core.c 178.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
515
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
516 517 518
{
	int cpu;

519
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
520

521
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
522 523
		return;

524
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
525 526 527 528 529 530 531 532 533 534 535

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

536
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
537 538 539 540
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

541
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
542 543
		return;
	resched_task(cpu_curr(cpu));
544
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
545
}
546

547
#ifdef CONFIG_NO_HZ_COMMON
548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

562
	rcu_read_lock();
563
	for_each_domain(cpu, sd) {
564 565 566 567 568 569
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
570
	}
571 572
unlock:
	rcu_read_unlock();
573 574
	return cpu;
}
575 576 577 578 579 580 581 582 583 584
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
585
static void wake_up_idle_cpu(int cpu)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
601 602

	/*
603 604 605
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
606
	 */
607
	set_tsk_need_resched(rq->idle);
608

609 610 611 612
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
613 614
}

615
static bool wake_up_full_nohz_cpu(int cpu)
616
{
617
	if (tick_nohz_full_cpu(cpu)) {
618 619 620 621 622 623 624 625 626 627 628
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
629
	if (!wake_up_full_nohz_cpu(cpu))
630 631 632
		wake_up_idle_cpu(cpu);
}

633
static inline bool got_nohz_idle_kick(void)
634
{
635 636
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
637 638
}

639
#else /* CONFIG_NO_HZ_COMMON */
640

641
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
642
{
643
	return false;
P
Peter Zijlstra 已提交
644 645
}

646
#endif /* CONFIG_NO_HZ_COMMON */
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
665

666
void sched_avg_update(struct rq *rq)
667
{
668 669 670
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
671 672 673 674 675 676
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
677 678 679
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
680 681
}

682
#else /* !CONFIG_SMP */
683
void resched_task(struct task_struct *p)
684
{
685
	assert_raw_spin_locked(&task_rq(p)->lock);
686
	set_tsk_need_resched(p);
687
}
688
#endif /* CONFIG_SMP */
689

690 691
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692
/*
693 694 695 696
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
697
 */
698
int walk_tg_tree_from(struct task_group *from,
699
			     tg_visitor down, tg_visitor up, void *data)
700 701
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
702
	int ret;
703

704 705
	parent = from;

706
down:
P
Peter Zijlstra 已提交
707 708
	ret = (*down)(parent, data);
	if (ret)
709
		goto out;
710 711 712 713 714 715 716
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
717
	ret = (*up)(parent, data);
718 719
	if (ret || parent == from)
		goto out;
720 721 722 723 724

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
725
out:
P
Peter Zijlstra 已提交
726
	return ret;
727 728
}

729
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
730
{
731
	return 0;
P
Peter Zijlstra 已提交
732
}
733 734
#endif

735 736
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
737 738 739
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
740 741 742 743
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
744
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
745
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
746 747
		return;
	}
748

749
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
750
	load->inv_weight = prio_to_wmult[prio];
751 752
}

753
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754
{
755
	update_rq_clock(rq);
I
Ingo Molnar 已提交
756
	sched_info_queued(p);
757
	p->sched_class->enqueue_task(rq, p, flags);
758 759
}

760
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
761
{
762
	update_rq_clock(rq);
763
	sched_info_dequeued(p);
764
	p->sched_class->dequeue_task(rq, p, flags);
765 766
}

767
void activate_task(struct rq *rq, struct task_struct *p, int flags)
768 769 770 771
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

772
	enqueue_task(rq, p, flags);
773 774
}

775
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

780
	dequeue_task(rq, p, flags);
781 782
}

783
static void update_rq_clock_task(struct rq *rq, s64 delta)
784
{
785 786 787 788 789 790 791 792
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
793
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
815 816
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
817
	if (static_key_false((&paravirt_steal_rq_enabled))) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

835 836
	rq->clock_task += delta;

837 838 839 840
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

873
/*
I
Ingo Molnar 已提交
874
 * __normal_prio - return the priority that is based on the static prio
875 876 877
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
878
	return p->static_prio;
879 880
}

881 882 883 884 885 886 887
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
888
static inline int normal_prio(struct task_struct *p)
889 890 891
{
	int prio;

892
	if (task_has_rt_policy(p))
893 894 895 896 897 898 899 900 901 902 903 904 905
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
906
static int effective_prio(struct task_struct *p)
907 908 909 910 911 912 913 914 915 916 917 918
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
919 920 921 922
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
923
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
924 925 926 927
{
	return cpu_curr(task_cpu(p)) == p;
}

928 929
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
930
				       int oldprio)
931 932 933
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
934 935 936 937
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
938 939
}

940
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
961
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
962 963 964
		rq->skip_clock_update = 1;
}

965 966 967 968 969 970 971
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
972
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
973
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
974
{
975 976 977 978 979
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
980 981
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
982 983

#ifdef CONFIG_LOCKDEP
984 985 986 987 988
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
989
	 * see task_group().
990 991 992 993
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
994 995 996
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
997 998
#endif

999
	trace_sched_migrate_task(p, new_cpu);
1000

1001
	if (task_cpu(p) != new_cpu) {
1002 1003
		struct task_migration_notifier tmn;

1004 1005
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1006
		p->se.nr_migrations++;
1007
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008 1009 1010 1011 1012 1013

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1014
	}
I
Ingo Molnar 已提交
1015 1016

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1017 1018
}

1019
struct migration_arg {
1020
	struct task_struct *task;
L
Linus Torvalds 已提交
1021
	int dest_cpu;
1022
};
L
Linus Torvalds 已提交
1023

1024 1025
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1026 1027 1028
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1029 1030 1031 1032 1033 1034 1035
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1042
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1043 1044
{
	unsigned long flags;
I
Ingo Molnar 已提交
1045
	int running, on_rq;
R
Roland McGrath 已提交
1046
	unsigned long ncsw;
1047
	struct rq *rq;
L
Linus Torvalds 已提交
1048

1049 1050 1051 1052 1053 1054 1055 1056
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1069 1070 1071
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1072
			cpu_relax();
R
Roland McGrath 已提交
1073
		}
1074

1075 1076 1077 1078 1079 1080
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1081
		trace_sched_wait_task(p);
1082
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1083
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1084
		ncsw = 0;
1085
		if (!match_state || p->state == match_state)
1086
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1087
		task_rq_unlock(rq, p, &flags);
1088

R
Roland McGrath 已提交
1089 1090 1091 1092 1093 1094
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1105

1106 1107 1108 1109 1110
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1111
		 * So if it was still runnable (but just not actively
1112 1113 1114 1115
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1116 1117 1118 1119
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1120 1121
			continue;
		}
1122

1123 1124 1125 1126 1127 1128 1129
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1130 1131

	return ncsw;
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1141
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1142 1143 1144 1145 1146
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1147
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1157
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1158
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1159

1160
#ifdef CONFIG_SMP
1161
/*
1162
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1163
 */
1164 1165
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1166 1167
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1168 1169
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1188
	}
1189

1190 1191
	for (;;) {
		/* Any allowed, online CPU? */
1192
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1193 1194 1195 1196 1197 1198
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1229 1230 1231 1232 1233
	}

	return dest_cpu;
}

1234
/*
1235
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1236
 */
1237
static inline
1238
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1239
{
1240
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1252
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1253
		     !cpu_online(cpu)))
1254
		cpu = select_fallback_rq(task_cpu(p), p);
1255 1256

	return cpu;
1257
}
1258 1259 1260 1261 1262 1263

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1264 1265
#endif

P
Peter Zijlstra 已提交
1266
static void
1267
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1268
{
P
Peter Zijlstra 已提交
1269
#ifdef CONFIG_SCHEDSTATS
1270 1271
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1282
		rcu_read_lock();
P
Peter Zijlstra 已提交
1283 1284 1285 1286 1287 1288
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1289
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1290
	}
1291 1292 1293 1294

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1295 1296 1297
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1298
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1299 1300

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1301
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1302 1303 1304 1305 1306 1307

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1308
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1309
	p->on_rq = 1;
1310 1311 1312 1313

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1314 1315
}

1316 1317 1318
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1319
static void
1320
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1321 1322
{
	check_preempt_curr(rq, p, wake_flags);
1323
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1324 1325 1326 1327 1328 1329

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1330
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1376
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1377
static void sched_ttwu_pending(void)
1378 1379
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1380 1381
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1382 1383 1384

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1385 1386 1387
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1388 1389 1390 1391 1392 1393 1394 1395
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1396 1397
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
	    && !tick_nohz_full_cpu(smp_processor_id()))
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1414
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1415
	sched_ttwu_pending();
1416 1417 1418 1419

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1420 1421
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1422
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1423
	}
1424
	irq_exit();
1425 1426 1427 1428
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1429
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1430 1431
		smp_send_reschedule(cpu);
}
1432

1433
bool cpus_share_cache(int this_cpu, int that_cpu)
1434 1435 1436
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1437
#endif /* CONFIG_SMP */
1438

1439 1440 1441 1442
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1443
#if defined(CONFIG_SMP)
1444
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1445
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1446 1447 1448 1449 1450
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1451 1452 1453
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1454 1455 1456
}

/**
L
Linus Torvalds 已提交
1457
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1458
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1459
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1460
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465 1466 1467
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1468 1469
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1470
 */
1471 1472
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1473 1474
{
	unsigned long flags;
1475
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1476

1477
	smp_wmb();
1478
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1479
	if (!(p->state & state))
L
Linus Torvalds 已提交
1480 1481
		goto out;

1482
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1483 1484
	cpu = task_cpu(p);

1485 1486
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1487 1488

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1489
	/*
1490 1491
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1492
	 */
1493
	while (p->on_cpu)
1494
		cpu_relax();
1495
	/*
1496
	 * Pairs with the smp_wmb() in finish_lock_switch().
1497
	 */
1498
	smp_rmb();
L
Linus Torvalds 已提交
1499

1500
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1501
	p->state = TASK_WAKING;
1502

1503
	if (p->sched_class->task_waking)
1504
		p->sched_class->task_waking(p);
1505

1506
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1507 1508
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1509
		set_task_cpu(p, cpu);
1510
	}
L
Linus Torvalds 已提交
1511 1512
#endif /* CONFIG_SMP */

1513 1514
	ttwu_queue(p, cpu);
stat:
1515
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1516
out:
1517
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1518 1519 1520 1521

	return success;
}

T
Tejun Heo 已提交
1522 1523 1524 1525
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1526
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1527
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1528
 * the current task.
T
Tejun Heo 已提交
1529 1530 1531 1532 1533
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1534 1535 1536 1537
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1538 1539
	lockdep_assert_held(&rq->lock);

1540 1541 1542 1543 1544 1545
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1546
	if (!(p->state & TASK_NORMAL))
1547
		goto out;
T
Tejun Heo 已提交
1548

P
Peter Zijlstra 已提交
1549
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1550 1551
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1552
	ttwu_do_wakeup(rq, p, 0);
1553
	ttwu_stat(p, smp_processor_id(), 0);
1554 1555
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1569
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1570
{
1571 1572
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1573 1574 1575
}
EXPORT_SYMBOL(wake_up_process);

1576
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581 1582 1583
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1584 1585 1586 1587 1588
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1589 1590 1591
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1592 1593
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1594
	p->se.prev_sum_exec_runtime	= 0;
1595
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1596
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1597
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1598

1599 1600 1601 1602 1603 1604
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1605 1606 1607
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1608
#ifdef CONFIG_SCHEDSTATS
1609
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1610
#endif
N
Nick Piggin 已提交
1611

P
Peter Zijlstra 已提交
1612
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1613

1614 1615 1616
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1617 1618 1619 1620

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1621
		p->mm->numa_next_reset = jiffies;
1622 1623 1624 1625 1626 1627
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1628
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1629 1630
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1631 1632
}

