core.c 199.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514 515 516
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
517
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
518 519
#endif

520
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
521 522 523
{
	int cpu;

524
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
525

526
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
527 528
		return;

529
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
530 531 532 533 534 535 536 537 538 539 540

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

541
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
542 543 544 545
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

546
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
547 548
		return;
	resched_task(cpu_curr(cpu));
549
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
550
}
551

552
#ifdef CONFIG_NO_HZ_COMMON
553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

567
	rcu_read_lock();
568
	for_each_domain(cpu, sd) {
569 570 571 572 573 574
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
575
	}
576 577
unlock:
	rcu_read_unlock();
578 579
	return cpu;
}
580 581 582 583 584 585 586 587 588 589
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
590
static void wake_up_idle_cpu(int cpu)
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
606 607

	/*
608 609 610
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
611
	 */
612
	set_tsk_need_resched(rq->idle);
613

614 615 616 617
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
618 619
}

620
static bool wake_up_full_nohz_cpu(int cpu)
621
{
622
	if (tick_nohz_full_cpu(cpu)) {
623 624 625 626 627 628 629 630 631 632 633
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
634
	if (!wake_up_full_nohz_cpu(cpu))
635 636 637
		wake_up_idle_cpu(cpu);
}

638
static inline bool got_nohz_idle_kick(void)
639
{
640 641
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
642 643
}

644
#else /* CONFIG_NO_HZ_COMMON */
645

646
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
647
{
648
	return false;
P
Peter Zijlstra 已提交
649 650
}

651
#endif /* CONFIG_NO_HZ_COMMON */
652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */

671
void sched_avg_update(struct rq *rq)
672
{
673 674 675
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
676 677 678 679 680 681
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
682 683 684
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
685 686
}

687
#else /* !CONFIG_SMP */
688
void resched_task(struct task_struct *p)
689
{
690
	assert_raw_spin_locked(&task_rq(p)->lock);
691
	set_tsk_need_resched(p);
692
}
693
#endif /* CONFIG_SMP */
694

695 696
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
697
/*
698 699 700 701
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
702
 */
703
int walk_tg_tree_from(struct task_group *from,
704
			     tg_visitor down, tg_visitor up, void *data)
705 706
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
707
	int ret;
708

709 710
	parent = from;

711
down:
P
Peter Zijlstra 已提交
712 713
	ret = (*down)(parent, data);
	if (ret)
714
		goto out;
715 716 717 718 719 720 721
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
722
	ret = (*up)(parent, data);
723 724
	if (ret || parent == from)
		goto out;
725 726 727 728 729

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
730
out:
P
Peter Zijlstra 已提交
731
	return ret;
732 733
}

734
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
735
{
736
	return 0;
P
Peter Zijlstra 已提交
737
}
738 739
#endif

740 741
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
742 743 744
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
745 746 747 748
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
749
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
750
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
751 752
		return;
	}
753

754
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
755
	load->inv_weight = prio_to_wmult[prio];
756 757
}

758
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
759
{
760
	update_rq_clock(rq);
I
Ingo Molnar 已提交
761
	sched_info_queued(p);
762
	p->sched_class->enqueue_task(rq, p, flags);
763 764
}

765
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766
{
767
	update_rq_clock(rq);
768
	sched_info_dequeued(p);
769
	p->sched_class->dequeue_task(rq, p, flags);
770 771
}

772
void activate_task(struct rq *rq, struct task_struct *p, int flags)
773 774 775 776
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

777
	enqueue_task(rq, p, flags);
778 779
}

780
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
781 782 783 784
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

785
	dequeue_task(rq, p, flags);
786 787
}

788
static void update_rq_clock_task(struct rq *rq, s64 delta)
789
{
790 791 792 793 794 795 796 797
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
798
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
820 821
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
822
	if (static_key_false((&paravirt_steal_rq_enabled))) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

840 841
	rq->clock_task += delta;

842 843 844 845
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
846 847
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

878
/*
I
Ingo Molnar 已提交
879
 * __normal_prio - return the priority that is based on the static prio
880 881 882
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
883
	return p->static_prio;
884 885
}

886 887 888 889 890 891 892
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
893
static inline int normal_prio(struct task_struct *p)
894 895 896
{
	int prio;

897
	if (task_has_rt_policy(p))
898 899 900 901 902 903 904 905 906 907 908 909 910
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
911
static int effective_prio(struct task_struct *p)
912 913 914 915 916 917 918 919 920 921 922 923
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
924 925 926 927
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
928
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
929 930 931 932
{
	return cpu_curr(task_cpu(p)) == p;
}

933 934
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
935
				       int oldprio)
936 937 938
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
939 940 941 942
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
943 944
}

945
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
966
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
967 968 969
		rq->skip_clock_update = 1;
}

970 971 972 973 974 975 976
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
979
{
980 981 982 983 984
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
985 986
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
987 988

#ifdef CONFIG_LOCKDEP
989 990 991 992 993
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
994
	 * see task_group().
995 996 997 998
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
999 1000 1001
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1002 1003
#endif

1004
	trace_sched_migrate_task(p, new_cpu);
1005

1006
	if (task_cpu(p) != new_cpu) {
1007 1008
		struct task_migration_notifier tmn;

1009 1010
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1011
		p->se.nr_migrations++;
1012
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1013 1014 1015 1016 1017 1018

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1019
	}
I
Ingo Molnar 已提交
1020 1021

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1022 1023
}

1024
struct migration_arg {
1025
	struct task_struct *task;
L
Linus Torvalds 已提交
1026
	int dest_cpu;
1027
};
L
Linus Torvalds 已提交
1028

1029 1030
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1031 1032 1033
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1034 1035 1036 1037 1038 1039 1040
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1041 1042 1043 1044 1045 1046
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1047
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1048 1049
{
	unsigned long flags;
I
Ingo Molnar 已提交
1050
	int running, on_rq;
R
Roland McGrath 已提交
1051
	unsigned long ncsw;
1052
	struct rq *rq;
L
Linus Torvalds 已提交
1053

1054 1055 1056 1057 1058 1059 1060 1061
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1074 1075 1076
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1077
			cpu_relax();
R
Roland McGrath 已提交
1078
		}
1079

1080 1081 1082 1083 1084 1085
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1086
		trace_sched_wait_task(p);
1087
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1088
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1089
		ncsw = 0;
1090
		if (!match_state || p->state == match_state)
1091
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1092
		task_rq_unlock(rq, p, &flags);
1093

R
Roland McGrath 已提交
1094 1095 1096 1097 1098 1099
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1110

1111 1112 1113 1114 1115
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1116
		 * So if it was still runnable (but just not actively
1117 1118 1119 1120
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1121 1122 1123 1124
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1125 1126
			continue;
		}
1127

1128 1129 1130 1131 1132 1133 1134
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1135 1136

	return ncsw;
L
Linus Torvalds 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1146
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1147 1148 1149 1150 1151
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1152
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1162
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1163
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1164

1165
#ifdef CONFIG_SMP
1166
/*
1167
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1168
 */
1169 1170
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1171 1172
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1173 1174
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1193
	}
1194

1195 1196
	for (;;) {
		/* Any allowed, online CPU? */
1197
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1198 1199 1200 1201 1202 1203
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1234 1235 1236 1237 1238
	}

	return dest_cpu;
}

1239
/*
1240
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1241
 */
1242
static inline
1243
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1244
{
1245
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1257
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1258
		     !cpu_online(cpu)))
1259
		cpu = select_fallback_rq(task_cpu(p), p);
1260 1261

	return cpu;
1262
}
1263 1264 1265 1266 1267 1268

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1269 1270
#endif

P
Peter Zijlstra 已提交
1271
static void
1272
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1273
{
P
Peter Zijlstra 已提交
1274
#ifdef CONFIG_SCHEDSTATS
1275 1276
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1287
		rcu_read_lock();
P
Peter Zijlstra 已提交
1288 1289 1290 1291 1292 1293
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1294
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1295
	}
1296 1297 1298 1299

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1300 1301 1302
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1303
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1304 1305

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1306
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1307 1308 1309 1310 1311 1312

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1313
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1314
	p->on_rq = 1;
1315 1316 1317 1318

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1319 1320
}

1321 1322 1323
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1324
static void
1325
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1326 1327
{
	check_preempt_curr(rq, p, wake_flags);
1328
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1329 1330 1331 1332 1333 1334

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1335
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1381
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1382
static void sched_ttwu_pending(void)
1383 1384
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1385 1386
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1387 1388 1389

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1390 1391 1392
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1393 1394 1395 1396 1397 1398 1399 1400
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1401 1402
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
	    && !tick_nohz_full_cpu(smp_processor_id()))
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1419
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1420
	sched_ttwu_pending();
1421 1422 1423 1424

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1425 1426
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1427
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1428
	}
1429
	irq_exit();
1430 1431 1432 1433
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1434
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1435 1436
		smp_send_reschedule(cpu);
}
1437

1438
bool cpus_share_cache(int this_cpu, int that_cpu)
1439 1440 1441
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1442
#endif /* CONFIG_SMP */
1443

1444 1445 1446 1447
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1448
#if defined(CONFIG_SMP)
1449
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1450
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1451 1452 1453 1454 1455
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1456 1457 1458
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1459 1460 1461
}

/**
L
Linus Torvalds 已提交
1462
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1463
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1464
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1465
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470 1471 1472
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1473 1474
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1475
 */
1476 1477
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1478 1479
{
	unsigned long flags;
1480
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1481

1482
	smp_wmb();
1483
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1484
	if (!(p->state & state))
L
Linus Torvalds 已提交
1485 1486
		goto out;

1487
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1488 1489
	cpu = task_cpu(p);

