211
		 * So if it was still runnable (but just not actively
1212 1213 1214 1215
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1216 1217 1218 1219
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 1221
			continue;
		}
1222

1223 1224 1225 1226 1227 1228 1229
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1230 1231

	return ncsw;
L
Linus Torvalds 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1241
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1242 1243 1244 1245 1246
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1247
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1257
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1258
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1259

1260
#ifdef CONFIG_SMP
1261
/*
1262
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263
 */
1264 1265 1266
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 1268
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1269 1270

	/* Look for allowed, online CPU in same node. */
1271
	for_each_cpu(dest_cpu, nodemask) {
1272 1273 1274 1275
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1276
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277
			return dest_cpu;
1278
	}
1279

1280 1281
	for (;;) {
		/* Any allowed, online CPU? */
1282
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 1284 1285 1286 1287 1288
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1319 1320 1321 1322 1323
	}

	return dest_cpu;
}

1324
/*
1325
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326
 */
1327
static inline
1328
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329
{
1330
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1342
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1343
		     !cpu_online(cpu)))
1344
		cpu = select_fallback_rq(task_cpu(p), p);
1345 1346

	return cpu;
1347
}
1348 1349 1350 1351 1352 1353

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1354 1355
#endif

P
Peter Zijlstra 已提交
1356
static void
1357
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1358
{
P
Peter Zijlstra 已提交
1359
#ifdef CONFIG_SCHEDSTATS
1360 1361
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372
		rcu_read_lock();
P
Peter Zijlstra 已提交
1373 1374 1375 1376 1377 1378
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1379
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1380
	}
1381 1382 1383 1384

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1385 1386 1387
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1388
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1389 1390

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1391
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1392 1393 1394 1395 1396 1397

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1398
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1399
	p->on_rq = 1;
1400 1401 1402 1403

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1404 1405
}

1406 1407 1408
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1409
static void
1410
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1411
{
1412
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1413 1414 1415 1416 1417 1418 1419
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1420
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1466
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1467
static void sched_ttwu_pending(void)
1468 1469
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1470 1471
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1472 1473 1474

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1475 1476 1477
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1478 1479 1480 1481 1482 1483 1484 1485
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1486
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1503
	sched_ttwu_pending();
1504 1505 1506 1507

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1508 1509
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1510
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511
	}
1512
	irq_exit();
1513 1514 1515 1516
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1517
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 1519
		smp_send_reschedule(cpu);
}
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539

1540
bool cpus_share_cache(int this_cpu, int that_cpu)
1541 1542 1543
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1544
#endif /* CONFIG_SMP */
1545

1546 1547 1548 1549
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1550
#if defined(CONFIG_SMP)
1551
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 1554 1555 1556 1557
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1558 1559 1560
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1561 1562 1563
}

/**
L
Linus Torvalds 已提交
1564
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1565
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1566
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1567
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573 1574
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1575 1576
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1577
 */
1578 1579
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1580 1581
{
	unsigned long flags;
1582
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1583

1584
	smp_wmb();
1585
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1586
	if (!(p->state & state))
L
Linus Torvalds 已提交
1587 1588
		goto out;

1589
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1590 1591
	cpu = task_cpu(p);

1592 1593
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1594 1595

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1596
	/*
1597 1598
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1599
	 */
1600 1601 1602
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1603 1604 1605 1606 1607
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1608
		 */
1609
		if (ttwu_activate_remote(p, wake_flags))
1610
			goto stat;
1611
#else
1612
		cpu_relax();
1613
#endif
1614
	}
1615
	/*
1616
	 * Pairs with the smp_wmb() in finish_lock_switch().
1617
	 */
1618
	smp_rmb();
L
Linus Torvalds 已提交
1619

1620
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1621
	p->state = TASK_WAKING;
1622

1623
	if (p->sched_class->task_waking)
1624
		p->sched_class->task_waking(p);
1625

1626
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 1628
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1629
		set_task_cpu(p, cpu);
1630
	}
L
Linus Torvalds 已提交
1631 1632
#endif /* CONFIG_SMP */

1633 1634
	ttwu_queue(p, cpu);
stat:
1635
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1636
out:
1637
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1638 1639 1640 1641

	return success;
}

T
Tejun Heo 已提交
1642 1643 1644 1645
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1646
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1647
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648
 * the current task.
T
Tejun Heo 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1658 1659 1660 1661 1662 1663
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1664
	if (!(p->state & TASK_NORMAL))
1665
		goto out;
T
Tejun Heo 已提交
1666

P
Peter Zijlstra 已提交
1667
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1668 1669
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1670
	ttwu_do_wakeup(rq, p, 0);
1671
	ttwu_stat(p, smp_processor_id(), 0);
1672 1673
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1674 1675
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1687
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1688
{
1689
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1690 1691 1692
}
EXPORT_SYMBOL(wake_up_process);

1693
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1694 1695 1696 1697 1698 1699 1700
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1701 1702 1703 1704 1705
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1706 1707 1708
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1709 1710
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1711
	p->se.prev_sum_exec_runtime	= 0;
1712
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1713
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1714
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1715 1716

#ifdef CONFIG_SCHEDSTATS
1717
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1718
#endif
N
Nick Piggin 已提交
1719

P
Peter Zijlstra 已提交
1720
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1721

1722 1723 1724
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1725 1726 1727 1728 1729
}

/*
 * fork()/clone()-time setup:
 */
1730
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1731
{
1732
	unsigned long flags;
I
Ingo Molnar 已提交
1733 1734 1735
	int cpu = get_cpu();

	__sched_fork(p);
1736
	/*
1737
	 * We mark the process as running here. This guarantees that
1738 1739 1740
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1741
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1742

1743 1744 1745 1746 1747
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1748 1749 1750 1751
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1752
		if (task_has_rt_policy(p)) {
1753
			p->policy = SCHED_NORMAL;
1754
			p->static_prio = NICE_TO_PRIO(0);
1755 1756 1757 1758 1759 1760
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1761

1762 1763 1764 1765 1766 1767
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1768

H
Hiroshi Shimamoto 已提交
1769 1770
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1771

P
Peter Zijlstra 已提交
1772 1773 1774
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1775 1776 1777 1778 1779 1780 1781
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1782
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783
	set_task_cpu(p, cpu);
1784
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785

1786
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1787
	if (likely(sched_info_on()))
1788
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1789
#endif
P
Peter Zijlstra 已提交
1790 1791
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1792
#endif
1793
#ifdef CONFIG_PREEMPT_COUNT
1794
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1795
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1796
#endif
1797
#ifdef CONFIG_SMP
1798
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799
#endif
1800

N
Nick Piggin 已提交
1801
	put_cpu();
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1811
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1812 1813
{
	unsigned long flags;
I
Ingo Molnar 已提交
1814
	struct rq *rq;
1815

1816
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 1818 1819 1820 1821 1822
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1823
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 1825
#endif

1826
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1827
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1828
	p->on_rq = 1;
1829
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1830
	check_preempt_curr(rq, p, WF_FORK);
1831
#ifdef CONFIG_SMP
1832 1833
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1834
#endif
1835
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1836 1837
}

1838 1839 1840
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1841
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1842
 * @notifier: notifier struct to register
1843 1844 1845 1846 1847 1848 1849 1850 1851
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1852
 * @notifier: notifier struct to unregister
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1882
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1894
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1895

1896 1897 1898
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1899
 * @prev: the current task that is being switched out
1900 1901 1902 1903 1904 1905 1906 1907 1908
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1909 1910 1911
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1912
{
1913 1914
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1915
	fire_sched_out_preempt_notifiers(prev, next);
1916 1917
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1918
	trace_sched_switch(prev, next);
1919 1920
}

L
Linus Torvalds 已提交
1921 1922
/**
 * finish_task_switch - clean up after a task-switch
1923
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1924 1925
 * @prev: the thread we just switched away from.
 *
1926 1927 1928 1929
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1930 1931
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1932
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1933 1934 1935
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1936
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1937 1938 1939
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1940
	long prev_state;
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1946
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1947 1948
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1949
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1955
	prev_state = prev->state;
1956
	finish_arch_switch(prev);
1957 1958 1959
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960
	perf_event_task_sched_in(prev, current);
1961 1962 1963
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964
	finish_lock_switch(rq, prev);
1965
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1966

1967
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1968 1969
	if (mm)
		mmdrop(mm);
1970
	if (unlikely(prev_state == TASK_DEAD)) {
1971 1972 1973
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1974
		 */
1975
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1976
		put_task_struct(prev);
1977
	}
L
Linus Torvalds 已提交
1978 1979
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1995
		raw_spin_lock_irqsave(&rq->lock, flags);
1996 1997
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1998
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1999 2000 2001 2002 2003 2004

		rq->post_schedule = 0;
	}
}

#else
2005

2006 2007 2008 2009 2010 2011
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2012 2013
}

2014 2015
#endif

L
Linus Torvalds 已提交
2016 2017 2018 2019
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2020
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2021 2022
	__releases(rq->lock)
{
2023 2024
	struct rq *rq = this_rq();

2025
	finish_task_switch(rq, prev);
2026

2027 2028 2029 2030 2031
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2032

2033 2034 2035 2036
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2037
	if (current->set_child_tid)
2038
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2045
static inline void
2046
context_switch(struct rq *rq, struct task_struct *prev,
2047
	       struct task_struct *next)
L
Linus Torvalds 已提交
2048
{
I
Ingo Molnar 已提交
2049
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2050

2051
	prepare_task_switch(rq, prev, next);
2052

I
Ingo Molnar 已提交
2053 2054
	mm = next->mm;
	oldmm = prev->active_mm;
2055 2056 2057 2058 2059
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2060
	arch_start_context_switch(prev);
2061

2062
	if (!mm) {
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2069
	if (!prev->mm) {
L
Linus Torvalds 已提交
2070 2071 2072
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2073 2074 2075 2076 2077 2078 2079
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081
#endif
L
Linus Torvalds 已提交
2082 2083

	/* Here we just switch the register state and the stack. */
2084
	rcu_switch_from(prev);
L
Linus Torvalds 已提交
2085 2086
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2087 2088 2089 2090 2091 2092 2093
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2111
}
L
Linus Torvalds 已提交
2112 2113

unsigned long nr_uninterruptible(void)
2114
{
L
Linus Torvalds 已提交
2115
	unsigned long i, sum = 0;
2116

2117
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2118
		sum += cpu_rq(i)->nr_uninterruptible;
2119 2120

	/*
L
Linus Torvalds 已提交
2121 2122
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2123
	 */
L
Linus Torvalds 已提交
2124 2125
	if (unlikely((long)sum < 0))
		sum = 0;
2126

L
Linus Torvalds 已提交
2127
	return sum;
2128 2129
}

L
Linus Torvalds 已提交
2130
unsigned long long nr_context_switches(void)
2131
{
2132 2133
	int i;
	unsigned long long sum = 0;
2134

2135
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2136
		sum += cpu_rq(i)->nr_switches;
2137

L
Linus Torvalds 已提交
2138 2139
	return sum;
}
2140

L
Linus Torvalds 已提交
2141 2142 2143
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2144

2145
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2146
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147

L
Linus Torvalds 已提交
2148 2149
	return sum;
}
2150

2151
unsigned long nr_iowait_cpu(int cpu)
2152
{
2153
	struct rq *this = cpu_rq(cpu);
2154 2155
	return atomic_read(&this->nr_iowait);
}
2156

2157 2158 2159 2160 2161
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2162

2163

2164 2165 2166 2167 2168
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2169

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2185 2186 2187 2188 2189 2190 2191 2192 2193
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2194 2195 2196 2197 2198 2199 2200 2201
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2202
void calc_load_account_idle(struct rq *this_rq)
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2301
static void calc_global_nohz(void)
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
{
	long delta, active, n;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
2316
	 * It could be the one fold was all it took, we done!
2317
	 */
2318 2319
	if (time_before(jiffies, calc_load_update + 10))
		return;
2320