1633
#ifdef CONFIG_NUMA_BALANCING
1634
#ifdef CONFIG_SCHED_DEBUG
1635 1636 1637 1638 1639 1640 1641
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1642 1643 1644 1645 1646 1647
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1648
}
1649
#endif /* CONFIG_SCHED_DEBUG */
1650
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1651 1652 1653 1654

/*
 * fork()/clone()-time setup:
 */
1655
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1656
{
1657
	unsigned long flags;
I
Ingo Molnar 已提交
1658 1659 1660
	int cpu = get_cpu();

	__sched_fork(p);
1661
	/*
1662
	 * We mark the process as running here. This guarantees that
1663 1664 1665
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1666
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1667

1668 1669 1670 1671 1672
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1673 1674 1675 1676
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1677
		if (task_has_rt_policy(p)) {
1678
			p->policy = SCHED_NORMAL;
1679
			p->static_prio = NICE_TO_PRIO(0);
1680 1681 1682 1683 1684 1685
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1686

1687 1688 1689 1690 1691 1692
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1693

H
Hiroshi Shimamoto 已提交
1694 1695
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1696

P
Peter Zijlstra 已提交
1697 1698 1699
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1700 1701 1702 1703 1704 1705 1706
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1707
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1708
	set_task_cpu(p, cpu);
1709
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1710

1711
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1712
	if (likely(sched_info_on()))
1713
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1714
#endif
P
Peter Zijlstra 已提交
1715 1716
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1717
#endif
1718
#ifdef CONFIG_PREEMPT_COUNT
1719
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1720
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1721
#endif
1722
#ifdef CONFIG_SMP
1723
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1724
#endif
1725

N
Nick Piggin 已提交
1726
	put_cpu();
L
Linus Torvalds 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1736
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1737 1738
{
	unsigned long flags;
I
Ingo Molnar 已提交
1739
	struct rq *rq;
1740

1741
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1742 1743 1744 1745 1746 1747
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1748
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1749 1750
#endif

1751
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1752
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1753
	p->on_rq = 1;
1754
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1755
	check_preempt_curr(rq, p, WF_FORK);
1756
#ifdef CONFIG_SMP
1757 1758
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1759
#endif
1760
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1761 1762
}

1763 1764 1765
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1766
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1767
 * @notifier: notifier struct to register
1768 1769 1770 1771 1772 1773 1774 1775 1776
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1777
 * @notifier: notifier struct to unregister
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1791
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1792 1793 1794 1795 1796 1797 1798 1799 1800
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1801
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802 1803 1804
		notifier->ops->sched_out(notifier, next);
}

1805
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1817
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1818

1819 1820 1821
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1822
 * @prev: the current task that is being switched out
1823 1824 1825 1826 1827 1828 1829 1830 1831
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1832 1833 1834
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1835
{
1836
	trace_sched_switch(prev, next);
1837 1838
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1839
	fire_sched_out_preempt_notifiers(prev, next);
1840 1841 1842 1843
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1844 1845
/**
 * finish_task_switch - clean up after a task-switch
1846
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1847 1848
 * @prev: the thread we just switched away from.
 *
1849 1850 1851 1852
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1853 1854
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1855
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1856 1857 1858
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1859
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1860 1861 1862
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1863
	long prev_state;
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1869
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1870 1871
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1872
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1878
	prev_state = prev->state;
1879
	vtime_task_switch(prev);
1880
	finish_arch_switch(prev);
1881
	perf_event_task_sched_in(prev, current);
1882
	finish_lock_switch(rq, prev);
1883
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1884

1885
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1886 1887
	if (mm)
		mmdrop(mm);
1888
	if (unlikely(prev_state == TASK_DEAD)) {
1889 1890 1891
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1892
		 */
1893
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1894
		put_task_struct(prev);
1895
	}
1896 1897

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
1898 1899
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1915
		raw_spin_lock_irqsave(&rq->lock, flags);
1916 1917
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1918
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1919 1920 1921 1922 1923 1924

		rq->post_schedule = 0;
	}
}

#else
1925

1926 1927 1928 1929 1930 1931
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1932 1933
}

1934 1935
#endif

L
Linus Torvalds 已提交
1936 1937 1938 1939
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1940
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1941 1942
	__releases(rq->lock)
{
1943 1944
	struct rq *rq = this_rq();

1945
	finish_task_switch(rq, prev);
1946

1947 1948 1949 1950 1951
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1952

1953 1954 1955 1956
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1957
	if (current->set_child_tid)
1958
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1965
static inline void
1966
context_switch(struct rq *rq, struct task_struct *prev,
1967
	       struct task_struct *next)
L
Linus Torvalds 已提交
1968
{
I
Ingo Molnar 已提交
1969
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1970

1971
	prepare_task_switch(rq, prev, next);
1972

I
Ingo Molnar 已提交
1973 1974
	mm = next->mm;
	oldmm = prev->active_mm;
1975 1976 1977 1978 1979
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1980
	arch_start_context_switch(prev);
1981

1982
	if (!mm) {
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1989
	if (!prev->mm) {
L
Linus Torvalds 已提交
1990 1991 1992
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1993 1994 1995 1996 1997 1998 1999
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2000
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2001
#endif
L
Linus Torvalds 已提交
2002

2003
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2004 2005 2006
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2007 2008 2009 2010 2011 2012 2013
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2014 2015 2016
}

/*
2017
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2018 2019
 *
 * externally visible scheduler statistics: current number of runnable
2020
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2030
}
L
Linus Torvalds 已提交
2031 2032

unsigned long long nr_context_switches(void)
2033
{
2034 2035
	int i;
	unsigned long long sum = 0;
2036

2037
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2038
		sum += cpu_rq(i)->nr_switches;
2039

L
Linus Torvalds 已提交
2040 2041
	return sum;
}
2042

L
Linus Torvalds 已提交
2043 2044 2045
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2046

2047
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2048
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2049

L
Linus Torvalds 已提交
2050 2051
	return sum;
}
2052

2053
unsigned long nr_iowait_cpu(int cpu)
2054
{
2055
	struct rq *this = cpu_rq(cpu);
2056 2057
	return atomic_read(&this->nr_iowait);
}
2058

I
Ingo Molnar 已提交
2059
#ifdef CONFIG_SMP
2060

2061
/*
P
Peter Zijlstra 已提交
2062 2063
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2064
 */
P
Peter Zijlstra 已提交
2065
void sched_exec(void)
2066
{
P
Peter Zijlstra 已提交
2067
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2068
	unsigned long flags;
2069
	int dest_cpu;
2070

2071
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2072
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2073 2074
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2075

2076
	if (likely(cpu_active(dest_cpu))) {
2077
		struct migration_arg arg = { p, dest_cpu };
2078

2079 2080
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2081 2082
		return;
	}
2083
unlock:
2084
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2085
}
I
Ingo Molnar 已提交
2086

L
Linus Torvalds 已提交
2087 2088 2089
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2090
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2091 2092

EXPORT_PER_CPU_SYMBOL(kstat);
2093
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2094 2095

/*
2096
 * Return any ns on the sched_clock that have not yet been accounted in
2097
 * @p in case that task is currently running.
2098 2099
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2100
 */
2101 2102 2103 2104 2105 2106
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2107
		ns = rq->clock_task - p->se.exec_start;
2108 2109 2110 2111 2112 2113 2114
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2115
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2116 2117
{
	unsigned long flags;
2118
	struct rq *rq;
2119
	u64 ns = 0;
2120

2121
	rq = task_rq_lock(p, &flags);
2122
	ns = do_task_delta_exec(p, rq);
2123
	task_rq_unlock(rq, p, &flags);
2124

2125 2126
	return ns;
}
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2141
	task_rq_unlock(rq, p, &flags);
2142 2143 2144

	return ns;
}
2145

2146 2147 2148 2149 2150 2151 2152 2153
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2154
	struct task_struct *curr = rq->curr;
2155 2156

	sched_clock_tick();
I
Ingo Molnar 已提交
2157

2158
	raw_spin_lock(&rq->lock);
2159
	update_rq_clock(rq);
2160
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2161
	curr->sched_class->task_tick(rq, curr, 0);
2162
	raw_spin_unlock(&rq->lock);
2163

2164
	perf_event_task_tick();
2165

2166
#ifdef CONFIG_SMP
2167
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2168
	trigger_load_balance(rq, cpu);
2169
#endif
2170
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
L
Linus Torvalds 已提交
2196
}
2197
#endif
L
Linus Torvalds 已提交
2198

2199
notrace unsigned long get_parent_ip(unsigned long addr)
2200 2201 2202 2203 2204 2205 2206 2207
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2208

2209 2210 2211
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2212
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2213
{
2214
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2215 2216 2217
	/*
	 * Underflow?
	 */
2218 2219
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2220
#endif
L
Linus Torvalds 已提交
2221
	preempt_count() += val;
2222
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2223 2224 2225
	/*
	 * Spinlock count overflowing soon?
	 */
2226 2227
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2228 2229 2230
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2231 2232 2233
}
EXPORT_SYMBOL(add_preempt_count);

2234
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2235
{
2236
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2237 2238 2239
	/*
	 * Underflow?
	 */
2240
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2241
		return;
L
Linus Torvalds 已提交
2242 2243 2244
	/*
	 * Is the spinlock portion underflowing?
	 */
2245 2246 2247
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2248
#endif
2249

2250 2251
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2252 2253 2254 2255 2256 2257 2258
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2259
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2260
 */
I
Ingo Molnar 已提交
2261
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2262
{
2263 2264 2265
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2266 2267
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2268

I
Ingo Molnar 已提交
2269
	debug_show_held_locks(prev);
2270
	print_modules();
I
Ingo Molnar 已提交
2271 2272
	if (irqs_disabled())
		print_irqtrace_events(prev);
2273
	dump_stack();
2274
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2275
}
L
Linus Torvalds 已提交
2276

I
Ingo Molnar 已提交
2277 2278 2279 2280 2281
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2282
	/*
I
Ingo Molnar 已提交
2283
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2284 2285 2286
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2287
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2288
		__schedule_bug(prev);
2289
	rcu_sleep_check();
I
Ingo Molnar 已提交
2290

L
Linus Torvalds 已提交
2291 2292
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2293
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2294 2295
}

P
Peter Zijlstra 已提交
2296
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2297
{
2298
	if (prev->on_rq || rq->skip_clock_update < 0)
2299
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2300
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2301 2302
}

I
Ingo Molnar 已提交
2303 2304 2305 2306
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2307
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2308
{
2309
	const struct sched_class *class;
I
Ingo Molnar 已提交
2310
	struct task_struct *p;
L
Linus Torvalds 已提交
2311 2312

	/*
I
Ingo Molnar 已提交
2313 2314
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2315
	 */
2316
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2317
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2318 2319
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2320 2321
	}

2322
	for_each_class(class) {
2323
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2324 2325 2326
		if (p)
			return p;
	}
2327 2328

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2329
}
L
Linus Torvalds 已提交
2330

I
Ingo Molnar 已提交
2331
/*
2332
 * __schedule() is the main scheduler function.
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2367
 */
2368
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2369 2370
{
	struct task_struct *prev, *next;
2371
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2372
	struct rq *rq;
2373
	int cpu;
I
Ingo Molnar 已提交
2374

2375 2376
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2377 2378
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2379
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2380 2381 2382
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2383

2384
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2385
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2386

2387
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2388

2389
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2390
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2391
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2392
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2393
		} else {
2394 2395 2396
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2397
			/*
2398 2399 2400
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2410
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2411 2412
	}

2413
	pre_schedule(rq, prev);
2414

I
Ingo Molnar 已提交
2415
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2416 2417
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2418
	put_prev_task(rq, prev);
2419
	next = pick_next_task(rq);
2420 2421
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2422 2423 2424 2425 2426 2427

