core.c 196.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
517
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
518 519
#endif

520
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
521 522 523
{
	int cpu;

524
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
525

526
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
527 528
		return;

529
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538 539 540

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

541
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
542 543 544 545
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

546
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
547 548
		return;
	resched_task(cpu_curr(cpu));
549
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
550
}
551 552

#ifdef CONFIG_NO_HZ
553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

567
	rcu_read_lock();
568
	for_each_domain(cpu, sd) {
569 570 571 572 573 574
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
575
	}
576 577
unlock:
	rcu_read_unlock();
578 579
	return cpu;
}
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
606 607

	/*
608 609 610
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
611
	 */
612
	set_tsk_need_resched(rq->idle);
613

614 615 616 617
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
618 619
}

620
static inline bool got_nohz_idle_kick(void)
621
{
622 623
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 625
}

626
#else /* CONFIG_NO_HZ */
627

628
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
629
{
630
	return false;
P
Peter Zijlstra 已提交
631 632
}

633
#endif /* CONFIG_NO_HZ */
634

635
void sched_avg_update(struct rq *rq)
636
{
637 638 639
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 641 642 643 644 645
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
646 647 648
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
649 650
}

651
#else /* !CONFIG_SMP */
652
void resched_task(struct task_struct *p)
653
{
654
	assert_raw_spin_locked(&task_rq(p)->lock);
655
	set_tsk_need_resched(p);
656
}
657
#endif /* CONFIG_SMP */
658

659 660
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661
/*
662 663 664 665
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
666
 */
667
int walk_tg_tree_from(struct task_group *from,
668
			     tg_visitor down, tg_visitor up, void *data)
669 670
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
671
	int ret;
672

673 674
	parent = from;

675
down:
P
Peter Zijlstra 已提交
676 677
	ret = (*down)(parent, data);
	if (ret)
678
		goto out;
679 680 681 682 683 684 685
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
686
	ret = (*up)(parent, data);
687 688
	if (ret || parent == from)
		goto out;
689 690 691 692 693

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
694
out:
P
Peter Zijlstra 已提交
695
	return ret;
696 697
}

698
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
699
{
700
	return 0;
P
Peter Zijlstra 已提交
701
}
702 703
#endif

704 705
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
706 707 708
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
709 710 711 712
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
713
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
714
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
715 716
		return;
	}
717

718
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
719
	load->inv_weight = prio_to_wmult[prio];
720 721
}

722
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723
{
724
	update_rq_clock(rq);
I
Ingo Molnar 已提交
725
	sched_info_queued(p);
726
	p->sched_class->enqueue_task(rq, p, flags);
727 728
}

729
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730
{
731
	update_rq_clock(rq);
732
	sched_info_dequeued(p);
733
	p->sched_class->dequeue_task(rq, p, flags);
734 735
}

736
void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 738 739 740
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

741
	enqueue_task(rq, p, flags);
742 743
}

744
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 746 747 748
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

749
	dequeue_task(rq, p, flags);
750 751
}

752
static void update_rq_clock_task(struct rq *rq, s64 delta)
753
{
754 755 756 757 758 759 760 761
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
784 785
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786
	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

804 805
	rq->clock_task += delta;

806 807 808 809
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

842
/*
I
Ingo Molnar 已提交
843
 * __normal_prio - return the priority that is based on the static prio
844 845 846
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
847
	return p->static_prio;
848 849
}

850 851 852 853 854 855 856
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
857
static inline int normal_prio(struct task_struct *p)
858 859 860
{
	int prio;

861
	if (task_has_rt_policy(p))
862 863 864 865 866 867 868 869 870 871 872 873 874
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
875
static int effective_prio(struct task_struct *p)
876 877 878 879 880 881 882 883 884 885 886 887
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
888 889 890 891
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
892
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
893 894 895 896
{
	return cpu_curr(task_cpu(p)) == p;
}

897 898
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
899
				       int oldprio)
900 901 902
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
903 904 905 906
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
907 908
}

909
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
930
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 932 933
		rq->skip_clock_update = 1;
}

934 935 936 937 938 939 940
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
941
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
942
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
943
{
944 945 946 947 948
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
949 950
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 952

#ifdef CONFIG_LOCKDEP
953 954 955 956 957
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
958
	 * see task_group().
959 960 961 962
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
963 964 965
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
966 967
#endif

968
	trace_sched_migrate_task(p, new_cpu);
969

970
	if (task_cpu(p) != new_cpu) {
971 972
		struct task_migration_notifier tmn;

973 974
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
975
		p->se.nr_migrations++;
976
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 978 979 980 981 982

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983
	}
I
Ingo Molnar 已提交
984 985

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
986 987
}

988
struct migration_arg {
989
	struct task_struct *task;
L
Linus Torvalds 已提交
990
	int dest_cpu;
991
};
L
Linus Torvalds 已提交
992

993 994
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
995 996 997
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
998 999 1000 1001 1002 1003 1004
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1011
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1012 1013
{
	unsigned long flags;
I
Ingo Molnar 已提交
1014
	int running, on_rq;
R
Roland McGrath 已提交
1015
	unsigned long ncsw;
1016
	struct rq *rq;
L
Linus Torvalds 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1038 1039 1040
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1041
			cpu_relax();
R
Roland McGrath 已提交
1042
		}
1043

1044 1045 1046 1047 1048 1049
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1050
		trace_sched_wait_task(p);
1051
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1052
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1053
		ncsw = 0;
1054
		if (!match_state || p->state == match_state)
1055
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056
		task_rq_unlock(rq, p, &flags);
1057

R
Roland McGrath 已提交
1058 1059 1060 1061 1062 1063
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1074

1075 1076 1077 1078 1079
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1080
		 * So if it was still runnable (but just not actively
1081 1082 1083 1084
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1085 1086 1087 1088
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 1090
			continue;
		}
1091

1092 1093 1094 1095 1096 1097 1098
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1099 1100

	return ncsw;
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1110
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1116
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1126
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1127
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1128

1129
#ifdef CONFIG_SMP
1130
/*
1131
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132
 */
1133 1134 1135
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136 1137
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1138 1139

	/* Look for allowed, online CPU in same node. */
1140
	for_each_cpu(dest_cpu, nodemask) {
1141 1142 1143 1144
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1145
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146
			return dest_cpu;
1147
	}
1148

1149 1150
	for (;;) {
		/* Any allowed, online CPU? */
1151
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152 1153 1154 1155 1156 1157
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1188 1189 1190 1191 1192
	}

	return dest_cpu;
}

1193
/*
1194
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195
 */
1196
static inline
1197
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198
{
1199
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1211
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1212
		     !cpu_online(cpu)))
1213
		cpu = select_fallback_rq(task_cpu(p), p);
1214 1215

	return cpu;
1216
}
1217 1218 1219 1220 1221 1222

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1223 1224
#endif

P
Peter Zijlstra 已提交
1225
static void
1226
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1227
{
P
Peter Zijlstra 已提交
1228
#ifdef CONFIG_SCHEDSTATS
1229 1230
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241
		rcu_read_lock();
P
Peter Zijlstra 已提交
1242 1243 1244 1245 1246 1247
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1248
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1249
	}
1250 1251 1252 1253

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1254 1255 1256
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1257
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1258 1259

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1260
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1261 1262 1263 1264 1265 1266

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1267
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1268
	p->on_rq = 1;
1269 1270 1271 1272

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1273 1274
}

1275 1276 1277
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1278
static void
1279
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1280
{
1281
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1282 1283 1284 1285 1286 1287 1288
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1289
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1335
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1336
static void sched_ttwu_pending(void)
1337 1338
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1339 1340
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1341 1342 1343

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1344 1345 1346
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1347 1348 1349 1350 1351 1352 1353 1354
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1355
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1372
	sched_ttwu_pending();
1373 1374 1375 1376

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1377 1378
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1379
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1380
	}
1381
	irq_exit();
1382 1383 1384 1385
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1386
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387 1388
		smp_send_reschedule(cpu);
}
1389

1390
bool cpus_share_cache(int this_cpu, int that_cpu)
1391 1392 1393
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1394
#endif /* CONFIG_SMP */
1395

1396 1397 1398 1399
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1400
#if defined(CONFIG_SMP)
1401
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403 1404 1405 1406 1407
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1408 1409 1410
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1411 1412 1413
}

/**
L
Linus Torvalds 已提交
1414
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1415
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1416
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1417
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1425 1426
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1427
 */
1428 1429
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1430 1431
{
	unsigned long flags;
1432
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1433

1434
	smp_wmb();
1435
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1436
	if (!(p->state & state))
L
Linus Torvalds 已提交
1437 1438
		goto out;

1439
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1440 1441
	cpu = task_cpu(p);

1442 1443
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1444 1445

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1446
	/*
1447 1448
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1449
	 */
1450
	while (p->on_cpu)
1451
		cpu_relax();
1452
	/*
1453
	 * Pairs with the smp_wmb() in finish_lock_switch().
1454
	 */
1455
	smp_rmb();
L
Linus Torvalds 已提交
1456

1457
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1458
	p->state = TASK_WAKING;
1459

1460
	if (p->sched_class->task_waking)
1461
		p->sched_class->task_waking(p);
1462

1463
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464 1465
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1466
		set_task_cpu(p, cpu);
1467
	}
L
Linus Torvalds 已提交
1468 1469
#endif /* CONFIG_SMP */

1470 1471
	ttwu_queue(p, cpu);
stat:
1472
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1473
out:
1474
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1475 1476 1477 1478

	return success;
}

T
Tejun Heo 已提交
1479 1480 1481 1482
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1483
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1484
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485
 * the current task.
T
Tejun Heo 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1495 1496 1497 1498 1499 1500
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1501
	if (!(p->state & TASK_NORMAL))
1502
		goto out;
T
Tejun Heo 已提交
1503

P
Peter Zijlstra 已提交
1504
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1505 1506
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1507
	ttwu_do_wakeup(rq, p, 0);
1508
	ttwu_stat(p, smp_processor_id(), 0);
1509 1510
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1524
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1525
{
1526 1527
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1528 1529 1530
}
EXPORT_SYMBOL(wake_up_process);

1531
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1532 1533 1534 1535 1536 1537 1538
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1539 1540 1541 1542 1543
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1544 1545 1546
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1547 1548
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1549
	p->se.prev_sum_exec_runtime	= 0;
1550
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1551
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1552
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1553

1554 1555 1556 1557 1558 1559
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1560 1561 1562
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1563
#ifdef CONFIG_SCHEDSTATS
1564
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1565
#endif
N
Nick Piggin 已提交
1566

P
Peter Zijlstra 已提交
1567
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1568

1569 1570 1571
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1572 1573 1574 1575

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1576
		p->mm->numa_next_reset = jiffies;
1577 1578 1579 1580 1581 1582
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1583
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1584 1585
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1586 1587
}

1588
#ifdef CONFIG_NUMA_BALANCING
1589
#ifdef CONFIG_SCHED_DEBUG
1590 1591 1592 1593 1594 1595 1596
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1597 1598 1599 1600 1601 1602
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1603
}
1604
#endif /* CONFIG_SCHED_DEBUG */
1605
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1606 1607 1608 1609

/*
 * fork()/clone()-time setup:
 */
1610
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1611
{
1612
	unsigned long flags;
I
Ingo Molnar 已提交
1613 1614 1615
	int cpu = get_cpu();

	__sched_fork(p);
1616
	/*
1617
	 * We mark the process as running here. This guarantees that
1618 1619 1620
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1621
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1622

1623 1624 1625 1626 1627
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1628 1629 1630 1631
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1632
		if (task_has_rt_policy(p)) {
1633
			p->policy = SCHED_NORMAL;
1634
			p->static_prio = NICE_TO_PRIO(0);
1635 1636 1637 1638 1639 1640
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1641

1642 1643 1644 1645 1646 1647
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1648

H
Hiroshi Shimamoto 已提交
1649 1650
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1651

P
Peter Zijlstra 已提交
1652 1653 1654
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1655 1656 1657 1658 1659 1660 1661
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1662
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1663
	set_task_cpu(p, cpu);
1664
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1665