2321 2322 2323 2324 2325
	/*
	 * Catch-up, fold however many we are behind still
	 */
	delta = jiffies - calc_load_update - 10;
	n = 1 + (delta / LOAD_FREQ);
2326

2327 2328
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2329

2330 2331 2332
	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2333

2334
	calc_load_update += n * LOAD_FREQ;
2335
}
2336
#else
2337
void calc_load_account_idle(struct rq *this_rq)
2338 2339 2340 2341 2342 2343 2344
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2345

2346
static void calc_global_nohz(void)
2347 2348
{
}
2349 2350
#endif

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2364 2365 2366
}

/*
2367 2368
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2369
 */
2370
void calc_global_load(unsigned long ticks)
2371
{
2372
	long active;
L
Linus Torvalds 已提交
2373

2374
	if (time_before(jiffies, calc_load_update + 10))
2375
		return;
L
Linus Torvalds 已提交
2376

2377 2378
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2379

2380 2381 2382
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2383

2384
	calc_load_update += LOAD_FREQ;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

	/*
	 * Account one period with whatever state we found before
	 * folding in the nohz state and ageing the entire idle period.
	 *
	 * This avoids loosing a sample when we go idle between 
	 * calc_load_account_active() (10 ticks ago) and now and thus
	 * under-accounting.
	 */
	calc_global_nohz();
2395
}
L
Linus Torvalds 已提交
2396

2397
/*
2398 2399
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2400 2401 2402
 */
static void calc_load_account_active(struct rq *this_rq)
{
2403
	long delta;
2404

2405 2406
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2407

2408 2409 2410
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2411
		atomic_long_add(delta, &calc_load_tasks);
2412 2413

	this_rq->calc_load_update += LOAD_FREQ;
2414 2415
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2483
/*
I
Ingo Molnar 已提交
2484
 * Update rq->cpu_load[] statistics. This function is usually called every
2485 2486
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2487
 */
2488 2489
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2490
{
I
Ingo Molnar 已提交
2491
	int i, scale;
2492

I
Ingo Molnar 已提交
2493
	this_rq->nr_load_updates++;
2494

I
Ingo Molnar 已提交
2495
	/* Update our load: */
2496 2497
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2498
		unsigned long old_load, new_load;
2499

I
Ingo Molnar 已提交
2500
		/* scale is effectively 1 << i now, and >> i divides by scale */
2501

I
Ingo Molnar 已提交
2502
		old_load = this_rq->cpu_load[i];
2503
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2504
		new_load = this_load;
I
Ingo Molnar 已提交
2505 2506 2507 2508 2509 2510
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2511 2512 2513
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2514
	}
2515 2516

	sched_avg_update(this_rq);
2517 2518
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2533 2534 2535 2536 2537 2538
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2539
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2540 2541 2542 2543
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2544
	 * bail if there's load or we're actually up-to-date.
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2581 2582 2583
/*
 * Called from scheduler_tick()
 */
2584 2585
static void update_cpu_load_active(struct rq *this_rq)
{
2586
	/*
2587
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2588 2589 2590
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2591

2592
	calc_load_account_active(this_rq);
2593 2594
}

I
Ingo Molnar 已提交
2595
#ifdef CONFIG_SMP
2596

2597
/*
P
Peter Zijlstra 已提交
2598 2599
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2600
 */
P
Peter Zijlstra 已提交
2601
void sched_exec(void)
2602
{
P
Peter Zijlstra 已提交
2603
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2604
	unsigned long flags;
2605
	int dest_cpu;
2606

2607
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2608
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2609 2610
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2611

2612
	if (likely(cpu_active(dest_cpu))) {
2613
		struct migration_arg arg = { p, dest_cpu };
2614

2615 2616
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2617 2618
		return;
	}
2619
unlock:
2620
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2621
}
I
Ingo Molnar 已提交
2622

L
Linus Torvalds 已提交
2623 2624 2625
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2626
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2627 2628

EXPORT_PER_CPU_SYMBOL(kstat);
2629
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2630 2631

/*
2632
 * Return any ns on the sched_clock that have not yet been accounted in
2633
 * @p in case that task is currently running.
2634 2635
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2636
 */
2637 2638 2639 2640 2641 2642
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2643
		ns = rq->clock_task - p->se.exec_start;
2644 2645 2646 2647 2648 2649 2650
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2651
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2652 2653
{
	unsigned long flags;
2654
	struct rq *rq;
2655
	u64 ns = 0;
2656

2657
	rq = task_rq_lock(p, &flags);
2658
	ns = do_task_delta_exec(p, rq);
2659
	task_rq_unlock(rq, p, &flags);
2660

2661 2662
	return ns;
}
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2677
	task_rq_unlock(rq, p, &flags);
2678 2679 2680

	return ns;
}
2681

2682 2683 2684 2685 2686
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2687 2688
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2718 2719 2720 2721
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2722
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2723
 */
2724 2725
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2726
{
2727
	int index;
L
Linus Torvalds 已提交
2728

2729
	/* Add user time to process. */
2730 2731
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2732
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2733

2734
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2735

L
Linus Torvalds 已提交
2736
	/* Add user time to cpustat. */
2737
	task_group_account_field(p, index, (__force u64) cputime);
2738

2739 2740
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2741 2742
}

2743 2744 2745 2746
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2747
 * @cputime_scaled: cputime scaled by cpu frequency
2748
 */
2749 2750
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2751
{
2752
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2753

2754
	/* Add guest time to process. */
2755 2756
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2757
	account_group_user_time(p, cputime);
2758
	p->gtime += cputime;
2759

2760
	/* Add guest time to cpustat. */
2761
	if (TASK_NICE(p) > 0) {
2762 2763
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2764
	} else {
2765 2766
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2767
	}
2768 2769
}

2770 2771 2772 2773 2774 2775 2776 2777 2778
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2779
			cputime_t cputime_scaled, int index)
2780 2781
{
	/* Add system time to process. */
2782 2783
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2784 2785 2786
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2787
	task_group_account_field(p, index, (__force u64) cputime);
2788 2789 2790 2791 2792

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2793 2794 2795 2796 2797
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2798
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2799 2800
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2801
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2802
{
2803
	int index;
L
Linus Torvalds 已提交
2804

2805
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2806
		account_guest_time(p, cputime, cputime_scaled);
2807 2808
		return;
	}
2809

L
Linus Torvalds 已提交
2810
	if (hardirq_count() - hardirq_offset)
2811
		index = CPUTIME_IRQ;
2812
	else if (in_serving_softirq())
2813
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2814
	else
2815
		index = CPUTIME_SYSTEM;
2816

2817
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2818 2819
}

2820
/*
L
Linus Torvalds 已提交
2821
 * Account for involuntary wait time.
2822
 * @cputime: the cpu time spent in involuntary wait
2823
 */
2824
void account_steal_time(cputime_t cputime)
2825
{
2826
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2827

2828
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2829 2830
}

L
Linus Torvalds 已提交
2831
/*
2832 2833
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2834
 */
2835
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2836
{
2837
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2838
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2839

2840
	if (atomic_read(&rq->nr_iowait) > 0)
2841
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2842
	else
2843
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2844 2845
}

G
Glauber Costa 已提交
2846 2847 2848
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
2849
	if (static_key_false(&paravirt_steal_enabled)) {
G
Glauber Costa 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2865 2866
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2893
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2894

G
Glauber Costa 已提交
2895 2896 2897
	if (steal_account_process_tick())
		return;

2898
	if (irqtime_account_hi_update()) {
2899
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2900
	} else if (irqtime_account_si_update()) {
2901
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2902 2903 2904 2905 2906 2907 2908
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2909
					CPUTIME_SOFTIRQ);
2910 2911 2912 2913 2914 2915 2916 2917
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2918
					CPUTIME_SYSTEM);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2930
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2931 2932 2933
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2934
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2935 2936 2937 2938 2939 2940 2941 2942

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2943
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2944 2945
	struct rq *rq = this_rq();

2946 2947 2948 2949 2950
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2951 2952 2953
	if (steal_account_process_tick())
		return;

2954
	if (user_tick)
2955
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2956
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2957
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2958 2959
				    one_jiffy_scaled);
	else
2960
		account_idle_time(cputime_one_jiffy);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2979 2980 2981 2982 2983 2984

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2985
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2986 2987
}

2988 2989
#endif

2990 2991 2992 2993
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2994
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2995
{
2996 2997
	*ut = p->utime;
	*st = p->stime;
2998 2999
}

3000
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3001
{
3002 3003 3004 3005 3006 3007
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3008 3009
}
#else
3010 3011

#ifndef nsecs_to_cputime
3012
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3013 3014
#endif

3015
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3016
{
3017
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3018 3019 3020 3021

	/*
	 * Use CFS's precise accounting:
	 */
3022
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3023 3024

	if (total) {
3025
		u64 temp = (__force u64) rtime;
3026

3027 3028 3029
		temp *= (__force u64) utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
3030 3031
	} else
		utime = rtime;
3032

3033 3034 3035
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3036
	p->prev_utime = max(p->prev_utime, utime);
3037
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3038

3039 3040
	*ut = p->prev_utime;
	*st = p->prev_stime;
3041 3042
}

3043 3044 3045 3046
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3047
{
3048 3049 3050
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3051

3052
	thread_group_cputime(p, &cputime);
3053

3054
	total = cputime.utime + cputime.stime;
3055
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3056

3057
	if (total) {
3058
		u64 temp = (__force u64) rtime;
3059

3060 3061 3062
		temp *= (__force u64) cputime.utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
3063 3064 3065 3066
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
3067
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3068 3069 3070

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3071 3072 3073
}
#endif

3074 3075 3076 3077 3078 3079 3080 3081
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3082
	struct task_struct *curr = rq->curr;
3083 3084

	sched_clock_tick();
I
Ingo Molnar 已提交
3085

3086
	raw_spin_lock(&rq->lock);
3087
	update_rq_clock(rq);
3088
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3089
	curr->sched_class->task_tick(rq, curr, 0);
3090
	raw_spin_unlock(&rq->lock);
3091

3092
	perf_event_task_tick();
3093

3094
#ifdef CONFIG_SMP
3095
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3096
	trigger_load_balance(rq, cpu);
3097
#endif
L
Linus Torvalds 已提交
3098 3099
}

3100
notrace unsigned long get_parent_ip(unsigned long addr)
3101 3102 3103 3104 3105 3106 3107 3108
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3109

3110 3111 3112
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3113
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3114
{
3115
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3116 3117 3118
	/*
	 * Underflow?
	 */
3119 3120
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3121
#endif
L
Linus Torvalds 已提交
3122
	preempt_count() += val;
3123
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3124 3125 3126
	/*
	 * Spinlock count overflowing soon?
	 */
3127 3128
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3129 3130 3131
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3132 3133 3134
}
EXPORT_SYMBOL(add_preempt_count);

3135
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3136
{
3137
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3138 3139 3140
	/*
	 * Underflow?
	 */
3141
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3142
		return;
L
Linus Torvalds 已提交
3143 3144 3145
	/*
	 * Is the spinlock portion underflowing?
	 */
3146 3147 3148
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3149
#endif
3150

3151 3152
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3153 3154 3155 3156 3157 3158 3159
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3160
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3161
 */
I
Ingo Molnar 已提交
3162
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3163
{
3164 3165 3166
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3167 3168
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3169

I
Ingo Molnar 已提交
3170
	debug_show_held_locks(prev);
3171
	print_modules();
I
Ingo Molnar 已提交
3172 3173
	if (irqs_disabled())
		print_irqtrace_events(prev);
3174
	dump_stack();
3175
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
3176
}
L
Linus Torvalds 已提交
3177