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2428
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2429
		/*
2430 2431 2432 2433
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2434 2435 2436
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2437
	} else
2438
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2439

2440
	post_schedule(rq);
L
Linus Torvalds 已提交
2441

2442
	sched_preempt_enable_no_resched();
2443
	if (need_resched())
L
Linus Torvalds 已提交
2444 2445
		goto need_resched;
}
2446

2447 2448
static inline void sched_submit_work(struct task_struct *tsk)
{
2449
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2450 2451 2452 2453 2454 2455 2456 2457 2458
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2459
asmlinkage void __sched schedule(void)
2460
{
2461 2462 2463
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2464 2465
	__schedule();
}
L
Linus Torvalds 已提交
2466 2467
EXPORT_SYMBOL(schedule);

2468
#ifdef CONFIG_CONTEXT_TRACKING
2469 2470 2471 2472 2473 2474 2475 2476
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2477
	user_exit();
2478
	schedule();
2479
	user_enter();
2480 2481 2482
}
#endif

2483 2484 2485 2486 2487 2488 2489
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2490
	sched_preempt_enable_no_resched();
2491 2492 2493 2494
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2495 2496
#ifdef CONFIG_PREEMPT
/*
2497
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2498
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2499 2500
 * occur there and call schedule directly.
 */
2501
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2502 2503
{
	struct thread_info *ti = current_thread_info();
2504

L
Linus Torvalds 已提交
2505 2506
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2507
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2508
	 */
N
Nick Piggin 已提交
2509
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
2510 2511
		return;

2512
	do {
2513
		add_preempt_count_notrace(PREEMPT_ACTIVE);
2514
		__schedule();
2515
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2516

2517 2518 2519 2520 2521
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2522
	} while (need_resched());
L
Linus Torvalds 已提交
2523 2524 2525 2526
}
EXPORT_SYMBOL(preempt_schedule);

/*
2527
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
2535
	enum ctx_state prev_state;
2536

2537
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
2538 2539
	BUG_ON(ti->preempt_count || !irqs_disabled());

2540 2541
	prev_state = exception_enter();

2542 2543 2544
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
2545
		__schedule();
2546 2547
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2548

2549 2550 2551 2552 2553
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2554
	} while (need_resched());
2555 2556

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2557 2558 2559 2560
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
2561
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2562
			  void *key)
L
Linus Torvalds 已提交
2563
{
P
Peter Zijlstra 已提交
2564
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2565 2566 2567 2568
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
2569 2570
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
2571 2572 2573
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
2574
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
2575 2576
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
2577
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
2578
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
2579
{
2580
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
2581

2582
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2583 2584
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
2585
		if (curr->func(curr, mode, wake_flags, key) &&
2586
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2596
 * @key: is directly passed to the wakeup function
2597 2598 2599
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2600
 */
2601
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
2602
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
2615
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
2616
{
2617
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
2618
}
2619
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
2620

2621 2622 2623 2624
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
2625
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2626

L
Linus Torvalds 已提交
2627
/**
2628
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
2629 2630 2631
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2632
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
2633 2634 2635 2636 2637 2638 2639
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
2640 2641 2642
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
2643
 */
2644 2645
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
2646 2647
{
	unsigned long flags;
P
Peter Zijlstra 已提交
2648
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
2649 2650 2651 2652 2653

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
2654
		wake_flags = 0;
L
Linus Torvalds 已提交
2655 2656

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
2657
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
2658 2659
	spin_unlock_irqrestore(&q->lock, flags);
}
2660 2661 2662 2663 2664 2665 2666 2667 2668
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
2669 2670
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

2671 2672 2673 2674 2675 2676 2677 2678
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
2679 2680 2681
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2682
 */
2683
void complete(struct completion *x)
L
Linus Torvalds 已提交
2684 2685 2686 2687 2688
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
2689
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
2690 2691 2692 2693
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

2694 2695 2696 2697 2698
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
2699 2700 2701
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
2702
 */
2703
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
2704 2705 2706 2707 2708
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
2709
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
2710 2711 2712 2713
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

2714
static inline long __sched
2715 2716
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2717 2718 2719 2720
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
2721
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
2722
		do {
2723
			if (signal_pending_state(state, current)) {
2724 2725
				timeout = -ERESTARTSYS;
				break;
2726 2727
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
2728
			spin_unlock_irq(&x->wait.lock);
2729
			timeout = action(timeout);
L
Linus Torvalds 已提交
2730
			spin_lock_irq(&x->wait.lock);
2731
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
2732
		__remove_wait_queue(&x->wait, &wait);
2733 2734
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
2735 2736
	}
	x->done--;
2737
	return timeout ?: 1;
L
Linus Torvalds 已提交
2738 2739
}

2740 2741 2742
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
2743 2744 2745 2746
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
2747
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
2748
	spin_unlock_irq(&x->wait.lock);
2749 2750
	return timeout;
}
L
Linus Torvalds 已提交
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
2774
void __sched wait_for_completion(struct completion *x)
2775 2776
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2777
}
2778
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
2779

2780 2781 2782 2783 2784 2785 2786 2787
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
2788 2789 2790
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
2791
 */
2792
unsigned long __sched
2793
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
2794
{
2795
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
2796
}
2797
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

2832 2833 2834 2835 2836 2837
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
2838 2839
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2840
 */
2841
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
2842
{
2843 2844 2845 2846
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
2847
}
2848
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
2849

2850 2851 2852 2853 2854 2855 2856
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2857 2858 2859
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
2860
 */
2861
long __sched
2862 2863
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
2864
{
2865
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
2866
}
2867
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
2868

2869 2870 2871 2872 2873 2874
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
2875 2876
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2877
 */
M
Matthew Wilcox 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

2887 2888 2889 2890 2891 2892 2893 2894
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
2895 2896 2897
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
2898
 */
2899
long __sched
2900 2901 2902 2903 2904 2905 2906
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
2921
	unsigned long flags;
2922 2923
	int ret = 1;

2924
	spin_lock_irqsave(&x->wait.lock, flags);
2925 2926 2927 2928
	if (!x->done)
		ret = 0;
	else
		x->done--;
2929
	spin_unlock_irqrestore(&x->wait.lock, flags);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
2944
	unsigned long flags;
2945 2946
	int ret = 1;

2947
	spin_lock_irqsave(&x->wait.lock, flags);
2948 2949
	if (!x->done)
		ret = 0;
2950
	spin_unlock_irqrestore(&x->wait.lock, flags);
2951 2952 2953 2954
	return ret;
}
EXPORT_SYMBOL(completion_done);

2955 2956
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
2957
{
I
Ingo Molnar 已提交
2958 2959 2960 2961
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
2962

2963
	__set_current_state(state);
L
Linus Torvalds 已提交
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2979 2980 2981
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
2982
long __sched
I
Ingo Molnar 已提交
2983
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2984
{
2985
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2986 2987 2988
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
2989
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
2990
{
2991
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
2992 2993 2994
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
2995
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
2996
{
2997
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
2998 2999 3000
}
EXPORT_SYMBOL(sleep_on_timeout);

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3013
void rt_mutex_setprio(struct task_struct *p, int prio)
3014
{
3015
	int oldprio, on_rq, running;
3016
	struct rq *rq;
3017
	const struct sched_class *prev_class;
3018 3019 3020

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3021
	rq = __task_rq_lock(p);
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3041
	trace_sched_pi_setprio(p, prio);
3042
	oldprio = p->prio;
3043
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3044
	on_rq = p->on_rq;
3045
	running = task_current(rq, p);
3046
	if (on_rq)
3047
		dequeue_task(rq, p, 0);
3048 3049
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3050 3051 3052 3053 3054 3055

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3056 3057
	p->prio = prio;

3058 3059
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3060
	if (on_rq)
3061
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3062

P
Peter Zijlstra 已提交
3063
	check_class_changed(rq, p, prev_class, oldprio);
3064
out_unlock:
3065
	__task_rq_unlock(rq);
3066 3067
}
#endif
3068
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3069
{
I
Ingo Molnar 已提交
3070
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3071
	unsigned long flags;
3072
	struct rq *rq;
L
Linus Torvalds 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3085
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3086
	 */
3087
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3088 3089 3090
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3091
	on_rq = p->on_rq;
3092
	if (on_rq)
3093
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3094 3095

	p->static_prio = NICE_TO_PRIO(nice);
3096
	set_load_weight(p);
3097 3098 3099
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3100

I
Ingo Molnar 已提交
3101
	if (on_rq) {
3102
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3103
		/*
3104 3105
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3106
		 */
3107
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3108 3109 3110
			resched_task(rq->curr);
	}
out_unlock:
3111
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3112 3113 3114
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3115 3116 3117 3118 3119
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3120
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3121
{
3122 3123
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3124

3125
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3126 3127 3128
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3138
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3139
{
3140
	long nice, retval;
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3147 3148
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3149 3150 3151
	if (increment > 40)
		increment = 40;

3152
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3153 3154 3155 3156 3157
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3158 3159 3160
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3179
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184 3185 3186 3187
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3188
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3189 3190 3191
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3192
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3193 3194 3195 3196 3197 3198 3199

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3214 3215 3216 3217 3218 3219
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3220
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3221 3222 3223 3224 3225 3226 3227 3228
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3229
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3230
{
3231
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3232 3233 3234
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3235 3236
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3237 3238 3239
{
	p->policy = policy;
	p->rt_priority = prio;
3240 3241 3242
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3243 3244 3245 3246
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3247
	set_load_weight(p);
L
Linus Torvalds 已提交
3248 3249
}

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3260 3261
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3262 3263 3264 3265
	rcu_read_unlock();
	return match;
}

3266
static int __sched_setscheduler(struct task_struct *p, int policy,
3267
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3268
{
3269
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3270
	unsigned long flags;
3271
	const struct sched_class *prev_class;
3272
	struct rq *rq;
3273
	int reset_on_fork;
L
Linus Torvalds 已提交
3274

3275 3276
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3277 3278
recheck:
	/* double check policy once rq lock held */
3279 3280
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3281
		policy = oldpolicy = p->policy;
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3292 3293
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3294 3295
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3296 3297
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3298
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3299
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3300
		return -EINVAL;
3301
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3302 3303
		return -EINVAL;

3304 3305 3306
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3307
	if (user && !capable(CAP_SYS_NICE)) {
3308
		if (rt_policy(policy)) {
3309 3310
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3321

I
Ingo Molnar 已提交
3322
		/*
3323 3324
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3325
		 */
3326 3327 3328 3329
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3330

3331
		/* can't change other user's priorities */
3332
		if (!check_same_owner(p))
3333
			return -EPERM;
3334 3335 3336 3337

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3338
	}
L
Linus Torvalds 已提交
3339

3340
	if (user) {
3341
		retval = security_task_setscheduler(p);
3342 3343 3344 3345
		if (retval)
			return retval;
	}

3346 3347 3348
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3349
	 *
L
Lucas De Marchi 已提交
3350
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3351 3352
	 * runqueue lock must be held.
	 */
3353
	rq = task_rq_lock(p, &flags);
3354

3355 3356 3357 3358
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3359
		task_rq_unlock(rq, p, &flags);
3360 3361 3362
		return -EINVAL;
	}

3363 3364 3365 3366 3367
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3368
		task_rq_unlock(rq, p, &flags);
3369 3370 3371
		return 0;
	}

3372 3373 3374 3375 3376 3377 3378
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3379 3380
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3381
			task_rq_unlock(rq, p, &flags);
3382 3383 3384 3385 3386
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3387 3388 3389
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3390
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3391 3392
		goto recheck;
	}
P
Peter Zijlstra 已提交
3393
	on_rq = p->on_rq;
3394
	running = task_current(rq, p);
3395
	if (on_rq)
3396
		dequeue_task(rq, p, 0);
3397 3398
	if (running)
		p->sched_class->put_prev_task(rq, p);
3399