1666
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1667
	if (likely(sched_info_on()))
1668
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1669
#endif
P
Peter Zijlstra 已提交
1670 1671
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1672
#endif
1673
#ifdef CONFIG_PREEMPT_COUNT
1674
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1675
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1676
#endif
1677
#ifdef CONFIG_SMP
1678
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1679
#endif
1680

N
Nick Piggin 已提交
1681
	put_cpu();
L
Linus Torvalds 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1691
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1692 1693
{
	unsigned long flags;
I
Ingo Molnar 已提交
1694
	struct rq *rq;
1695

1696
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1697 1698 1699 1700 1701 1702
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1703
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1704 1705
#endif

1706
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1707
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1708
	p->on_rq = 1;
1709
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1710
	check_preempt_curr(rq, p, WF_FORK);
1711
#ifdef CONFIG_SMP
1712 1713
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1714
#endif
1715
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1716 1717
}

1718 1719 1720
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1721
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1722
 * @notifier: notifier struct to register
1723 1724 1725 1726 1727 1728 1729 1730 1731
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1732
 * @notifier: notifier struct to unregister
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1762
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1774
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1775

1776 1777 1778
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1779
 * @prev: the current task that is being switched out
1780 1781 1782 1783 1784 1785 1786 1787 1788
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1789 1790 1791
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1792
{
1793
	trace_sched_switch(prev, next);
1794 1795
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1796
	fire_sched_out_preempt_notifiers(prev, next);
1797 1798 1799 1800
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1801 1802
/**
 * finish_task_switch - clean up after a task-switch
1803
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1804 1805
 * @prev: the thread we just switched away from.
 *
1806 1807 1808 1809
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1810 1811
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1812
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1813 1814 1815
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1816
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1817 1818 1819
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1820
	long prev_state;
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1826
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1827 1828
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1829
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1835
	prev_state = prev->state;
1836
	vtime_task_switch(prev);
1837
	finish_arch_switch(prev);
1838
	perf_event_task_sched_in(prev, current);
1839
	finish_lock_switch(rq, prev);
1840
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1841

1842
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1843 1844
	if (mm)
		mmdrop(mm);
1845
	if (unlikely(prev_state == TASK_DEAD)) {
1846 1847 1848
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1849
		 */
1850
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1851
		put_task_struct(prev);
1852
	}
L
Linus Torvalds 已提交
1853 1854
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1870
		raw_spin_lock_irqsave(&rq->lock, flags);
1871 1872
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1873
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1874 1875 1876 1877 1878 1879

		rq->post_schedule = 0;
	}
}

#else
1880

1881 1882 1883 1884 1885 1886
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1887 1888
}

1889 1890
#endif

L
Linus Torvalds 已提交
1891 1892 1893 1894
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1895
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1896 1897
	__releases(rq->lock)
{
1898 1899
	struct rq *rq = this_rq();

1900
	finish_task_switch(rq, prev);
1901

1902 1903 1904 1905 1906
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1907

1908 1909 1910 1911
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1912
	if (current->set_child_tid)
1913
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918 1919
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1920
static inline void
1921
context_switch(struct rq *rq, struct task_struct *prev,
1922
	       struct task_struct *next)
L
Linus Torvalds 已提交
1923
{
I
Ingo Molnar 已提交
1924
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1925

1926
	prepare_task_switch(rq, prev, next);
1927

I
Ingo Molnar 已提交
1928 1929
	mm = next->mm;
	oldmm = prev->active_mm;
1930 1931 1932 1933 1934
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1935
	arch_start_context_switch(prev);
1936

1937
	if (!mm) {
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1944
	if (!prev->mm) {
L
Linus Torvalds 已提交
1945 1946 1947
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1948 1949 1950 1951 1952 1953 1954
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1955
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1956
#endif
L
Linus Torvalds 已提交
1957

1958
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
1959 1960 1961
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1962 1963 1964 1965 1966 1967 1968
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1986
}
L
Linus Torvalds 已提交
1987 1988

unsigned long nr_uninterruptible(void)
1989
{
L
Linus Torvalds 已提交
1990
	unsigned long i, sum = 0;
1991

1992
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1993
		sum += cpu_rq(i)->nr_uninterruptible;
1994 1995

	/*
L
Linus Torvalds 已提交
1996 1997
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1998
	 */
L
Linus Torvalds 已提交
1999 2000
	if (unlikely((long)sum < 0))
		sum = 0;
2001

L
Linus Torvalds 已提交
2002
	return sum;
2003 2004
}

L
Linus Torvalds 已提交
2005
unsigned long long nr_context_switches(void)
2006
{
2007 2008
	int i;
	unsigned long long sum = 0;
2009

2010
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2011
		sum += cpu_rq(i)->nr_switches;
2012

L
Linus Torvalds 已提交
2013 2014
	return sum;
}
2015

L
Linus Torvalds 已提交
2016 2017 2018
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2019

2020
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2021
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2022

L
Linus Torvalds 已提交
2023 2024
	return sum;
}
2025

2026
unsigned long nr_iowait_cpu(int cpu)
2027
{
2028
	struct rq *this = cpu_rq(cpu);
2029 2030
	return atomic_read(&this->nr_iowait);
}
2031

2032 2033 2034 2035 2036
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2037

2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2086 2087 2088 2089
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2122 2123 2124
/*
 * a1 = a0 * e + a * (1 - e)
 */
2125 2126 2127 2128 2129 2130 2131 2132 2133
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2134 2135
#ifdef CONFIG_NO_HZ
/*
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2174 2175 2176
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2177 2178
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2179

2180
static inline int calc_load_write_idx(void)
2181
{
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2208 2209
	long delta;

2210 2211 2212 2213
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2214
	delta = calc_load_fold_active(this_rq);
2215 2216 2217 2218
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2219 2220
}

2221
void calc_load_exit_idle(void)
2222
{
2223 2224 2225 2226 2227 2228 2229
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2230 2231

	/*
2232 2233 2234
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2235
	 */
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2248 2249 2250

	return delta;
}
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2329
static void calc_global_nohz(void)
2330 2331 2332
{
	long delta, active, n;

2333 2334 2335 2336 2337 2338
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2339

2340 2341
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2342

2343 2344 2345
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2346

2347 2348
		calc_load_update += n * LOAD_FREQ;
	}
2349

2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2359
}
2360
#else /* !CONFIG_NO_HZ */
2361

2362 2363
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2364

2365
#endif /* CONFIG_NO_HZ */
2366 2367

/*
2368 2369
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2370
 */
2371
void calc_global_load(unsigned long ticks)
2372
{
2373
	long active, delta;
L
Linus Torvalds 已提交
2374

2375
	if (time_before(jiffies, calc_load_update + 10))
2376
		return;
L
Linus Torvalds 已提交
2377

2378 2379 2380 2381 2382 2383 2384
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2385 2386
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2387

2388 2389 2390
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2391

2392
	calc_load_update += LOAD_FREQ;
2393 2394

	/*
2395
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2396 2397
	 */
	calc_global_nohz();
2398
}
L
Linus Torvalds 已提交
2399

2400
/*
2401 2402
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2403 2404 2405
 */
static void calc_load_account_active(struct rq *this_rq)
{
2406
	long delta;
2407

2408 2409
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2410

2411 2412
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2413
		atomic_long_add(delta, &calc_load_tasks);
2414 2415

	this_rq->calc_load_update += LOAD_FREQ;
2416 2417
}

2418 2419 2420 2421
/*
 * End of global load-average stuff
 */

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2489
/*
I
Ingo Molnar 已提交
2490
 * Update rq->cpu_load[] statistics. This function is usually called every
2491 2492
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2493
 */
2494 2495
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2496
{
I
Ingo Molnar 已提交
2497
	int i, scale;
2498

I
Ingo Molnar 已提交
2499
	this_rq->nr_load_updates++;
2500

I
Ingo Molnar 已提交
2501
	/* Update our load: */
2502 2503
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2504
		unsigned long old_load, new_load;
2505

I
Ingo Molnar 已提交
2506
		/* scale is effectively 1 << i now, and >> i divides by scale */
2507

I
Ingo Molnar 已提交
2508
		old_load = this_rq->cpu_load[i];
2509
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2510
		new_load = this_load;
I
Ingo Molnar 已提交
2511 2512 2513 2514 2515 2516
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2517 2518 2519
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2520
	}
2521 2522

	sched_avg_update(this_rq);
2523 2524
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2539 2540 2541 2542 2543 2544
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2545
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2546 2547 2548 2549
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2550
	 * bail if there's load or we're actually up-to-date.
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2587 2588 2589
/*
 * Called from scheduler_tick()
 */
2590 2591
static void update_cpu_load_active(struct rq *this_rq)
{
2592
	/*
2593
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2594 2595 2596
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2597

2598
	calc_load_account_active(this_rq);
2599 2600
}

I
Ingo Molnar 已提交
2601
#ifdef CONFIG_SMP
2602

2603
/*
P
Peter Zijlstra 已提交
2604 2605
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2606
 */
P
Peter Zijlstra 已提交
2607
void sched_exec(void)
2608
{
P
Peter Zijlstra 已提交
2609
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2610
	unsigned long flags;
2611
	int dest_cpu;
2612

2613
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2614
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2615 2616
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2617

2618
	if (likely(cpu_active(dest_cpu))) {
2619
		struct migration_arg arg = { p, dest_cpu };
2620

2621 2622
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2623 2624
		return;
	}
2625
unlock:
2626
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2627
}
I
Ingo Molnar 已提交
2628

L
Linus Torvalds 已提交
2629 2630 2631
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2632
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2633 2634

EXPORT_PER_CPU_SYMBOL(kstat);
2635
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2636 2637

/*
2638
 * Return any ns on the sched_clock that have not yet been accounted in
2639
 * @p in case that task is currently running.
2640 2641
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2642
 */
2643 2644 2645 2646 2647 2648
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2649
		ns = rq->clock_task - p->se.exec_start;
2650 2651 2652 2653 2654 2655 2656
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2657
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2658 2659
{
	unsigned long flags;
2660
	struct rq *rq;
2661
	u64 ns = 0;
2662

2663
	rq = task_rq_lock(p, &flags);
2664
	ns = do_task_delta_exec(p, rq);
2665
	task_rq_unlock(rq, p, &flags);
2666

2667 2668
	return ns;
}
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2683
	task_rq_unlock(rq, p, &flags);
2684 2685 2686

	return ns;
}
2687

2688 2689 2690 2691 2692 2693 2694 2695
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2696
	struct task_struct *curr = rq->curr;
2697 2698

	sched_clock_tick();
I
Ingo Molnar 已提交
2699

2700
	raw_spin_lock(&rq->lock);
2701
	update_rq_clock(rq);
2702
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2703
	curr->sched_class->task_tick(rq, curr, 0);
2704
	raw_spin_unlock(&rq->lock);
2705

2706
	perf_event_task_tick();
2707

2708
#ifdef CONFIG_SMP
2709
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2710
	trigger_load_balance(rq, cpu);
2711
#endif
L
Linus Torvalds 已提交
2712 2713
}

2714
notrace unsigned long get_parent_ip(unsigned long addr)
2715 2716 2717 2718 2719 2720 2721 2722
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2723

2724 2725 2726
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2727
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2728
{
2729
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2730 2731 2732
	/*
	 * Underflow?
	 */
2733 2734
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2735
#endif
L
Linus Torvalds 已提交
2736
	preempt_count() += val;
2737
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2738 2739 2740
	/*
	 * Spinlock count overflowing soon?
	 */
2741 2742
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2743 2744 2745
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2746 2747 2748
}
EXPORT_SYMBOL(add_preempt_count);

2749
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2750
{
2751
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2752 2753 2754
	/*
	 * Underflow?
	 */
2755
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2756
		return;
L
Linus Torvalds 已提交
2757 2758 2759
	/*
	 * Is the spinlock portion underflowing?
	 */
2760 2761 2762
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2763
#endif
2764

2765 2766
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2767 2768 2769 2770 2771 2772 2773
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2774
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2775
 */
I
Ingo Molnar 已提交
2776
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2777
{
2778 2779 2780
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2781 2782
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2783

I
Ingo Molnar 已提交
2784
	debug_show_held_locks(prev);
2785
	print_modules();
I
Ingo Molnar 已提交
2786 2787
	if (irqs_disabled())
		print_irqtrace_events(prev);
2788
	dump_stack();
2789
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2790
}
L
Linus Torvalds 已提交
2791