I
Ingo Molnar 已提交
3178 3179 3180 3181 3182
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3183
	/*
I
Ingo Molnar 已提交
3184
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3185 3186 3187
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3188
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3189
		__schedule_bug(prev);
3190
	rcu_sleep_check();
I
Ingo Molnar 已提交
3191

L
Linus Torvalds 已提交
3192 3193
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3194
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3195 3196
}

P
Peter Zijlstra 已提交
3197
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3198
{
3199
	if (prev->on_rq || rq->skip_clock_update < 0)
3200
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3201
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3202 3203
}

I
Ingo Molnar 已提交
3204 3205 3206 3207
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3208
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3209
{
3210
	const struct sched_class *class;
I
Ingo Molnar 已提交
3211
	struct task_struct *p;
L
Linus Torvalds 已提交
3212 3213

	/*
I
Ingo Molnar 已提交
3214 3215
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3216
	 */
3217
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3218
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3219 3220
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3221 3222
	}

3223
	for_each_class(class) {
3224
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3225 3226 3227
		if (p)
			return p;
	}
3228 3229

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3230
}
L
Linus Torvalds 已提交
3231

I
Ingo Molnar 已提交
3232
/*
3233
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3234
 */
3235
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3236 3237
{
	struct task_struct *prev, *next;
3238
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3239
	struct rq *rq;
3240
	int cpu;
I
Ingo Molnar 已提交
3241

3242 3243
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3244 3245
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3246
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3247 3248 3249
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3250

3251
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3252
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3253

3254
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3255

3256
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3257
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3258
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3259
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3260
		} else {
3261 3262 3263
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3264
			/*
3265 3266 3267
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3277
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3278 3279
	}

3280
	pre_schedule(rq, prev);
3281

I
Ingo Molnar 已提交
3282
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3283 3284
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3285
	put_prev_task(rq, prev);
3286
	next = pick_next_task(rq);
3287 3288
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3289 3290 3291 3292 3293 3294

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3295
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3296
		/*
3297 3298 3299 3300
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3301 3302 3303
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3304
	} else
3305
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3306

3307
	post_schedule(rq);
L
Linus Torvalds 已提交
3308

3309
	sched_preempt_enable_no_resched();
3310
	if (need_resched())
L
Linus Torvalds 已提交
3311 3312
		goto need_resched;
}
3313

3314 3315
static inline void sched_submit_work(struct task_struct *tsk)
{
3316
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3317 3318 3319 3320 3321 3322 3323 3324 3325
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3326
asmlinkage void __sched schedule(void)
3327
{
3328 3329 3330
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3331 3332
	__schedule();
}
L
Linus Torvalds 已提交
3333 3334
EXPORT_SYMBOL(schedule);

3335 3336 3337 3338 3339 3340 3341
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3342
	sched_preempt_enable_no_resched();
3343 3344 3345 3346
	schedule();
	preempt_disable();
}

3347
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3348

3349 3350 3351
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3352
		return false;
3353 3354

	/*
3355 3356 3357 3358
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3359
	 */
3360
	barrier();
3361

3362
	return owner->on_cpu;
3363
}
3364

3365 3366 3367 3368 3369 3370 3371 3372
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3373

3374
	rcu_read_lock();
3375 3376
	while (owner_running(lock, owner)) {
		if (need_resched())
3377
			break;
3378

3379
		arch_mutex_cpu_relax();
3380
	}
3381
	rcu_read_unlock();
3382

3383
	/*
3384 3385 3386
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3387
	 */
3388
	return lock->owner == NULL;
3389 3390 3391
}
#endif

L
Linus Torvalds 已提交
3392 3393
#ifdef CONFIG_PREEMPT
/*
3394
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3395
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3396 3397
 * occur there and call schedule directly.
 */
3398
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3399 3400
{
	struct thread_info *ti = current_thread_info();
3401

L
Linus Torvalds 已提交
3402 3403
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3404
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3405
	 */
N
Nick Piggin 已提交
3406
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3407 3408
		return;

3409
	do {
3410
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3411
		__schedule();
3412
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3413

3414 3415 3416 3417 3418
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3419
	} while (need_resched());
L
Linus Torvalds 已提交
3420 3421 3422 3423
}
EXPORT_SYMBOL(preempt_schedule);

/*
3424
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3425 3426 3427 3428 3429 3430 3431
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3432

3433
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3434 3435
	BUG_ON(ti->preempt_count || !irqs_disabled());

3436 3437 3438
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3439
		__schedule();
3440 3441
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3442

3443 3444 3445 3446 3447
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3448
	} while (need_resched());
L
Linus Torvalds 已提交
3449 3450 3451 3452
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3453
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3454
			  void *key)
L
Linus Torvalds 已提交
3455
{
P
Peter Zijlstra 已提交
3456
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3457 3458 3459 3460
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3461 3462
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3463 3464 3465
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3466
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3467 3468
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3469
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3470
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3471
{
3472
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3473

3474
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3475 3476
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3477
		if (curr->func(curr, mode, wake_flags, key) &&
3478
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3488
 * @key: is directly passed to the wakeup function
3489 3490 3491
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3492
 */
3493
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3494
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3507
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3508
{
3509
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3510
}
3511
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3512

3513 3514 3515 3516
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3517
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3518

L
Linus Torvalds 已提交
3519
/**
3520
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3521 3522 3523
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3524
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530 3531
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3532 3533 3534
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3535
 */
3536 3537
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3538 3539
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3540
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3541 3542 3543 3544 3545

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3546
		wake_flags = 0;
L
Linus Torvalds 已提交
3547 3548

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3549
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3550 3551
	spin_unlock_irqrestore(&q->lock, flags);
}
3552 3553 3554 3555 3556 3557 3558 3559 3560
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3561 3562
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3563 3564 3565 3566 3567 3568 3569 3570
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3571 3572 3573
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3574
 */
3575
void complete(struct completion *x)
L
Linus Torvalds 已提交
3576 3577 3578 3579 3580
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3581
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3582 3583 3584 3585
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3586 3587 3588 3589 3590
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3591 3592 3593
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3594
 */
3595
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3596 3597 3598 3599 3600
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3601
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3602 3603 3604 3605
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3606 3607
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3608 3609 3610 3611
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3612
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3613
		do {
3614
			if (signal_pending_state(state, current)) {
3615 3616
				timeout = -ERESTARTSYS;
				break;
3617 3618
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3619 3620 3621
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3622
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3623
		__remove_wait_queue(&x->wait, &wait);
3624 3625
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3626 3627
	}
	x->done--;
3628
	return timeout ?: 1;
L
Linus Torvalds 已提交
3629 3630
}

3631 3632
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3633 3634 3635 3636
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3637
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3638
	spin_unlock_irq(&x->wait.lock);
3639 3640
	return timeout;
}
L
Linus Torvalds 已提交
3641

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3652
void __sched wait_for_completion(struct completion *x)
3653 3654
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3655
}
3656
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3657

3658 3659 3660 3661 3662 3663 3664 3665
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3666 3667 3668
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3669
 */
3670
unsigned long __sched
3671
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3672
{
3673
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3674
}
3675
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3676

3677 3678 3679 3680 3681 3682
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3683 3684
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3685
 */
3686
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3687
{
3688 3689 3690 3691
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3692
}
3693
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3694

3695 3696 3697 3698 3699 3700 3701
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3702 3703 3704
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3705
 */
3706
long __sched
3707 3708
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3709
{
3710
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3711
}
3712
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3713

3714 3715 3716 3717 3718 3719
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3720 3721
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3722
 */
M
Matthew Wilcox 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3732 3733 3734 3735 3736 3737 3738 3739
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3740 3741 3742
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3743
 */
3744
long __sched
3745 3746 3747 3748 3749 3750 3751
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3766
	unsigned long flags;
3767 3768
	int ret = 1;

3769
	spin_lock_irqsave(&x->wait.lock, flags);
3770 3771 3772 3773
	if (!x->done)
		ret = 0;
	else
		x->done--;
3774
	spin_unlock_irqrestore(&x->wait.lock, flags);
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3789
	unsigned long flags;
3790 3791
	int ret = 1;

3792
	spin_lock_irqsave(&x->wait.lock, flags);
3793 3794
	if (!x->done)
		ret = 0;
3795
	spin_unlock_irqrestore(&x->wait.lock, flags);
3796 3797 3798 3799
	return ret;
}
EXPORT_SYMBOL(completion_done);

3800 3801
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3802
{
I
Ingo Molnar 已提交
3803 3804 3805 3806
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3807

3808
	__set_current_state(state);
L
Linus Torvalds 已提交
3809

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3824 3825 3826
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3827
long __sched
I
Ingo Molnar 已提交
3828
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3829
{
3830
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3831 3832 3833
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3834
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3835
{
3836
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3837 3838 3839
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3840
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3841
{
3842
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3843 3844 3845
}
EXPORT_SYMBOL(sleep_on_timeout);

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3858
void rt_mutex_setprio(struct task_struct *p, int prio)
3859
{
3860
	int oldprio, on_rq, running;
3861
	struct rq *rq;
3862
	const struct sched_class *prev_class;
3863 3864 3865

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3866
	rq = __task_rq_lock(p);
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3886
	trace_sched_pi_setprio(p, prio);
3887
	oldprio = p->prio;
3888
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3889
	on_rq = p->on_rq;
3890
	running = task_current(rq, p);
3891
	if (on_rq)
3892
		dequeue_task(rq, p, 0);
3893 3894
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3895 3896 3897 3898 3899 3900

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3901 3902
	p->prio = prio;

3903 3904
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3905
	if (on_rq)
3906
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3907

P
Peter Zijlstra 已提交
3908
	check_class_changed(rq, p, prev_class, oldprio);
3909
out_unlock:
3910
	__task_rq_unlock(rq);
3911 3912
}
#endif
3913
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3914
{
I
Ingo Molnar 已提交
3915
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3916
	unsigned long flags;
3917
	struct rq *rq;
L
Linus Torvalds 已提交
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3930
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3931
	 */
3932
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3933 3934 3935
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3936
	on_rq = p->on_rq;
3937
	if (on_rq)
3938
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3939 3940

	p->static_prio = NICE_TO_PRIO(nice);
3941
	set_load_weight(p);
3942 3943 3944
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3945

I
Ingo Molnar 已提交
3946
	if (on_rq) {
3947
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3948
		/*
3949 3950
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3951
		 */
3952
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3953 3954 3955
			resched_task(rq->curr);
	}
out_unlock:
3956
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3957 3958 3959
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3960 3961 3962 3963 3964
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3965
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3966
{
3967 3968
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3969

3970
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3971 3972 3973
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3974 3975 3976 3977 3978 3979 3980 3981 3982
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3983
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3984
{
3985
	long nice, retval;
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3992 3993
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3994 3995 3996
	if (increment > 40)
		increment = 40;

3997
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3998 3999 4000 4001 4002
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4003 4004 4005
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4024
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4025 4026 4027 4028 4029 4030 4031 4032
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4033
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4034 4035 4036
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4037
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4038 4039 4040 4041 4042 4043 4044

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4065
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4066 4067 4068 4069 4070 4071 4072 4073
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4074
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4075
{
4076
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4077 4078 4079
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4080 4081
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4082 4083 4084
{
	p->policy = policy;
	p->rt_priority = prio;
4085 4086 4087
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4088 4089 4090 4091
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4092
	set_load_weight(p);
L
Linus Torvalds 已提交
4093 4094
}

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4105 4106
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4107 4108 4109 4110
	rcu_read_unlock();
	return match;
}

4111
static int __sched_setscheduler(struct task_struct *p, int policy,
4112
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4113
{
4114
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4115
	unsigned long flags;
4116
	const struct sched_class *prev_class;
4117
	struct rq *rq;
4118
	int reset_on_fork;
L
Linus Torvalds 已提交
4119