3400 3401
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3402
	oldprio = p->prio;
3403
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3404
	__setscheduler(rq, p, policy, param->sched_priority);
3405

3406 3407
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3408
	if (on_rq)
3409
		enqueue_task(rq, p, 0);
3410

P
Peter Zijlstra 已提交
3411
	check_class_changed(rq, p, prev_class, oldprio);
3412
	task_rq_unlock(rq, p, &flags);
3413

3414 3415
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3416 3417
	return 0;
}
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3428
		       const struct sched_param *param)
3429 3430 3431
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3432 3433
EXPORT_SYMBOL_GPL(sched_setscheduler);

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3446
			       const struct sched_param *param)
3447 3448 3449 3450
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3451 3452
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3453 3454 3455
{
	struct sched_param lparam;
	struct task_struct *p;
3456
	int retval;
L
Linus Torvalds 已提交
3457 3458 3459 3460 3461

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3462 3463 3464

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3465
	p = find_process_by_pid(pid);
3466 3467 3468
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3469

L
Linus Torvalds 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3479 3480
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3481
{
3482 3483 3484 3485
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3486 3487 3488 3489 3490 3491 3492 3493
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3494
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3495 3496 3497 3498 3499 3500 3501 3502
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3503
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3504
{
3505
	struct task_struct *p;
3506
	int retval;
L
Linus Torvalds 已提交
3507 3508

	if (pid < 0)
3509
		return -EINVAL;
L
Linus Torvalds 已提交
3510 3511

	retval = -ESRCH;
3512
	rcu_read_lock();
L
Linus Torvalds 已提交
3513 3514 3515 3516
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3517 3518
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3519
	}
3520
	rcu_read_unlock();
L
Linus Torvalds 已提交
3521 3522 3523 3524
	return retval;
}

/**
3525
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3526 3527 3528
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3529
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3530 3531
{
	struct sched_param lp;
3532
	struct task_struct *p;
3533
	int retval;
L
Linus Torvalds 已提交
3534 3535

	if (!param || pid < 0)
3536
		return -EINVAL;
L
Linus Torvalds 已提交
3537

3538
	rcu_read_lock();
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3549
	rcu_read_unlock();
L
Linus Torvalds 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3559
	rcu_read_unlock();
L
Linus Torvalds 已提交
3560 3561 3562
	return retval;
}

3563
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3564
{
3565
	cpumask_var_t cpus_allowed, new_mask;
3566 3567
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3568

3569
	get_online_cpus();
3570
	rcu_read_lock();
L
Linus Torvalds 已提交
3571 3572 3573

	p = find_process_by_pid(pid);
	if (!p) {
3574
		rcu_read_unlock();
3575
		put_online_cpus();
L
Linus Torvalds 已提交
3576 3577 3578
		return -ESRCH;
	}

3579
	/* Prevent p going away */
L
Linus Torvalds 已提交
3580
	get_task_struct(p);
3581
	rcu_read_unlock();
L
Linus Torvalds 已提交
3582

3583 3584 3585 3586
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3587 3588 3589 3590 3591 3592 3593 3594
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3595
	retval = -EPERM;
E
Eric W. Biederman 已提交
3596 3597 3598 3599 3600 3601 3602 3603
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3604

3605
	retval = security_task_setscheduler(p);
3606 3607 3608
	if (retval)
		goto out_unlock;

3609 3610
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
3611
again:
3612
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3613

P
Paul Menage 已提交
3614
	if (!retval) {
3615 3616
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3617 3618 3619 3620 3621
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3622
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3623 3624 3625
			goto again;
		}
	}
L
Linus Torvalds 已提交
3626
out_unlock:
3627 3628 3629 3630
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3631
	put_task_struct(p);
3632
	put_online_cpus();
L
Linus Torvalds 已提交
3633 3634 3635 3636
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3637
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3638
{
3639 3640 3641 3642 3643
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
3653 3654
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3655
{
3656
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3657 3658
	int retval;

3659 3660
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3661

3662 3663 3664 3665 3666
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3667 3668
}

3669
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3670
{
3671
	struct task_struct *p;
3672
	unsigned long flags;
L
Linus Torvalds 已提交
3673 3674
	int retval;

3675
	get_online_cpus();
3676
	rcu_read_lock();
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3683 3684 3685 3686
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3687
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3688
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3689
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3690 3691

out_unlock:
3692
	rcu_read_unlock();
3693
	put_online_cpus();
L
Linus Torvalds 已提交
3694

3695
	return retval;
L
Linus Torvalds 已提交
3696 3697 3698 3699 3700 3701 3702 3703
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
3704 3705
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3706 3707
{
	int ret;
3708
	cpumask_var_t mask;
L
Linus Torvalds 已提交
3709

A
Anton Blanchard 已提交
3710
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3711 3712
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
3713 3714
		return -EINVAL;

3715 3716
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3717

3718 3719
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
3720
		size_t retlen = min_t(size_t, len, cpumask_size());
3721 3722

		if (copy_to_user(user_mask_ptr, mask, retlen))
3723 3724
			ret = -EFAULT;
		else
3725
			ret = retlen;
3726 3727
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
3728

3729
	return ret;
L
Linus Torvalds 已提交
3730 3731 3732 3733 3734
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
3735 3736
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
3737
 */
3738
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
3739
{
3740
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
3741

3742
	schedstat_inc(rq, yld_count);
3743
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
3744 3745 3746 3747 3748 3749

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
3750
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3751
	do_raw_spin_unlock(&rq->lock);
3752
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
3753 3754 3755 3756 3757 3758

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
3759 3760 3761 3762 3763
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
3764
static void __cond_resched(void)
L
Linus Torvalds 已提交
3765
{
3766
	add_preempt_count(PREEMPT_ACTIVE);
3767
	__schedule();
3768
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3769 3770
}

3771
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
3772
{
P
Peter Zijlstra 已提交
3773
	if (should_resched()) {
L
Linus Torvalds 已提交
3774 3775 3776 3777 3778
		__cond_resched();
		return 1;
	}
	return 0;
}
3779
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
3780 3781

/*
3782
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
3783 3784
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
3785
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
3786 3787 3788
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
3789
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
3790
{
P
Peter Zijlstra 已提交
3791
	int resched = should_resched();
J
Jan Kara 已提交
3792 3793
	int ret = 0;

3794 3795
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
3796
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
3797
		spin_unlock(lock);
P
Peter Zijlstra 已提交
3798
		if (resched)
N
Nick Piggin 已提交
3799 3800 3801
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
3802
		ret = 1;
L
Linus Torvalds 已提交
3803 3804
		spin_lock(lock);
	}
J
Jan Kara 已提交
3805
	return ret;
L
Linus Torvalds 已提交
3806
}
3807
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
3808

3809
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
3810 3811 3812
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
3813
	if (should_resched()) {
3814
		local_bh_enable();
L
Linus Torvalds 已提交
3815 3816 3817 3818 3819 3820
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
3821
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
3822 3823 3824 3825

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
3844 3845 3846 3847 3848 3849 3850 3851
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

3852 3853 3854 3855
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
3856 3857
 * @p: target task
 * @preempt: whether task preemption is allowed or not
3858 3859 3860 3861
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
3862 3863 3864 3865
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
3866 3867 3868 3869 3870 3871
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
3872
	int yielded = 0;
3873 3874 3875 3876 3877 3878

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
3879 3880 3881 3882 3883 3884 3885 3886 3887
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

3888 3889 3890 3891 3892 3893 3894
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
3895
		goto out_unlock;
3896 3897

	if (curr->sched_class != p->sched_class)
3898
		goto out_unlock;
3899 3900

	if (task_running(p_rq, p) || p->state)
3901
		goto out_unlock;
3902 3903

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3904
	if (yielded) {
3905
		schedstat_inc(rq, yld_count);
3906 3907 3908 3909 3910 3911 3912
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
3913

3914
out_unlock:
3915
	double_rq_unlock(rq, p_rq);
3916
out_irq:
3917 3918
	local_irq_restore(flags);

3919
	if (yielded > 0)
3920 3921 3922 3923 3924 3925
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
3926
/*
I
Ingo Molnar 已提交
3927
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
3928 3929 3930 3931
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
3932
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3933

3934
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3935
	atomic_inc(&rq->nr_iowait);
3936
	blk_flush_plug(current);
3937
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3938
	schedule();
3939
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3940
	atomic_dec(&rq->nr_iowait);
3941
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3942 3943 3944 3945 3946
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
3947
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
3948 3949
	long ret;

3950
	delayacct_blkio_start();
L
Linus Torvalds 已提交
3951
	atomic_inc(&rq->nr_iowait);
3952
	blk_flush_plug(current);
3953
	current->in_iowait = 1;
L
Linus Torvalds 已提交
3954
	ret = schedule_timeout(timeout);
3955
	current->in_iowait = 0;
L
Linus Torvalds 已提交
3956
	atomic_dec(&rq->nr_iowait);
3957
	delayacct_blkio_end();
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
3968
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
3978
	case SCHED_BATCH:
I
Ingo Molnar 已提交
3979
	case SCHED_IDLE:
L
Linus Torvalds 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
3993
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
3994 3995 3996 3997 3998 3999 4000 4001 4002
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4003
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4004
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4018
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4019
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4020
{
4021
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4022
	unsigned int time_slice;
4023 4024
	unsigned long flags;
	struct rq *rq;
4025
	int retval;
L
Linus Torvalds 已提交
4026 4027 4028
	struct timespec t;

	if (pid < 0)
4029
		return -EINVAL;
L
Linus Torvalds 已提交
4030 4031

	retval = -ESRCH;
4032
	rcu_read_lock();
L
Linus Torvalds 已提交
4033 4034 4035 4036 4037 4038 4039 4040
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4041 4042
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4043
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4044

4045
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4046
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4047 4048
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4049

L
Linus Torvalds 已提交
4050
out_unlock:
4051
	rcu_read_unlock();
L
Linus Torvalds 已提交
4052 4053 4054
	return retval;
}

4055
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4056

4057
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4058 4059
{
	unsigned long free = 0;
4060
	int ppid;
4061
	unsigned state;
L
Linus Torvalds 已提交
4062 4063

	state = p->state ? __ffs(p->state) + 1 : 0;
4064
	printk(KERN_INFO "%-15.15s %c", p->comm,
4065
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4066
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4067
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4068
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4069
	else
P
Peter Zijlstra 已提交
4070
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4071 4072
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4073
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4074
	else
P
Peter Zijlstra 已提交
4075
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4076 4077
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4078
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4079
#endif
4080 4081 4082
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4083
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4084
		task_pid_nr(p), ppid,
4085
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4086

4087
	print_worker_info(KERN_INFO, p);
4088
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4089 4090
}

I
Ingo Molnar 已提交
4091
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4092
{
4093
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4094

4095
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4096 4097
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4098
#else
P
Peter Zijlstra 已提交
4099 4100
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4101
#endif
4102
	rcu_read_lock();
L
Linus Torvalds 已提交
4103 4104 4105
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4106
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4107 4108
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4109
		if (!state_filter || (p->state & state_filter))
4110
			sched_show_task(p);
L
Linus Torvalds 已提交
4111 4112
	} while_each_thread(g, p);

4113 4114
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4115 4116 4117
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4118
	rcu_read_unlock();
I
Ingo Molnar 已提交
4119 4120 4121
	/*
	 * Only show locks if all tasks are dumped:
	 */
4122
	if (!state_filter)
I
Ingo Molnar 已提交
4123
		debug_show_all_locks();
L
Linus Torvalds 已提交
4124 4125
}