1490 1491
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1492 1493

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1494
	/*
1495 1496
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1497
	 */
1498
	while (p->on_cpu)
1499
		cpu_relax();
1500
	/*
1501
	 * Pairs with the smp_wmb() in finish_lock_switch().
1502
	 */
1503
	smp_rmb();
L
Linus Torvalds 已提交
1504

1505
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1506
	p->state = TASK_WAKING;
1507

1508
	if (p->sched_class->task_waking)
1509
		p->sched_class->task_waking(p);
1510

1511
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1512 1513
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1514
		set_task_cpu(p, cpu);
1515
	}
L
Linus Torvalds 已提交
1516 1517
#endif /* CONFIG_SMP */

1518 1519
	ttwu_queue(p, cpu);
stat:
1520
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1521
out:
1522
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1523 1524 1525 1526

	return success;
}

T
Tejun Heo 已提交
1527 1528 1529 1530
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1531
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1532
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1533
 * the current task.
T
Tejun Heo 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1543 1544 1545 1546 1547 1548
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1549
	if (!(p->state & TASK_NORMAL))
1550
		goto out;
T
Tejun Heo 已提交
1551

P
Peter Zijlstra 已提交
1552
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1553 1554
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1555
	ttwu_do_wakeup(rq, p, 0);
1556
	ttwu_stat(p, smp_processor_id(), 0);
1557 1558
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1559 1560
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1572
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1573
{
1574 1575
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1576 1577 1578
}
EXPORT_SYMBOL(wake_up_process);

1579
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585 1586
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1587 1588 1589 1590 1591
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1592 1593 1594
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1595 1596
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1597
	p->se.prev_sum_exec_runtime	= 0;
1598
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1599
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1600
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1601

1602 1603 1604 1605 1606 1607
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1608 1609 1610
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1611
#ifdef CONFIG_SCHEDSTATS
1612
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1613
#endif
N
Nick Piggin 已提交
1614

P
Peter Zijlstra 已提交
1615
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1616

1617 1618 1619
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1620 1621 1622 1623

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1624
		p->mm->numa_next_reset = jiffies;
1625 1626 1627 1628 1629 1630
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1631
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1632 1633
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1634 1635
}

1636
#ifdef CONFIG_NUMA_BALANCING
1637
#ifdef CONFIG_SCHED_DEBUG
1638 1639 1640 1641 1642 1643 1644
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1645 1646 1647 1648 1649 1650
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1651
}
1652
#endif /* CONFIG_SCHED_DEBUG */
1653
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1654 1655 1656 1657

/*
 * fork()/clone()-time setup:
 */
1658
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1659
{
1660
	unsigned long flags;
I
Ingo Molnar 已提交
1661 1662 1663
	int cpu = get_cpu();

	__sched_fork(p);
1664
	/*
1665
	 * We mark the process as running here. This guarantees that
1666 1667 1668
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1669
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1670

1671 1672 1673 1674 1675
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1676 1677 1678 1679
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1680
		if (task_has_rt_policy(p)) {
1681
			p->policy = SCHED_NORMAL;
1682
			p->static_prio = NICE_TO_PRIO(0);
1683 1684 1685 1686 1687 1688
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1689

1690 1691 1692 1693 1694 1695
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1696

H
Hiroshi Shimamoto 已提交
1697 1698
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1699

P
Peter Zijlstra 已提交
1700 1701 1702
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1703 1704 1705 1706 1707 1708 1709
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1710
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1711
	set_task_cpu(p, cpu);
1712
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1713

1714
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1715
	if (likely(sched_info_on()))
1716
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1717
#endif
P
Peter Zijlstra 已提交
1718 1719
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1720
#endif
1721
#ifdef CONFIG_PREEMPT_COUNT
1722
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1723
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1724
#endif
1725
#ifdef CONFIG_SMP
1726
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1727
#endif
1728

N
Nick Piggin 已提交
1729
	put_cpu();
L
Linus Torvalds 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1739
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1740 1741
{
	unsigned long flags;
I
Ingo Molnar 已提交
1742
	struct rq *rq;
1743

1744
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1745 1746 1747 1748 1749 1750
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1751
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1752 1753
#endif

1754
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1755
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1756
	p->on_rq = 1;
1757
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1758
	check_preempt_curr(rq, p, WF_FORK);
1759
#ifdef CONFIG_SMP
1760 1761
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1762
#endif
1763
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1764 1765
}

1766 1767 1768
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1769
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1770
 * @notifier: notifier struct to register
1771 1772 1773 1774 1775 1776 1777 1778 1779
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1780
 * @notifier: notifier struct to unregister
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1794
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1795 1796 1797 1798 1799 1800 1801 1802 1803
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1804
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1805 1806 1807
		notifier->ops->sched_out(notifier, next);
}

1808
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1820
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1821

1822 1823 1824
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1825
 * @prev: the current task that is being switched out
1826 1827 1828 1829 1830 1831 1832 1833 1834
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1835 1836 1837
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1838
{
1839
	trace_sched_switch(prev, next);
1840 1841
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1842
	fire_sched_out_preempt_notifiers(prev, next);
1843 1844 1845 1846
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1847 1848
/**
 * finish_task_switch - clean up after a task-switch
1849
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1850 1851
 * @prev: the thread we just switched away from.
 *
1852 1853 1854 1855
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1856 1857
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1858
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1859 1860 1861
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1862
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1863 1864 1865
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1866
	long prev_state;
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1872
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1873 1874
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1875
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1881
	prev_state = prev->state;
1882
	vtime_task_switch(prev);
1883
	finish_arch_switch(prev);
1884
	perf_event_task_sched_in(prev, current);
1885
	finish_lock_switch(rq, prev);
1886
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1887

1888
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1889 1890
	if (mm)
		mmdrop(mm);
1891
	if (unlikely(prev_state == TASK_DEAD)) {
1892 1893 1894
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1895
		 */
1896
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1897
		put_task_struct(prev);
1898
	}
L
Linus Torvalds 已提交
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1916
		raw_spin_lock_irqsave(&rq->lock, flags);
1917 1918
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1919
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1920 1921 1922 1923 1924 1925

		rq->post_schedule = 0;
	}
}

#else
1926

1927 1928 1929 1930 1931 1932
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1933 1934
}

1935 1936
#endif

L
Linus Torvalds 已提交
1937 1938 1939 1940
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1941
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1942 1943
	__releases(rq->lock)
{
1944 1945
	struct rq *rq = this_rq();

1946
	finish_task_switch(rq, prev);
1947

1948 1949 1950 1951 1952
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1953

1954 1955 1956 1957
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1958
	if (current->set_child_tid)
1959
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1960 1961 1962 1963 1964 1965
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1966
static inline void
1967
context_switch(struct rq *rq, struct task_struct *prev,
1968
	       struct task_struct *next)
L
Linus Torvalds 已提交
1969
{
I
Ingo Molnar 已提交
1970
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1971

1972
	prepare_task_switch(rq, prev, next);
1973

I
Ingo Molnar 已提交
1974 1975
	mm = next->mm;
	oldmm = prev->active_mm;
1976 1977 1978 1979 1980
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1981
	arch_start_context_switch(prev);
1982

1983
	if (!mm) {
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1990
	if (!prev->mm) {
L
Linus Torvalds 已提交
1991 1992 1993
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1994 1995 1996 1997 1998 1999 2000
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2001
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2002
#endif
L
Linus Torvalds 已提交
2003

2004
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2005 2006 2007
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2008 2009 2010 2011 2012 2013 2014
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2015 2016 2017
}

/*
2018
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2019 2020
 *
 * externally visible scheduler statistics: current number of runnable
2021
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2031
}
L
Linus Torvalds 已提交
2032 2033

unsigned long long nr_context_switches(void)
2034
{
2035 2036
	int i;
	unsigned long long sum = 0;
2037

2038
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2039
		sum += cpu_rq(i)->nr_switches;
2040

L
Linus Torvalds 已提交
2041 2042
	return sum;
}
2043

L
Linus Torvalds 已提交
2044 2045 2046
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2047

2048
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2049
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2050

L
Linus Torvalds 已提交
2051 2052
	return sum;
}
2053

2054
unsigned long nr_iowait_cpu(int cpu)
2055
{
2056
	struct rq *this = cpu_rq(cpu);
2057 2058
	return atomic_read(&this->nr_iowait);
}
2059

2060 2061 2062 2063 2064
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2065

2066

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2114 2115 2116 2117
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2150 2151 2152
/*
 * a1 = a0 * e + a * (1 - e)
 */
2153 2154 2155 2156 2157 2158 2159 2160 2161
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2162
#ifdef CONFIG_NO_HZ_COMMON
2163
/*
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2202 2203 2204
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2205 2206
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2207

2208
static inline int calc_load_write_idx(void)
2209
{
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2236 2237
	long delta;

2238 2239 2240 2241
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2242
	delta = calc_load_fold_active(this_rq);
2243 2244 2245 2246
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2247 2248
}

2249
void calc_load_exit_idle(void)
2250
{
2251 2252 2253 2254 2255 2256 2257
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2258 2259

	/*
2260 2261 2262
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2263
	 */
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2276 2277 2278

	return delta;
}
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2357
static void calc_global_nohz(void)
2358 2359 2360
{
	long delta, active, n;

2361 2362 2363 2364 2365 2366
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2367

2368 2369
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2370

2371 2372 2373
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2374

2375 2376
		calc_load_update += n * LOAD_FREQ;
	}
2377

2378 2379 2380 2381 2382 2383 2384 2385 2386
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2387
}
2388
#else /* !CONFIG_NO_HZ_COMMON */
2389