4120 4121
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4122 4123
recheck:
	/* double check policy once rq lock held */
4124 4125
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4126
		policy = oldpolicy = p->policy;
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4137 4138
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4139 4140
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4141 4142
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4143
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4144
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4145
		return -EINVAL;
4146
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4147 4148
		return -EINVAL;

4149 4150 4151
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4152
	if (user && !capable(CAP_SYS_NICE)) {
4153
		if (rt_policy(policy)) {
4154 4155
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4166

I
Ingo Molnar 已提交
4167
		/*
4168 4169
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4170
		 */
4171 4172 4173 4174
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4175

4176
		/* can't change other user's priorities */
4177
		if (!check_same_owner(p))
4178
			return -EPERM;
4179 4180 4181 4182

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4183
	}
L
Linus Torvalds 已提交
4184

4185
	if (user) {
4186
		retval = security_task_setscheduler(p);
4187 4188 4189 4190
		if (retval)
			return retval;
	}

4191 4192 4193
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4194
	 *
L
Lucas De Marchi 已提交
4195
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4196 4197
	 * runqueue lock must be held.
	 */
4198
	rq = task_rq_lock(p, &flags);
4199

4200 4201 4202 4203
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4204
		task_rq_unlock(rq, p, &flags);
4205 4206 4207
		return -EINVAL;
	}

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4219 4220 4221 4222 4223 4224 4225
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4226 4227
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4228
			task_rq_unlock(rq, p, &flags);
4229 4230 4231 4232 4233
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4234 4235 4236
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4237
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4238 4239
		goto recheck;
	}
P
Peter Zijlstra 已提交
4240
	on_rq = p->on_rq;
4241
	running = task_current(rq, p);
4242
	if (on_rq)
4243
		dequeue_task(rq, p, 0);
4244 4245
	if (running)
		p->sched_class->put_prev_task(rq, p);
4246

4247 4248
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4249
	oldprio = p->prio;
4250
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4251
	__setscheduler(rq, p, policy, param->sched_priority);
4252

4253 4254
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4255
	if (on_rq)
4256
		enqueue_task(rq, p, 0);
4257

P
Peter Zijlstra 已提交
4258
	check_class_changed(rq, p, prev_class, oldprio);
4259
	task_rq_unlock(rq, p, &flags);
4260

4261 4262
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4263 4264
	return 0;
}
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4275
		       const struct sched_param *param)
4276 4277 4278
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4279 4280
EXPORT_SYMBOL_GPL(sched_setscheduler);

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4293
			       const struct sched_param *param)
4294 4295 4296 4297
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4298 4299
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4300 4301 4302
{
	struct sched_param lparam;
	struct task_struct *p;
4303
	int retval;
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4309 4310 4311

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4312
	p = find_process_by_pid(pid);
4313 4314 4315
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4316

L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4326 4327
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4328
{
4329 4330 4331 4332
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4341
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4342 4343 4344 4345 4346 4347 4348 4349
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4350
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4351
{
4352
	struct task_struct *p;
4353
	int retval;
L
Linus Torvalds 已提交
4354 4355

	if (pid < 0)
4356
		return -EINVAL;
L
Linus Torvalds 已提交
4357 4358

	retval = -ESRCH;
4359
	rcu_read_lock();
L
Linus Torvalds 已提交
4360 4361 4362 4363
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4364 4365
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4366
	}
4367
	rcu_read_unlock();
L
Linus Torvalds 已提交
4368 4369 4370 4371
	return retval;
}

/**
4372
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4373 4374 4375
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4376
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4377 4378
{
	struct sched_param lp;
4379
	struct task_struct *p;
4380
	int retval;
L
Linus Torvalds 已提交
4381 4382

	if (!param || pid < 0)
4383
		return -EINVAL;
L
Linus Torvalds 已提交
4384

4385
	rcu_read_lock();
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4396
	rcu_read_unlock();
L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4406
	rcu_read_unlock();
L
Linus Torvalds 已提交
4407 4408 4409
	return retval;
}

4410
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4411
{
4412
	cpumask_var_t cpus_allowed, new_mask;
4413 4414
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4415

4416
	get_online_cpus();
4417
	rcu_read_lock();
L
Linus Torvalds 已提交
4418 4419 4420

	p = find_process_by_pid(pid);
	if (!p) {
4421
		rcu_read_unlock();
4422
		put_online_cpus();
L
Linus Torvalds 已提交
4423 4424 4425
		return -ESRCH;
	}

4426
	/* Prevent p going away */
L
Linus Torvalds 已提交
4427
	get_task_struct(p);
4428
	rcu_read_unlock();
L
Linus Torvalds 已提交
4429

4430 4431 4432 4433 4434 4435 4436 4437
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4438
	retval = -EPERM;
4439
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4440 4441
		goto out_unlock;

4442
	retval = security_task_setscheduler(p);
4443 4444 4445
	if (retval)
		goto out_unlock;

4446 4447
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4448
again:
4449
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4450

P
Paul Menage 已提交
4451
	if (!retval) {
4452 4453
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4454 4455 4456 4457 4458
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4459
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4460 4461 4462
			goto again;
		}
	}
L
Linus Torvalds 已提交
4463
out_unlock:
4464 4465 4466 4467
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4468
	put_task_struct(p);
4469
	put_online_cpus();
L
Linus Torvalds 已提交
4470 4471 4472 4473
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4474
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4475
{
4476 4477 4478 4479 4480
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4481 4482 4483 4484 4485 4486 4487 4488 4489
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4490 4491
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4492
{
4493
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4494 4495
	int retval;

4496 4497
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4498

4499 4500 4501 4502 4503
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4504 4505
}

4506
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4507
{
4508
	struct task_struct *p;
4509
	unsigned long flags;
L
Linus Torvalds 已提交
4510 4511
	int retval;

4512
	get_online_cpus();
4513
	rcu_read_lock();
L
Linus Torvalds 已提交
4514 4515 4516 4517 4518 4519

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4520 4521 4522 4523
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4524
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4525
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4526
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4527 4528

out_unlock:
4529
	rcu_read_unlock();
4530
	put_online_cpus();
L
Linus Torvalds 已提交
4531

4532
	return retval;
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538 4539 4540
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4541 4542
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4543 4544
{
	int ret;
4545
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4546

A
Anton Blanchard 已提交
4547
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4548 4549
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4550 4551
		return -EINVAL;

4552 4553
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4554

4555 4556
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4557
		size_t retlen = min_t(size_t, len, cpumask_size());
4558 4559

		if (copy_to_user(user_mask_ptr, mask, retlen))
4560 4561
			ret = -EFAULT;
		else
4562
			ret = retlen;
4563 4564
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4565

4566
	return ret;
L
Linus Torvalds 已提交
4567 4568 4569 4570 4571
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4572 4573
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4574
 */
4575
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4576
{
4577
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4578

4579
	schedstat_inc(rq, yld_count);
4580
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585 4586

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4587
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4588
	do_raw_spin_unlock(&rq->lock);
4589
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594 4595

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4596 4597 4598 4599 4600
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4601
static void __cond_resched(void)
L
Linus Torvalds 已提交
4602
{
4603
	add_preempt_count(PREEMPT_ACTIVE);
4604
	__schedule();
4605
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4606 4607
}

4608
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4609
{
P
Peter Zijlstra 已提交
4610
	if (should_resched()) {
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615
		__cond_resched();
		return 1;
	}
	return 0;
}
4616
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4617 4618

/*
4619
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4620 4621
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4622
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4623 4624 4625
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4626
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4627
{
P
Peter Zijlstra 已提交
4628
	int resched = should_resched();
J
Jan Kara 已提交
4629 4630
	int ret = 0;

4631 4632
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4633
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4634
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4635
		if (resched)
N
Nick Piggin 已提交
4636 4637 4638
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4639
		ret = 1;
L
Linus Torvalds 已提交
4640 4641
		spin_lock(lock);
	}
J
Jan Kara 已提交
4642
	return ret;
L
Linus Torvalds 已提交
4643
}
4644
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4645

4646
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4647 4648 4649
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4650
	if (should_resched()) {
4651
		local_bh_enable();
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656 4657
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4658
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4659 4660 4661 4662

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4681 4682 4683 4684 4685 4686 4687 4688
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4689 4690 4691 4692
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4693 4694
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4729
	if (yielded) {
4730
		schedstat_inc(rq, yld_count);
4731 4732 4733 4734 4735 4736
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4737 4738 4739 4740 4741 4742 4743
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4744
	}
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4757
/*
I
Ingo Molnar 已提交
4758
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4759 4760 4761 4762
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4763
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4764

4765
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4766
	atomic_inc(&rq->nr_iowait);
4767
	blk_flush_plug(current);
4768
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4769
	schedule();
4770
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4771
	atomic_dec(&rq->nr_iowait);
4772
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4773 4774 4775 4776 4777
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4778
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4779 4780
	long ret;

4781
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4782
	atomic_inc(&rq->nr_iowait);
4783
	blk_flush_plug(current);
4784
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4785
	ret = schedule_timeout(timeout);
4786
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4787
	atomic_dec(&rq->nr_iowait);
4788
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4799
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4809
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4810
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4824
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4834
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4835
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4849
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4850
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4851
{
4852
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4853
	unsigned int time_slice;
4854 4855
	unsigned long flags;
	struct rq *rq;
4856
	int retval;
L
Linus Torvalds 已提交
4857 4858 4859
	struct timespec t;

	if (pid < 0)
4860
		return -EINVAL;
L
Linus Torvalds 已提交
4861 4862

	retval = -ESRCH;
4863
	rcu_read_lock();
L
Linus Torvalds 已提交
4864 4865 4866 4867 4868 4869 4870 4871
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4872 4873
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4874
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4875

4876
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4877
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4878 4879
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4880

L
Linus Torvalds 已提交
4881
out_unlock:
4882
	rcu_read_unlock();
L
Linus Torvalds 已提交
4883 4884 4885
	return retval;
}

4886
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4887

4888
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4889 4890
{
	unsigned long free = 0;
4891
	unsigned state;
L
Linus Torvalds 已提交
4892 4893

	state = p->state ? __ffs(p->state) + 1 : 0;
4894
	printk(KERN_INFO "%-15.15s %c", p->comm,
4895
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4896
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4897
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4898
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4899
	else
P
Peter Zijlstra 已提交
4900
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4901 4902
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4903
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4904
	else
P
Peter Zijlstra 已提交
4905
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4906 4907
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4908
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4909
#endif
P
Peter Zijlstra 已提交
4910
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4911
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4912
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4913

4914
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4915 4916
}

I
Ingo Molnar 已提交
4917
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4918
{
4919
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4920

4921
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4922 4923
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4924
#else
P
Peter Zijlstra 已提交
4925 4926
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4927
#endif
4928
	rcu_read_lock();
L
Linus Torvalds 已提交
4929 4930 4931
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4932
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4933 4934
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4935
		if (!state_filter || (p->state & state_filter))
4936
			sched_show_task(p);
L
Linus Torvalds 已提交
4937 4938
	} while_each_thread(g, p);

4939 4940
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4941 4942 4943
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4944
	rcu_read_unlock();
I
Ingo Molnar 已提交
4945 4946 4947
	/*
	 * Only show locks if all tasks are dumped:
	 */
4948
	if (!state_filter)
I
Ingo Molnar 已提交
4949
		debug_show_all_locks();
L
Linus Torvalds 已提交
4950 4951
}

I
Ingo Molnar 已提交
4952 4953
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4954
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4955 4956
}

4957 4958 4959 4960 4961 4962 4963 4964
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4965
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4966
{
4967
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4968 4969
	unsigned long flags;

4970
	raw_spin_lock_irqsave(&rq->lock, flags);
4971

I
Ingo Molnar 已提交
4972
	__sched_fork(idle);
4973
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4974 4975
	idle->se.exec_start = sched_clock();