I
Ingo Molnar 已提交
4126 4127
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4128
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4129 4130
}

4131 4132 4133 4134 4135 4136 4137 4138
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4139
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4140
{
4141
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4142 4143
	unsigned long flags;

4144
	raw_spin_lock_irqsave(&rq->lock, flags);
4145

I
Ingo Molnar 已提交
4146
	__sched_fork(idle);
4147
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4148 4149
	idle->se.exec_start = sched_clock();

4150
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4162
	__set_task_cpu(idle, cpu);
4163
	rcu_read_unlock();
L
Linus Torvalds 已提交
4164 4165

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4166 4167
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4168
#endif
4169
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4170 4171

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4172
	task_thread_info(idle)->preempt_count = 0;
4173

I
Ingo Molnar 已提交
4174 4175 4176 4177
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4178
	ftrace_graph_init_idle_task(idle, cpu);
4179
	vtime_init_idle(idle);
4180 4181 4182
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4183 4184
}

L
Linus Torvalds 已提交
4185
#ifdef CONFIG_SMP
4186 4187 4188 4189
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4190 4191

	cpumask_copy(&p->cpus_allowed, new_mask);
4192
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4193 4194
}

L
Linus Torvalds 已提交
4195 4196 4197
/*
 * This is how migration works:
 *
4198 4199 4200 4201 4202 4203
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4204
 *    it and puts it into the right queue.
4205 4206
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4207 4208 4209 4210 4211 4212 4213 4214
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4215
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4216 4217
 * call is not atomic; no spinlocks may be held.
 */
4218
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4219 4220
{
	unsigned long flags;
4221
	struct rq *rq;
4222
	unsigned int dest_cpu;
4223
	int ret = 0;
L
Linus Torvalds 已提交
4224 4225

	rq = task_rq_lock(p, &flags);
4226

4227 4228 4229
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4230
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4231 4232 4233 4234
		ret = -EINVAL;
		goto out;
	}

4235
	do_set_cpus_allowed(p, new_mask);
4236

L
Linus Torvalds 已提交
4237
	/* Can the task run on the task's current CPU? If so, we're done */
4238
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4239 4240
		goto out;

4241
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4242
	if (p->on_rq) {
4243
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4244
		/* Need help from migration thread: drop lock and wait. */
4245
		task_rq_unlock(rq, p, &flags);
4246
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4247 4248 4249 4250
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4251
	task_rq_unlock(rq, p, &flags);
4252

L
Linus Torvalds 已提交
4253 4254
	return ret;
}
4255
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4256 4257

/*
I
Ingo Molnar 已提交
4258
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4259 4260 4261 4262 4263 4264
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4265 4266
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4267
 */
4268
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4269
{
4270
	struct rq *rq_dest, *rq_src;
4271
	int ret = 0;
L
Linus Torvalds 已提交
4272

4273
	if (unlikely(!cpu_active(dest_cpu)))
4274
		return ret;
L
Linus Torvalds 已提交
4275 4276 4277 4278

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4279
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4280 4281 4282
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4283
		goto done;
L
Linus Torvalds 已提交
4284
	/* Affinity changed (again). */
4285
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4286
		goto fail;
L
Linus Torvalds 已提交
4287

4288 4289 4290 4291
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4292
	if (p->on_rq) {
4293
		dequeue_task(rq_src, p, 0);
4294
		set_task_cpu(p, dest_cpu);
4295
		enqueue_task(rq_dest, p, 0);
4296
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4297
	}
L
Linus Torvalds 已提交
4298
done:
4299
	ret = 1;
L
Linus Torvalds 已提交
4300
fail:
L
Linus Torvalds 已提交
4301
	double_rq_unlock(rq_src, rq_dest);
4302
	raw_spin_unlock(&p->pi_lock);
4303
	return ret;
L
Linus Torvalds 已提交
4304 4305 4306
}

/*
4307 4308 4309
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4310
 */
4311
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4312
{
4313
	struct migration_arg *arg = data;
4314

4315 4316 4317 4318
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4319
	local_irq_disable();
4320
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4321
	local_irq_enable();
L
Linus Torvalds 已提交
4322
	return 0;
4323 4324
}

L
Linus Torvalds 已提交
4325
#ifdef CONFIG_HOTPLUG_CPU
4326

4327
/*
4328 4329
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4330
 */
4331
void idle_task_exit(void)
L
Linus Torvalds 已提交
4332
{
4333
	struct mm_struct *mm = current->active_mm;
4334

4335
	BUG_ON(cpu_online(smp_processor_id()));
4336

4337 4338 4339
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4340 4341 4342
}

/*
4343 4344 4345 4346 4347
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4348
 */
4349
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4350
{
4351 4352 4353
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4354 4355
}

4356
/*
4357 4358 4359 4360 4361 4362
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4363
 */
4364
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4365
{
4366
	struct rq *rq = cpu_rq(dead_cpu);
4367 4368
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4369 4370

	/*
4371 4372 4373 4374 4375 4376 4377
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4378
	 */
4379
	rq->stop = NULL;
4380

I
Ingo Molnar 已提交
4381
	for ( ; ; ) {
4382 4383 4384 4385 4386
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4387
			break;
4388

4389
		next = pick_next_task(rq);
4390
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4391
		next->sched_class->put_prev_task(rq, next);
4392

4393 4394 4395 4396 4397 4398 4399
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4400
	}
4401

4402
	rq->stop = stop;
4403
}
4404

L
Linus Torvalds 已提交
4405 4406
#endif /* CONFIG_HOTPLUG_CPU */

4407 4408 4409
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4410 4411
	{
		.procname	= "sched_domain",
4412
		.mode		= 0555,
4413
	},
4414
	{}
4415 4416 4417
};

static struct ctl_table sd_ctl_root[] = {
4418 4419
	{
		.procname	= "kernel",
4420
		.mode		= 0555,
4421 4422
		.child		= sd_ctl_dir,
	},
4423
	{}
4424 4425 4426 4427 4428
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4429
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4430 4431 4432 4433

	return entry;
}

4434 4435
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4436
	struct ctl_table *entry;
4437

4438 4439 4440
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4441
	 * will always be set. In the lowest directory the names are
4442 4443 4444
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4445 4446
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4447 4448 4449
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4450 4451 4452 4453 4454

	kfree(*tablep);
	*tablep = NULL;
}

4455
static int min_load_idx = 0;
4456
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4457

4458
static void
4459
set_table_entry(struct ctl_table *entry,
4460
		const char *procname, void *data, int maxlen,
4461 4462
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4463 4464 4465 4466 4467 4468
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4469 4470 4471 4472 4473

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4474 4475 4476 4477 4478
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4479
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4480

4481 4482 4483
	if (table == NULL)
		return NULL;

4484
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4485
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4486
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4487
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4488
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4489
		sizeof(int), 0644, proc_dointvec_minmax, true);
4490
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4491
		sizeof(int), 0644, proc_dointvec_minmax, true);
4492
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4493
		sizeof(int), 0644, proc_dointvec_minmax, true);
4494
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4495
		sizeof(int), 0644, proc_dointvec_minmax, true);
4496
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4497
		sizeof(int), 0644, proc_dointvec_minmax, true);
4498
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4499
		sizeof(int), 0644, proc_dointvec_minmax, false);
4500
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4501
		sizeof(int), 0644, proc_dointvec_minmax, false);
4502
	set_table_entry(&table[9], "cache_nice_tries",
4503
		&sd->cache_nice_tries,
4504
		sizeof(int), 0644, proc_dointvec_minmax, false);
4505
	set_table_entry(&table[10], "flags", &sd->flags,
4506
		sizeof(int), 0644, proc_dointvec_minmax, false);
4507
	set_table_entry(&table[11], "name", sd->name,
4508
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4509
	/* &table[12] is terminator */
4510 4511 4512 4513

	return table;
}

4514
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4515 4516 4517 4518 4519 4520 4521 4522 4523
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4524 4525
	if (table == NULL)
		return NULL;
4526 4527 4528 4529 4530

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4531
		entry->mode = 0555;
4532 4533 4534 4535 4536 4537 4538 4539
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4540
static void register_sched_domain_sysctl(void)
4541
{
4542
	int i, cpu_num = num_possible_cpus();
4543 4544 4545
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4546 4547 4548
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4549 4550 4551
	if (entry == NULL)
		return;

4552
	for_each_possible_cpu(i) {
4553 4554
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4555
		entry->mode = 0555;
4556
		entry->child = sd_alloc_ctl_cpu_table(i);
4557
		entry++;
4558
	}
4559 4560

	WARN_ON(sd_sysctl_header);
4561 4562
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4563

4564
/* may be called multiple times per register */
4565 4566
static void unregister_sched_domain_sysctl(void)
{
4567 4568
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4569
	sd_sysctl_header = NULL;
4570 4571
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4572
}
4573
#else
4574 4575 4576 4577
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4578 4579 4580 4581
{
}
#endif

4582 4583 4584 4585 4586
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4587
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4607
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4608 4609 4610 4611
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4612 4613 4614 4615
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4616 4617
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4618
{
4619
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4620
	unsigned long flags;
4621
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4622

4623
	switch (action & ~CPU_TASKS_FROZEN) {
4624

L
Linus Torvalds 已提交
4625
	case CPU_UP_PREPARE:
4626
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
4627
		break;
4628

L
Linus Torvalds 已提交
4629
	case CPU_ONLINE:
4630
		/* Update our root-domain */
4631
		raw_spin_lock_irqsave(&rq->lock, flags);
4632
		if (rq->rd) {
4633
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4634 4635

			set_rq_online(rq);
4636
		}
4637
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4638
		break;
4639

L
Linus Torvalds 已提交
4640
#ifdef CONFIG_HOTPLUG_CPU
4641
	case CPU_DYING:
4642
		sched_ttwu_pending();
G
Gregory Haskins 已提交
4643
		/* Update our root-domain */
4644
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4645
		if (rq->rd) {
4646
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4647
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4648
		}
4649 4650
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
4651
		raw_spin_unlock_irqrestore(&rq->lock, flags);
4652
		break;
4653

4654
	case CPU_DEAD:
4655
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
4656
		break;
L
Linus Torvalds 已提交
4657 4658
#endif
	}
4659 4660 4661

	update_max_interval();

L
Linus Torvalds 已提交
4662 4663 4664
	return NOTIFY_OK;
}

4665 4666 4667
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
4668
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
4669
 */
4670
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
4671
	.notifier_call = migration_call,
4672
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
4673 4674
};

4675 4676 4677 4678
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
4679
	case CPU_STARTING:
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

4700
static int __init migration_init(void)
L
Linus Torvalds 已提交
4701 4702
{
	void *cpu = (void *)(long)smp_processor_id();
4703
	int err;
4704

4705
	/* Initialize migration for the boot CPU */
4706 4707
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
4708 4709
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
4710

4711 4712 4713 4714
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

4715
	return 0;
L
Linus Torvalds 已提交
4716
}
4717
early_initcall(migration_init);
L
Linus Torvalds 已提交
4718 4719 4720
#endif

#ifdef CONFIG_SMP
4721

4722 4723
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

4724
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
4725

4726
static __read_mostly int sched_debug_enabled;
4727

4728
static int __init sched_debug_setup(char *str)
4729
{
4730
	sched_debug_enabled = 1;
4731 4732 4733

	return 0;
}
4734 4735 4736 4737 4738 4739
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
4740

4741
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4742
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
4743
{
I
Ingo Molnar 已提交
4744
	struct sched_group *group = sd->groups;
4745
	char str[256];
L
Linus Torvalds 已提交
4746

R
Rusty Russell 已提交
4747
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4748
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
4749 4750 4751 4752

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
4753
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
4754
		if (sd->parent)
P
Peter Zijlstra 已提交
4755 4756
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
4757
		return -1;
N
Nick Piggin 已提交
4758 4759
	}