2390 2391
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2392

2393
#endif /* CONFIG_NO_HZ_COMMON */
2394 2395

/*
2396 2397
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2398
 */
2399
void calc_global_load(unsigned long ticks)
2400
{
2401
	long active, delta;
L
Linus Torvalds 已提交
2402

2403
	if (time_before(jiffies, calc_load_update + 10))
2404
		return;
L
Linus Torvalds 已提交
2405

2406 2407 2408 2409 2410 2411 2412
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2413 2414
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2415

2416 2417 2418
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2419

2420
	calc_load_update += LOAD_FREQ;
2421 2422

	/*
2423
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2424 2425
	 */
	calc_global_nohz();
2426
}
L
Linus Torvalds 已提交
2427

2428
/*
2429 2430
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2431 2432 2433
 */
static void calc_load_account_active(struct rq *this_rq)
{
2434
	long delta;
2435

2436 2437
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2438

2439 2440
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2441
		atomic_long_add(delta, &calc_load_tasks);
2442 2443

	this_rq->calc_load_update += LOAD_FREQ;
2444 2445
}

2446 2447 2448 2449
/*
 * End of global load-average stuff
 */

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2517
/*
I
Ingo Molnar 已提交
2518
 * Update rq->cpu_load[] statistics. This function is usually called every
2519 2520
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2521
 */
2522 2523
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2524
{
I
Ingo Molnar 已提交
2525
	int i, scale;
2526

I
Ingo Molnar 已提交
2527
	this_rq->nr_load_updates++;
2528

I
Ingo Molnar 已提交
2529
	/* Update our load: */
2530 2531
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2532
		unsigned long old_load, new_load;
2533

I
Ingo Molnar 已提交
2534
		/* scale is effectively 1 << i now, and >> i divides by scale */
2535

I
Ingo Molnar 已提交
2536
		old_load = this_rq->cpu_load[i];
2537
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2538
		new_load = this_load;
I
Ingo Molnar 已提交
2539 2540 2541 2542 2543 2544
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2545 2546 2547
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2548
	}
2549 2550

	sched_avg_update(this_rq);
2551 2552
}

2553
#ifdef CONFIG_NO_HZ_COMMON
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2567 2568 2569 2570 2571 2572
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2573
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2574 2575 2576 2577
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2578
	 * bail if there's load or we're actually up-to-date.
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
2613
#endif /* CONFIG_NO_HZ_COMMON */
2614

2615 2616 2617
/*
 * Called from scheduler_tick()
 */
2618 2619
static void update_cpu_load_active(struct rq *this_rq)
{
2620
	/*
2621
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2622 2623 2624
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2625

2626
	calc_load_account_active(this_rq);
2627 2628
}

I
Ingo Molnar 已提交
2629
#ifdef CONFIG_SMP
2630

2631
/*
P
Peter Zijlstra 已提交
2632 2633
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2634
 */
P
Peter Zijlstra 已提交
2635
void sched_exec(void)
2636
{
P
Peter Zijlstra 已提交
2637
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2638
	unsigned long flags;
2639
	int dest_cpu;
2640

2641
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2642
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2643 2644
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2645

2646
	if (likely(cpu_active(dest_cpu))) {
2647
		struct migration_arg arg = { p, dest_cpu };
2648

2649 2650
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2651 2652
		return;
	}
2653
unlock:
2654
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2655
}
I
Ingo Molnar 已提交
2656

L
Linus Torvalds 已提交
2657 2658 2659
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2660
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2661 2662

EXPORT_PER_CPU_SYMBOL(kstat);
2663
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2664 2665

/*
2666
 * Return any ns on the sched_clock that have not yet been accounted in
2667
 * @p in case that task is currently running.
2668 2669
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2670
 */
2671 2672 2673 2674 2675 2676
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2677
		ns = rq->clock_task - p->se.exec_start;
2678 2679 2680 2681 2682 2683 2684
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2685
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2686 2687
{
	unsigned long flags;
2688
	struct rq *rq;
2689
	u64 ns = 0;
2690

2691
	rq = task_rq_lock(p, &flags);
2692
	ns = do_task_delta_exec(p, rq);
2693
	task_rq_unlock(rq, p, &flags);
2694

2695 2696
	return ns;
}
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2711
	task_rq_unlock(rq, p, &flags);
2712 2713 2714

	return ns;
}
2715

2716 2717 2718 2719 2720 2721 2722 2723
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2724
	struct task_struct *curr = rq->curr;
2725 2726

	sched_clock_tick();
I
Ingo Molnar 已提交
2727

2728
	raw_spin_lock(&rq->lock);
2729
	update_rq_clock(rq);
2730
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2731
	curr->sched_class->task_tick(rq, curr, 0);
2732
	raw_spin_unlock(&rq->lock);
2733

2734
	perf_event_task_tick();
2735

2736
#ifdef CONFIG_SMP
2737
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2738
	trigger_load_balance(rq, cpu);
2739
#endif
L
Linus Torvalds 已提交
2740 2741
}

2742
notrace unsigned long get_parent_ip(unsigned long addr)
2743 2744 2745 2746 2747 2748 2749 2750
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2751

2752 2753 2754
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2755
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2756
{
2757
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2758 2759 2760
	/*
	 * Underflow?
	 */
2761 2762
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2763
#endif
L
Linus Torvalds 已提交
2764
	preempt_count() += val;
2765
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2766 2767 2768
	/*
	 * Spinlock count overflowing soon?
	 */
2769 2770
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2771 2772 2773
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2774 2775 2776
}
EXPORT_SYMBOL(add_preempt_count);

2777
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2778
{
2779
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2780 2781 2782
	/*
	 * Underflow?
	 */
2783
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2784
		return;
L
Linus Torvalds 已提交
2785 2786 2787
	/*
	 * Is the spinlock portion underflowing?
	 */
2788 2789 2790
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2791
#endif
2792

2793 2794
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2802
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2803
 */
I
Ingo Molnar 已提交
2804
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2805
{
2806 2807 2808
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2809 2810
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2811

I
Ingo Molnar 已提交
2812
	debug_show_held_locks(prev);
2813
	print_modules();
I
Ingo Molnar 已提交
2814 2815
	if (irqs_disabled())
		print_irqtrace_events(prev);
2816
	dump_stack();
2817
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2818
}
L
Linus Torvalds 已提交
2819

I
Ingo Molnar 已提交
2820 2821 2822 2823 2824
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2825
	/*
I
Ingo Molnar 已提交
2826
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2827 2828 2829
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2830
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2831
		__schedule_bug(prev);
2832
	rcu_sleep_check();
I
Ingo Molnar 已提交
2833

L
Linus Torvalds 已提交
2834 2835
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2836
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2837 2838
}

P
Peter Zijlstra 已提交
2839
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2840
{
2841
	if (prev->on_rq || rq->skip_clock_update < 0)
2842
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2843
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2844 2845
}

I
Ingo Molnar 已提交
2846 2847 2848 2849
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2850
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2851
{
2852
	const struct sched_class *class;
I
Ingo Molnar 已提交
2853
	struct task_struct *p;
L
Linus Torvalds 已提交
2854 2855

	/*
I
Ingo Molnar 已提交
2856 2857
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2858
	 */
2859
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2860
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2861 2862
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2863 2864
	}

2865
	for_each_class(class) {
2866
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2867 2868 2869
		if (p)
			return p;
	}
2870 2871

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2872
}
L
Linus Torvalds 已提交
2873

I
Ingo Molnar 已提交
2874
/*
2875
 * __schedule() is the main scheduler function.
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2910
 */
2911
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2912 2913
{
	struct task_struct *prev, *next;
2914
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2915
	struct rq *rq;
2916
	int cpu;
I
Ingo Molnar 已提交
2917

2918 2919
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2920 2921
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2922
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2923 2924 2925
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2926

2927
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2928
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2929

2930
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2931

2932
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2933
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2934
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2935
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2936
		} else {
2937 2938 2939
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2940
			/*
2941 2942 2943
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2953
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2954 2955
	}

2956
	pre_schedule(rq, prev);
2957

I
Ingo Molnar 已提交
2958
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2959 2960
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2961
	put_prev_task(rq, prev);
2962
	next = pick_next_task(rq);
2963 2964
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2965 2966 2967 2968 2969 2970

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2971
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2972
		/*
2973 2974 2975 2976
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2977 2978 2979
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2980
	} else
2981
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2982

2983
	post_schedule(rq);
L
Linus Torvalds 已提交
2984

2985
	sched_preempt_enable_no_resched();
2986
	if (need_resched())
L
Linus Torvalds 已提交
2987 2988
		goto need_resched;
}
2989

2990 2991
static inline void sched_submit_work(struct task_struct *tsk)
{
2992
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2993 2994 2995 2996 2997 2998 2999 3000 3001
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3002
asmlinkage void __sched schedule(void)
3003
{
3004 3005 3006
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3007 3008
	__schedule();
}
L
Linus Torvalds 已提交
3009 3010
EXPORT_SYMBOL(schedule);

3011
#ifdef CONFIG_CONTEXT_TRACKING
3012 3013 3014 3015 3016 3017 3018 3019
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
3020
	user_exit();
3021
	schedule();
3022
	user_enter();
3023 3024 3025
}
#endif

3026 3027 3028 3029 3030 3031 3032
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3033
	sched_preempt_enable_no_resched();
3034 3035 3036 3037
	schedule();
	preempt_disable();
}

3038
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3039

3040 3041 3042
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3043
		return false;
3044 3045

	/*
3046 3047 3048 3049
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3050
	 */
3051
	barrier();
3052

3053
	return owner->on_cpu;
3054
}
3055

3056 3057 3058 3059 3060 3061 3062 3063
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3064

3065
	rcu_read_lock();
3066 3067
	while (owner_running(lock, owner)) {
		if (need_resched())
3068
			break;
3069