4976
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4988
	__set_task_cpu(idle, cpu);
4989
	rcu_read_unlock();
L
Linus Torvalds 已提交
4990 4991

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4992 4993
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4994
#endif
4995
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4996 4997

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4998
	task_thread_info(idle)->preempt_count = 0;
4999

I
Ingo Molnar 已提交
5000 5001 5002 5003
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5004
	ftrace_graph_init_idle_task(idle, cpu);
5005 5006 5007
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5008 5009
}

L
Linus Torvalds 已提交
5010
#ifdef CONFIG_SMP
5011 5012 5013 5014
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
5015 5016

	cpumask_copy(&p->cpus_allowed, new_mask);
5017
	p->nr_cpus_allowed = cpumask_weight(new_mask);
5018 5019
}

L
Linus Torvalds 已提交
5020 5021 5022
/*
 * This is how migration works:
 *
5023 5024 5025 5026 5027 5028
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5029
 *    it and puts it into the right queue.
5030 5031
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5040
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5041 5042
 * call is not atomic; no spinlocks may be held.
 */
5043
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5044 5045
{
	unsigned long flags;
5046
	struct rq *rq;
5047
	unsigned int dest_cpu;
5048
	int ret = 0;
L
Linus Torvalds 已提交
5049 5050

	rq = task_rq_lock(p, &flags);
5051

5052 5053 5054
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

5055
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5056 5057 5058 5059
		ret = -EINVAL;
		goto out;
	}

5060
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5061 5062 5063 5064
		ret = -EINVAL;
		goto out;
	}

5065
	do_set_cpus_allowed(p, new_mask);
5066

L
Linus Torvalds 已提交
5067
	/* Can the task run on the task's current CPU? If so, we're done */
5068
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5069 5070
		goto out;

5071
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5072
	if (p->on_rq) {
5073
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5074
		/* Need help from migration thread: drop lock and wait. */
5075
		task_rq_unlock(rq, p, &flags);
5076
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5077 5078 5079 5080
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
5081
	task_rq_unlock(rq, p, &flags);
5082

L
Linus Torvalds 已提交
5083 5084
	return ret;
}
5085
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5086 5087

/*
I
Ingo Molnar 已提交
5088
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5089 5090 5091 5092 5093 5094
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5095 5096
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5097
 */
5098
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5099
{
5100
	struct rq *rq_dest, *rq_src;
5101
	int ret = 0;
L
Linus Torvalds 已提交
5102

5103
	if (unlikely(!cpu_active(dest_cpu)))
5104
		return ret;
L
Linus Torvalds 已提交
5105 5106 5107 5108

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

5109
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
5110 5111 5112
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5113
		goto done;
L
Linus Torvalds 已提交
5114
	/* Affinity changed (again). */
5115
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
5116
		goto fail;
L
Linus Torvalds 已提交
5117

5118 5119 5120 5121
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
5122
	if (p->on_rq) {
5123
		dequeue_task(rq_src, p, 0);
5124
		set_task_cpu(p, dest_cpu);
5125
		enqueue_task(rq_dest, p, 0);
5126
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5127
	}
L
Linus Torvalds 已提交
5128
done:
5129
	ret = 1;
L
Linus Torvalds 已提交
5130
fail:
L
Linus Torvalds 已提交
5131
	double_rq_unlock(rq_src, rq_dest);
5132
	raw_spin_unlock(&p->pi_lock);
5133
	return ret;
L
Linus Torvalds 已提交
5134 5135 5136
}

/*
5137 5138 5139
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5140
 */
5141
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5142
{
5143
	struct migration_arg *arg = data;
5144

5145 5146 5147 5148
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5149
	local_irq_disable();
5150
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5151
	local_irq_enable();
L
Linus Torvalds 已提交
5152
	return 0;
5153 5154
}

L
Linus Torvalds 已提交
5155
#ifdef CONFIG_HOTPLUG_CPU
5156

5157
/*
5158 5159
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5160
 */
5161
void idle_task_exit(void)
L
Linus Torvalds 已提交
5162
{
5163
	struct mm_struct *mm = current->active_mm;
5164

5165
	BUG_ON(cpu_online(smp_processor_id()));
5166

5167 5168 5169
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5179
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5180
{
5181
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5187
/*
5188
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5189
 */
5190
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5191
{
5192 5193
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5194 5195
}

5196
/*
5197 5198 5199 5200 5201 5202
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5203
 */
5204
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5205
{
5206
	struct rq *rq = cpu_rq(dead_cpu);
5207 5208
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5209 5210

	/*
5211 5212 5213 5214 5215 5216 5217
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5218
	 */
5219
	rq->stop = NULL;
5220

5221 5222 5223
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5224
	for ( ; ; ) {
5225 5226 5227 5228 5229
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5230
			break;
5231

5232
		next = pick_next_task(rq);
5233
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5234
		next->sched_class->put_prev_task(rq, next);
5235

5236 5237 5238 5239 5240 5241 5242
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5243
	}
5244

5245
	rq->stop = stop;
5246
}
5247

L
Linus Torvalds 已提交
5248 5249
#endif /* CONFIG_HOTPLUG_CPU */

5250 5251 5252
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5253 5254
	{
		.procname	= "sched_domain",
5255
		.mode		= 0555,
5256
	},
5257
	{}
5258 5259 5260
};

static struct ctl_table sd_ctl_root[] = {
5261 5262
	{
		.procname	= "kernel",
5263
		.mode		= 0555,
5264 5265
		.child		= sd_ctl_dir,
	},
5266
	{}
5267 5268 5269 5270 5271
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5272
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5273 5274 5275 5276

	return entry;
}

5277 5278
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5279
	struct ctl_table *entry;
5280

5281 5282 5283
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5284
	 * will always be set. In the lowest directory the names are
5285 5286 5287
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5288 5289
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5290 5291 5292
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5293 5294 5295 5296 5297

	kfree(*tablep);
	*tablep = NULL;
}

5298
static void
5299
set_table_entry(struct ctl_table *entry,
5300
		const char *procname, void *data, int maxlen,
5301
		umode_t mode, proc_handler *proc_handler)
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5313
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5314

5315 5316 5317
	if (table == NULL)
		return NULL;

5318
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5319
		sizeof(long), 0644, proc_doulongvec_minmax);
5320
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5321
		sizeof(long), 0644, proc_doulongvec_minmax);
5322
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5323
		sizeof(int), 0644, proc_dointvec_minmax);
5324
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5325
		sizeof(int), 0644, proc_dointvec_minmax);
5326
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5327
		sizeof(int), 0644, proc_dointvec_minmax);
5328
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5329
		sizeof(int), 0644, proc_dointvec_minmax);
5330
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5331
		sizeof(int), 0644, proc_dointvec_minmax);
5332
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5333
		sizeof(int), 0644, proc_dointvec_minmax);
5334
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5335
		sizeof(int), 0644, proc_dointvec_minmax);
5336
	set_table_entry(&table[9], "cache_nice_tries",
5337 5338
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5339
	set_table_entry(&table[10], "flags", &sd->flags,
5340
		sizeof(int), 0644, proc_dointvec_minmax);
5341 5342 5343
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5344 5345 5346 5347

	return table;
}

5348
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5349 5350 5351 5352 5353 5354 5355 5356 5357
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5358 5359
	if (table == NULL)
		return NULL;
5360 5361 5362 5363 5364

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5365
		entry->mode = 0555;
5366 5367 5368 5369 5370 5371 5372 5373
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5374
static void register_sched_domain_sysctl(void)
5375
{
5376
	int i, cpu_num = num_possible_cpus();
5377 5378 5379
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5380 5381 5382
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5383 5384 5385
	if (entry == NULL)
		return;

5386
	for_each_possible_cpu(i) {
5387 5388
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5389
		entry->mode = 0555;
5390
		entry->child = sd_alloc_ctl_cpu_table(i);
5391
		entry++;
5392
	}
5393 5394

	WARN_ON(sd_sysctl_header);
5395 5396
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5397

5398
/* may be called multiple times per register */
5399 5400
static void unregister_sched_domain_sysctl(void)
{
5401 5402
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5403
	sd_sysctl_header = NULL;
5404 5405
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5406
}
5407
#else
5408 5409 5410 5411
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5412 5413 5414 5415
{
}
#endif

5416 5417 5418 5419 5420
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5421
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5441
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5442 5443 5444 5445
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5446 5447 5448 5449
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5450 5451
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5452
{
5453
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5454
	unsigned long flags;
5455
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5456

5457
	switch (action & ~CPU_TASKS_FROZEN) {
5458

L
Linus Torvalds 已提交
5459
	case CPU_UP_PREPARE:
5460
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5461
		break;
5462

L
Linus Torvalds 已提交
5463
	case CPU_ONLINE:
5464
		/* Update our root-domain */
5465
		raw_spin_lock_irqsave(&rq->lock, flags);
5466
		if (rq->rd) {
5467
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5468 5469

			set_rq_online(rq);
5470
		}
5471
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5472
		break;
5473

L
Linus Torvalds 已提交
5474
#ifdef CONFIG_HOTPLUG_CPU
5475
	case CPU_DYING:
5476
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5477
		/* Update our root-domain */
5478
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5479
		if (rq->rd) {
5480
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5481
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5482
		}
5483 5484
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5485
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5486 5487 5488

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5489
		break;
L
Linus Torvalds 已提交
5490 5491
#endif
	}
5492 5493 5494

	update_max_interval();

L
Linus Torvalds 已提交
5495 5496 5497
	return NOTIFY_OK;
}

5498 5499 5500
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5501
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5502
 */
5503
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5504
	.notifier_call = migration_call,
5505
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5506 5507
};

5508 5509 5510 5511
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5512
	case CPU_STARTING:
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5533
static int __init migration_init(void)
L
Linus Torvalds 已提交
5534 5535
{
	void *cpu = (void *)(long)smp_processor_id();
5536
	int err;
5537

5538
	/* Initialize migration for the boot CPU */
5539 5540
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5541 5542
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5543

5544 5545 5546 5547
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5548
	return 0;
L
Linus Torvalds 已提交
5549
}
5550
early_initcall(migration_init);
L
Linus Torvalds 已提交
5551 5552 5553
#endif

#ifdef CONFIG_SMP
5554

5555 5556
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5557
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5558

5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5569
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5570
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5571
{
I
Ingo Molnar 已提交
5572
	struct sched_group *group = sd->groups;
5573
	char str[256];
L
Linus Torvalds 已提交
5574

R
Rusty Russell 已提交
5575
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5576
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5577 5578 5579 5580

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5581
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5582
		if (sd->parent)
P
Peter Zijlstra 已提交
5583 5584
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5585
		return -1;
N
Nick Piggin 已提交
5586 5587
	}

P
Peter Zijlstra 已提交
5588
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5589

5590
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5591 5592
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5593
	}
5594
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5595 5596
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5597
	}
L
Linus Torvalds 已提交
5598

I
Ingo Molnar 已提交
5599
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5600
	do {
I
Ingo Molnar 已提交
5601
		if (!group) {
P
Peter Zijlstra 已提交
5602 5603
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5604 5605 5606
			break;
		}

5607
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5608 5609 5610
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5611 5612
			break;
		}
L
Linus Torvalds 已提交
5613

5614
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5615 5616
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5617 5618
			break;
		}
L
Linus Torvalds 已提交
5619

5620 5621
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5622 5623
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5624 5625
			break;
		}
L
Linus Torvalds 已提交
5626

5627
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5628

R
Rusty Russell 已提交
5629
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5630

P
Peter Zijlstra 已提交
5631
		printk(KERN_CONT " %s", str);
5632
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5633
			printk(KERN_CONT " (cpu_power = %d)",
5634
				group->sgp->power);
5635
		}
L
Linus Torvalds 已提交
5636

I
Ingo Molnar 已提交
5637 5638
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5639
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5640

5641
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5642
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5643