I
Ingo Molnar 已提交
2792 2793 2794 2795 2796
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2797
	/*
I
Ingo Molnar 已提交
2798
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2799 2800 2801
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2802
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2803
		__schedule_bug(prev);
2804
	rcu_sleep_check();
I
Ingo Molnar 已提交
2805

L
Linus Torvalds 已提交
2806 2807
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2808
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2809 2810
}

P
Peter Zijlstra 已提交
2811
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2812
{
2813
	if (prev->on_rq || rq->skip_clock_update < 0)
2814
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2815
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2816 2817
}

I
Ingo Molnar 已提交
2818 2819 2820 2821
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2822
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2823
{
2824
	const struct sched_class *class;
I
Ingo Molnar 已提交
2825
	struct task_struct *p;
L
Linus Torvalds 已提交
2826 2827

	/*
I
Ingo Molnar 已提交
2828 2829
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2830
	 */
2831
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2832
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2833 2834
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2835 2836
	}

2837
	for_each_class(class) {
2838
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2839 2840 2841
		if (p)
			return p;
	}
2842 2843

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2844
}
L
Linus Torvalds 已提交
2845

I
Ingo Molnar 已提交
2846
/*
2847
 * __schedule() is the main scheduler function.
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2882
 */
2883
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2884 2885
{
	struct task_struct *prev, *next;
2886
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2887
	struct rq *rq;
2888
	int cpu;
I
Ingo Molnar 已提交
2889

2890 2891
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2892 2893
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2894
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2895 2896 2897
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2898

2899
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2900
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2901

2902
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2903

2904
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2905
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2906
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2907
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2908
		} else {
2909 2910 2911
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2912
			/*
2913 2914 2915
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2925
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2926 2927
	}

2928
	pre_schedule(rq, prev);
2929

I
Ingo Molnar 已提交
2930
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2931 2932
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2933
	put_prev_task(rq, prev);
2934
	next = pick_next_task(rq);
2935 2936
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2937 2938 2939 2940 2941 2942

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2943
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2944
		/*
2945 2946 2947 2948
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2949 2950 2951
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2952
	} else
2953
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2954

2955
	post_schedule(rq);
L
Linus Torvalds 已提交
2956

2957
	sched_preempt_enable_no_resched();
2958
	if (need_resched())
L
Linus Torvalds 已提交
2959 2960
		goto need_resched;
}
2961

2962 2963
static inline void sched_submit_work(struct task_struct *tsk)
{
2964
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2965 2966 2967 2968 2969 2970 2971 2972 2973
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2974
asmlinkage void __sched schedule(void)
2975
{
2976 2977 2978
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2979 2980
	__schedule();
}
L
Linus Torvalds 已提交
2981 2982
EXPORT_SYMBOL(schedule);

2983
#ifdef CONFIG_CONTEXT_TRACKING
2984 2985 2986 2987 2988 2989 2990 2991
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2992
	user_exit();
2993
	schedule();
2994
	user_enter();
2995 2996 2997
}
#endif

2998 2999 3000 3001 3002 3003 3004
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3005
	sched_preempt_enable_no_resched();
3006 3007 3008 3009
	schedule();
	preempt_disable();
}

3010
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3011

3012 3013 3014
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3015
		return false;
3016 3017

	/*
3018 3019 3020 3021
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3022
	 */
3023
	barrier();
3024

3025
	return owner->on_cpu;
3026
}
3027

3028 3029 3030 3031 3032 3033 3034 3035
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3036

3037
	rcu_read_lock();
3038 3039
	while (owner_running(lock, owner)) {
		if (need_resched())
3040
			break;
3041

3042
		arch_mutex_cpu_relax();
3043
	}
3044
	rcu_read_unlock();
3045

3046
	/*
3047 3048 3049
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3050
	 */
3051
	return lock->owner == NULL;
3052 3053 3054
}
#endif

L
Linus Torvalds 已提交
3055 3056
#ifdef CONFIG_PREEMPT
/*
3057
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3058
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3059 3060
 * occur there and call schedule directly.
 */
3061
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3062 3063
{
	struct thread_info *ti = current_thread_info();
3064

L
Linus Torvalds 已提交
3065 3066
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3067
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3068
	 */
N
Nick Piggin 已提交
3069
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3070 3071
		return;

3072
	do {
3073
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3074
		__schedule();
3075
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3076

3077 3078 3079 3080 3081
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3082
	} while (need_resched());
L
Linus Torvalds 已提交
3083 3084 3085 3086
}
EXPORT_SYMBOL(preempt_schedule);

/*
3087
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093 3094
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3095

3096
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3097 3098
	BUG_ON(ti->preempt_count || !irqs_disabled());

3099
	user_exit();
3100 3101 3102
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3103
		__schedule();
3104 3105
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3106

3107 3108 3109 3110 3111
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3112
	} while (need_resched());
L
Linus Torvalds 已提交
3113 3114 3115 3116
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3117
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3118
			  void *key)
L
Linus Torvalds 已提交
3119
{
P
Peter Zijlstra 已提交
3120
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3121 3122 3123 3124
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3125 3126
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3127 3128 3129
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3130
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3131 3132
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3133
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3134
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3135
{
3136
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3137

3138
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3139 3140
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3141
		if (curr->func(curr, mode, wake_flags, key) &&
3142
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3152
 * @key: is directly passed to the wakeup function
3153 3154 3155
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3156
 */
3157
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3158
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3171
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3172
{
3173
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3174
}
3175
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3176

3177 3178 3179 3180
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3181
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3182

L
Linus Torvalds 已提交
3183
/**
3184
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3185 3186 3187
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3188
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3189 3190 3191 3192 3193 3194 3195
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3196 3197 3198
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3199
 */
3200 3201
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3202 3203
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3204
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3205 3206 3207 3208 3209

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3210
		wake_flags = 0;
L
Linus Torvalds 已提交
3211 3212

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3213
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3214 3215
	spin_unlock_irqrestore(&q->lock, flags);
}
3216 3217 3218 3219 3220 3221 3222 3223 3224
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3225 3226
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3227 3228 3229 3230 3231 3232 3233 3234
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3235 3236 3237
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3238
 */
3239
void complete(struct completion *x)
L
Linus Torvalds 已提交
3240 3241 3242 3243 3244
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3245
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3246 3247 3248 3249
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3250 3251 3252 3253 3254
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3255 3256 3257
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3258
 */
3259
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3260 3261 3262 3263 3264
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3265
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3266 3267 3268 3269
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3270 3271
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3272 3273 3274 3275
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3276
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3277
		do {
3278
			if (signal_pending_state(state, current)) {
3279 3280
				timeout = -ERESTARTSYS;
				break;
3281 3282
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3283 3284 3285
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3286
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3287
		__remove_wait_queue(&x->wait, &wait);
3288 3289
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3290 3291
	}
	x->done--;
3292
	return timeout ?: 1;
L
Linus Torvalds 已提交
3293 3294
}

3295 3296
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3297 3298 3299 3300
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3301
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3302
	spin_unlock_irq(&x->wait.lock);
3303 3304
	return timeout;
}
L
Linus Torvalds 已提交
3305

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3316
void __sched wait_for_completion(struct completion *x)
3317 3318
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3319
}
3320
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3321

3322 3323 3324 3325 3326 3327 3328 3329
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3330 3331 3332
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3333
 */
3334
unsigned long __sched
3335
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3336
{
3337
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3338
}
3339
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3340

3341 3342 3343 3344 3345 3346
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3347 3348
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3349
 */
3350
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3351
{
3352 3353 3354 3355
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3356
}
3357
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3358

3359 3360 3361 3362 3363 3364 3365
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3366 3367 3368
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3369
 */
3370
long __sched
3371 3372
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3373
{
3374
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3375
}
3376
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3377

3378 3379 3380 3381 3382 3383
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3384 3385
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3386
 */
M
Matthew Wilcox 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3396 3397 3398 3399 3400 3401 3402 3403
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3404 3405 3406
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3407
 */
3408
long __sched
3409 3410 3411 3412 3413 3414 3415
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3430
	unsigned long flags;
3431 3432
	int ret = 1;

3433
	spin_lock_irqsave(&x->wait.lock, flags);
3434 3435 3436 3437
	if (!x->done)
		ret = 0;
	else
		x->done--;
3438
	spin_unlock_irqrestore(&x->wait.lock, flags);
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3453
	unsigned long flags;
3454 3455
	int ret = 1;

3456
	spin_lock_irqsave(&x->wait.lock, flags);
3457 3458
	if (!x->done)
		ret = 0;
3459
	spin_unlock_irqrestore(&x->wait.lock, flags);
3460 3461 3462 3463
	return ret;
}
EXPORT_SYMBOL(completion_done);

3464 3465
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3466
{
I
Ingo Molnar 已提交
3467 3468 3469 3470
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3471

3472
	__set_current_state(state);
L
Linus Torvalds 已提交
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3488 3489 3490
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3491
long __sched
I
Ingo Molnar 已提交
3492
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3493
{
3494
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3495 3496 3497
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3498
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3499
{
3500
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3501 3502 3503
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3504
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3505
{
3506
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3507 3508 3509
}
EXPORT_SYMBOL(sleep_on_timeout);

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3522
void rt_mutex_setprio(struct task_struct *p, int prio)
3523
{
3524
	int oldprio, on_rq, running;
3525
	struct rq *rq;
3526
	const struct sched_class *prev_class;
3527 3528 3529

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3530
	rq = __task_rq_lock(p);
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3550
	trace_sched_pi_setprio(p, prio);
3551
	oldprio = p->prio;
3552
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3553
	on_rq = p->on_rq;
3554
	running = task_current(rq, p);
3555
	if (on_rq)
3556
		dequeue_task(rq, p, 0);
3557 3558
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3559 3560 3561 3562 3563 3564

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3565 3566
	p->prio = prio;

3567 3568
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3569
	if (on_rq)
3570
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3571

P
Peter Zijlstra 已提交
3572
	check_class_changed(rq, p, prev_class, oldprio);
3573
out_unlock:
3574
	__task_rq_unlock(rq);
3575 3576
}
#endif
3577
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3578
{
I
Ingo Molnar 已提交
3579
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3580
	unsigned long flags;
3581
	struct rq *rq;
L
Linus Torvalds 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3594
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3595
	 */
3596
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3597 3598 3599
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3600
	on_rq = p->on_rq;
3601
	if (on_rq)
3602
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3603 3604

	p->static_prio = NICE_TO_PRIO(nice);
3605
	set_load_weight(p);
3606 3607 3608
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3609

I
Ingo Molnar 已提交
3610
	if (on_rq) {
3611
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3612
		/*
3613 3614
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3615
		 */
3616
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3617 3618 3619
			resched_task(rq->curr);
	}
out_unlock:
3620
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3621 3622 3623
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3624 3625 3626 3627 3628
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3629
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3630
{
3631 3632
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3633

3634
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3635 3636 3637
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3647
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3648
{
3649
	long nice, retval;
L
Linus Torvalds 已提交
3650 3651 3652 3653 3654 3655

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3656 3657
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3658 3659 3660
	if (increment > 40)
		increment = 40;

3661
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3662 3663 3664 3665 3666
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3667 3668 3669
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3688
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3689 3690 3691 3692 3693 3694 3695 3696
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3697
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3698 3699 3700
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3701
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3702 3703 3704 3705 3706 3707 3708

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3723 3724 3725 3726 3727 3728
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3729
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3738
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3739
{
3740
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3741 3742 3743
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3744 3745
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3746 3747 3748
{
	p->policy = policy;
	p->rt_priority = prio;
3749 3750 3751
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3752 3753 3754 3755
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3756
	set_load_weight(p);
L
Linus Torvalds 已提交
3757 3758
}

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3769 3770
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3771 3772 3773 3774
	rcu_read_unlock();
	return match;
}

3775
static int __sched_setscheduler(struct task_struct *p, int policy,
3776
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3777
{
3778
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3779
	unsigned long flags;
3780
	const struct sched_class *prev_class;
3781
	struct rq *rq;
3782
	int reset_on_fork;
L
Linus Torvalds 已提交
3783