3070
		arch_mutex_cpu_relax();
3071
	}
3072
	rcu_read_unlock();
3073

3074
	/*
3075 3076 3077
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3078
	 */
3079
	return lock->owner == NULL;
3080 3081 3082
}
#endif

L
Linus Torvalds 已提交
3083 3084
#ifdef CONFIG_PREEMPT
/*
3085
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3086
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3087 3088
 * occur there and call schedule directly.
 */
3089
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3090 3091
{
	struct thread_info *ti = current_thread_info();
3092

L
Linus Torvalds 已提交
3093 3094
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3095
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3096
	 */
N
Nick Piggin 已提交
3097
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3098 3099
		return;

3100
	do {
3101
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3102
		__schedule();
3103
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3104

3105 3106 3107 3108 3109
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3110
	} while (need_resched());
L
Linus Torvalds 已提交
3111 3112 3113 3114
}
EXPORT_SYMBOL(preempt_schedule);

/*
3115
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3116 3117 3118 3119 3120 3121 3122
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3123
	enum ctx_state prev_state;
3124

3125
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3126 3127
	BUG_ON(ti->preempt_count || !irqs_disabled());

3128 3129
	prev_state = exception_enter();

3130 3131 3132
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3133
		__schedule();
3134 3135
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3136

3137 3138 3139 3140 3141
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3142
	} while (need_resched());
3143 3144

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3145 3146 3147 3148
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3149
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3150
			  void *key)
L
Linus Torvalds 已提交
3151
{
P
Peter Zijlstra 已提交
3152
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3153 3154 3155 3156
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3157 3158
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3159 3160 3161
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3162
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3163 3164
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3165
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3166
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3167
{
3168
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3169

3170
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3171 3172
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3173
		if (curr->func(curr, mode, wake_flags, key) &&
3174
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3184
 * @key: is directly passed to the wakeup function
3185 3186 3187
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3188
 */
3189
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3190
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3203
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3204
{
3205
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3206
}
3207
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3208

3209 3210 3211 3212
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3213
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3214

L
Linus Torvalds 已提交
3215
/**
3216
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3217 3218 3219
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3220
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3221 3222 3223 3224 3225 3226 3227
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3228 3229 3230
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3231
 */
3232 3233
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3234 3235
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3236
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3237 3238 3239 3240 3241

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3242
		wake_flags = 0;
L
Linus Torvalds 已提交
3243 3244

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3245
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3246 3247
	spin_unlock_irqrestore(&q->lock, flags);
}
3248 3249 3250 3251 3252 3253 3254 3255 3256
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3257 3258
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3259 3260 3261 3262 3263 3264 3265 3266
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3267 3268 3269
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3270
 */
3271
void complete(struct completion *x)
L
Linus Torvalds 已提交
3272 3273 3274 3275 3276
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3277
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3278 3279 3280 3281
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3282 3283 3284 3285 3286
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3287 3288 3289
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3290
 */
3291
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3292 3293 3294 3295 3296
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3297
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3298 3299 3300 3301
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3302
static inline long __sched
3303 3304
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3305 3306 3307 3308
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3309
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3310
		do {
3311
			if (signal_pending_state(state, current)) {
3312 3313
				timeout = -ERESTARTSYS;
				break;
3314 3315
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3316
			spin_unlock_irq(&x->wait.lock);
3317
			timeout = action(timeout);
L
Linus Torvalds 已提交
3318
			spin_lock_irq(&x->wait.lock);
3319
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3320
		__remove_wait_queue(&x->wait, &wait);
3321 3322
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3323 3324
	}
	x->done--;
3325
	return timeout ?: 1;
L
Linus Torvalds 已提交
3326 3327
}

3328 3329 3330
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3331 3332 3333 3334
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3335
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
3336
	spin_unlock_irq(&x->wait.lock);
3337 3338
	return timeout;
}
L
Linus Torvalds 已提交
3339

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3362
void __sched wait_for_completion(struct completion *x)
3363 3364
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3365
}
3366
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3367

3368 3369 3370 3371 3372 3373 3374 3375
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3376 3377 3378
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3379
 */
3380
unsigned long __sched
3381
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3382
{
3383
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3384
}
3385
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3386

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

3420 3421 3422 3423 3424 3425
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3426 3427
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3428
 */
3429
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3430
{
3431 3432 3433 3434
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3435
}
3436
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3437

3438 3439 3440 3441 3442 3443 3444
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3445 3446 3447
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3448
 */
3449
long __sched
3450 3451
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3452
{
3453
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3454
}
3455
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3456

3457 3458 3459 3460 3461 3462
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3463 3464
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3465
 */
M
Matthew Wilcox 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3475 3476 3477 3478 3479 3480 3481 3482
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3483 3484 3485
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3486
 */
3487
long __sched
3488 3489 3490 3491 3492 3493 3494
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3509
	unsigned long flags;
3510 3511
	int ret = 1;

3512
	spin_lock_irqsave(&x->wait.lock, flags);
3513 3514 3515 3516
	if (!x->done)
		ret = 0;
	else
		x->done--;
3517
	spin_unlock_irqrestore(&x->wait.lock, flags);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3532
	unsigned long flags;
3533 3534
	int ret = 1;

3535
	spin_lock_irqsave(&x->wait.lock, flags);
3536 3537
	if (!x->done)
		ret = 0;
3538
	spin_unlock_irqrestore(&x->wait.lock, flags);
3539 3540 3541 3542
	return ret;
}
EXPORT_SYMBOL(completion_done);

3543 3544
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3545
{
I
Ingo Molnar 已提交
3546 3547 3548 3549
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3550

3551
	__set_current_state(state);
L
Linus Torvalds 已提交
3552

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3567 3568 3569
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3570
long __sched
I
Ingo Molnar 已提交
3571
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3572
{
3573
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3574 3575 3576
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3577
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3578
{
3579
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3580 3581 3582
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3583
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3584
{
3585
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3586 3587 3588
}
EXPORT_SYMBOL(sleep_on_timeout);

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3601
void rt_mutex_setprio(struct task_struct *p, int prio)
3602
{
3603
	int oldprio, on_rq, running;
3604
	struct rq *rq;
3605
	const struct sched_class *prev_class;
3606 3607 3608

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3609
	rq = __task_rq_lock(p);
3610

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3629
	trace_sched_pi_setprio(p, prio);
3630
	oldprio = p->prio;
3631
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3632
	on_rq = p->on_rq;
3633
	running = task_current(rq, p);
3634
	if (on_rq)
3635
		dequeue_task(rq, p, 0);
3636 3637
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3638 3639 3640 3641 3642 3643

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3644 3645
	p->prio = prio;

3646 3647
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3648
	if (on_rq)
3649
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3650

P
Peter Zijlstra 已提交
3651
	check_class_changed(rq, p, prev_class, oldprio);
3652
out_unlock:
3653
	__task_rq_unlock(rq);
3654 3655
}
#endif
3656
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3657
{
I
Ingo Molnar 已提交
3658
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3659
	unsigned long flags;
3660
	struct rq *rq;
L
Linus Torvalds 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3673
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3674
	 */
3675
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3676 3677 3678
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3679
	on_rq = p->on_rq;
3680
	if (on_rq)
3681
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3682 3683

	p->static_prio = NICE_TO_PRIO(nice);
3684
	set_load_weight(p);
3685 3686 3687
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3688

I
Ingo Molnar 已提交
3689
	if (on_rq) {
3690
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3691
		/*
3692 3693
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3694
		 */
3695
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3696 3697 3698
			resched_task(rq->curr);
	}
out_unlock:
3699
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3700 3701 3702
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3703 3704 3705 3706 3707
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3708
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3709
{
3710 3711
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3712

3713
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3714 3715 3716
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3726
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3727
{
3728
	long nice, retval;
L
Linus Torvalds 已提交
3729 3730 3731 3732 3733 3734

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3735 3736
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3737 3738 3739
	if (increment > 40)
		increment = 40;

3740
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3741 3742 3743 3744 3745
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3746 3747 3748
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3767
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772 3773 3774 3775
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3776
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3777 3778 3779
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3780
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3781 3782 3783 3784 3785 3786 3787

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3802 3803 3804 3805 3806 3807
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3808
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814 3815 3816
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3817
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3818
{
3819
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3820 3821 3822
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3823 3824
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3825 3826 3827
{
	p->policy = policy;
	p->rt_priority = prio;
3828 3829 3830
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3831 3832 3833 3834
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3835
	set_load_weight(p);
L
Linus Torvalds 已提交
3836 3837
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3848 3849
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3850 3851 3852 3853
	rcu_read_unlock();
	return match;
}

3854
static int __sched_setscheduler(struct task_struct *p, int policy,
3855
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3856
{
3857
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3858
	unsigned long flags;
3859
	const struct sched_class *prev_class;
3860
	struct rq *rq;
3861
	int reset_on_fork;
L
Linus Torvalds 已提交
3862

3863 3864
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3865 3866
recheck:
	/* double check policy once rq lock held */
3867 3868
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3869
		policy = oldpolicy = p->policy;
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3880 3881
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3882 3883
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3884 3885
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3886
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3887
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3888
		return -EINVAL;
3889
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3890 3891
		return -EINVAL;

3892 3893 3894
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3895
	if (user && !capable(CAP_SYS_NICE)) {
3896
		if (rt_policy(policy)) {
3897 3898
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3909

I
Ingo Molnar 已提交
3910
		/*
3911 3912
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3913
		 */
3914 3915 3916 3917
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3918

3919
		/* can't change other user's priorities */
3920
		if (!check_same_owner(p))
3921
			return -EPERM;
3922 3923 3924 3925

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3926
	}
L
Linus Torvalds 已提交
3927