5644 5645
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5646 5647
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5648 5649
	return 0;
}
L
Linus Torvalds 已提交
5650

I
Ingo Molnar 已提交
5651 5652 5653
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5654

5655 5656 5657
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5658 5659 5660 5661
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5662

I
Ingo Molnar 已提交
5663 5664 5665
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5666
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5667
			break;
L
Linus Torvalds 已提交
5668 5669
		level++;
		sd = sd->parent;
5670
		if (!sd)
I
Ingo Molnar 已提交
5671 5672
			break;
	}
L
Linus Torvalds 已提交
5673
}
5674
#else /* !CONFIG_SCHED_DEBUG */
5675
# define sched_domain_debug(sd, cpu) do { } while (0)
5676
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5677

5678
static int sd_degenerate(struct sched_domain *sd)
5679
{
5680
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5681 5682 5683 5684 5685 5686
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5687 5688 5689
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5690 5691 5692 5693 5694
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5695
	if (sd->flags & (SD_WAKE_AFFINE))
5696 5697 5698 5699 5700
		return 0;

	return 1;
}

5701 5702
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5703 5704 5705 5706 5707 5708
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5709
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5710 5711 5712 5713 5714 5715 5716
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5717 5718 5719
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5720 5721
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5722 5723 5724 5725 5726 5727 5728
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5729
static void free_rootdomain(struct rcu_head *rcu)
5730
{
5731
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5732

5733
	cpupri_cleanup(&rd->cpupri);
5734 5735 5736 5737 5738 5739
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5740 5741
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5742
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5743 5744
	unsigned long flags;

5745
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5746 5747

	if (rq->rd) {
I
Ingo Molnar 已提交
5748
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5749

5750
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5751
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5752

5753
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5754

I
Ingo Molnar 已提交
5755 5756 5757 5758 5759 5760 5761
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5762 5763 5764 5765 5766
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5767
	cpumask_set_cpu(rq->cpu, rd->span);
5768
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5769
		set_rq_online(rq);
G
Gregory Haskins 已提交
5770

5771
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5772 5773

	if (old_rd)
5774
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5775 5776
}

5777
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5778 5779 5780
{
	memset(rd, 0, sizeof(*rd));

5781
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5782
		goto out;
5783
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5784
		goto free_span;
5785
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5786
		goto free_online;
5787

5788
	if (cpupri_init(&rd->cpupri) != 0)
5789
		goto free_rto_mask;
5790
	return 0;
5791

5792 5793
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5794 5795 5796 5797
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5798
out:
5799
	return -ENOMEM;
G
Gregory Haskins 已提交
5800 5801
}

5802 5803 5804 5805 5806 5807
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5808 5809
static void init_defrootdomain(void)
{
5810
	init_rootdomain(&def_root_domain);
5811

G
Gregory Haskins 已提交
5812 5813 5814
	atomic_set(&def_root_domain.refcount, 1);
}

5815
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5816 5817 5818 5819 5820 5821 5822
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5823
	if (init_rootdomain(rd) != 0) {
5824 5825 5826
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5827 5828 5829 5830

	return rd;
}

5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5850 5851 5852
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5853 5854 5855 5856 5857 5858 5859 5860

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5861
		kfree(sd->groups->sgp);
5862
		kfree(sd->groups);
5863
	}
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5878 5879 5880 5881 5882 5883 5884
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5885
 * two cpus are in the same cache domain, see cpus_share_cache().
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
	if (sd)
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5903
/*
I
Ingo Molnar 已提交
5904
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5905 5906
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5907 5908
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5909
{
5910
	struct rq *rq = cpu_rq(cpu);
5911 5912 5913
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5914
	for (tmp = sd; tmp; ) {
5915 5916 5917
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5918

5919
		if (sd_parent_degenerate(tmp, parent)) {
5920
			tmp->parent = parent->parent;
5921 5922
			if (parent->parent)
				parent->parent->child = tmp;
5923
			destroy_sched_domain(parent, cpu);
5924 5925
		} else
			tmp = tmp->parent;
5926 5927
	}

5928
	if (sd && sd_degenerate(sd)) {
5929
		tmp = sd;
5930
		sd = sd->parent;
5931
		destroy_sched_domain(tmp, cpu);
5932 5933 5934
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5935

5936
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5937

G
Gregory Haskins 已提交
5938
	rq_attach_root(rq, rd);
5939
	tmp = rq->sd;
N
Nick Piggin 已提交
5940
	rcu_assign_pointer(rq->sd, sd);
5941
	destroy_sched_domains(tmp, cpu);
5942 5943

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5944 5945 5946
}

/* cpus with isolated domains */
5947
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5948 5949 5950 5951

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5952
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5953
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5954 5955 5956
	return 1;
}

I
Ingo Molnar 已提交
5957
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5958

5959 5960 5961 5962 5963
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5964 5965 5966
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5967
	struct sched_group_power **__percpu sgp;
5968 5969
};

5970
struct s_data {
5971
	struct sched_domain ** __percpu sd;
5972 5973 5974
	struct root_domain	*rd;
};

5975 5976
enum s_alloc {
	sa_rootdomain,
5977
	sa_sd,
5978
	sa_sd_storage,
5979 5980 5981
	sa_none,
};

5982 5983 5984
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5985 5986
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5987 5988
#define SDTL_OVERLAP	0x01

5989
struct sched_domain_topology_level {
5990 5991
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5992
	int		    flags;
5993
	int		    numa_level;
5994
	struct sd_data      data;
5995 5996
};

5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6016
				GFP_KERNEL, cpu_to_node(cpu));
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
6032
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6033 6034
		atomic_inc(&sg->sgp->ref);

P
Peter Zijlstra 已提交
6035 6036 6037
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
			       cpumask_first(sg_span) == cpu) {
			WARN_ON_ONCE(!cpumask_test_cpu(cpu, sg_span));
6038
			groups = sg;
P
Peter Zijlstra 已提交
6039
		}
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6058
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6059
{
6060 6061
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6062

6063 6064
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6065

6066
	if (sg) {
6067
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6068
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6069
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6070
	}
6071 6072

	return cpu;
6073 6074
}

6075
/*
6076 6077 6078
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6079 6080
 *
 * Assumes the sched_domain tree is fully constructed
6081
 */
6082 6083
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6084
{
6085 6086 6087
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6088
	struct cpumask *covered;
6089
	int i;
6090

6091 6092 6093 6094 6095 6096
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6097 6098 6099
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6100
	cpumask_clear(covered);
6101

6102 6103 6104 6105
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6106

6107 6108
		if (cpumask_test_cpu(i, covered))
			continue;
6109

6110
		cpumask_clear(sched_group_cpus(sg));
6111
		sg->sgp->power = 0;
6112

6113 6114 6115
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6116

6117 6118 6119
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6120

6121 6122 6123 6124 6125 6126 6127
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6128 6129

	return 0;
6130
}
6131

6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6144
	struct sched_group *sg = sd->groups;
6145

6146 6147 6148 6149 6150 6151
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6152

6153 6154
	if (cpu != group_first_cpu(sg))
		return;
6155

6156
	update_group_power(sd, cpu);
6157
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6158 6159
}

6160 6161 6162
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6163 6164
}

6165 6166 6167 6168 6169
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6170 6171 6172 6173 6174 6175
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6176 6177 6178 6179 6180 6181 6182 6183 6184
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6185 6186 6187 6188 6189 6190 6191 6192 6193
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6194 6195 6196
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6197

6198
static int default_relax_domain_level = -1;
6199
int sched_domain_level_max;
6200 6201 6202

static int __init setup_relax_domain_level(char *str)
{
6203 6204 6205
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6206
	if (val < sched_domain_level_max)
6207 6208
		default_relax_domain_level = val;

6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6227
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6228 6229
	} else {
		/* turn on idle balance on this domain */
6230
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6231 6232 6233
	}
}

6234 6235 6236
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6237 6238 6239 6240 6241
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6242 6243
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6244 6245
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6246
	case sa_sd_storage:
6247
		__sdt_free(cpu_map); /* fall through */
6248 6249 6250 6251
	case sa_none:
		break;
	}
}
6252

6253 6254 6255
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6256 6257
	memset(d, 0, sizeof(*d));

6258 6259
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6260 6261 6262
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6263
	d->rd = alloc_rootdomain();
6264
	if (!d->rd)
6265
		return sa_sd;
6266 6267
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6268

6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6281
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6282
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6283 6284

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6285
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6286 6287
}

6288 6289
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6290
{
6291
	return topology_thread_cpumask(cpu);
6292
}
6293
#endif
6294

6295 6296 6297
/*
 * Topology list, bottom-up.
 */
6298
static struct sched_domain_topology_level default_topology[] = {
6299 6300
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6301
#endif
6302
#ifdef CONFIG_SCHED_MC
6303
	{ sd_init_MC, cpu_coregroup_mask, },
6304
#endif
6305 6306 6307 6308
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6309 6310 6311 6312 6313
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int sched_domains_numa_scale;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
	if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6342
		.imbalance_pct		= 125,
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_PREFER_LOCAL
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_scale = curr_distance;
	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 *
	 * XXX: could be optimized to O(n log n) by using sort()
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			int distance = node_distance(0, j);
			if (distance > curr_distance &&
					(distance < next_distance ||
					 next_distance == curr_distance))
				next_distance = distance;
		}
		if (next_distance != curr_distance) {
			sched_domains_numa_distance[level++] = next_distance;
			sched_domains_numa_levels = level;
			curr_distance = next_distance;
		} else break;
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6441
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6442 6443 6444 6445 6446 6447
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6448
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
}
#else
static inline void sched_init_numa(void)
{
}
#endif /* CONFIG_NUMA */

6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6503 6504 6505 6506
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6507 6508 6509
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6510
			struct sched_group_power *sgp;
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6524 6525
			sg->next = sg;

6526
			*per_cpu_ptr(sdd->sg, j) = sg;
6527 6528 6529 6530 6531 6532 6533

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6562 6563
		}
		free_percpu(sdd->sd);
6564
		sdd->sd = NULL;
6565
		free_percpu(sdd->sg);
6566
		sdd->sg = NULL;
6567
		free_percpu(sdd->sgp);
6568
		sdd->sgp = NULL;
6569 6570 6571
	}
}

6572 6573
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6574
		struct sched_domain_attr *attr, struct sched_domain *child,
6575 6576
		int cpu)
{
6577
	struct sched_domain *sd = tl->init(tl, cpu);
6578
	if (!sd)
6579
		return child;
6580 6581 6582

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6583 6584 6585
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6586
		child->parent = sd;
6587
	}
6588
	sd->child = child;
6589 6590 6591 6592

	return sd;
}

6593 6594 6595 6596
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6597 6598
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6599 6600
{
	enum s_alloc alloc_state = sa_none;
6601
	struct sched_domain *sd;
6602
	struct s_data d;
6603
	int i, ret = -ENOMEM;
6604

6605 6606 6607
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6608

6609
	/* Set up domains for cpus specified by the cpu_map. */
6610
	for_each_cpu(i, cpu_map) {
6611 6612
		struct sched_domain_topology_level *tl;

6613
		sd = NULL;
6614
		for (tl = sched_domain_topology; tl->init; tl++) {
6615
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6616 6617
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6618 6619
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6620
		}
6621

6622 6623 6624
		while (sd->child)
			sd = sd->child;

6625
		*per_cpu_ptr(d.sd, i) = sd;
6626 6627 6628 6629 6630 6631
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6632 6633 6634 6635 6636 6637 6638
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6639
		}
6640
	}
6641

L
Linus Torvalds 已提交
6642
	/* Calculate CPU power for physical packages and nodes */
6643 6644 6645
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6646

6647 6648
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6649
			init_sched_groups_power(i, sd);
6650
		}
6651
	}
6652