P
Peter Zijlstra 已提交
4760
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
4761

4762
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
4763 4764
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
4765
	}
4766
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4767 4768
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
4769
	}
L
Linus Torvalds 已提交
4770

I
Ingo Molnar 已提交
4771
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
4772
	do {
I
Ingo Molnar 已提交
4773
		if (!group) {
P
Peter Zijlstra 已提交
4774 4775
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
4776 4777 4778
			break;
		}

4779 4780 4781 4782 4783 4784
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
4785 4786 4787
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
4788 4789
			break;
		}
L
Linus Torvalds 已提交
4790

4791
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4792 4793
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
4794 4795
			break;
		}
L
Linus Torvalds 已提交
4796

4797 4798
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
4799 4800
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
4801 4802
			break;
		}
L
Linus Torvalds 已提交
4803

4804
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
4805

R
Rusty Russell 已提交
4806
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4807

P
Peter Zijlstra 已提交
4808
		printk(KERN_CONT " %s", str);
4809
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
4810
			printk(KERN_CONT " (cpu_power = %d)",
4811
				group->sgp->power);
4812
		}
L
Linus Torvalds 已提交
4813

I
Ingo Molnar 已提交
4814 4815
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
4816
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4817

4818
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
4819
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
4820

4821 4822
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
4823 4824
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
4825 4826
	return 0;
}
L
Linus Torvalds 已提交
4827

I
Ingo Molnar 已提交
4828 4829 4830
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
4831

4832
	if (!sched_debug_enabled)
4833 4834
		return;

I
Ingo Molnar 已提交
4835 4836 4837 4838
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
4839

I
Ingo Molnar 已提交
4840 4841 4842
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
4843
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
4844
			break;
L
Linus Torvalds 已提交
4845 4846
		level++;
		sd = sd->parent;
4847
		if (!sd)
I
Ingo Molnar 已提交
4848 4849
			break;
	}
L
Linus Torvalds 已提交
4850
}
4851
#else /* !CONFIG_SCHED_DEBUG */
4852
# define sched_domain_debug(sd, cpu) do { } while (0)
4853 4854 4855 4856
static inline bool sched_debug(void)
{
	return false;
}
4857
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
4858

4859
static int sd_degenerate(struct sched_domain *sd)
4860
{
4861
	if (cpumask_weight(sched_domain_span(sd)) == 1)
4862 4863 4864 4865 4866 4867
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
4868 4869 4870
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
4871 4872 4873 4874 4875
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
4876
	if (sd->flags & (SD_WAKE_AFFINE))
4877 4878 4879 4880 4881
		return 0;

	return 1;
}

4882 4883
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4884 4885 4886 4887 4888 4889
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

4890
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4891 4892 4893 4894 4895 4896 4897
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
4898 4899 4900
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
4901 4902
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
4903 4904 4905 4906 4907 4908 4909
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

4910
static void free_rootdomain(struct rcu_head *rcu)
4911
{
4912
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4913

4914
	cpupri_cleanup(&rd->cpupri);
4915 4916 4917 4918 4919 4920
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
4921 4922
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
4923
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
4924 4925
	unsigned long flags;

4926
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
4927 4928

	if (rq->rd) {
I
Ingo Molnar 已提交
4929
		old_rd = rq->rd;
G
Gregory Haskins 已提交
4930

4931
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4932
			set_rq_offline(rq);
G
Gregory Haskins 已提交
4933

4934
		cpumask_clear_cpu(rq->cpu, old_rd->span);
4935

I
Ingo Molnar 已提交
4936 4937 4938 4939 4940 4941 4942
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
4943 4944 4945 4946 4947
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

4948
	cpumask_set_cpu(rq->cpu, rd->span);
4949
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4950
		set_rq_online(rq);
G
Gregory Haskins 已提交
4951

4952
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
4953 4954

	if (old_rd)
4955
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
4956 4957
}

4958
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
4959 4960 4961
{
	memset(rd, 0, sizeof(*rd));

4962
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4963
		goto out;
4964
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4965
		goto free_span;
4966
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4967
		goto free_online;
4968

4969
	if (cpupri_init(&rd->cpupri) != 0)
4970
		goto free_rto_mask;
4971
	return 0;
4972

4973 4974
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
4975 4976 4977 4978
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
4979
out:
4980
	return -ENOMEM;
G
Gregory Haskins 已提交
4981 4982
}

4983 4984 4985 4986 4987 4988
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
4989 4990
static void init_defrootdomain(void)
{
4991
	init_rootdomain(&def_root_domain);
4992

G
Gregory Haskins 已提交
4993 4994 4995
	atomic_set(&def_root_domain.refcount, 1);
}

4996
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
4997 4998 4999 5000 5001 5002 5003
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5004
	if (init_rootdomain(rd) != 0) {
5005 5006 5007
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5008 5009 5010 5011

	return rd;
}

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5031 5032 5033
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5034 5035 5036 5037 5038 5039 5040 5041

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5042
		kfree(sd->groups->sgp);
5043
		kfree(sd->groups);
5044
	}
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5059 5060 5061 5062 5063 5064 5065
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5066
 * two cpus are in the same cache domain, see cpus_share_cache().
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5077
	if (sd)
5078 5079 5080 5081 5082 5083
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5084
/*
I
Ingo Molnar 已提交
5085
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5086 5087
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5088 5089
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5090
{
5091
	struct rq *rq = cpu_rq(cpu);
5092 5093 5094
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5095
	for (tmp = sd; tmp; ) {
5096 5097 5098
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5099

5100
		if (sd_parent_degenerate(tmp, parent)) {
5101
			tmp->parent = parent->parent;
5102 5103
			if (parent->parent)
				parent->parent->child = tmp;
5104
			destroy_sched_domain(parent, cpu);
5105 5106
		} else
			tmp = tmp->parent;
5107 5108
	}

5109
	if (sd && sd_degenerate(sd)) {
5110
		tmp = sd;
5111
		sd = sd->parent;
5112
		destroy_sched_domain(tmp, cpu);
5113 5114 5115
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5116

5117
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5118

G
Gregory Haskins 已提交
5119
	rq_attach_root(rq, rd);
5120
	tmp = rq->sd;
N
Nick Piggin 已提交
5121
	rcu_assign_pointer(rq->sd, sd);
5122
	destroy_sched_domains(tmp, cpu);
5123 5124

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5125 5126 5127
}

/* cpus with isolated domains */
5128
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5129 5130 5131 5132

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5133
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5134
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5135 5136 5137
	return 1;
}

I
Ingo Molnar 已提交
5138
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5139

5140 5141 5142 5143 5144
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5145 5146 5147
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5148
	struct sched_group_power **__percpu sgp;
5149 5150
};

5151
struct s_data {
5152
	struct sched_domain ** __percpu sd;
5153 5154 5155
	struct root_domain	*rd;
};

5156 5157
enum s_alloc {
	sa_rootdomain,
5158
	sa_sd,
5159
	sa_sd_storage,
5160 5161 5162
	sa_none,
};

5163 5164 5165
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5166 5167
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5168 5169
#define SDTL_OVERLAP	0x01

5170
struct sched_domain_topology_level {
5171 5172
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5173
	int		    flags;
5174
	int		    numa_level;
5175
	struct sd_data      data;
5176 5177
};

P
Peter Zijlstra 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5234 5235 5236 5237 5238 5239
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5240
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5241
				GFP_KERNEL, cpu_to_node(cpu));
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5255
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5256 5257 5258
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5259 5260 5261 5262 5263 5264
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5265

P
Peter Zijlstra 已提交
5266 5267 5268 5269 5270
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5271
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5272
		    group_balance_cpu(sg) == cpu)
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5292
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5293
{
5294 5295
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5296

5297 5298
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5299

5300
	if (sg) {
5301
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5302
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5303
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5304
	}
5305 5306

	return cpu;
5307 5308
}

5309
/*
5310 5311 5312
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5313 5314
 *
 * Assumes the sched_domain tree is fully constructed
5315
 */
5316 5317
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5318
{
5319 5320 5321
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5322
	struct cpumask *covered;
5323
	int i;
5324

5325 5326 5327 5328 5329 5330
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5331 5332 5333
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5334
	cpumask_clear(covered);
5335

5336 5337 5338 5339
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5340

5341 5342
		if (cpumask_test_cpu(i, covered))
			continue;
5343

5344
		cpumask_clear(sched_group_cpus(sg));
5345
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5346
		cpumask_setall(sched_group_mask(sg));
5347

5348 5349 5350
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5351

5352 5353 5354
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5355

5356 5357 5358 5359 5360 5361 5362
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5363 5364

	return 0;
5365
}
5366

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5379
	struct sched_group *sg = sd->groups;
5380

5381 5382 5383 5384 5385 5386
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5387

P
Peter Zijlstra 已提交
5388
	if (cpu != group_balance_cpu(sg))
5389
		return;
5390

5391
	update_group_power(sd, cpu);
5392
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5393 5394
}

5395 5396 5397
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5398 5399
}

5400 5401 5402 5403 5404
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5405 5406 5407 5408 5409 5410
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5411 5412 5413 5414 5415 5416 5417 5418 5419
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5420 5421 5422 5423 5424 5425 5426 5427 5428
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5429 5430 5431
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5432

5433
static int default_relax_domain_level = -1;
5434
int sched_domain_level_max;
5435 5436 5437

static int __init setup_relax_domain_level(char *str)
{
5438 5439
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5440

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5459
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5460 5461
	} else {
		/* turn on idle balance on this domain */
5462
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5463 5464 5465
	}
}

5466 5467 5468
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5469 5470 5471 5472 5473
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5474 5475
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5476 5477
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5478
	case sa_sd_storage:
5479
		__sdt_free(cpu_map); /* fall through */
5480 5481 5482 5483
	case sa_none:
		break;
	}
}
5484

5485 5486 5487
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5488 5489
	memset(d, 0, sizeof(*d));

5490 5491
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5492 5493 5494
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5495
	d->rd = alloc_rootdomain();
5496
	if (!d->rd)
5497
		return sa_sd;
5498 5499
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5500

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5513
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5514
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5515 5516

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5517
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5518 5519
}

5520 5521
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5522
{
5523
	return topology_thread_cpumask(cpu);
5524
}
5525
#endif
5526

5527 5528 5529
/*
 * Topology list, bottom-up.
 */
5530
static struct sched_domain_topology_level default_topology[] = {
5531 5532
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5533
#endif
5534
#ifdef CONFIG_SCHED_MC
5535
	{ sd_init_MC, cpu_coregroup_mask, },
5536
#endif
5537 5538 5539 5540
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5541 5542 5543 5544 5545
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5546 5547 5548 5549 5550 5551 5552 5553 5554
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5555
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5573
		.imbalance_pct		= 125,
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
5693
		}
5694 5695 5696 5697 5698 5699

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
5700 5701 5702 5703 5704
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
5705
	 * The sched_domains_numa_distance[] array includes the actual distance
5706 5707 5708
	 * numbers.
	 */

5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
5735
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5736 5737 5738 5739 5740 5741
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
5742
				if (node_distance(j, k) > sched_domains_numa_distance[i])
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
5774 5775

	sched_domains_numa_levels = level;
5776
}
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
5824 5825 5826 5827 5828
}
#else
static inline void sched_init_numa(void)
{
}
5829 5830 5831 5832 5833 5834 5835

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
5836 5837
#endif /* CONFIG_NUMA */

5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

5854 5855 5856 5857
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

5858 5859 5860
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
5861
			struct sched_group_power *sgp;
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

5875 5876
			sg->next = sg;