3928
	if (user) {
3929
		retval = security_task_setscheduler(p);
3930 3931 3932 3933
		if (retval)
			return retval;
	}

3934 3935 3936
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3937
	 *
L
Lucas De Marchi 已提交
3938
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3939 3940
	 * runqueue lock must be held.
	 */
3941
	rq = task_rq_lock(p, &flags);
3942

3943 3944 3945 3946
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3947
		task_rq_unlock(rq, p, &flags);
3948 3949 3950
		return -EINVAL;
	}

3951 3952 3953 3954 3955
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3956
		task_rq_unlock(rq, p, &flags);
3957 3958 3959
		return 0;
	}

3960 3961 3962 3963 3964 3965 3966
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3967 3968
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3969
			task_rq_unlock(rq, p, &flags);
3970 3971 3972 3973 3974
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3975 3976 3977
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3978
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3979 3980
		goto recheck;
	}
P
Peter Zijlstra 已提交
3981
	on_rq = p->on_rq;
3982
	running = task_current(rq, p);
3983
	if (on_rq)
3984
		dequeue_task(rq, p, 0);
3985 3986
	if (running)
		p->sched_class->put_prev_task(rq, p);
3987

3988 3989
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3990
	oldprio = p->prio;
3991
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3992
	__setscheduler(rq, p, policy, param->sched_priority);
3993

3994 3995
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3996
	if (on_rq)
3997
		enqueue_task(rq, p, 0);
3998

P
Peter Zijlstra 已提交
3999
	check_class_changed(rq, p, prev_class, oldprio);
4000
	task_rq_unlock(rq, p, &flags);
4001

4002 4003
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4004 4005
	return 0;
}
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4016
		       const struct sched_param *param)
4017 4018 4019
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4020 4021
EXPORT_SYMBOL_GPL(sched_setscheduler);

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4034
			       const struct sched_param *param)
4035 4036 4037 4038
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4039 4040
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4041 4042 4043
{
	struct sched_param lparam;
	struct task_struct *p;
4044
	int retval;
L
Linus Torvalds 已提交
4045 4046 4047 4048 4049

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4050 4051 4052

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4053
	p = find_process_by_pid(pid);
4054 4055 4056
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4057

L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4067 4068
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4069
{
4070 4071 4072 4073
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4074 4075 4076 4077 4078 4079 4080 4081
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4082
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4083 4084 4085 4086 4087 4088 4089 4090
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4091
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4092
{
4093
	struct task_struct *p;
4094
	int retval;
L
Linus Torvalds 已提交
4095 4096

	if (pid < 0)
4097
		return -EINVAL;
L
Linus Torvalds 已提交
4098 4099

	retval = -ESRCH;
4100
	rcu_read_lock();
L
Linus Torvalds 已提交
4101 4102 4103 4104
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4105 4106
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4107
	}
4108
	rcu_read_unlock();
L
Linus Torvalds 已提交
4109 4110 4111 4112
	return retval;
}

/**
4113
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4114 4115 4116
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4117
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4118 4119
{
	struct sched_param lp;
4120
	struct task_struct *p;
4121
	int retval;
L
Linus Torvalds 已提交
4122 4123

	if (!param || pid < 0)
4124
		return -EINVAL;
L
Linus Torvalds 已提交
4125

4126
	rcu_read_lock();
L
Linus Torvalds 已提交
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4137
	rcu_read_unlock();
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4147
	rcu_read_unlock();
L
Linus Torvalds 已提交
4148 4149 4150
	return retval;
}

4151
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4152
{
4153
	cpumask_var_t cpus_allowed, new_mask;
4154 4155
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4156

4157
	get_online_cpus();
4158
	rcu_read_lock();
L
Linus Torvalds 已提交
4159 4160 4161

	p = find_process_by_pid(pid);
	if (!p) {
4162
		rcu_read_unlock();
4163
		put_online_cpus();
L
Linus Torvalds 已提交
4164 4165 4166
		return -ESRCH;
	}

4167
	/* Prevent p going away */
L
Linus Torvalds 已提交
4168
	get_task_struct(p);
4169
	rcu_read_unlock();
L
Linus Torvalds 已提交
4170

4171 4172 4173 4174 4175 4176 4177 4178
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4179
	retval = -EPERM;
E
Eric W. Biederman 已提交
4180 4181 4182 4183 4184 4185 4186 4187
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4188

4189
	retval = security_task_setscheduler(p);
4190 4191 4192
	if (retval)
		goto out_unlock;

4193 4194
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4195
again:
4196
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4197

P
Paul Menage 已提交
4198
	if (!retval) {
4199 4200
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4201 4202 4203 4204 4205
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4206
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4207 4208 4209
			goto again;
		}
	}
L
Linus Torvalds 已提交
4210
out_unlock:
4211 4212 4213 4214
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4215
	put_task_struct(p);
4216
	put_online_cpus();
L
Linus Torvalds 已提交
4217 4218 4219 4220
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4221
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4222
{
4223 4224 4225 4226 4227
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4237 4238
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4239
{
4240
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4241 4242
	int retval;

4243 4244
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4245

4246 4247 4248 4249 4250
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4251 4252
}

4253
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4254
{
4255
	struct task_struct *p;
4256
	unsigned long flags;
L
Linus Torvalds 已提交
4257 4258
	int retval;

4259
	get_online_cpus();
4260
	rcu_read_lock();
L
Linus Torvalds 已提交
4261 4262 4263 4264 4265 4266

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4267 4268 4269 4270
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4271
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4272
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4273
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4274 4275

out_unlock:
4276
	rcu_read_unlock();
4277
	put_online_cpus();
L
Linus Torvalds 已提交
4278

4279
	return retval;
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286 4287
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4288 4289
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4290 4291
{
	int ret;
4292
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4293

A
Anton Blanchard 已提交
4294
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4295 4296
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4297 4298
		return -EINVAL;

4299 4300
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4301

4302 4303
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4304
		size_t retlen = min_t(size_t, len, cpumask_size());
4305 4306

		if (copy_to_user(user_mask_ptr, mask, retlen))
4307 4308
			ret = -EFAULT;
		else
4309
			ret = retlen;
4310 4311
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4312

4313
	return ret;
L
Linus Torvalds 已提交
4314 4315 4316 4317 4318
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4319 4320
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4321
 */
4322
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4323
{
4324
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4325

4326
	schedstat_inc(rq, yld_count);
4327
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4328 4329 4330 4331 4332 4333

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4334
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4335
	do_raw_spin_unlock(&rq->lock);
4336
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4337 4338 4339 4340 4341 4342

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4343 4344 4345 4346 4347
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4348
static void __cond_resched(void)
L
Linus Torvalds 已提交
4349
{
4350
	add_preempt_count(PREEMPT_ACTIVE);
4351
	__schedule();
4352
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4353 4354
}

4355
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4356
{
P
Peter Zijlstra 已提交
4357
	if (should_resched()) {
L
Linus Torvalds 已提交
4358 4359 4360 4361 4362
		__cond_resched();
		return 1;
	}
	return 0;
}
4363
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4364 4365

/*
4366
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4367 4368
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4369
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4370 4371 4372
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4373
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4374
{
P
Peter Zijlstra 已提交
4375
	int resched = should_resched();
J
Jan Kara 已提交
4376 4377
	int ret = 0;

4378 4379
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4380
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4381
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4382
		if (resched)
N
Nick Piggin 已提交
4383 4384 4385
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4386
		ret = 1;
L
Linus Torvalds 已提交
4387 4388
		spin_lock(lock);
	}
J
Jan Kara 已提交
4389
	return ret;
L
Linus Torvalds 已提交
4390
}
4391
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4392

4393
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4394 4395 4396
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4397
	if (should_resched()) {
4398
		local_bh_enable();
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4405
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4406 4407 4408 4409

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4428 4429 4430 4431 4432 4433 4434 4435
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4436 4437 4438 4439
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4440 4441
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4442 4443 4444 4445
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4446 4447 4448 4449
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4450 4451 4452 4453 4454 4455
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4456
	int yielded = 0;
4457 4458 4459 4460 4461 4462

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4463 4464 4465 4466 4467 4468 4469 4470 4471
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4472 4473 4474 4475 4476 4477 4478
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4479
		goto out_unlock;
4480 4481

	if (curr->sched_class != p->sched_class)
4482
		goto out_unlock;
4483 4484

	if (task_running(p_rq, p) || p->state)
4485
		goto out_unlock;
4486 4487

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4488
	if (yielded) {
4489
		schedstat_inc(rq, yld_count);
4490 4491 4492 4493 4494 4495 4496
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4497

4498
out_unlock:
4499
	double_rq_unlock(rq, p_rq);
4500
out_irq:
4501 4502
	local_irq_restore(flags);

4503
	if (yielded > 0)
4504 4505 4506 4507 4508 4509
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4510
/*
I
Ingo Molnar 已提交
4511
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4512 4513 4514 4515
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4516
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4517

4518
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4519
	atomic_inc(&rq->nr_iowait);
4520
	blk_flush_plug(current);
4521
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4522
	schedule();
4523
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4524
	atomic_dec(&rq->nr_iowait);
4525
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4526 4527 4528 4529 4530
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4531
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4532 4533
	long ret;

4534
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4535
	atomic_inc(&rq->nr_iowait);
4536
	blk_flush_plug(current);
4537
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4538
	ret = schedule_timeout(timeout);
4539
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4540
	atomic_dec(&rq->nr_iowait);
4541
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4552
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4553 4554 4555 4556 4557 4558 4559 4560 4561
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4562
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4563
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4577
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4587
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4588
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4602
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4603
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4604
{
4605
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4606
	unsigned int time_slice;
4607 4608
	unsigned long flags;
	struct rq *rq;
4609
	int retval;
L
Linus Torvalds 已提交
4610 4611 4612
	struct timespec t;

	if (pid < 0)
4613
		return -EINVAL;
L
Linus Torvalds 已提交
4614 4615

	retval = -ESRCH;
4616
	rcu_read_lock();
L
Linus Torvalds 已提交
4617 4618 4619 4620 4621 4622 4623 4624
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4625 4626
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4627
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4628