3784 3785
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3786 3787
recheck:
	/* double check policy once rq lock held */
3788 3789
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3790
		policy = oldpolicy = p->policy;
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3801 3802
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3803 3804
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3805 3806
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3807
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3808
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3809
		return -EINVAL;
3810
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3811 3812
		return -EINVAL;

3813 3814 3815
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3816
	if (user && !capable(CAP_SYS_NICE)) {
3817
		if (rt_policy(policy)) {
3818 3819
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3830

I
Ingo Molnar 已提交
3831
		/*
3832 3833
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3834
		 */
3835 3836 3837 3838
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3839

3840
		/* can't change other user's priorities */
3841
		if (!check_same_owner(p))
3842
			return -EPERM;
3843 3844 3845 3846

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3847
	}
L
Linus Torvalds 已提交
3848

3849
	if (user) {
3850
		retval = security_task_setscheduler(p);
3851 3852 3853 3854
		if (retval)
			return retval;
	}

3855 3856 3857
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3858
	 *
L
Lucas De Marchi 已提交
3859
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3860 3861
	 * runqueue lock must be held.
	 */
3862
	rq = task_rq_lock(p, &flags);
3863

3864 3865 3866 3867
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3868
		task_rq_unlock(rq, p, &flags);
3869 3870 3871
		return -EINVAL;
	}

3872 3873 3874 3875 3876
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3877
		task_rq_unlock(rq, p, &flags);
3878 3879 3880
		return 0;
	}

3881 3882 3883 3884 3885 3886 3887
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3888 3889
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3890
			task_rq_unlock(rq, p, &flags);
3891 3892 3893 3894 3895
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3896 3897 3898
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3899
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3900 3901
		goto recheck;
	}
P
Peter Zijlstra 已提交
3902
	on_rq = p->on_rq;
3903
	running = task_current(rq, p);
3904
	if (on_rq)
3905
		dequeue_task(rq, p, 0);
3906 3907
	if (running)
		p->sched_class->put_prev_task(rq, p);
3908

3909 3910
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3911
	oldprio = p->prio;
3912
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3913
	__setscheduler(rq, p, policy, param->sched_priority);
3914

3915 3916
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3917
	if (on_rq)
3918
		enqueue_task(rq, p, 0);
3919

P
Peter Zijlstra 已提交
3920
	check_class_changed(rq, p, prev_class, oldprio);
3921
	task_rq_unlock(rq, p, &flags);
3922

3923 3924
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3925 3926
	return 0;
}
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3937
		       const struct sched_param *param)
3938 3939 3940
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3941 3942
EXPORT_SYMBOL_GPL(sched_setscheduler);

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3955
			       const struct sched_param *param)
3956 3957 3958 3959
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3960 3961
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3962 3963 3964
{
	struct sched_param lparam;
	struct task_struct *p;
3965
	int retval;
L
Linus Torvalds 已提交
3966 3967 3968 3969 3970

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3971 3972 3973

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3974
	p = find_process_by_pid(pid);
3975 3976 3977
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3978

L
Linus Torvalds 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3988 3989
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3990
{
3991 3992 3993 3994
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3995 3996 3997 3998 3999 4000 4001 4002
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4003
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4004 4005 4006 4007 4008 4009 4010 4011
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4012
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4013
{
4014
	struct task_struct *p;
4015
	int retval;
L
Linus Torvalds 已提交
4016 4017

	if (pid < 0)
4018
		return -EINVAL;
L
Linus Torvalds 已提交
4019 4020

	retval = -ESRCH;
4021
	rcu_read_lock();
L
Linus Torvalds 已提交
4022 4023 4024 4025
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4026 4027
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4028
	}
4029
	rcu_read_unlock();
L
Linus Torvalds 已提交
4030 4031 4032 4033
	return retval;
}

/**
4034
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4035 4036 4037
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4038
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4039 4040
{
	struct sched_param lp;
4041
	struct task_struct *p;
4042
	int retval;
L
Linus Torvalds 已提交
4043 4044

	if (!param || pid < 0)
4045
		return -EINVAL;
L
Linus Torvalds 已提交
4046

4047
	rcu_read_lock();
L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4058
	rcu_read_unlock();
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4068
	rcu_read_unlock();
L
Linus Torvalds 已提交
4069 4070 4071
	return retval;
}

4072
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4073
{
4074
	cpumask_var_t cpus_allowed, new_mask;
4075 4076
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4077

4078
	get_online_cpus();
4079
	rcu_read_lock();
L
Linus Torvalds 已提交
4080 4081 4082

	p = find_process_by_pid(pid);
	if (!p) {
4083
		rcu_read_unlock();
4084
		put_online_cpus();
L
Linus Torvalds 已提交
4085 4086 4087
		return -ESRCH;
	}

4088
	/* Prevent p going away */
L
Linus Torvalds 已提交
4089
	get_task_struct(p);
4090
	rcu_read_unlock();
L
Linus Torvalds 已提交
4091

4092 4093 4094 4095 4096 4097 4098 4099
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4100
	retval = -EPERM;
E
Eric W. Biederman 已提交
4101 4102 4103 4104 4105 4106 4107 4108
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4109

4110
	retval = security_task_setscheduler(p);
4111 4112 4113
	if (retval)
		goto out_unlock;

4114 4115
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4116
again:
4117
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4118

P
Paul Menage 已提交
4119
	if (!retval) {
4120 4121
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4122 4123 4124 4125 4126
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4127
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4128 4129 4130
			goto again;
		}
	}
L
Linus Torvalds 已提交
4131
out_unlock:
4132 4133 4134 4135
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4136
	put_task_struct(p);
4137
	put_online_cpus();
L
Linus Torvalds 已提交
4138 4139 4140 4141
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4142
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4143
{
4144 4145 4146 4147 4148
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4158 4159
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4160
{
4161
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4162 4163
	int retval;

4164 4165
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4166

4167 4168 4169 4170 4171
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4172 4173
}

4174
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4175
{
4176
	struct task_struct *p;
4177
	unsigned long flags;
L
Linus Torvalds 已提交
4178 4179
	int retval;

4180
	get_online_cpus();
4181
	rcu_read_lock();
L
Linus Torvalds 已提交
4182 4183 4184 4185 4186 4187

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4188 4189 4190 4191
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4192
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4193
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4194
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4195 4196

out_unlock:
4197
	rcu_read_unlock();
4198
	put_online_cpus();
L
Linus Torvalds 已提交
4199

4200
	return retval;
L
Linus Torvalds 已提交
4201 4202 4203 4204 4205 4206 4207 4208
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4209 4210
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4211 4212
{
	int ret;
4213
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4214

A
Anton Blanchard 已提交
4215
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4216 4217
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4218 4219
		return -EINVAL;

4220 4221
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4222

4223 4224
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4225
		size_t retlen = min_t(size_t, len, cpumask_size());
4226 4227

		if (copy_to_user(user_mask_ptr, mask, retlen))
4228 4229
			ret = -EFAULT;
		else
4230
			ret = retlen;
4231 4232
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4233

4234
	return ret;
L
Linus Torvalds 已提交
4235 4236 4237 4238 4239
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4240 4241
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4242
 */
4243
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4244
{
4245
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4246

4247
	schedstat_inc(rq, yld_count);
4248
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4249 4250 4251 4252 4253 4254

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4255
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4256
	do_raw_spin_unlock(&rq->lock);
4257
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4264 4265 4266 4267 4268
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4269
static void __cond_resched(void)
L
Linus Torvalds 已提交
4270
{
4271
	add_preempt_count(PREEMPT_ACTIVE);
4272
	__schedule();
4273
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4274 4275
}

4276
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4277
{
P
Peter Zijlstra 已提交
4278
	if (should_resched()) {
L
Linus Torvalds 已提交
4279 4280 4281 4282 4283
		__cond_resched();
		return 1;
	}
	return 0;
}
4284
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4285 4286

/*
4287
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4288 4289
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4290
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4291 4292 4293
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4294
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4295
{
P
Peter Zijlstra 已提交
4296
	int resched = should_resched();
J
Jan Kara 已提交
4297 4298
	int ret = 0;

4299 4300
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4301
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4302
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4303
		if (resched)
N
Nick Piggin 已提交
4304 4305 4306
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4307
		ret = 1;
L
Linus Torvalds 已提交
4308 4309
		spin_lock(lock);
	}
J
Jan Kara 已提交
4310
	return ret;
L
Linus Torvalds 已提交
4311
}
4312
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4313

4314
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4315 4316 4317
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4318
	if (should_resched()) {
4319
		local_bh_enable();
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4326
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4327 4328 4329 4330

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4349 4350 4351 4352 4353 4354 4355 4356
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4357 4358 4359 4360
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4361 4362
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4374
	int yielded = 0;
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4397
	if (yielded) {
4398
		schedstat_inc(rq, yld_count);
4399 4400 4401 4402 4403 4404 4405
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4418
/*
I
Ingo Molnar 已提交
4419
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4420 4421 4422 4423
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4424
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4425

4426
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4427
	atomic_inc(&rq->nr_iowait);
4428
	blk_flush_plug(current);
4429
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4430
	schedule();
4431
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4432
	atomic_dec(&rq->nr_iowait);
4433
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4434 4435 4436 4437 4438
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4439
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4440 4441
	long ret;

4442
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4443
	atomic_inc(&rq->nr_iowait);
4444
	blk_flush_plug(current);
4445
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4446
	ret = schedule_timeout(timeout);
4447
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4448
	atomic_dec(&rq->nr_iowait);
4449
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4460
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4470
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4471
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4485
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4486 4487 4488 4489 4490 4491 4492 4493 4494
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4495
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4496
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4510
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4511
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4512
{
4513
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4514
	unsigned int time_slice;
4515 4516
	unsigned long flags;
	struct rq *rq;
4517
	int retval;
L
Linus Torvalds 已提交
4518 4519 4520
	struct timespec t;

	if (pid < 0)
4521
		return -EINVAL;
L
Linus Torvalds 已提交
4522 4523

	retval = -ESRCH;
4524
	rcu_read_lock();
L
Linus Torvalds 已提交
4525 4526 4527 4528 4529 4530 4531 4532
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4533 4534
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4535
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4536

4537
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4538
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4539 4540
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4541

L
Linus Torvalds 已提交
4542
out_unlock:
4543
	rcu_read_unlock();
L
Linus Torvalds 已提交
4544 4545 4546
	return retval;
}

4547
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4548

4549
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4550 4551
{
	unsigned long free = 0;
4552
	int ppid;
4553
	unsigned state;
L
Linus Torvalds 已提交
4554 4555

	state = p->state ? __ffs(p->state) + 1 : 0;
4556
	printk(KERN_INFO "%-15.15s %c", p->comm,
4557
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4558
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4559
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4560
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4561
	else
P
Peter Zijlstra 已提交
4562
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4563 4564
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4565
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4566
	else
P
Peter Zijlstra 已提交
4567
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4568 4569
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4570
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4571
#endif
4572 4573 4574
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4575
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4576
		task_pid_nr(p), ppid,
4577
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4578

4579
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4580 4581
}

I
Ingo Molnar 已提交
4582
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4583
{
4584
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4585

4586
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4587 4588
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4589
#else
P
Peter Zijlstra 已提交
4590 4591
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4592
#endif
4593
	rcu_read_lock();
L
Linus Torvalds 已提交
4594 4595 4596
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4597
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4598 4599
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4600
		if (!state_filter || (p->state & state_filter))
4601
			sched_show_task(p);
L
Linus Torvalds 已提交
4602 4603
	} while_each_thread(g, p);

4604 4605
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4606 4607 4608
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4609
	rcu_read_unlock();
I
Ingo Molnar 已提交
4610 4611 4612
	/*
	 * Only show locks if all tasks are dumped:
	 */
4613
	if (!state_filter)
I
Ingo Molnar 已提交
4614
		debug_show_all_locks();
L
Linus Torvalds 已提交
4615 4616
}

I
Ingo Molnar 已提交
4617 4618
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4619
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4620 4621
}

4622 4623 4624 4625 4626 4627 4628 4629
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4630
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4631
{
4632
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4633 4634
	unsigned long flags;