5877
			*per_cpu_ptr(sdd->sg, j) = sg;
5878

P
Peter Zijlstra 已提交
5879
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5880 5881 5882 5883 5884
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
5913 5914
		}
		free_percpu(sdd->sd);
5915
		sdd->sd = NULL;
5916
		free_percpu(sdd->sg);
5917
		sdd->sg = NULL;
5918
		free_percpu(sdd->sgp);
5919
		sdd->sgp = NULL;
5920 5921 5922
	}
}

5923 5924
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
5925
		struct sched_domain_attr *attr, struct sched_domain *child,
5926 5927
		int cpu)
{
5928
	struct sched_domain *sd = tl->init(tl, cpu);
5929
	if (!sd)
5930
		return child;
5931 5932

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5933 5934 5935
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5936
		child->parent = sd;
5937
	}
5938
	sd->child = child;
5939
	set_domain_attribute(sd, attr);
5940 5941 5942 5943

	return sd;
}

5944 5945 5946 5947
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
5948 5949
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
5950 5951
{
	enum s_alloc alloc_state = sa_none;
5952
	struct sched_domain *sd;
5953
	struct s_data d;
5954
	int i, ret = -ENOMEM;
5955

5956 5957 5958
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
5959

5960
	/* Set up domains for cpus specified by the cpu_map. */
5961
	for_each_cpu(i, cpu_map) {
5962 5963
		struct sched_domain_topology_level *tl;

5964
		sd = NULL;
5965
		for (tl = sched_domain_topology; tl->init; tl++) {
5966
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
5967 5968
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
5969 5970
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
5971
		}
5972

5973 5974 5975
		while (sd->child)
			sd = sd->child;

5976
		*per_cpu_ptr(d.sd, i) = sd;
5977 5978 5979 5980 5981 5982
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5983 5984 5985 5986 5987 5988 5989
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
5990
		}
5991
	}
5992

L
Linus Torvalds 已提交
5993
	/* Calculate CPU power for physical packages and nodes */
5994 5995 5996
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
5997

5998 5999
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6000
			init_sched_groups_power(i, sd);
6001
		}
6002
	}
6003

L
Linus Torvalds 已提交
6004
	/* Attach the domains */
6005
	rcu_read_lock();
6006
	for_each_cpu(i, cpu_map) {
6007
		sd = *per_cpu_ptr(d.sd, i);
6008
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6009
	}
6010
	rcu_read_unlock();
6011

6012
	ret = 0;
6013
error:
6014
	__free_domain_allocs(&d, alloc_state, cpu_map);
6015
	return ret;
L
Linus Torvalds 已提交
6016
}
P
Paul Jackson 已提交
6017

6018
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6019
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6020 6021
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6022 6023 6024

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6025 6026
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6027
 */
6028
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6029

6030 6031 6032 6033 6034 6035
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6036
{
6037
	return 0;
6038 6039
}

6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6065
/*
I
Ingo Molnar 已提交
6066
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6067 6068
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6069
 */
6070
static int init_sched_domains(const struct cpumask *cpu_map)
6071
{
6072 6073
	int err;

6074
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6075
	ndoms_cur = 1;
6076
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6077
	if (!doms_cur)
6078 6079
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6080
	err = build_sched_domains(doms_cur[0], NULL);
6081
	register_sched_domain_sysctl();
6082 6083

	return err;
6084 6085 6086 6087 6088 6089
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6090
static void detach_destroy_domains(const struct cpumask *cpu_map)
6091 6092 6093
{
	int i;

6094
	rcu_read_lock();
6095
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6096
		cpu_attach_domain(NULL, &def_root_domain, i);
6097
	rcu_read_unlock();
6098 6099
}

6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6116 6117
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6118
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6119 6120 6121
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6122
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6123 6124 6125
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6126 6127 6128
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6129 6130 6131 6132 6133 6134
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6135
 *
6136
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6137 6138
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6139
 *
P
Paul Jackson 已提交
6140 6141
 * Call with hotplug lock held
 */
6142
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6143
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6144
{
6145
	int i, j, n;
6146
	int new_topology;
P
Paul Jackson 已提交
6147

6148
	mutex_lock(&sched_domains_mutex);
6149

6150 6151 6152
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6153 6154 6155
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6156
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6157 6158 6159

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6160
		for (j = 0; j < n && !new_topology; j++) {
6161
			if (cpumask_equal(doms_cur[i], doms_new[j])
6162
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6163 6164 6165
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6166
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6167 6168 6169 6170
match1:
		;
	}

6171 6172
	if (doms_new == NULL) {
		ndoms_cur = 0;
6173
		doms_new = &fallback_doms;
6174
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6175
		WARN_ON_ONCE(dattr_new);
6176 6177
	}

P
Paul Jackson 已提交
6178 6179
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6180
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6181
			if (cpumask_equal(doms_new[i], doms_cur[j])
6182
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6183 6184 6185
				goto match2;
		}
		/* no match - add a new doms_new */
6186
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6187 6188 6189 6190 6191
match2:
		;
	}

	/* Remember the new sched domains */
6192 6193
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6194
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6195
	doms_cur = doms_new;
6196
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6197
	ndoms_cur = ndoms_new;
6198 6199

	register_sched_domain_sysctl();
6200

6201
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6202 6203
}

6204 6205
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6206
/*
6207 6208 6209
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6210 6211 6212
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6213
 */
6214 6215
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6216
{
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6239
	case CPU_ONLINE:
6240
	case CPU_DOWN_FAILED:
6241
		cpuset_update_active_cpus(true);
6242
		break;
6243 6244 6245
	default:
		return NOTIFY_DONE;
	}
6246
	return NOTIFY_OK;
6247
}
6248

6249 6250
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6251
{
6252
	switch (action) {
6253
	case CPU_DOWN_PREPARE:
6254
		cpuset_update_active_cpus(false);
6255 6256 6257 6258 6259
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6260 6261 6262
	default:
		return NOTIFY_DONE;
	}
6263
	return NOTIFY_OK;
6264 6265
}

L
Linus Torvalds 已提交
6266 6267
void __init sched_init_smp(void)
{
6268 6269 6270
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6271
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6272

6273 6274
	sched_init_numa();

6275
	get_online_cpus();
6276
	mutex_lock(&sched_domains_mutex);
6277
	init_sched_domains(cpu_active_mask);
6278 6279 6280
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6281
	mutex_unlock(&sched_domains_mutex);
6282
	put_online_cpus();
6283

6284
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6285 6286
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6287

6288
	init_hrtick();
6289 6290

	/* Move init over to a non-isolated CPU */
6291
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6292
		BUG();
I
Ingo Molnar 已提交
6293
	sched_init_granularity();
6294
	free_cpumask_var(non_isolated_cpus);
6295

6296
	init_sched_rt_class();
L
Linus Torvalds 已提交
6297 6298 6299 6300
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6301
	sched_init_granularity();
L
Linus Torvalds 已提交
6302 6303 6304
}
#endif /* CONFIG_SMP */

6305 6306
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6307 6308 6309 6310 6311 6312 6313
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6314
#ifdef CONFIG_CGROUP_SCHED
6315 6316 6317 6318
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6319
struct task_group root_task_group;
6320
LIST_HEAD(task_groups);
6321
#endif
P
Peter Zijlstra 已提交
6322

6323
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6324

L
Linus Torvalds 已提交
6325 6326
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6327
	int i, j;
6328 6329 6330 6331 6332 6333 6334
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6335
#endif
6336
#ifdef CONFIG_CPUMASK_OFFSTACK
6337
	alloc_size += num_possible_cpus() * cpumask_size();
6338 6339
#endif
	if (alloc_size) {
6340
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6341 6342

#ifdef CONFIG_FAIR_GROUP_SCHED
6343
		root_task_group.se = (struct sched_entity **)ptr;
6344 6345
		ptr += nr_cpu_ids * sizeof(void **);

6346
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6347
		ptr += nr_cpu_ids * sizeof(void **);
6348

6349
#endif /* CONFIG_FAIR_GROUP_SCHED */
6350
#ifdef CONFIG_RT_GROUP_SCHED
6351
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6352 6353
		ptr += nr_cpu_ids * sizeof(void **);

6354
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6355 6356
		ptr += nr_cpu_ids * sizeof(void **);

6357
#endif /* CONFIG_RT_GROUP_SCHED */
6358 6359
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6360
			per_cpu(load_balance_mask, i) = (void *)ptr;
6361 6362 6363
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6364
	}
I
Ingo Molnar 已提交
6365

G
Gregory Haskins 已提交
6366 6367 6368 6369
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6370 6371 6372 6373
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6374
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6375
			global_rt_period(), global_rt_runtime());
6376
#endif /* CONFIG_RT_GROUP_SCHED */
6377

D
Dhaval Giani 已提交
6378
#ifdef CONFIG_CGROUP_SCHED
6379 6380
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6381
	INIT_LIST_HEAD(&root_task_group.siblings);
6382
	autogroup_init(&init_task);
6383

D
Dhaval Giani 已提交
6384
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6385

6386
	for_each_possible_cpu(i) {
6387
		struct rq *rq;
L
Linus Torvalds 已提交
6388 6389

		rq = cpu_rq(i);
6390
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6391
		rq->nr_running = 0;
6392 6393
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6394
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6395
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6396
#ifdef CONFIG_FAIR_GROUP_SCHED
6397
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6398
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6399
		/*
6400
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6401 6402 6403 6404
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6405
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6406 6407 6408
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6409
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6410 6411 6412
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6413
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6414
		 *
6415 6416
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6417
		 */
6418
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6419
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6420 6421 6422
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6423
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6424
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6425
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6426
#endif
L
Linus Torvalds 已提交
6427

I
Ingo Molnar 已提交
6428 6429
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6430 6431 6432

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6433
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6434
		rq->sd = NULL;
G
Gregory Haskins 已提交
6435
		rq->rd = NULL;
6436
		rq->cpu_power = SCHED_POWER_SCALE;
6437
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6438
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6439
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6440
		rq->push_cpu = 0;
6441
		rq->cpu = i;
6442
		rq->online = 0;
6443 6444
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6445 6446 6447

		INIT_LIST_HEAD(&rq->cfs_tasks);

6448
		rq_attach_root(rq, &def_root_domain);
6449
#ifdef CONFIG_NO_HZ_COMMON
6450
		rq->nohz_flags = 0;
6451
#endif
6452 6453 6454
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6455
#endif
P
Peter Zijlstra 已提交
6456
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6457 6458 6459
		atomic_set(&rq->nr_iowait, 0);
	}

6460
	set_load_weight(&init_task);
6461

6462 6463 6464 6465
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6466
#ifdef CONFIG_RT_MUTEXES
6467
	plist_head_init(&init_task.pi_waiters);
6468 6469
#endif

L
Linus Torvalds 已提交
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6483 6484 6485

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6486 6487 6488 6489
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6490

6491
#ifdef CONFIG_SMP
6492
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6493 6494 6495
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6496
	idle_thread_set_boot_cpu();
6497 6498
#endif
	init_sched_fair_class();
6499

6500
	scheduler_running = 1;
L
Linus Torvalds 已提交
6501 6502
}

6503
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6504 6505
static inline int preempt_count_equals(int preempt_offset)
{
6506
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6507

A
Arnd Bergmann 已提交
6508
	return (nested == preempt_offset);
6509 6510
}

6511
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6512 6513 6514
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6515
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6516 6517
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6518 6519 6520 6521 6522
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6523 6524 6525 6526 6527 6528 6529
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6530 6531 6532 6533 6534

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6535 6536 6537 6538 6539
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6540 6541
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6542 6543
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6544
	int on_rq;
6545