4629
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4630
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4631 4632
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4633

L
Linus Torvalds 已提交
4634
out_unlock:
4635
	rcu_read_unlock();
L
Linus Torvalds 已提交
4636 4637 4638
	return retval;
}

4639
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4640

4641
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4642 4643
{
	unsigned long free = 0;
4644
	int ppid;
4645
	unsigned state;
L
Linus Torvalds 已提交
4646 4647

	state = p->state ? __ffs(p->state) + 1 : 0;
4648
	printk(KERN_INFO "%-15.15s %c", p->comm,
4649
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4650
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4651
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4652
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4653
	else
P
Peter Zijlstra 已提交
4654
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4655 4656
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4657
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4658
	else
P
Peter Zijlstra 已提交
4659
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4660 4661
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4662
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4663
#endif
4664 4665 4666
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4667
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4668
		task_pid_nr(p), ppid,
4669
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4670

4671
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4672 4673
}

I
Ingo Molnar 已提交
4674
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4675
{
4676
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4677

4678
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4679 4680
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4681
#else
P
Peter Zijlstra 已提交
4682 4683
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4684
#endif
4685
	rcu_read_lock();
L
Linus Torvalds 已提交
4686 4687 4688
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4689
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4690 4691
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4692
		if (!state_filter || (p->state & state_filter))
4693
			sched_show_task(p);
L
Linus Torvalds 已提交
4694 4695
	} while_each_thread(g, p);

4696 4697
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4698 4699 4700
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4701
	rcu_read_unlock();
I
Ingo Molnar 已提交
4702 4703 4704
	/*
	 * Only show locks if all tasks are dumped:
	 */
4705
	if (!state_filter)
I
Ingo Molnar 已提交
4706
		debug_show_all_locks();
L
Linus Torvalds 已提交
4707 4708
}

I
Ingo Molnar 已提交
4709 4710
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4711
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4712 4713
}

4714 4715 4716 4717 4718 4719 4720 4721
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4722
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4723
{
4724
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4725 4726
	unsigned long flags;

4727
	raw_spin_lock_irqsave(&rq->lock, flags);
4728

I
Ingo Molnar 已提交
4729
	__sched_fork(idle);
4730
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4731 4732
	idle->se.exec_start = sched_clock();

4733
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4745
	__set_task_cpu(idle, cpu);
4746
	rcu_read_unlock();
L
Linus Torvalds 已提交
4747 4748

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4749 4750
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4751
#endif
4752
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4753 4754

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4755
	task_thread_info(idle)->preempt_count = 0;
4756

I
Ingo Molnar 已提交
4757 4758 4759 4760
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4761
	ftrace_graph_init_idle_task(idle, cpu);
4762
	vtime_init_idle(idle);
4763 4764 4765
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4766 4767
}

L
Linus Torvalds 已提交
4768
#ifdef CONFIG_SMP
4769 4770 4771 4772
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4773 4774

	cpumask_copy(&p->cpus_allowed, new_mask);
4775
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4776 4777
}

L
Linus Torvalds 已提交
4778 4779 4780
/*
 * This is how migration works:
 *
4781 4782 4783 4784 4785 4786
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4787
 *    it and puts it into the right queue.
4788 4789
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795 4796 4797
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4798
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4799 4800
 * call is not atomic; no spinlocks may be held.
 */
4801
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4802 4803
{
	unsigned long flags;
4804
	struct rq *rq;
4805
	unsigned int dest_cpu;
4806
	int ret = 0;
L
Linus Torvalds 已提交
4807 4808

	rq = task_rq_lock(p, &flags);
4809

4810 4811 4812
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4813
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4814 4815 4816 4817
		ret = -EINVAL;
		goto out;
	}

4818
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4819 4820 4821 4822
		ret = -EINVAL;
		goto out;
	}

4823
	do_set_cpus_allowed(p, new_mask);
4824

L
Linus Torvalds 已提交
4825
	/* Can the task run on the task's current CPU? If so, we're done */
4826
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4827 4828
		goto out;

4829
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4830
	if (p->on_rq) {
4831
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4832
		/* Need help from migration thread: drop lock and wait. */
4833
		task_rq_unlock(rq, p, &flags);
4834
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4835 4836 4837 4838
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4839
	task_rq_unlock(rq, p, &flags);
4840

L
Linus Torvalds 已提交
4841 4842
	return ret;
}
4843
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4844 4845

/*
I
Ingo Molnar 已提交
4846
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851 4852
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4853 4854
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4855
 */
4856
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4857
{
4858
	struct rq *rq_dest, *rq_src;
4859
	int ret = 0;
L
Linus Torvalds 已提交
4860

4861
	if (unlikely(!cpu_active(dest_cpu)))
4862
		return ret;
L
Linus Torvalds 已提交
4863 4864 4865 4866

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4867
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4868 4869 4870
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4871
		goto done;
L
Linus Torvalds 已提交
4872
	/* Affinity changed (again). */
4873
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4874
		goto fail;
L
Linus Torvalds 已提交
4875

4876 4877 4878 4879
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4880
	if (p->on_rq) {
4881
		dequeue_task(rq_src, p, 0);
4882
		set_task_cpu(p, dest_cpu);
4883
		enqueue_task(rq_dest, p, 0);
4884
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4885
	}
L
Linus Torvalds 已提交
4886
done:
4887
	ret = 1;
L
Linus Torvalds 已提交
4888
fail:
L
Linus Torvalds 已提交
4889
	double_rq_unlock(rq_src, rq_dest);
4890
	raw_spin_unlock(&p->pi_lock);
4891
	return ret;
L
Linus Torvalds 已提交
4892 4893 4894
}

/*
4895 4896 4897
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4898
 */
4899
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4900
{
4901
	struct migration_arg *arg = data;
4902

4903 4904 4905 4906
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4907
	local_irq_disable();
4908
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4909
	local_irq_enable();
L
Linus Torvalds 已提交
4910
	return 0;
4911 4912
}

L
Linus Torvalds 已提交
4913
#ifdef CONFIG_HOTPLUG_CPU
4914

4915
/*
4916 4917
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4918
 */
4919
void idle_task_exit(void)
L
Linus Torvalds 已提交
4920
{
4921
	struct mm_struct *mm = current->active_mm;
4922

4923
	BUG_ON(cpu_online(smp_processor_id()));
4924

4925 4926 4927
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4928 4929 4930
}

/*
4931 4932 4933 4934 4935
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4936
 */
4937
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4938
{
4939 4940 4941
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4942 4943
}

4944
/*
4945 4946 4947 4948 4949 4950
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4951
 */
4952
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4953
{
4954
	struct rq *rq = cpu_rq(dead_cpu);
4955 4956
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4957 4958

	/*
4959 4960 4961 4962 4963 4964 4965
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4966
	 */
4967
	rq->stop = NULL;
4968

I
Ingo Molnar 已提交
4969
	for ( ; ; ) {
4970 4971 4972 4973 4974
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4975
			break;
4976

4977
		next = pick_next_task(rq);
4978
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4979
		next->sched_class->put_prev_task(rq, next);
4980

4981 4982 4983 4984 4985 4986 4987
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4988
	}
4989

4990
	rq->stop = stop;
4991
}
4992

L
Linus Torvalds 已提交
4993 4994
#endif /* CONFIG_HOTPLUG_CPU */

4995 4996 4997
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4998 4999
	{
		.procname	= "sched_domain",
5000
		.mode		= 0555,
5001
	},
5002
	{}
5003 5004 5005
};

static struct ctl_table sd_ctl_root[] = {
5006 5007
	{
		.procname	= "kernel",
5008
		.mode		= 0555,
5009 5010
		.child		= sd_ctl_dir,
	},
5011
	{}
5012 5013 5014 5015 5016
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5017
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5018 5019 5020 5021

	return entry;
}

5022 5023
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5024
	struct ctl_table *entry;
5025

5026 5027 5028
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5029
	 * will always be set. In the lowest directory the names are
5030 5031 5032
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5033 5034
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5035 5036 5037
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5038 5039 5040 5041 5042

	kfree(*tablep);
	*tablep = NULL;
}

5043 5044 5045
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

5046
static void
5047
set_table_entry(struct ctl_table *entry,
5048
		const char *procname, void *data, int maxlen,
5049 5050
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5051 5052 5053 5054 5055 5056
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5057 5058 5059 5060 5061

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5062 5063 5064 5065 5066
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5067
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5068

5069 5070 5071
	if (table == NULL)
		return NULL;

5072
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5073
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5074
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5075
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5076
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5077
		sizeof(int), 0644, proc_dointvec_minmax, true);
5078
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5079
		sizeof(int), 0644, proc_dointvec_minmax, true);
5080
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5081
		sizeof(int), 0644, proc_dointvec_minmax, true);
5082
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5083
		sizeof(int), 0644, proc_dointvec_minmax, true);
5084
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5085
		sizeof(int), 0644, proc_dointvec_minmax, true);
5086
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5087
		sizeof(int), 0644, proc_dointvec_minmax, false);
5088
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5089
		sizeof(int), 0644, proc_dointvec_minmax, false);
5090
	set_table_entry(&table[9], "cache_nice_tries",
5091
		&sd->cache_nice_tries,
5092
		sizeof(int), 0644, proc_dointvec_minmax, false);
5093
	set_table_entry(&table[10], "flags", &sd->flags,
5094
		sizeof(int), 0644, proc_dointvec_minmax, false);
5095
	set_table_entry(&table[11], "name", sd->name,
5096
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5097
	/* &table[12] is terminator */
5098 5099 5100 5101

	return table;
}

5102
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5103 5104 5105 5106 5107 5108 5109 5110 5111
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5112 5113
	if (table == NULL)
		return NULL;
5114 5115 5116 5117 5118