L
Linus Torvalds 已提交
6653
	/* Attach the domains */
6654
	rcu_read_lock();
6655
	for_each_cpu(i, cpu_map) {
6656
		sd = *per_cpu_ptr(d.sd, i);
6657
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6658
	}
6659
	rcu_read_unlock();
6660

6661
	ret = 0;
6662
error:
6663
	__free_domain_allocs(&d, alloc_state, cpu_map);
6664
	return ret;
L
Linus Torvalds 已提交
6665
}
P
Paul Jackson 已提交
6666

6667
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6668
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6669 6670
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6671 6672 6673

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6674 6675
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6676
 */
6677
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6678

6679 6680 6681 6682 6683 6684
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6685
{
6686
	return 0;
6687 6688
}

6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6714
/*
I
Ingo Molnar 已提交
6715
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6716 6717
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6718
 */
6719
static int init_sched_domains(const struct cpumask *cpu_map)
6720
{
6721 6722
	int err;

6723
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6724
	ndoms_cur = 1;
6725
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6726
	if (!doms_cur)
6727 6728
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6729
	err = build_sched_domains(doms_cur[0], NULL);
6730
	register_sched_domain_sysctl();
6731 6732

	return err;
6733 6734 6735 6736 6737 6738
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6739
static void detach_destroy_domains(const struct cpumask *cpu_map)
6740 6741 6742
{
	int i;

6743
	rcu_read_lock();
6744
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6745
		cpu_attach_domain(NULL, &def_root_domain, i);
6746
	rcu_read_unlock();
6747 6748
}

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6765 6766
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6767
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6768 6769 6770
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6771
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6772 6773 6774
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6775 6776 6777
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6778 6779 6780 6781 6782 6783
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6784
 *
6785
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6786 6787
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6788
 *
P
Paul Jackson 已提交
6789 6790
 * Call with hotplug lock held
 */
6791
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6792
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6793
{
6794
	int i, j, n;
6795
	int new_topology;
P
Paul Jackson 已提交
6796

6797
	mutex_lock(&sched_domains_mutex);
6798

6799 6800 6801
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6802 6803 6804
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6805
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6806 6807 6808

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6809
		for (j = 0; j < n && !new_topology; j++) {
6810
			if (cpumask_equal(doms_cur[i], doms_new[j])
6811
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6812 6813 6814
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6815
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6816 6817 6818 6819
match1:
		;
	}

6820 6821
	if (doms_new == NULL) {
		ndoms_cur = 0;
6822
		doms_new = &fallback_doms;
6823
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6824
		WARN_ON_ONCE(dattr_new);
6825 6826
	}

P
Paul Jackson 已提交
6827 6828
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6829
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6830
			if (cpumask_equal(doms_new[i], doms_cur[j])
6831
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6832 6833 6834
				goto match2;
		}
		/* no match - add a new doms_new */
6835
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6836 6837 6838 6839 6840
match2:
		;
	}

	/* Remember the new sched domains */
6841 6842
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6843
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6844
	doms_cur = doms_new;
6845
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6846
	ndoms_cur = ndoms_new;
6847 6848

	register_sched_domain_sysctl();
6849

6850
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6851 6852
}

L
Linus Torvalds 已提交
6853
/*
6854 6855 6856
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6857
 */
6858 6859
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6860
{
6861
	switch (action & ~CPU_TASKS_FROZEN) {
6862
	case CPU_ONLINE:
6863
	case CPU_DOWN_FAILED:
6864
		cpuset_update_active_cpus();
6865
		return NOTIFY_OK;
6866 6867 6868 6869
	default:
		return NOTIFY_DONE;
	}
}
6870

6871 6872
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6873 6874 6875 6876 6877
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6878 6879 6880 6881 6882
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6883 6884
void __init sched_init_smp(void)
{
6885 6886 6887
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6888
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6889

6890 6891
	sched_init_numa();

6892
	get_online_cpus();
6893
	mutex_lock(&sched_domains_mutex);
6894
	init_sched_domains(cpu_active_mask);
6895 6896 6897
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6898
	mutex_unlock(&sched_domains_mutex);
6899
	put_online_cpus();
6900

6901 6902
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6903 6904 6905 6906

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6907
	init_hrtick();
6908 6909

	/* Move init over to a non-isolated CPU */
6910
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6911
		BUG();
I
Ingo Molnar 已提交
6912
	sched_init_granularity();
6913
	free_cpumask_var(non_isolated_cpus);
6914

6915
	init_sched_rt_class();
L
Linus Torvalds 已提交
6916 6917 6918 6919
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6920
	sched_init_granularity();
L
Linus Torvalds 已提交
6921 6922 6923
}
#endif /* CONFIG_SMP */

6924 6925
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6926 6927 6928 6929 6930 6931 6932
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6933 6934
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6935
#endif
P
Peter Zijlstra 已提交
6936

6937
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6938

L
Linus Torvalds 已提交
6939 6940
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6941
	int i, j;
6942 6943 6944 6945 6946 6947 6948
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6949
#endif
6950
#ifdef CONFIG_CPUMASK_OFFSTACK
6951
	alloc_size += num_possible_cpus() * cpumask_size();
6952 6953
#endif
	if (alloc_size) {
6954
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6955 6956

#ifdef CONFIG_FAIR_GROUP_SCHED
6957
		root_task_group.se = (struct sched_entity **)ptr;
6958 6959
		ptr += nr_cpu_ids * sizeof(void **);

6960
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6961
		ptr += nr_cpu_ids * sizeof(void **);
6962

6963
#endif /* CONFIG_FAIR_GROUP_SCHED */
6964
#ifdef CONFIG_RT_GROUP_SCHED
6965
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6966 6967
		ptr += nr_cpu_ids * sizeof(void **);

6968
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6969 6970
		ptr += nr_cpu_ids * sizeof(void **);

6971
#endif /* CONFIG_RT_GROUP_SCHED */
6972 6973 6974 6975 6976 6977
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6978
	}
I
Ingo Molnar 已提交
6979

G
Gregory Haskins 已提交
6980 6981 6982 6983
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6984 6985 6986 6987
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6988
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6989
			global_rt_period(), global_rt_runtime());
6990
#endif /* CONFIG_RT_GROUP_SCHED */
6991

D
Dhaval Giani 已提交
6992
#ifdef CONFIG_CGROUP_SCHED
6993 6994
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6995
	INIT_LIST_HEAD(&root_task_group.siblings);
6996
	autogroup_init(&init_task);
6997

D
Dhaval Giani 已提交
6998
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6999

7000 7001 7002 7003 7004 7005
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
7006
	for_each_possible_cpu(i) {
7007
		struct rq *rq;
L
Linus Torvalds 已提交
7008 7009

		rq = cpu_rq(i);
7010
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7011
		rq->nr_running = 0;
7012 7013
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7014
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
7015
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7016
#ifdef CONFIG_FAIR_GROUP_SCHED
7017
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7018
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7019
		/*
7020
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7021 7022 7023 7024
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7025
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7026 7027 7028
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7029
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7030 7031 7032
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7033
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7034
		 *
7035 7036
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7037
		 */
7038
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7039
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7040 7041 7042
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7043
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7044
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7045
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7046
#endif
L
Linus Torvalds 已提交
7047

I
Ingo Molnar 已提交
7048 7049
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7050 7051 7052

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7053
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7054
		rq->sd = NULL;
G
Gregory Haskins 已提交
7055
		rq->rd = NULL;
7056
		rq->cpu_power = SCHED_POWER_SCALE;
7057
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7058
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7059
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7060
		rq->push_cpu = 0;
7061
		rq->cpu = i;
7062
		rq->online = 0;
7063 7064
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7065 7066 7067

		INIT_LIST_HEAD(&rq->cfs_tasks);

7068
		rq_attach_root(rq, &def_root_domain);
7069
#ifdef CONFIG_NO_HZ
7070
		rq->nohz_flags = 0;
7071
#endif
L
Linus Torvalds 已提交
7072
#endif
P
Peter Zijlstra 已提交
7073
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7074 7075 7076
		atomic_set(&rq->nr_iowait, 0);
	}

7077
	set_load_weight(&init_task);
7078

7079 7080 7081 7082
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7083
#ifdef CONFIG_RT_MUTEXES
7084
	plist_head_init(&init_task.pi_waiters);
7085 7086
#endif

L
Linus Torvalds 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7100 7101 7102

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7103 7104 7105 7106
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7107

7108
#ifdef CONFIG_SMP
7109
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7110 7111 7112
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7113
	idle_thread_set_boot_cpu();
7114 7115
#endif
	init_sched_fair_class();
7116

7117
	scheduler_running = 1;
L
Linus Torvalds 已提交
7118 7119
}

7120
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7121 7122
static inline int preempt_count_equals(int preempt_offset)
{
7123
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7124

A
Arnd Bergmann 已提交
7125
	return (nested == preempt_offset);
7126 7127
}

7128
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7129 7130 7131
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7132
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7133 7134
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7135 7136 7137 7138 7139
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7140 7141 7142 7143 7144 7145 7146
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7147 7148 7149 7150 7151

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7152 7153 7154 7155 7156
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7157 7158
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7159 7160
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7161
	int on_rq;
7162

P
Peter Zijlstra 已提交
7163
	on_rq = p->on_rq;
7164
	if (on_rq)
7165
		dequeue_task(rq, p, 0);
7166 7167
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7168
		enqueue_task(rq, p, 0);
7169 7170
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7171 7172

	check_class_changed(rq, p, prev_class, old_prio);
7173 7174
}

L
Linus Torvalds 已提交
7175 7176
void normalize_rt_tasks(void)
{
7177
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7178
	unsigned long flags;
7179
	struct rq *rq;
L
Linus Torvalds 已提交
7180

7181
	read_lock_irqsave(&tasklist_lock, flags);
7182
	do_each_thread(g, p) {
7183 7184 7185 7186 7187 7188
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7189 7190
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7191 7192 7193
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7194
#endif
I
Ingo Molnar 已提交
7195 7196 7197 7198 7199 7200 7201 7202

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7203
			continue;
I
Ingo Molnar 已提交
7204
		}
L
Linus Torvalds 已提交
7205

7206
		raw_spin_lock(&p->pi_lock);
7207
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7208

7209
		normalize_task(rq, p);
7210

7211
		__task_rq_unlock(rq);
7212
		raw_spin_unlock(&p->pi_lock);
7213 7214
	} while_each_thread(g, p);

7215
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7216 7217 7218
}

#endif /* CONFIG_MAGIC_SYSRQ */
7219

7220
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7221
/*
7222
 * These functions are only useful for the IA64 MCA handling, or kdb.
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7237
struct task_struct *curr_task(int cpu)
7238 7239 7240 7241
{
	return cpu_curr(cpu);
}

7242 7243 7244
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7245 7246 7247 7248 7249 7250
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7251 7252
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7253 7254 7255 7256 7257 7258 7259
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7260
void set_curr_task(int cpu, struct task_struct *p)
7261 7262 7263 7264 7265
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7266

D
Dhaval Giani 已提交
7267
#ifdef CONFIG_CGROUP_SCHED
7268 7269 7270
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7271 7272 7273 7274
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7275
	autogroup_free(tg);
7276 7277 7278 7279
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7280
struct task_group *sched_create_group(struct task_group *parent)
7281 7282 7283 7284 7285 7286 7287 7288
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7289
	if (!alloc_fair_sched_group(tg, parent))
7290 7291
		goto err;

7292
	if (!alloc_rt_sched_group(tg, parent))
7293 7294
		goto err;

7295
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7296
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7297 7298 7299 7300 7301

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7302
	list_add_rcu(&tg->siblings, &parent->children);
7303
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7304

7305
	return tg;
S
Srivatsa Vaddagiri 已提交
7306 7307

err:
P
Peter Zijlstra 已提交
7308
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7309 7310 7311
	return ERR_PTR(-ENOMEM);
}