P
Peter Zijlstra 已提交
6546
	on_rq = p->on_rq;
6547
	if (on_rq)
6548
		dequeue_task(rq, p, 0);
6549 6550
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6551
		enqueue_task(rq, p, 0);
6552 6553
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6554 6555

	check_class_changed(rq, p, prev_class, old_prio);
6556 6557
}

L
Linus Torvalds 已提交
6558 6559
void normalize_rt_tasks(void)
{
6560
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6561
	unsigned long flags;
6562
	struct rq *rq;
L
Linus Torvalds 已提交
6563

6564
	read_lock_irqsave(&tasklist_lock, flags);
6565
	do_each_thread(g, p) {
6566 6567 6568 6569 6570 6571
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6572 6573
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6574 6575 6576
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6577
#endif
I
Ingo Molnar 已提交
6578 6579 6580 6581 6582 6583 6584 6585

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6586
			continue;
I
Ingo Molnar 已提交
6587
		}
L
Linus Torvalds 已提交
6588

6589
		raw_spin_lock(&p->pi_lock);
6590
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6591

6592
		normalize_task(rq, p);
6593

6594
		__task_rq_unlock(rq);
6595
		raw_spin_unlock(&p->pi_lock);
6596 6597
	} while_each_thread(g, p);

6598
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
6599 6600 6601
}

#endif /* CONFIG_MAGIC_SYSRQ */
6602

6603
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6604
/*
6605
 * These functions are only useful for the IA64 MCA handling, or kdb.
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6620
struct task_struct *curr_task(int cpu)
6621 6622 6623 6624
{
	return cpu_curr(cpu);
}

6625 6626 6627
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6628 6629 6630 6631 6632 6633
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6634 6635
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6636 6637 6638 6639 6640 6641 6642
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6643
void set_curr_task(int cpu, struct task_struct *p)
6644 6645 6646 6647 6648
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6649

D
Dhaval Giani 已提交
6650
#ifdef CONFIG_CGROUP_SCHED
6651 6652 6653
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6654 6655 6656 6657
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6658
	autogroup_free(tg);
6659 6660 6661 6662
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
6663
struct task_group *sched_create_group(struct task_group *parent)
6664 6665 6666 6667 6668 6669 6670
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6671
	if (!alloc_fair_sched_group(tg, parent))
6672 6673
		goto err;

6674
	if (!alloc_rt_sched_group(tg, parent))
6675 6676
		goto err;

6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6688
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6689
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6690 6691 6692 6693 6694

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6695
	list_add_rcu(&tg->siblings, &parent->children);
6696
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6697 6698
}

6699
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
6700
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6701 6702
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
6703
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6704 6705
}

6706
/* Destroy runqueue etc associated with a task group */
6707
void sched_destroy_group(struct task_group *tg)
6708 6709 6710 6711 6712 6713
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6714
{
6715
	unsigned long flags;
6716
	int i;
S
Srivatsa Vaddagiri 已提交
6717

6718 6719
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
6720
		unregister_fair_sched_group(tg, i);
6721 6722

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6723
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6724
	list_del_rcu(&tg->siblings);
6725
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6726 6727
}

6728
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6729 6730 6731
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6732 6733
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6734
{
P
Peter Zijlstra 已提交
6735
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6736 6737 6738 6739 6740 6741
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

6742
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
6743
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
6744

6745
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
6746
		dequeue_task(rq, tsk, 0);
6747 6748
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6749

P
Peter Zijlstra 已提交
6750 6751 6752 6753 6754 6755
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6756
#ifdef CONFIG_FAIR_GROUP_SCHED
6757 6758 6759
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
6760
#endif
6761
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
6762

6763 6764 6765
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
6766
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
6767

6768
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
6769
}
D
Dhaval Giani 已提交
6770
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6771

6772
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
6773 6774 6775
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6776
		return 1ULL << 20;
P
Peter Zijlstra 已提交
6777

P
Peter Zijlstra 已提交
6778
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
6779
}
6780 6781 6782 6783 6784 6785 6786
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6787

P
Peter Zijlstra 已提交
6788 6789
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6790
{
P
Peter Zijlstra 已提交
6791
	struct task_struct *g, *p;
6792

P
Peter Zijlstra 已提交
6793
	do_each_thread(g, p) {
6794
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
6795 6796
			return 1;
	} while_each_thread(g, p);
6797

P
Peter Zijlstra 已提交
6798 6799
	return 0;
}
6800

P
Peter Zijlstra 已提交
6801 6802 6803 6804 6805
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6806

6807
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6808 6809 6810 6811 6812
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6813

P
Peter Zijlstra 已提交
6814 6815
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6816

P
Peter Zijlstra 已提交
6817 6818 6819
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6820 6821
	}

6822 6823 6824 6825 6826
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6827

6828 6829 6830
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6831 6832
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6833

P
Peter Zijlstra 已提交
6834
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6835

6836 6837 6838 6839 6840
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6841

6842 6843 6844
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6845 6846 6847
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6848

P
Peter Zijlstra 已提交
6849 6850 6851 6852
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6853

P
Peter Zijlstra 已提交
6854
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6855
	}
P
Peter Zijlstra 已提交
6856

P
Peter Zijlstra 已提交
6857 6858 6859 6860
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6861 6862
}

P
Peter Zijlstra 已提交
6863
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6864
{
6865 6866
	int ret;

P
Peter Zijlstra 已提交
6867 6868 6869 6870 6871 6872
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6873 6874 6875 6876 6877
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6878 6879
}

6880
static int tg_set_rt_bandwidth(struct task_group *tg,
6881
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6882
{
P
Peter Zijlstra 已提交
6883
	int i, err = 0;
P
Peter Zijlstra 已提交
6884 6885

	mutex_lock(&rt_constraints_mutex);
6886
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6887 6888
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6889
		goto unlock;
P
Peter Zijlstra 已提交
6890

6891
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6892 6893
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6894 6895 6896 6897

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6898
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6899
		rt_rq->rt_runtime = rt_runtime;
6900
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6901
	}
6902
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6903
unlock:
6904
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6905 6906 6907
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6908 6909
}

6910
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6911 6912 6913 6914 6915 6916 6917 6918
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6919
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6920 6921
}

6922
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6923 6924 6925
{
	u64 rt_runtime_us;

6926
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6927 6928
		return -1;

6929
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6930 6931 6932
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
6933

6934
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6935 6936 6937 6938 6939 6940
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

6941 6942 6943
	if (rt_period == 0)
		return -EINVAL;

6944
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6945 6946
}

6947
static long sched_group_rt_period(struct task_group *tg)
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
6958
	u64 runtime, period;
6959 6960
	int ret = 0;

6961 6962 6963
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

6964 6965 6966 6967 6968 6969 6970 6971
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
6972

6973
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
6974
	read_lock(&tasklist_lock);
6975
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
6976
	read_unlock(&tasklist_lock);
6977 6978 6979 6980
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
6981

6982
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6983 6984 6985 6986 6987 6988 6989 6990
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

6991
#else /* !CONFIG_RT_GROUP_SCHED */
6992 6993
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
6994 6995 6996
	unsigned long flags;
	int i;

6997 6998 6999
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7000 7001 7002 7003 7004 7005 7006
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7007
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7008 7009 7010
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7011
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7012
		rt_rq->rt_runtime = global_rt_runtime();
7013
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7014
	}
7015
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7016

7017 7018
	return 0;
}
7019
#endif /* CONFIG_RT_GROUP_SCHED */
7020

7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7040
int sched_rt_handler(struct ctl_table *table, int write,
7041
		void __user *buffer, size_t *lenp,
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7052
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7069

7070
#ifdef CONFIG_CGROUP_SCHED
7071 7072

/* return corresponding task_group object of a cgroup */
7073
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7074
{
7075 7076
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7077 7078
}

7079
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7080
{
7081
	struct task_group *tg, *parent;
7082

7083
	if (!cgrp->parent) {
7084
		/* This is early initialization for the top cgroup */
7085
		return &root_task_group.css;
7086 7087
	}

7088 7089
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7090 7091 7092 7093 7094 7095
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7109
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7110
{
7111
	struct task_group *tg = cgroup_tg(cgrp);
7112 7113 7114 7115

	sched_destroy_group(tg);
}

7116 7117 7118 7119 7120 7121 7122
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7123
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7124
				 struct cgroup_taskset *tset)
7125
{
7126 7127 7128
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7129
#ifdef CONFIG_RT_GROUP_SCHED
7130 7131
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7132
#else
7133 7134 7135
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7136
#endif
7137
	}
7138 7139
	return 0;
}
7140

7141
static void cpu_cgroup_attach(struct cgroup *cgrp,
7142
			      struct cgroup_taskset *tset)
7143
{
7144 7145 7146 7147
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7148 7149
}

7150
static void
7151 7152
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7165
#ifdef CONFIG_FAIR_GROUP_SCHED
7166
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7167
				u64 shareval)
7168
{
7169
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7170 7171
}

7172
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7173
{
7174
	struct task_group *tg = cgroup_tg(cgrp);
7175

7176
	return (u64) scale_load_down(tg->shares);
7177
}
7178 7179

#ifdef CONFIG_CFS_BANDWIDTH
7180 7181
static DEFINE_MUTEX(cfs_constraints_mutex);

7182 7183 7184
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7185 7186
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7187 7188
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7189
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7190
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7211 7212 7213 7214 7215
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7216
	runtime_enabled = quota != RUNTIME_INF;
7217 7218
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7219 7220 7221
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7222

P
Paul Turner 已提交
7223
	__refill_cfs_bandwidth_runtime(cfs_b);
7224 7225 7226 7227 7228 7229
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7230 7231 7232 7233
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7234
		struct rq *rq = cfs_rq->rq;
7235 7236

		raw_spin_lock_irq(&rq->lock);
7237
		cfs_rq->runtime_enabled = runtime_enabled;
7238
		cfs_rq->runtime_remaining = 0;
7239

7240
		if (cfs_rq->throttled)
7241
			unthrottle_cfs_rq(cfs_rq);
7242 7243
		raw_spin_unlock_irq(&rq->lock);
	}
7244 7245
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7246

7247
	return ret;
7248 7249 7250 7251 7252 7253
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7254
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7267
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7268 7269
		return -1;

7270
	quota_us = tg->cfs_bandwidth.quota;
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7281
	quota = tg->cfs_bandwidth.quota;
7282 7283 7284 7285 7286 7287 7288 7289

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7290
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7350
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7351 7352 7353 7354 7355
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7356
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7377
	int ret;
7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7389 7390 7391 7392 7393
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7394
}
7395 7396 7397 7398 7399

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7400
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7401 7402 7403 7404 7405 7406 7407

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7408
#endif /* CONFIG_CFS_BANDWIDTH */
7409
#endif /* CONFIG_FAIR_GROUP_SCHED */
7410

7411
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7412
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7413
				s64 val)
P
Peter Zijlstra 已提交
7414
{
7415
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7416 7417
}

7418
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7419
{
7420
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7421
}
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7433
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7434

7435
static struct cftype cpu_files[] = {
7436
#ifdef CONFIG_FAIR_GROUP_SCHED
7437 7438
	{
		.name = "shares",
7439 7440
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7441
	},
7442
#endif
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7454 7455 7456 7457
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7458
#endif
7459
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7460
	{
P
Peter Zijlstra 已提交
7461
		.name = "rt_runtime_us",
7462 7463
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7464
	},
7465 7466
	{
		.name = "rt_period_us",
7467 7468
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7469
	},
7470
#endif
7471
	{ }	/* terminate */
7472 7473 7474
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7475
	.name		= "cpu",
7476 7477
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7478 7479
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
7480 7481
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7482
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7483
	.subsys_id	= cpu_cgroup_subsys_id,
7484
	.base_cftypes	= cpu_files,
7485 7486 7487
	.early_init	= 1,
};

7488
#endif	/* CONFIG_CGROUP_SCHED */
7489

7490 7491 7492 7493 7494
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}