4635
	raw_spin_lock_irqsave(&rq->lock, flags);
4636

I
Ingo Molnar 已提交
4637
	__sched_fork(idle);
4638
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4639 4640
	idle->se.exec_start = sched_clock();

4641
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4653
	__set_task_cpu(idle, cpu);
4654
	rcu_read_unlock();
L
Linus Torvalds 已提交
4655 4656

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4657 4658
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4659
#endif
4660
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4661 4662

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4663
	task_thread_info(idle)->preempt_count = 0;
4664

I
Ingo Molnar 已提交
4665 4666 4667 4668
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4669
	ftrace_graph_init_idle_task(idle, cpu);
4670
	vtime_init_idle(idle);
4671 4672 4673
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4674 4675
}

L
Linus Torvalds 已提交
4676
#ifdef CONFIG_SMP
4677 4678 4679 4680
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4681 4682

	cpumask_copy(&p->cpus_allowed, new_mask);
4683
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4684 4685
}

L
Linus Torvalds 已提交
4686 4687 4688
/*
 * This is how migration works:
 *
4689 4690 4691 4692 4693 4694
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4695
 *    it and puts it into the right queue.
4696 4697
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4698 4699 4700 4701 4702 4703 4704 4705
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4706
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4707 4708
 * call is not atomic; no spinlocks may be held.
 */
4709
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4710 4711
{
	unsigned long flags;
4712
	struct rq *rq;
4713
	unsigned int dest_cpu;
4714
	int ret = 0;
L
Linus Torvalds 已提交
4715 4716

	rq = task_rq_lock(p, &flags);
4717

4718 4719 4720
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4721
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4722 4723 4724 4725
		ret = -EINVAL;
		goto out;
	}

4726
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4727 4728 4729 4730
		ret = -EINVAL;
		goto out;
	}

4731
	do_set_cpus_allowed(p, new_mask);
4732

L
Linus Torvalds 已提交
4733
	/* Can the task run on the task's current CPU? If so, we're done */
4734
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4735 4736
		goto out;

4737
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4738
	if (p->on_rq) {
4739
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4740
		/* Need help from migration thread: drop lock and wait. */
4741
		task_rq_unlock(rq, p, &flags);
4742
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4743 4744 4745 4746
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4747
	task_rq_unlock(rq, p, &flags);
4748

L
Linus Torvalds 已提交
4749 4750
	return ret;
}
4751
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4752 4753

/*
I
Ingo Molnar 已提交
4754
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759 4760
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4761 4762
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4763
 */
4764
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4765
{
4766
	struct rq *rq_dest, *rq_src;
4767
	int ret = 0;
L
Linus Torvalds 已提交
4768

4769
	if (unlikely(!cpu_active(dest_cpu)))
4770
		return ret;
L
Linus Torvalds 已提交
4771 4772 4773 4774

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4775
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4776 4777 4778
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4779
		goto done;
L
Linus Torvalds 已提交
4780
	/* Affinity changed (again). */
4781
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4782
		goto fail;
L
Linus Torvalds 已提交
4783

4784 4785 4786 4787
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4788
	if (p->on_rq) {
4789
		dequeue_task(rq_src, p, 0);
4790
		set_task_cpu(p, dest_cpu);
4791
		enqueue_task(rq_dest, p, 0);
4792
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4793
	}
L
Linus Torvalds 已提交
4794
done:
4795
	ret = 1;
L
Linus Torvalds 已提交
4796
fail:
L
Linus Torvalds 已提交
4797
	double_rq_unlock(rq_src, rq_dest);
4798
	raw_spin_unlock(&p->pi_lock);
4799
	return ret;
L
Linus Torvalds 已提交
4800 4801 4802
}

/*
4803 4804 4805
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4806
 */
4807
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4808
{
4809
	struct migration_arg *arg = data;
4810

4811 4812 4813 4814
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4815
	local_irq_disable();
4816
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4817
	local_irq_enable();
L
Linus Torvalds 已提交
4818
	return 0;
4819 4820
}

L
Linus Torvalds 已提交
4821
#ifdef CONFIG_HOTPLUG_CPU
4822

4823
/*
4824 4825
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4826
 */
4827
void idle_task_exit(void)
L
Linus Torvalds 已提交
4828
{
4829
	struct mm_struct *mm = current->active_mm;
4830

4831
	BUG_ON(cpu_online(smp_processor_id()));
4832

4833 4834 4835
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4836 4837 4838
}

/*
4839 4840 4841 4842 4843
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4844
 */
4845
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4846
{
4847 4848 4849
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4850 4851
}

4852
/*
4853 4854 4855 4856 4857 4858
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4859
 */
4860
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4861
{
4862
	struct rq *rq = cpu_rq(dead_cpu);
4863 4864
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4865 4866

	/*
4867 4868 4869 4870 4871 4872 4873
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4874
	 */
4875
	rq->stop = NULL;
4876

I
Ingo Molnar 已提交
4877
	for ( ; ; ) {
4878 4879 4880 4881 4882
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4883
			break;
4884

4885
		next = pick_next_task(rq);
4886
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4887
		next->sched_class->put_prev_task(rq, next);
4888

4889 4890 4891 4892 4893 4894 4895
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4896
	}
4897

4898
	rq->stop = stop;
4899
}
4900

L
Linus Torvalds 已提交
4901 4902
#endif /* CONFIG_HOTPLUG_CPU */

4903 4904 4905
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4906 4907
	{
		.procname	= "sched_domain",
4908
		.mode		= 0555,
4909
	},
4910
	{}
4911 4912 4913
};

static struct ctl_table sd_ctl_root[] = {
4914 4915
	{
		.procname	= "kernel",
4916
		.mode		= 0555,
4917 4918
		.child		= sd_ctl_dir,
	},
4919
	{}
4920 4921 4922 4923 4924
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4925
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4926 4927 4928 4929

	return entry;
}

4930 4931
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4932
	struct ctl_table *entry;
4933

4934 4935 4936
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4937
	 * will always be set. In the lowest directory the names are
4938 4939 4940
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4941 4942
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4943 4944 4945
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4946 4947 4948 4949 4950

	kfree(*tablep);
	*tablep = NULL;
}

4951 4952 4953
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4954
static void
4955
set_table_entry(struct ctl_table *entry,
4956
		const char *procname, void *data, int maxlen,
4957 4958
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4959 4960 4961 4962 4963 4964
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4965 4966 4967 4968 4969

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4970 4971 4972 4973 4974
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4975
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4976

4977 4978 4979
	if (table == NULL)
		return NULL;

4980
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4981
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4982
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4983
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4984
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4985
		sizeof(int), 0644, proc_dointvec_minmax, true);
4986
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4987
		sizeof(int), 0644, proc_dointvec_minmax, true);
4988
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4989
		sizeof(int), 0644, proc_dointvec_minmax, true);
4990
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4991
		sizeof(int), 0644, proc_dointvec_minmax, true);
4992
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4993
		sizeof(int), 0644, proc_dointvec_minmax, true);
4994
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4995
		sizeof(int), 0644, proc_dointvec_minmax, false);
4996
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4997
		sizeof(int), 0644, proc_dointvec_minmax, false);
4998
	set_table_entry(&table[9], "cache_nice_tries",
4999
		&sd->cache_nice_tries,
5000
		sizeof(int), 0644, proc_dointvec_minmax, false);
5001
	set_table_entry(&table[10], "flags", &sd->flags,
5002
		sizeof(int), 0644, proc_dointvec_minmax, false);
5003
	set_table_entry(&table[11], "name", sd->name,
5004
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5005
	/* &table[12] is terminator */
5006 5007 5008 5009

	return table;
}

5010
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5011 5012 5013 5014 5015 5016 5017 5018 5019
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5020 5021
	if (table == NULL)
		return NULL;
5022 5023 5024 5025 5026

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5027
		entry->mode = 0555;
5028 5029 5030 5031 5032 5033 5034 5035
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5036
static void register_sched_domain_sysctl(void)
5037
{
5038
	int i, cpu_num = num_possible_cpus();
5039 5040 5041
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5042 5043 5044
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5045 5046 5047
	if (entry == NULL)
		return;

5048
	for_each_possible_cpu(i) {
5049 5050
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5051
		entry->mode = 0555;
5052
		entry->child = sd_alloc_ctl_cpu_table(i);
5053
		entry++;
5054
	}
5055 5056

	WARN_ON(sd_sysctl_header);
5057 5058
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5059

5060
/* may be called multiple times per register */
5061 5062
static void unregister_sched_domain_sysctl(void)
{
5063 5064
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5065
	sd_sysctl_header = NULL;
5066 5067
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5068
}
5069
#else
5070 5071 5072 5073
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5074 5075 5076 5077
{
}
#endif

5078 5079 5080 5081 5082
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5083
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5103
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5104 5105 5106 5107
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5108 5109 5110 5111
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5112 5113
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5114
{
5115
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5116
	unsigned long flags;
5117
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5118

5119
	switch (action & ~CPU_TASKS_FROZEN) {
5120

L
Linus Torvalds 已提交
5121
	case CPU_UP_PREPARE:
5122
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5123
		break;
5124

L
Linus Torvalds 已提交
5125
	case CPU_ONLINE:
5126
		/* Update our root-domain */
5127
		raw_spin_lock_irqsave(&rq->lock, flags);
5128
		if (rq->rd) {
5129
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5130 5131

			set_rq_online(rq);
5132
		}
5133
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5134
		break;
5135

L
Linus Torvalds 已提交
5136
#ifdef CONFIG_HOTPLUG_CPU
5137
	case CPU_DYING:
5138
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5139
		/* Update our root-domain */
5140
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5141
		if (rq->rd) {
5142
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5143
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5144
		}
5145 5146
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5147
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5148
		break;
5149

5150
	case CPU_DEAD:
5151
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5152
		break;
L
Linus Torvalds 已提交
5153 5154
#endif
	}
5155 5156 5157

	update_max_interval();

L
Linus Torvalds 已提交
5158 5159 5160
	return NOTIFY_OK;
}

5161 5162 5163
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5164
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5165
 */
5166
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5167
	.notifier_call = migration_call,
5168
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5169 5170
};

5171 5172 5173 5174
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5175
	case CPU_STARTING:
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5196
static int __init migration_init(void)
L
Linus Torvalds 已提交
5197 5198
{
	void *cpu = (void *)(long)smp_processor_id();
5199
	int err;
5200

5201
	/* Initialize migration for the boot CPU */
5202 5203
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5204 5205
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5206

5207 5208 5209 5210
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5211
	return 0;
L
Linus Torvalds 已提交
5212
}
5213
early_initcall(migration_init);
L
Linus Torvalds 已提交
5214 5215 5216
#endif

#ifdef CONFIG_SMP
5217

5218 5219
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5220
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5221

5222
static __read_mostly int sched_debug_enabled;
5223

5224
static int __init sched_debug_setup(char *str)
5225
{
5226
	sched_debug_enabled = 1;
5227 5228 5229

	return 0;
}
5230 5231 5232 5233 5234 5235
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5236

5237
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5238
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5239
{
I
Ingo Molnar 已提交
5240
	struct sched_group *group = sd->groups;
5241
	char str[256];
L
Linus Torvalds 已提交
5242

R
Rusty Russell 已提交
5243
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5244
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5245 5246 5247 5248

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5249
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5250
		if (sd->parent)
P
Peter Zijlstra 已提交
5251 5252
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5253
		return -1;
N
Nick Piggin 已提交
5254 5255
	}

P
Peter Zijlstra 已提交
5256
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5257

5258
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5259 5260
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5261
	}
5262
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5263 5264
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5265
	}
L
Linus Torvalds 已提交
5266

I
Ingo Molnar 已提交
5267
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5268
	do {
I
Ingo Molnar 已提交
5269
		if (!group) {
P
Peter Zijlstra 已提交
5270 5271
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5272 5273 5274
			break;
		}

5275 5276 5277 5278 5279 5280
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5281 5282 5283
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5284 5285
			break;
		}
L
Linus Torvalds 已提交
5286

5287
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5288 5289
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5290 5291
			break;
		}
L
Linus Torvalds 已提交
5292

5293 5294
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5295 5296
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5297 5298
			break;
		}
L
Linus Torvalds 已提交
5299