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5119
		entry->mode = 0555;
5120 5121 5122 5123 5124 5125 5126 5127
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5128
static void register_sched_domain_sysctl(void)
5129
{
5130
	int i, cpu_num = num_possible_cpus();
5131 5132 5133
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5134 5135 5136
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5137 5138 5139
	if (entry == NULL)
		return;

5140
	for_each_possible_cpu(i) {
5141 5142
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5143
		entry->mode = 0555;
5144
		entry->child = sd_alloc_ctl_cpu_table(i);
5145
		entry++;
5146
	}
5147 5148

	WARN_ON(sd_sysctl_header);
5149 5150
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5151

5152
/* may be called multiple times per register */
5153 5154
static void unregister_sched_domain_sysctl(void)
{
5155 5156
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5157
	sd_sysctl_header = NULL;
5158 5159
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5160
}
5161
#else
5162 5163 5164 5165
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5166 5167 5168 5169
{
}
#endif

5170 5171 5172 5173 5174
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5175
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5195
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5196 5197 5198 5199
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5200 5201 5202 5203
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5204 5205
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5206
{
5207
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5208
	unsigned long flags;
5209
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5210

5211
	switch (action & ~CPU_TASKS_FROZEN) {
5212

L
Linus Torvalds 已提交
5213
	case CPU_UP_PREPARE:
5214
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5215
		break;
5216

L
Linus Torvalds 已提交
5217
	case CPU_ONLINE:
5218
		/* Update our root-domain */
5219
		raw_spin_lock_irqsave(&rq->lock, flags);
5220
		if (rq->rd) {
5221
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5222 5223

			set_rq_online(rq);
5224
		}
5225
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5226
		break;
5227

L
Linus Torvalds 已提交
5228
#ifdef CONFIG_HOTPLUG_CPU
5229
	case CPU_DYING:
5230
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5231
		/* Update our root-domain */
5232
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5233
		if (rq->rd) {
5234
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5235
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5236
		}
5237 5238
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5239
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5240
		break;
5241

5242
	case CPU_DEAD:
5243
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5244
		break;
L
Linus Torvalds 已提交
5245 5246
#endif
	}
5247 5248 5249

	update_max_interval();

L
Linus Torvalds 已提交
5250 5251 5252
	return NOTIFY_OK;
}

5253 5254 5255
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5256
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5257
 */
5258
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5259
	.notifier_call = migration_call,
5260
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5261 5262
};

5263 5264 5265 5266
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5267
	case CPU_STARTING:
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5288
static int __init migration_init(void)
L
Linus Torvalds 已提交
5289 5290
{
	void *cpu = (void *)(long)smp_processor_id();
5291
	int err;
5292

5293
	/* Initialize migration for the boot CPU */
5294 5295
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5296 5297
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5298

5299 5300 5301 5302
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5303
	return 0;
L
Linus Torvalds 已提交
5304
}
5305
early_initcall(migration_init);
L
Linus Torvalds 已提交
5306 5307 5308
#endif

#ifdef CONFIG_SMP
5309

5310 5311
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5312
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5313

5314
static __read_mostly int sched_debug_enabled;
5315

5316
static int __init sched_debug_setup(char *str)
5317
{
5318
	sched_debug_enabled = 1;
5319 5320 5321

	return 0;
}
5322 5323 5324 5325 5326 5327
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5328

5329
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5330
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5331
{
I
Ingo Molnar 已提交
5332
	struct sched_group *group = sd->groups;
5333
	char str[256];
L
Linus Torvalds 已提交
5334

R
Rusty Russell 已提交
5335
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5336
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5337 5338 5339 5340

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5341
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5342
		if (sd->parent)
P
Peter Zijlstra 已提交
5343 5344
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5345
		return -1;
N
Nick Piggin 已提交
5346 5347
	}

P
Peter Zijlstra 已提交
5348
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5349

5350
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5351 5352
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5353
	}
5354
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5355 5356
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5357
	}
L
Linus Torvalds 已提交
5358

I
Ingo Molnar 已提交
5359
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5360
	do {
I
Ingo Molnar 已提交
5361
		if (!group) {
P
Peter Zijlstra 已提交
5362 5363
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5364 5365 5366
			break;
		}

5367 5368 5369 5370 5371 5372
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5373 5374 5375
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5376 5377
			break;
		}
L
Linus Torvalds 已提交
5378

5379
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5380 5381
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5382 5383
			break;
		}
L
Linus Torvalds 已提交
5384

5385 5386
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5387 5388
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5389 5390
			break;
		}
L
Linus Torvalds 已提交
5391

5392
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5393

R
Rusty Russell 已提交
5394
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5395

P
Peter Zijlstra 已提交
5396
		printk(KERN_CONT " %s", str);
5397
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5398
			printk(KERN_CONT " (cpu_power = %d)",
5399
				group->sgp->power);
5400
		}
L
Linus Torvalds 已提交
5401

I
Ingo Molnar 已提交
5402 5403
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5404
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5405

5406
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5407
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5408

5409 5410
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5411 5412
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5413 5414
	return 0;
}
L
Linus Torvalds 已提交
5415

I
Ingo Molnar 已提交
5416 5417 5418
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5419

5420
	if (!sched_debug_enabled)
5421 5422
		return;

I
Ingo Molnar 已提交
5423 5424 5425 5426
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5427

I
Ingo Molnar 已提交
5428 5429 5430
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5431
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5432
			break;
L
Linus Torvalds 已提交
5433 5434
		level++;
		sd = sd->parent;
5435
		if (!sd)
I
Ingo Molnar 已提交
5436 5437
			break;
	}
L
Linus Torvalds 已提交
5438
}
5439
#else /* !CONFIG_SCHED_DEBUG */
5440
# define sched_domain_debug(sd, cpu) do { } while (0)
5441 5442 5443 5444
static inline bool sched_debug(void)
{
	return false;
}
5445
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5446

5447
static int sd_degenerate(struct sched_domain *sd)
5448
{
5449
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5450 5451 5452 5453 5454 5455
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5456 5457 5458
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5459 5460 5461 5462 5463
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5464
	if (sd->flags & (SD_WAKE_AFFINE))
5465 5466 5467 5468 5469
		return 0;

	return 1;
}

5470 5471
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5472 5473 5474 5475 5476 5477
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5478
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5479 5480 5481 5482 5483 5484 5485
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5486 5487 5488
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5489 5490
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5491 5492 5493 5494 5495 5496 5497
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5498
static void free_rootdomain(struct rcu_head *rcu)
5499
{
5500
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5501

5502
	cpupri_cleanup(&rd->cpupri);
5503 5504 5505 5506 5507 5508
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5509 5510
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5511
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5512 5513
	unsigned long flags;

5514
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5515 5516

	if (rq->rd) {
I
Ingo Molnar 已提交
5517
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5518

5519
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5520
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5521

5522
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5523

I
Ingo Molnar 已提交
5524 5525 5526 5527 5528 5529 5530
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5531 5532 5533 5534 5535
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5536
	cpumask_set_cpu(rq->cpu, rd->span);
5537
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5538
		set_rq_online(rq);
G
Gregory Haskins 已提交
5539

5540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5541 5542

	if (old_rd)
5543
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5544 5545
}

5546
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5547 5548 5549
{
	memset(rd, 0, sizeof(*rd));

5550
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5551
		goto out;
5552
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5553
		goto free_span;
5554
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5555
		goto free_online;
5556

5557
	if (cpupri_init(&rd->cpupri) != 0)
5558
		goto free_rto_mask;
5559
	return 0;
5560

5561 5562
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5563 5564 5565 5566
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5567
out:
5568
	return -ENOMEM;
G
Gregory Haskins 已提交
5569 5570
}

5571 5572 5573 5574 5575 5576
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5577 5578
static void init_defrootdomain(void)
{
5579
	init_rootdomain(&def_root_domain);
5580

G
Gregory Haskins 已提交
5581 5582 5583
	atomic_set(&def_root_domain.refcount, 1);
}

5584
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5585 5586 5587 5588 5589 5590 5591
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5592
	if (init_rootdomain(rd) != 0) {
5593 5594 5595
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5596 5597 5598 5599

	return rd;
}

5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5619 5620 5621
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5622 5623 5624 5625 5626 5627 5628 5629

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5630
		kfree(sd->groups->sgp);
5631
		kfree(sd->groups);
5632
	}
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5647 5648 5649 5650 5651 5652 5653
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5654
 * two cpus are in the same cache domain, see cpus_share_cache().
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5665
	if (sd)
5666 5667 5668 5669 5670 5671
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5672
/*
I
Ingo Molnar 已提交
5673
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5674 5675
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5676 5677
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5678
{
5679
	struct rq *rq = cpu_rq(cpu);
5680 5681 5682
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5683
	for (tmp = sd; tmp; ) {
5684 5685 5686
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5687

5688
		if (sd_parent_degenerate(tmp, parent)) {
5689
			tmp->parent = parent->parent;
5690 5691
			if (parent->parent)
				parent->parent->child = tmp;
5692
			destroy_sched_domain(parent, cpu);
5693 5694
		} else
			tmp = tmp->parent;
5695 5696
	}

5697
	if (sd && sd_degenerate(sd)) {
5698
		tmp = sd;
5699
		sd = sd->parent;
5700
		destroy_sched_domain(tmp, cpu);
5701 5702 5703
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5704