7312
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7313
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7314 7315
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7316
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7317 7318
}

7319
/* Destroy runqueue etc associated with a task group */
7320
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7321
{
7322
	unsigned long flags;
7323
	int i;
S
Srivatsa Vaddagiri 已提交
7324

7325 7326
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7327
		unregister_fair_sched_group(tg, i);
7328 7329

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7330
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7331
	list_del_rcu(&tg->siblings);
7332
	spin_unlock_irqrestore(&task_group_lock, flags);
7333 7334

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7335
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7336 7337
}

7338
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7339 7340 7341
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7342 7343
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7344 7345 7346 7347 7348 7349 7350
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7351
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7352
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7353

7354
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7355
		dequeue_task(rq, tsk, 0);
7356 7357
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7358

P
Peter Zijlstra 已提交
7359
#ifdef CONFIG_FAIR_GROUP_SCHED
7360 7361 7362
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7363
#endif
7364
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7365

7366 7367 7368
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7369
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7370

7371
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7372
}
D
Dhaval Giani 已提交
7373
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7374

7375
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7376 7377 7378
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7379
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7380

P
Peter Zijlstra 已提交
7381
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7382
}
7383 7384 7385 7386 7387 7388 7389
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7390

P
Peter Zijlstra 已提交
7391 7392
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7393
{
P
Peter Zijlstra 已提交
7394
	struct task_struct *g, *p;
7395

P
Peter Zijlstra 已提交
7396
	do_each_thread(g, p) {
7397
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7398 7399
			return 1;
	} while_each_thread(g, p);
7400

P
Peter Zijlstra 已提交
7401 7402
	return 0;
}
7403

P
Peter Zijlstra 已提交
7404 7405 7406 7407 7408
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7409

7410
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7411 7412 7413 7414 7415
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7416

P
Peter Zijlstra 已提交
7417 7418
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7419

P
Peter Zijlstra 已提交
7420 7421 7422
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7423 7424
	}

7425 7426 7427 7428 7429
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7430

7431 7432 7433
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7434 7435
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7436

P
Peter Zijlstra 已提交
7437
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7438

7439 7440 7441 7442 7443
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7444

7445 7446 7447
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7448 7449 7450
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7451

P
Peter Zijlstra 已提交
7452 7453 7454 7455
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7456

P
Peter Zijlstra 已提交
7457
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7458
	}
P
Peter Zijlstra 已提交
7459

P
Peter Zijlstra 已提交
7460 7461 7462 7463
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7464 7465
}

P
Peter Zijlstra 已提交
7466
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7467
{
7468 7469
	int ret;

P
Peter Zijlstra 已提交
7470 7471 7472 7473 7474 7475
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7476 7477 7478 7479 7480
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7481 7482
}

7483
static int tg_set_rt_bandwidth(struct task_group *tg,
7484
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7485
{
P
Peter Zijlstra 已提交
7486
	int i, err = 0;
P
Peter Zijlstra 已提交
7487 7488

	mutex_lock(&rt_constraints_mutex);
7489
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7490 7491
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7492
		goto unlock;
P
Peter Zijlstra 已提交
7493

7494
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7495 7496
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7497 7498 7499 7500

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7501
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7502
		rt_rq->rt_runtime = rt_runtime;
7503
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7504
	}
7505
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7506
unlock:
7507
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7508 7509 7510
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7511 7512
}

7513 7514 7515 7516 7517 7518 7519 7520 7521
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7522
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7523 7524
}

P
Peter Zijlstra 已提交
7525 7526 7527 7528
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7529
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7530 7531
		return -1;

7532
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7533 7534 7535
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7536 7537 7538 7539 7540 7541 7542 7543

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7544 7545 7546
	if (rt_period == 0)
		return -EINVAL;

7547
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7561
	u64 runtime, period;
7562 7563
	int ret = 0;

7564 7565 7566
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7567 7568 7569 7570 7571 7572 7573 7574
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7575

7576
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7577
	read_lock(&tasklist_lock);
7578
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7579
	read_unlock(&tasklist_lock);
7580 7581 7582 7583
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7594
#else /* !CONFIG_RT_GROUP_SCHED */
7595 7596
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7597 7598 7599
	unsigned long flags;
	int i;

7600 7601 7602
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7603 7604 7605 7606 7607 7608 7609
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7610
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7611 7612 7613
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7614
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7615
		rt_rq->rt_runtime = global_rt_runtime();
7616
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7617
	}
7618
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7619

7620 7621
	return 0;
}
7622
#endif /* CONFIG_RT_GROUP_SCHED */
7623 7624

int sched_rt_handler(struct ctl_table *table, int write,
7625
		void __user *buffer, size_t *lenp,
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7636
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7653

7654
#ifdef CONFIG_CGROUP_SCHED
7655 7656

/* return corresponding task_group object of a cgroup */
7657
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7658
{
7659 7660
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7661 7662
}

7663
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7664
{
7665
	struct task_group *tg, *parent;
7666

7667
	if (!cgrp->parent) {
7668
		/* This is early initialization for the top cgroup */
7669
		return &root_task_group.css;
7670 7671
	}

7672 7673
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7674 7675 7676 7677 7678 7679
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7680
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7681
{
7682
	struct task_group *tg = cgroup_tg(cgrp);
7683 7684 7685 7686

	sched_destroy_group(tg);
}

7687
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7688
				 struct cgroup_taskset *tset)
7689
{
7690 7691 7692
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7693
#ifdef CONFIG_RT_GROUP_SCHED
7694 7695
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7696
#else
7697 7698 7699
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7700
#endif
7701
	}
7702 7703
	return 0;
}
7704

7705
static void cpu_cgroup_attach(struct cgroup *cgrp,
7706
			      struct cgroup_taskset *tset)
7707
{
7708 7709 7710 7711
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7712 7713
}

7714
static void
7715 7716
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7729
#ifdef CONFIG_FAIR_GROUP_SCHED
7730
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7731
				u64 shareval)
7732
{
7733
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7734 7735
}

7736
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7737
{
7738
	struct task_group *tg = cgroup_tg(cgrp);
7739

7740
	return (u64) scale_load_down(tg->shares);
7741
}
7742 7743

#ifdef CONFIG_CFS_BANDWIDTH
7744 7745
static DEFINE_MUTEX(cfs_constraints_mutex);

7746 7747 7748
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7749 7750
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7751 7752
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7753
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7754
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7775 7776 7777 7778 7779
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7780
	runtime_enabled = quota != RUNTIME_INF;
7781 7782
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7783 7784 7785
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7786

P
Paul Turner 已提交
7787
	__refill_cfs_bandwidth_runtime(cfs_b);
7788 7789 7790 7791 7792 7793
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7794 7795 7796 7797
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7798
		struct rq *rq = cfs_rq->rq;
7799 7800

		raw_spin_lock_irq(&rq->lock);
7801
		cfs_rq->runtime_enabled = runtime_enabled;
7802
		cfs_rq->runtime_remaining = 0;
7803

7804
		if (cfs_rq->throttled)
7805
			unthrottle_cfs_rq(cfs_rq);
7806 7807
		raw_spin_unlock_irq(&rq->lock);
	}
7808 7809
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7810

7811
	return ret;
7812 7813 7814 7815 7816 7817
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7818
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7831
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7832 7833
		return -1;

7834
	quota_us = tg->cfs_bandwidth.quota;
7835 7836 7837 7838 7839 7840 7841 7842 7843 7844
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7845
	quota = tg->cfs_bandwidth.quota;
7846 7847 7848 7849 7850 7851 7852 7853

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7854
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7914
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7915 7916 7917 7918 7919
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7920
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7941
	int ret;
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7953 7954 7955 7956 7957
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7958
}
7959 7960 7961 7962 7963

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7964
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7965 7966 7967 7968 7969 7970 7971

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7972
#endif /* CONFIG_CFS_BANDWIDTH */
7973
#endif /* CONFIG_FAIR_GROUP_SCHED */
7974

7975
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7976
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7977
				s64 val)
P
Peter Zijlstra 已提交
7978
{
7979
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7980 7981
}

7982
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7983
{
7984
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7985
}
7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7997
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7998

7999
static struct cftype cpu_files[] = {
8000
#ifdef CONFIG_FAIR_GROUP_SCHED
8001 8002
	{
		.name = "shares",
8003 8004
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8005
	},
8006
#endif
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8018 8019 8020 8021
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8022
#endif
8023
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8024
	{
P
Peter Zijlstra 已提交
8025
		.name = "rt_runtime_us",
8026 8027
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8028
	},
8029 8030
	{
		.name = "rt_period_us",
8031 8032
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8033
	},
8034
#endif
8035
	{ }	/* terminate */
8036 8037 8038
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8039 8040 8041
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
8042 8043
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8044
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8045
	.subsys_id	= cpu_cgroup_subsys_id,
8046
	.base_cftypes	= cpu_files,
8047 8048 8049
	.early_init	= 1,
};

8050
#endif	/* CONFIG_CGROUP_SCHED */
8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
8062
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8063
{
8064
	struct cpuacct *ca;
8065

8066 8067 8068 8069
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8070
	if (!ca)
8071
		goto out;
8072 8073

	ca->cpuusage = alloc_percpu(u64);
8074 8075 8076
	if (!ca->cpuusage)
		goto out_free_ca;

8077 8078 8079
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8080

8081
	return &ca->css;
8082

8083
out_free_cpuusage:
8084 8085 8086 8087 8088
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8089 8090 8091
}

/* destroy an existing cpu accounting group */
8092
static void cpuacct_destroy(struct cgroup *cgrp)
8093
{
8094
	struct cpuacct *ca = cgroup_ca(cgrp);
8095

8096
	free_percpu(ca->cpustat);
8097 8098 8099 8100
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8101 8102
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8103
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8104 8105 8106 8107 8108 8109
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8110
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8111
	data = *cpuusage;
8112
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8113 8114 8115 8116 8117 8118 8119 8120 8121
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8122
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8123 8124 8125 8126 8127

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8128
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8129
	*cpuusage = val;
8130
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8131 8132 8133 8134 8135
#else
	*cpuusage = val;
#endif
}

8136
/* return total cpu usage (in nanoseconds) of a group */
8137
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8138
{
8139
	struct cpuacct *ca = cgroup_ca(cgrp);
8140 8141 8142
	u64 totalcpuusage = 0;
	int i;

8143 8144
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8145 8146 8147 8148

	return totalcpuusage;
}

8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8161 8162
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8163 8164 8165 8166 8167

out:
	return err;
}

8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8183 8184 8185 8186 8187 8188
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8189
			      struct cgroup_map_cb *cb)
8190 8191
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8192 8193
	int cpu;
	s64 val = 0;
8194

8195 8196 8197 8198
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8199
	}
8200 8201
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8202

8203 8204 8205 8206 8207 8208
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8209
	}
8210 8211 8212 8213

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8214 8215 8216
	return 0;
}

8217 8218 8219
static struct cftype files[] = {
	{
		.name = "usage",
8220 8221
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8222
	},
8223 8224 8225 8226
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8227 8228 8229 8230
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8231
	{ }	/* terminate */
8232 8233 8234 8235 8236 8237 8238
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8239
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8240 8241
{
	struct cpuacct *ca;
8242
	int cpu;
8243

L
Li Zefan 已提交
8244
	if (unlikely(!cpuacct_subsys.active))
8245 8246
		return;

8247
	cpu = task_cpu(tsk);
8248 8249 8250

	rcu_read_lock();

8251 8252
	ca = task_ca(tsk);

8253
	for (; ca; ca = parent_ca(ca)) {
8254
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8255 8256
		*cpuusage += cputime;
	}
8257 8258

	rcu_read_unlock();
8259 8260 8261 8262 8263 8264 8265
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8266
	.base_cftypes = files,
8267 8268
};
#endif	/* CONFIG_CGROUP_CPUACCT */