5300
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5301

R
Rusty Russell 已提交
5302
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5303

P
Peter Zijlstra 已提交
5304
		printk(KERN_CONT " %s", str);
5305
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5306
			printk(KERN_CONT " (cpu_power = %d)",
5307
				group->sgp->power);
5308
		}
L
Linus Torvalds 已提交
5309

I
Ingo Molnar 已提交
5310 5311
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5312
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5313

5314
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5315
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5316

5317 5318
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5319 5320
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5321 5322
	return 0;
}
L
Linus Torvalds 已提交
5323

I
Ingo Molnar 已提交
5324 5325 5326
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5327

5328
	if (!sched_debug_enabled)
5329 5330
		return;

I
Ingo Molnar 已提交
5331 5332 5333 5334
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5335

I
Ingo Molnar 已提交
5336 5337 5338
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5339
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5340
			break;
L
Linus Torvalds 已提交
5341 5342
		level++;
		sd = sd->parent;
5343
		if (!sd)
I
Ingo Molnar 已提交
5344 5345
			break;
	}
L
Linus Torvalds 已提交
5346
}
5347
#else /* !CONFIG_SCHED_DEBUG */
5348
# define sched_domain_debug(sd, cpu) do { } while (0)
5349 5350 5351 5352
static inline bool sched_debug(void)
{
	return false;
}
5353
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5354

5355
static int sd_degenerate(struct sched_domain *sd)
5356
{
5357
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5358 5359 5360 5361 5362 5363
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5364 5365 5366
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5367 5368 5369 5370 5371
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5372
	if (sd->flags & (SD_WAKE_AFFINE))
5373 5374 5375 5376 5377
		return 0;

	return 1;
}

5378 5379
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5380 5381 5382 5383 5384 5385
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5386
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5387 5388 5389 5390 5391 5392 5393
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5394 5395 5396
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5397 5398
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5399 5400 5401 5402 5403 5404 5405
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5406
static void free_rootdomain(struct rcu_head *rcu)
5407
{
5408
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5409

5410
	cpupri_cleanup(&rd->cpupri);
5411 5412 5413 5414 5415 5416
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5417 5418
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5419
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5420 5421
	unsigned long flags;

5422
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5423 5424

	if (rq->rd) {
I
Ingo Molnar 已提交
5425
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5426

5427
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5428
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5429

5430
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5431

I
Ingo Molnar 已提交
5432 5433 5434 5435 5436 5437 5438
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5439 5440 5441 5442 5443
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5444
	cpumask_set_cpu(rq->cpu, rd->span);
5445
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5446
		set_rq_online(rq);
G
Gregory Haskins 已提交
5447

5448
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5449 5450

	if (old_rd)
5451
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5452 5453
}

5454
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5455 5456 5457
{
	memset(rd, 0, sizeof(*rd));

5458
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5459
		goto out;
5460
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5461
		goto free_span;
5462
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5463
		goto free_online;
5464

5465
	if (cpupri_init(&rd->cpupri) != 0)
5466
		goto free_rto_mask;
5467
	return 0;
5468

5469 5470
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5471 5472 5473 5474
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5475
out:
5476
	return -ENOMEM;
G
Gregory Haskins 已提交
5477 5478
}

5479 5480 5481 5482 5483 5484
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5485 5486
static void init_defrootdomain(void)
{
5487
	init_rootdomain(&def_root_domain);
5488

G
Gregory Haskins 已提交
5489 5490 5491
	atomic_set(&def_root_domain.refcount, 1);
}

5492
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5493 5494 5495 5496 5497 5498 5499
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5500
	if (init_rootdomain(rd) != 0) {
5501 5502 5503
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5504 5505 5506 5507

	return rd;
}

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5527 5528 5529
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5530 5531 5532 5533 5534 5535 5536 5537

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5538
		kfree(sd->groups->sgp);
5539
		kfree(sd->groups);
5540
	}
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5555 5556 5557 5558 5559 5560 5561
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5562
 * two cpus are in the same cache domain, see cpus_share_cache().
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5573
	if (sd)
5574 5575 5576 5577 5578 5579
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5580
/*
I
Ingo Molnar 已提交
5581
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5582 5583
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5584 5585
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5586
{
5587
	struct rq *rq = cpu_rq(cpu);
5588 5589 5590
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5591
	for (tmp = sd; tmp; ) {
5592 5593 5594
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5595

5596
		if (sd_parent_degenerate(tmp, parent)) {
5597
			tmp->parent = parent->parent;
5598 5599
			if (parent->parent)
				parent->parent->child = tmp;
5600
			destroy_sched_domain(parent, cpu);
5601 5602
		} else
			tmp = tmp->parent;
5603 5604
	}

5605
	if (sd && sd_degenerate(sd)) {
5606
		tmp = sd;
5607
		sd = sd->parent;
5608
		destroy_sched_domain(tmp, cpu);
5609 5610 5611
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5612

5613
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5614

G
Gregory Haskins 已提交
5615
	rq_attach_root(rq, rd);
5616
	tmp = rq->sd;
N
Nick Piggin 已提交
5617
	rcu_assign_pointer(rq->sd, sd);
5618
	destroy_sched_domains(tmp, cpu);
5619 5620

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5621 5622 5623
}

/* cpus with isolated domains */
5624
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5625 5626 5627 5628

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5629
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5630
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5631 5632 5633
	return 1;
}

I
Ingo Molnar 已提交
5634
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5635

5636 5637 5638 5639 5640
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5641 5642 5643
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5644
	struct sched_group_power **__percpu sgp;
5645 5646
};

5647
struct s_data {
5648
	struct sched_domain ** __percpu sd;
5649 5650 5651
	struct root_domain	*rd;
};

5652 5653
enum s_alloc {
	sa_rootdomain,
5654
	sa_sd,
5655
	sa_sd_storage,
5656 5657 5658
	sa_none,
};

5659 5660 5661
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5662 5663
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5664 5665
#define SDTL_OVERLAP	0x01

5666
struct sched_domain_topology_level {
5667 5668
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5669
	int		    flags;
5670
	int		    numa_level;
5671
	struct sd_data      data;
5672 5673
};

P
Peter Zijlstra 已提交
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5730 5731 5732 5733 5734 5735
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5736
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5737
				GFP_KERNEL, cpu_to_node(cpu));
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5751
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5752 5753 5754
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5755 5756 5757 5758 5759 5760
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5761

P
Peter Zijlstra 已提交
5762 5763 5764 5765 5766
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5767
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5768
		    group_balance_cpu(sg) == cpu)
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5788
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5789
{
5790 5791
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5792

5793 5794
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5795

5796
	if (sg) {
5797
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5798
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5799
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5800
	}
5801 5802

	return cpu;
5803 5804
}

5805
/*
5806 5807 5808
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5809 5810
 *
 * Assumes the sched_domain tree is fully constructed
5811
 */
5812 5813
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5814
{
5815 5816 5817
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5818
	struct cpumask *covered;
5819
	int i;
5820

5821 5822 5823 5824 5825 5826
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5827 5828 5829
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5830
	cpumask_clear(covered);
5831

5832 5833 5834 5835
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5836

5837 5838
		if (cpumask_test_cpu(i, covered))
			continue;
5839

5840
		cpumask_clear(sched_group_cpus(sg));
5841
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5842
		cpumask_setall(sched_group_mask(sg));
5843

5844 5845 5846
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5847

5848 5849 5850
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5851

5852 5853 5854 5855 5856 5857 5858
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5859 5860

	return 0;
5861
}
5862

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5875
	struct sched_group *sg = sd->groups;
5876

5877 5878 5879 5880 5881 5882
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5883

P
Peter Zijlstra 已提交
5884
	if (cpu != group_balance_cpu(sg))
5885
		return;
5886

5887
	update_group_power(sd, cpu);
5888
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5889 5890
}

5891 5892 5893
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5894 5895
}

5896 5897 5898 5899 5900
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5901 5902 5903 5904 5905 5906
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5907 5908 5909 5910 5911 5912 5913 5914 5915
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5916 5917 5918 5919 5920 5921 5922 5923 5924
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5925 5926 5927
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5928

5929
static int default_relax_domain_level = -1;
5930
int sched_domain_level_max;
5931 5932 5933

static int __init setup_relax_domain_level(char *str)
{
5934 5935
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5936

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5955
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5956 5957
	} else {
		/* turn on idle balance on this domain */
5958
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5959 5960 5961
	}
}

5962 5963 5964
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5965 5966 5967 5968 5969
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5970 5971
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5972 5973
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5974
	case sa_sd_storage:
5975
		__sdt_free(cpu_map); /* fall through */
5976 5977 5978 5979
	case sa_none:
		break;
	}
}
5980

5981 5982 5983
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5984 5985
	memset(d, 0, sizeof(*d));

5986 5987
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5988 5989 5990
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5991
	d->rd = alloc_rootdomain();
5992
	if (!d->rd)
5993
		return sa_sd;
5994 5995
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5996

5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6009
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6010
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6011 6012

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6013
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6014 6015
}

6016 6017
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6018
{
6019
	return topology_thread_cpumask(cpu);
6020
}
6021
#endif
6022

6023 6024 6025
/*
 * Topology list, bottom-up.
 */
6026
static struct sched_domain_topology_level default_topology[] = {
6027 6028
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6029
#endif
6030
#ifdef CONFIG_SCHED_MC
6031
	{ sd_init_MC, cpu_coregroup_mask, },
6032
#endif
6033 6034 6035 6036
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6037 6038 6039 6040 6041
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6042 6043 6044 6045 6046 6047 6048 6049 6050
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6051
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6069
		.imbalance_pct		= 125,
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6189
		}
6190 6191 6192 6193 6194 6195

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6196 6197 6198 6199 6200 6201 6202 6203 6204
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6231
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6232 6233 6234 6235 6236 6237
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6238
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6270 6271

	sched_domains_numa_levels = level;
6272
}
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6320 6321 6322 6323 6324
}
#else
static inline void sched_init_numa(void)
{
}
6325 6326 6327 6328 6329 6330 6331

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6332 6333
#endif /* CONFIG_NUMA */

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6350 6351 6352 6353
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6354 6355 6356
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6357
			struct sched_group_power *sgp;
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6371 6372
			sg->next = sg;

6373
			*per_cpu_ptr(sdd->sg, j) = sg;
6374

P
Peter Zijlstra 已提交
6375
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6376 6377 6378 6379 6380
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6409 6410
		}
		free_percpu(sdd->sd);
6411
		sdd->sd = NULL;
6412
		free_percpu(sdd->sg);
6413
		sdd->sg = NULL;
6414
		free_percpu(sdd->sgp);
6415
		sdd->sgp = NULL;
6416 6417 6418
	}
}

6419 6420
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6421
		struct sched_domain_attr *attr, struct sched_domain *child,
6422 6423
		int cpu)
{
6424
	struct sched_domain *sd = tl->init(tl, cpu);
6425
	if (!sd)
6426
		return child;
6427 6428

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6429 6430 6431
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6432
		child->parent = sd;
6433
	}
6434
	sd->child = child;
6435
	set_domain_attribute(sd, attr);
6436 6437 6438 6439

	return sd;
}

6440 6441 6442 6443
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6444 6445
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6446 6447
{
	enum s_alloc alloc_state = sa_none;
6448
	struct sched_domain *sd;
6449
	struct s_data d;
6450
	int i, ret = -ENOMEM;
6451

6452 6453 6454
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6455

6456
	/* Set up domains for cpus specified by the cpu_map. */
6457
	for_each_cpu(i, cpu_map) {
6458 6459
		struct sched_domain_topology_level *tl;

6460
		sd = NULL;
6461
		for (tl = sched_domain_topology; tl->init; tl++) {
6462
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6463 6464
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6465 6466
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6467
		}
6468

6469 6470 6471
		while (sd->child)
			sd = sd->child;

6472
		*per_cpu_ptr(d.sd, i) = sd;
6473 6474 6475 6476 6477 6478
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6479 6480 6481 6482 6483 6484 6485
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6486
		}
6487
	}
6488

L
Linus Torvalds 已提交
6489
	/* Calculate CPU power for physical packages and nodes */
6490 6491 6492
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6493

6494 6495
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6496
			init_sched_groups_power(i, sd);
6497
		}
6498
	}
6499

L
Linus Torvalds 已提交
6500
	/* Attach the domains */
6501
	rcu_read_lock();
6502
	for_each_cpu(i, cpu_map) {
6503
		sd = *per_cpu_ptr(d.sd, i);
6504
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6505
	}
6506
	rcu_read_unlock();
6507

6508
	ret = 0;
6509
error:
6510
	__free_domain_allocs(&d, alloc_state, cpu_map);
6511
	return ret;
L
Linus Torvalds 已提交
6512
}
P
Paul Jackson 已提交
6513

6514
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6515
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6516 6517
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6518 6519 6520

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6521 6522
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6523
 */
6524
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6525

6526 6527 6528 6529 6530 6531
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6532
{
6533
	return 0;
6534 6535
}

6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6561
/*
I
Ingo Molnar 已提交
6562
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6563 6564
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6565
 */
6566
static int init_sched_domains(const struct cpumask *cpu_map)
6567
{
6568 6569
	int err;

6570
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6571
	ndoms_cur = 1;
6572
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6573
	if (!doms_cur)
6574 6575
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6576
	err = build_sched_domains(doms_cur[0], NULL);
6577
	register_sched_domain_sysctl();
6578 6579

	return err;
6580 6581 6582 6583 6584 6585
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6586
static void detach_destroy_domains(const struct cpumask *cpu_map)
6587 6588 6589
{
	int i;

6590
	rcu_read_lock();
6591
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6592
		cpu_attach_domain(NULL, &def_root_domain, i);
6593
	rcu_read_unlock();
6594 6595
}

6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6612 6613
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6614
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6615 6616 6617
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6618
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6619 6620 6621
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6622 6623 6624
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6625 6626 6627 6628 6629 6630
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6631
 *
6632
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6633 6634
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6635
 *
P
Paul Jackson 已提交
6636 6637
 * Call with hotplug lock held
 */
6638
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6639
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6640
{
6641
	int i, j, n;
6642
	int new_topology;
P
Paul Jackson 已提交
6643

6644
	mutex_lock(&sched_domains_mutex);
6645

6646 6647 6648
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6649 6650 6651
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6652
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6653 6654 6655

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6656
		for (j = 0; j < n && !new_topology; j++) {
6657
			if (cpumask_equal(doms_cur[i], doms_new[j])
6658
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6659 6660 6661
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6662
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6663 6664 6665 6666
match1:
		;
	}

6667 6668
	if (doms_new == NULL) {
		ndoms_cur = 0;
6669
		doms_new = &fallback_doms;
6670
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6671
		WARN_ON_ONCE(dattr_new);
6672 6673
	}

P
Paul Jackson 已提交
6674 6675
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6676
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6677
			if (cpumask_equal(doms_new[i], doms_cur[j])
6678
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6679 6680 6681
				goto match2;
		}
		/* no match - add a new doms_new */
6682
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6683 6684 6685 6686 6687
match2:
		;
	}

	/* Remember the new sched domains */
6688 6689
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6690
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6691
	doms_cur = doms_new;
6692
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6693
	ndoms_cur = ndoms_new;
6694 6695

	register_sched_domain_sysctl();
6696

6697
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6698 6699
}

6700 6701
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6702
/*
6703 6704 6705
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6706 6707 6708
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6709
 */
6710 6711
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6712
{
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6735
	case CPU_ONLINE:
6736
	case CPU_DOWN_FAILED:
6737
		cpuset_update_active_cpus(true);
6738
		break;
6739 6740 6741
	default:
		return NOTIFY_DONE;
	}
6742
	return NOTIFY_OK;
6743
}
6744

6745 6746
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6747
{
6748
	switch (action) {
6749
	case CPU_DOWN_PREPARE:
6750
		cpuset_update_active_cpus(false);
6751 6752 6753 6754 6755
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6756 6757 6758
	default:
		return NOTIFY_DONE;
	}
6759
	return NOTIFY_OK;
6760 6761
}

L
Linus Torvalds 已提交
6762 6763
void __init sched_init_smp(void)
{
6764 6765 6766
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6767
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6768

6769 6770
	sched_init_numa();

6771
	get_online_cpus();
6772
	mutex_lock(&sched_domains_mutex);
6773
	init_sched_domains(cpu_active_mask);
6774 6775 6776
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6777
	mutex_unlock(&sched_domains_mutex);
6778
	put_online_cpus();
6779

6780
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6781 6782
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6783 6784 6785 6786

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6787
	init_hrtick();
6788 6789

	/* Move init over to a non-isolated CPU */
6790
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6791
		BUG();
I
Ingo Molnar 已提交
6792
	sched_init_granularity();
6793
	free_cpumask_var(non_isolated_cpus);
6794

6795
	init_sched_rt_class();
L
Linus Torvalds 已提交
6796 6797 6798 6799
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6800
	sched_init_granularity();
L
Linus Torvalds 已提交
6801 6802 6803
}
#endif /* CONFIG_SMP */

6804 6805
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6806 6807 6808 6809 6810 6811 6812
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6813 6814
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6815
LIST_HEAD(task_groups);
6816
#endif
P
Peter Zijlstra 已提交
6817

6818
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6819

L
Linus Torvalds 已提交
6820 6821
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6822
	int i, j;
6823 6824 6825 6826 6827 6828 6829
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6830
#endif
6831
#ifdef CONFIG_CPUMASK_OFFSTACK
6832
	alloc_size += num_possible_cpus() * cpumask_size();
6833 6834
#endif
	if (alloc_size) {
6835
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6836 6837

#ifdef CONFIG_FAIR_GROUP_SCHED
6838
		root_task_group.se = (struct sched_entity **)ptr;
6839 6840
		ptr += nr_cpu_ids * sizeof(void **);

6841
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6842
		ptr += nr_cpu_ids * sizeof(void **);
6843

6844
#endif /* CONFIG_FAIR_GROUP_SCHED */
6845
#ifdef CONFIG_RT_GROUP_SCHED
6846
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6847 6848
		ptr += nr_cpu_ids * sizeof(void **);

6849
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6850 6851
		ptr += nr_cpu_ids * sizeof(void **);

6852
#endif /* CONFIG_RT_GROUP_SCHED */
6853 6854 6855 6856 6857 6858
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6859
	}
I
Ingo Molnar 已提交
6860

G
Gregory Haskins 已提交
6861 6862 6863 6864
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6865 6866 6867 6868
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6869
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6870
			global_rt_period(), global_rt_runtime());
6871
#endif /* CONFIG_RT_GROUP_SCHED */
6872

D
Dhaval Giani 已提交
6873
#ifdef CONFIG_CGROUP_SCHED
6874 6875
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6876
	INIT_LIST_HEAD(&root_task_group.siblings);
6877
	autogroup_init(&init_task);
6878

D
Dhaval Giani 已提交
6879
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6880

6881 6882 6883 6884 6885 6886
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6887
	for_each_possible_cpu(i) {
6888
		struct rq *rq;
L
Linus Torvalds 已提交
6889 6890

		rq = cpu_rq(i);
6891
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6892
		rq->nr_running = 0;
6893 6894
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6895
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6896
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6897
#ifdef CONFIG_FAIR_GROUP_SCHED
6898
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6899
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6900
		/*
6901
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6902 6903 6904 6905
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6906
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6907 6908 6909
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6910
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6911 6912 6913
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6914
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6915
		 *
6916 6917
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6918
		 */
6919
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6920
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6921 6922 6923
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6924
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6925
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6926
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6927
#endif
L
Linus Torvalds 已提交
6928

I
Ingo Molnar 已提交
6929 6930
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6931 6932 6933

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6934
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6935
		rq->sd = NULL;
G
Gregory Haskins 已提交
6936
		rq->rd = NULL;
6937
		rq->cpu_power = SCHED_POWER_SCALE;
6938
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6939
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6940
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6941
		rq->push_cpu = 0;
6942
		rq->cpu = i;
6943
		rq->online = 0;
6944 6945
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6946 6947 6948

		INIT_LIST_HEAD(&rq->cfs_tasks);

6949
		rq_attach_root(rq, &def_root_domain);
6950
#ifdef CONFIG_NO_HZ
6951
		rq->nohz_flags = 0;
6952
#endif
L
Linus Torvalds 已提交
6953
#endif
P
Peter Zijlstra 已提交
6954
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6955 6956 6957
		atomic_set(&rq->nr_iowait, 0);
	}

6958
	set_load_weight(&init_task);
6959

6960 6961 6962 6963
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6964
#ifdef CONFIG_RT_MUTEXES
6965
	plist_head_init(&init_task.pi_waiters);
6966 6967
#endif

L
Linus Torvalds 已提交
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6981 6982 6983

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6984 6985 6986 6987
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6988

6989
#ifdef CONFIG_SMP
6990
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6991 6992 6993
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6994
	idle_thread_set_boot_cpu();
6995 6996
#endif
	init_sched_fair_class();
6997

6998
	scheduler_running = 1;
L
Linus Torvalds 已提交
6999 7000
}

7001
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7002 7003
static inline int preempt_count_equals(int preempt_offset)
{
7004
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7005

A
Arnd Bergmann 已提交
7006
	return (nested == preempt_offset);
7007 7008
}

7009
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7010 7011 7012
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7013
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7014 7015
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7016 7017 7018 7019 7020
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7021 7022 7023 7024 7025 7026 7027
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7028 7029 7030 7031 7032

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7033 7034 7035 7036 7037
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7038 7039
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7040 7041
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7042
	int on_rq;
7043

P
Peter Zijlstra 已提交
7044
	on_rq = p->on_rq;
7045
	if (on_rq)
7046
		dequeue_task(rq, p, 0);
7047 7048
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7049
		enqueue_task(rq, p, 0);
7050 7051
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7052 7053

	check_class_changed(rq, p, prev_class, old_prio);
7054 7055
}

L
Linus Torvalds 已提交
7056 7057
void normalize_rt_tasks(void)
{
7058
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7059
	unsigned long flags;
7060
	struct rq *rq;
L
Linus Torvalds 已提交
7061

7062
	read_lock_irqsave(&tasklist_lock, flags);
7063
	do_each_thread(g, p) {
7064 7065 7066 7067 7068 7069
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7070 7071
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7072 7073 7074
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7075
#endif
I
Ingo Molnar 已提交
7076 7077 7078 7079 7080 7081 7082 7083

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7084
			continue;
I
Ingo Molnar 已提交
7085
		}
L
Linus Torvalds 已提交
7086

7087
		raw_spin_lock(&p->pi_lock);
7088
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7089

7090
		normalize_task(rq, p);
7091

7092
		__task_rq_unlock(rq);
7093
		raw_spin_unlock(&p->pi_lock);
7094 7095
	} while_each_thread(g, p);

7096
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7097 7098 7099
}

#endif /* CONFIG_MAGIC_SYSRQ */
7100

7101
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7102
/*
7103
 * These functions are only useful for the IA64 MCA handling, or kdb.
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7118
struct task_struct *curr_task(int cpu)
7119 7120 7121 7122
{
	return cpu_curr(cpu);
}

7123 7124 7125
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7126 7127 7128 7129 7130 7131
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7132 7133
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7134 7135 7136 7137 7138 7139 7140
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7141
void set_curr_task(int cpu, struct task_struct *p)
7142 7143 7144 7145 7146
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7147

D
Dhaval Giani 已提交
7148
#ifdef CONFIG_CGROUP_SCHED
7149 7150 7151
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7152 7153 7154 7155
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7156
	autogroup_free(tg);
7157 7158 7159 7160
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7161
struct task_group *sched_create_group(struct task_group *parent)
7162 7163 7164 7165 7166 7167 7168 7169
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7170
	if (!alloc_fair_sched_group(tg, parent))
7171 7172
		goto err;

7173
	if (!alloc_rt_sched_group(tg, parent))
7174 7175
		goto err;

7176
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7177
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7178 7179 7180 7181 7182

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7183
	list_add_rcu(&tg->siblings, &parent->children);
7184
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7185

7186
	return tg;
S
Srivatsa Vaddagiri 已提交
7187 7188

err:
P
Peter Zijlstra 已提交
7189
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7190 7191 7192
	return ERR_PTR(-ENOMEM);
}

7193
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7194
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7195 7196
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7197
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7198 7199
}

7200
/* Destroy runqueue etc associated with a task group */
7201
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7202
{
7203
	unsigned long flags;
7204
	int i;
S
Srivatsa Vaddagiri 已提交
7205

7206 7207
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7208
		unregister_fair_sched_group(tg, i);
7209 7210

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7211
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7212
	list_del_rcu(&tg->siblings);
7213
	spin_unlock_irqrestore(&task_group_lock, flags);
7214 7215

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7216
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7217 7218
}

7219
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7220 7221 7222
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7223 7224
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7225
{
P
Peter Zijlstra 已提交
7226
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7227 7228 7229 7230 7231 7232
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7233
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7234
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7235

7236
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7237
		dequeue_task(rq, tsk, 0);
7238 7239
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7240

P
Peter Zijlstra 已提交
7241 7242 7243 7244 7245 7246
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7247
#ifdef CONFIG_FAIR_GROUP_SCHED
7248 7249 7250
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7251
#endif
7252
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7253

7254 7255 7256
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7257
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7258

7259
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7260
}
D
Dhaval Giani 已提交
7261
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7262

7263
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7264 7265 7266
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7267
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7268

P
Peter Zijlstra 已提交
7269
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7270
}
7271 7272 7273 7274 7275 7276 7277
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7278

P
Peter Zijlstra 已提交
7279 7280
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7281
{
P
Peter Zijlstra 已提交
7282
	struct task_struct *g, *p;
7283

P
Peter Zijlstra 已提交
7284
	do_each_thread(g, p) {
7285
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7286 7287
			return 1;
	} while_each_thread(g, p);
7288

P
Peter Zijlstra 已提交
7289 7290
	return 0;
}
7291

P
Peter Zijlstra 已提交
7292 7293 7294 7295 7296
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7297

7298
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7299 7300 7301 7302 7303
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7304

P
Peter Zijlstra 已提交
7305 7306
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7307

P
Peter Zijlstra 已提交
7308 7309 7310
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7311 7312
	}

7313 7314 7315 7316 7317
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7318

7319 7320 7321
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7322 7323
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7324

P
Peter Zijlstra 已提交
7325
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7326

7327 7328 7329 7330 7331
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7332

7333 7334 7335
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7336 7337 7338
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7339

P
Peter Zijlstra 已提交
7340 7341 7342 7343
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7344

P
Peter Zijlstra 已提交
7345
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7346
	}
P
Peter Zijlstra 已提交
7347

P
Peter Zijlstra 已提交
7348 7349 7350 7351
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7352 7353
}

P
Peter Zijlstra 已提交
7354
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7355
{
7356 7357
	int ret;

P
Peter Zijlstra 已提交
7358 7359 7360 7361 7362 7363
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7364 7365 7366 7367 7368
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7369 7370
}

7371
static int tg_set_rt_bandwidth(struct task_group *tg,
7372
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7373
{
P
Peter Zijlstra 已提交
7374
	int i, err = 0;
P
Peter Zijlstra 已提交
7375 7376

	mutex_lock(&rt_constraints_mutex);
7377
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7378 7379
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7380
		goto unlock;
P
Peter Zijlstra 已提交
7381

7382
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7383 7384
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7385 7386 7387 7388

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7389
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7390
		rt_rq->rt_runtime = rt_runtime;
7391
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7392
	}
7393
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7394
unlock:
7395
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7396 7397 7398
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7399 7400
}

7401 7402 7403 7404 7405 7406 7407 7408 7409
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7410
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7411 7412
}

P
Peter Zijlstra 已提交
7413 7414 7415 7416
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7417
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7418 7419
		return -1;

7420
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7421 7422 7423
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7424 7425 7426 7427 7428 7429 7430 7431

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7432 7433 7434
	if (rt_period == 0)
		return -EINVAL;

7435
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7449
	u64 runtime, period;
7450 7451
	int ret = 0;

7452 7453 7454
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7455 7456 7457 7458 7459 7460 7461 7462
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7463

7464
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7465
	read_lock(&tasklist_lock);
7466
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7467
	read_unlock(&tasklist_lock);
7468 7469 7470 7471
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7472 7473 7474 7475 7476 7477 7478 7479 7480 7481

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7482
#else /* !CONFIG_RT_GROUP_SCHED */
7483 7484
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7485 7486 7487
	unsigned long flags;
	int i;

7488 7489 7490
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7491 7492 7493 7494 7495 7496 7497
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7498
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7499 7500 7501
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7502
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7503
		rt_rq->rt_runtime = global_rt_runtime();
7504
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7505
	}
7506
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7507

7508 7509
	return 0;
}
7510
#endif /* CONFIG_RT_GROUP_SCHED */
7511

7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7531
int sched_rt_handler(struct ctl_table *table, int write,
7532
		void __user *buffer, size_t *lenp,
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7543
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7560

7561
#ifdef CONFIG_CGROUP_SCHED
7562 7563

/* return corresponding task_group object of a cgroup */
7564
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7565
{
7566 7567
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7568 7569
}

7570
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7571
{
7572
	struct task_group *tg, *parent;
7573

7574
	if (!cgrp->parent) {
7575
		/* This is early initialization for the top cgroup */
7576
		return &root_task_group.css;
7577 7578
	}

7579 7580
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7581 7582 7583 7584 7585 7586
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7587
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7588
{
7589
	struct task_group *tg = cgroup_tg(cgrp);
7590 7591 7592 7593

	sched_destroy_group(tg);
}

7594
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7595
				 struct cgroup_taskset *tset)
7596
{
7597 7598 7599
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7600
#ifdef CONFIG_RT_GROUP_SCHED
7601 7602
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7603
#else
7604 7605 7606
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7607
#endif
7608
	}
7609 7610
	return 0;
}
7611

7612
static void cpu_cgroup_attach(struct cgroup *cgrp,
7613
			      struct cgroup_taskset *tset)
7614
{
7615 7616 7617 7618
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7619 7620
}

7621
static void
7622 7623
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7636
#ifdef CONFIG_FAIR_GROUP_SCHED
7637
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7638
				u64 shareval)
7639
{
7640
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7641 7642
}

7643
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7644
{
7645
	struct task_group *tg = cgroup_tg(cgrp);
7646

7647
	return (u64) scale_load_down(tg->shares);
7648
}
7649 7650

#ifdef CONFIG_CFS_BANDWIDTH
7651 7652
static DEFINE_MUTEX(cfs_constraints_mutex);

7653 7654 7655
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7656 7657
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7658 7659
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7660
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7661
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7682 7683 7684 7685 7686
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7687
	runtime_enabled = quota != RUNTIME_INF;
7688 7689
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7690 7691 7692
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7693

P
Paul Turner 已提交
7694
	__refill_cfs_bandwidth_runtime(cfs_b);
7695 7696 7697 7698 7699 7700
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7701 7702 7703 7704
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7705
		struct rq *rq = cfs_rq->rq;
7706 7707

		raw_spin_lock_irq(&rq->lock);
7708
		cfs_rq->runtime_enabled = runtime_enabled;
7709
		cfs_rq->runtime_remaining = 0;
7710

7711
		if (cfs_rq->throttled)
7712
			unthrottle_cfs_rq(cfs_rq);
7713 7714
		raw_spin_unlock_irq(&rq->lock);
	}
7715 7716
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7717

7718
	return ret;
7719 7720 7721 7722 7723 7724
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7725
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7738
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7739 7740
		return -1;

7741
	quota_us = tg->cfs_bandwidth.quota;
7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7752
	quota = tg->cfs_bandwidth.quota;
7753 7754 7755 7756 7757 7758 7759 7760

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7761
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7821
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7822 7823 7824 7825 7826
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7827
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7848
	int ret;
7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7860 7861 7862 7863 7864
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7865
}
7866 7867 7868 7869 7870

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7871
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7872 7873 7874 7875 7876 7877 7878

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7879
#endif /* CONFIG_CFS_BANDWIDTH */
7880
#endif /* CONFIG_FAIR_GROUP_SCHED */
7881

7882
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7883
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7884
				s64 val)
P
Peter Zijlstra 已提交
7885
{
7886
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7887 7888
}

7889
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7890
{
7891
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7892
}
7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7904
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7905

7906
static struct cftype cpu_files[] = {
7907
#ifdef CONFIG_FAIR_GROUP_SCHED
7908 7909
	{
		.name = "shares",
7910 7911
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7912
	},
7913
#endif
7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7925 7926 7927 7928
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7929
#endif
7930
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7931
	{
P
Peter Zijlstra 已提交
7932
		.name = "rt_runtime_us",
7933 7934
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7935
	},
7936 7937
	{
		.name = "rt_period_us",
7938 7939
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7940
	},
7941
#endif
7942
	{ }	/* terminate */
7943 7944 7945
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7946
	.name		= "cpu",
7947 7948
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7949 7950
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7951
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7952
	.subsys_id	= cpu_cgroup_subsys_id,
7953
	.base_cftypes	= cpu_files,
7954 7955 7956
	.early_init	= 1,
};

7957
#endif	/* CONFIG_CGROUP_SCHED */
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7968 7969
struct cpuacct root_cpuacct;

7970
/* create a new cpu accounting group */
7971
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7972
{
7973
	struct cpuacct *ca;
7974

7975 7976 7977 7978
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7979
	if (!ca)
7980
		goto out;
7981 7982

	ca->cpuusage = alloc_percpu(u64);
7983 7984 7985
	if (!ca->cpuusage)
		goto out_free_ca;

7986 7987 7988
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7989

7990
	return &ca->css;
7991

7992
out_free_cpuusage:
7993 7994 7995 7996 7997
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7998 7999 8000
}

/* destroy an existing cpu accounting group */
8001
static void cpuacct_css_free(struct cgroup *cgrp)
8002
{
8003
	struct cpuacct *ca = cgroup_ca(cgrp);
8004

8005
	free_percpu(ca->cpustat);
8006 8007 8008 8009
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8010 8011
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8012
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8013 8014 8015 8016 8017 8018
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8019
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8020
	data = *cpuusage;
8021
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8022 8023 8024 8025 8026 8027 8028 8029 8030
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8031
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8032 8033 8034 8035 8036

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8037
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8038
	*cpuusage = val;
8039
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8040 8041 8042 8043 8044
#else
	*cpuusage = val;
#endif
}

8045
/* return total cpu usage (in nanoseconds) of a group */
8046
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8047
{
8048
	struct cpuacct *ca = cgroup_ca(cgrp);
8049 8050 8051
	u64 totalcpuusage = 0;
	int i;

8052 8053
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8054 8055 8056 8057

	return totalcpuusage;
}

8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8070 8071
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8072 8073 8074 8075 8076

out:
	return err;
}

8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8092 8093 8094 8095 8096 8097
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8098
			      struct cgroup_map_cb *cb)
8099 8100
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8101 8102
	int cpu;
	s64 val = 0;
8103

8104 8105 8106 8107
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8108
	}
8109 8110
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8111

8112 8113 8114 8115 8116 8117
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8118
	}
8119 8120 8121 8122

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8123 8124 8125
	return 0;
}

8126 8127 8128
static struct cftype files[] = {
	{
		.name = "usage",
8129 8130
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8131
	},
8132 8133 8134 8135
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8136 8137 8138 8139
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8140
	{ }	/* terminate */
8141 8142 8143 8144 8145 8146 8147
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8148
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8149 8150
{
	struct cpuacct *ca;
8151
	int cpu;
8152

L
Li Zefan 已提交
8153
	if (unlikely(!cpuacct_subsys.active))
8154 8155
		return;

8156
	cpu = task_cpu(tsk);
8157 8158 8159

	rcu_read_lock();

8160 8161
	ca = task_ca(tsk);

8162
	for (; ca; ca = parent_ca(ca)) {
8163
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8164 8165
		*cpuusage += cputime;
	}
8166 8167

	rcu_read_unlock();
8168 8169 8170 8171
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8172 8173
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8174
	.subsys_id = cpuacct_subsys_id,
8175
	.base_cftypes = files,
8176 8177
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8178 8179 8180 8181 8182 8183

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}