5705
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5706

G
Gregory Haskins 已提交
5707
	rq_attach_root(rq, rd);
5708
	tmp = rq->sd;
N
Nick Piggin 已提交
5709
	rcu_assign_pointer(rq->sd, sd);
5710
	destroy_sched_domains(tmp, cpu);
5711 5712

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5713 5714 5715
}

/* cpus with isolated domains */
5716
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5717 5718 5719 5720

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5721
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5722
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5723 5724 5725
	return 1;
}

I
Ingo Molnar 已提交
5726
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5727

5728 5729 5730 5731 5732
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5733 5734 5735
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5736
	struct sched_group_power **__percpu sgp;
5737 5738
};

5739
struct s_data {
5740
	struct sched_domain ** __percpu sd;
5741 5742 5743
	struct root_domain	*rd;
};

5744 5745
enum s_alloc {
	sa_rootdomain,
5746
	sa_sd,
5747
	sa_sd_storage,
5748 5749 5750
	sa_none,
};

5751 5752 5753
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5754 5755
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5756 5757
#define SDTL_OVERLAP	0x01

5758
struct sched_domain_topology_level {
5759 5760
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5761
	int		    flags;
5762
	int		    numa_level;
5763
	struct sd_data      data;
5764 5765
};

P
Peter Zijlstra 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5822 5823 5824 5825 5826 5827
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5828
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5829
				GFP_KERNEL, cpu_to_node(cpu));
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5843
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5844 5845 5846
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5847 5848 5849 5850 5851 5852
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5853

P
Peter Zijlstra 已提交
5854 5855 5856 5857 5858
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5859
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5860
		    group_balance_cpu(sg) == cpu)
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5880
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5881
{
5882 5883
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5884

5885 5886
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5887

5888
	if (sg) {
5889
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5890
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5891
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5892
	}
5893 5894

	return cpu;
5895 5896
}

5897
/*
5898 5899 5900
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5901 5902
 *
 * Assumes the sched_domain tree is fully constructed
5903
 */
5904 5905
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5906
{
5907 5908 5909
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5910
	struct cpumask *covered;
5911
	int i;
5912

5913 5914 5915 5916 5917 5918
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5919 5920 5921
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5922
	cpumask_clear(covered);
5923

5924 5925 5926 5927
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5928

5929 5930
		if (cpumask_test_cpu(i, covered))
			continue;
5931

5932
		cpumask_clear(sched_group_cpus(sg));
5933
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5934
		cpumask_setall(sched_group_mask(sg));
5935

5936 5937 5938
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5939

5940 5941 5942
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5943

5944 5945 5946 5947 5948 5949 5950
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5951 5952

	return 0;
5953
}
5954

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5967
	struct sched_group *sg = sd->groups;
5968

5969 5970 5971 5972 5973 5974
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5975

P
Peter Zijlstra 已提交
5976
	if (cpu != group_balance_cpu(sg))
5977
		return;
5978

5979
	update_group_power(sd, cpu);
5980
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5981 5982
}

5983 5984 5985
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5986 5987
}

5988 5989 5990 5991 5992
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5993 5994 5995 5996 5997 5998
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5999 6000 6001 6002 6003 6004 6005 6006 6007
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6008 6009 6010 6011 6012 6013 6014 6015 6016
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6017 6018 6019
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6020

6021
static int default_relax_domain_level = -1;
6022
int sched_domain_level_max;
6023 6024 6025

static int __init setup_relax_domain_level(char *str)
{
6026 6027
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6028

6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6047
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6048 6049
	} else {
		/* turn on idle balance on this domain */
6050
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6051 6052 6053
	}
}

6054 6055 6056
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6057 6058 6059 6060 6061
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6062 6063
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6064 6065
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6066
	case sa_sd_storage:
6067
		__sdt_free(cpu_map); /* fall through */
6068 6069 6070 6071
	case sa_none:
		break;
	}
}
6072

6073 6074 6075
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6076 6077
	memset(d, 0, sizeof(*d));

6078 6079
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6080 6081 6082
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6083
	d->rd = alloc_rootdomain();
6084
	if (!d->rd)
6085
		return sa_sd;
6086 6087
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6088

6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6101
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6102
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6103 6104

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6105
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6106 6107
}

6108 6109
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6110
{
6111
	return topology_thread_cpumask(cpu);
6112
}
6113
#endif
6114

6115 6116 6117
/*
 * Topology list, bottom-up.
 */
6118
static struct sched_domain_topology_level default_topology[] = {
6119 6120
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6121
#endif
6122
#ifdef CONFIG_SCHED_MC
6123
	{ sd_init_MC, cpu_coregroup_mask, },
6124
#endif
6125 6126 6127 6128
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6129 6130 6131 6132 6133
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6134 6135 6136 6137 6138 6139 6140 6141 6142
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6143
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6161
		.imbalance_pct		= 125,
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6281
		}
6282 6283 6284 6285 6286 6287

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6288 6289 6290 6291 6292 6293 6294 6295 6296
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6323
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6324 6325 6326 6327 6328 6329
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6330
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6362 6363

	sched_domains_numa_levels = level;
6364
}
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6412 6413 6414 6415 6416
}
#else
static inline void sched_init_numa(void)
{
}
6417 6418 6419 6420 6421 6422 6423

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6424 6425
#endif /* CONFIG_NUMA */

6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6442 6443 6444 6445
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6446 6447 6448
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6449
			struct sched_group_power *sgp;
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6463 6464
			sg->next = sg;

6465
			*per_cpu_ptr(sdd->sg, j) = sg;
6466

P
Peter Zijlstra 已提交
6467
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6468 6469 6470 6471 6472
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6501 6502
		}
		free_percpu(sdd->sd);
6503
		sdd->sd = NULL;
6504
		free_percpu(sdd->sg);
6505
		sdd->sg = NULL;
6506
		free_percpu(sdd->sgp);
6507
		sdd->sgp = NULL;
6508 6509 6510
	}
}

6511 6512
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6513
		struct sched_domain_attr *attr, struct sched_domain *child,
6514 6515
		int cpu)
{
6516
	struct sched_domain *sd = tl->init(tl, cpu);
6517
	if (!sd)
6518
		return child;
6519 6520

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6521 6522 6523
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6524
		child->parent = sd;
6525
	}
6526
	sd->child = child;
6527
	set_domain_attribute(sd, attr);
6528 6529 6530 6531

	return sd;
}

6532 6533 6534 6535
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6536 6537
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6538 6539
{
	enum s_alloc alloc_state = sa_none;
6540
	struct sched_domain *sd;
6541
	struct s_data d;
6542
	int i, ret = -ENOMEM;
6543

6544 6545 6546
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6547

6548
	/* Set up domains for cpus specified by the cpu_map. */
6549
	for_each_cpu(i, cpu_map) {
6550 6551
		struct sched_domain_topology_level *tl;

6552
		sd = NULL;
6553
		for (tl = sched_domain_topology; tl->init; tl++) {
6554
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6555 6556
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6557 6558
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6559
		}
6560

6561 6562 6563
		while (sd->child)
			sd = sd->child;

6564
		*per_cpu_ptr(d.sd, i) = sd;
6565 6566 6567 6568 6569 6570
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6571 6572 6573 6574 6575 6576 6577
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6578
		}
6579
	}
6580

L
Linus Torvalds 已提交
6581
	/* Calculate CPU power for physical packages and nodes */
6582 6583 6584
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6585

6586 6587
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6588
			init_sched_groups_power(i, sd);
6589
		}
6590
	}
6591

L
Linus Torvalds 已提交
6592
	/* Attach the domains */
6593
	rcu_read_lock();
6594
	for_each_cpu(i, cpu_map) {
6595
		sd = *per_cpu_ptr(d.sd, i);
6596
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6597
	}
6598
	rcu_read_unlock();
6599

6600
	ret = 0;
6601
error:
6602
	__free_domain_allocs(&d, alloc_state, cpu_map);
6603
	return ret;
L
Linus Torvalds 已提交
6604
}
P
Paul Jackson 已提交
6605

6606
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6607
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6608 6609
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6610 6611 6612

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6613 6614
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6615
 */
6616
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6617

6618 6619 6620 6621 6622 6623
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6624
{
6625
	return 0;
6626 6627
}

6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6653
/*
I
Ingo Molnar 已提交
6654
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6655 6656
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6657
 */
6658
static int init_sched_domains(const struct cpumask *cpu_map)
6659
{
6660 6661
	int err;

6662
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6663
	ndoms_cur = 1;
6664
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6665
	if (!doms_cur)
6666 6667
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6668
	err = build_sched_domains(doms_cur[0], NULL);
6669
	register_sched_domain_sysctl();
6670 6671

	return err;
6672 6673 6674 6675 6676 6677
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6678
static void detach_destroy_domains(const struct cpumask *cpu_map)
6679 6680 6681
{
	int i;

6682
	rcu_read_lock();
6683
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6684
		cpu_attach_domain(NULL, &def_root_domain, i);
6685
	rcu_read_unlock();
6686 6687
}

6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6704 6705
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6706
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6707 6708 6709
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6710
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6711 6712 6713
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6714 6715 6716
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6717 6718 6719 6720 6721 6722
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6723
 *
6724
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6725 6726
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6727
 *
P
Paul Jackson 已提交
6728 6729
 * Call with hotplug lock held
 */
6730
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6731
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6732
{
6733
	int i, j, n;
6734
	int new_topology;
P
Paul Jackson 已提交
6735

6736
	mutex_lock(&sched_domains_mutex);
6737

6738 6739 6740
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6741 6742 6743
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6744
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6745 6746 6747

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6748
		for (j = 0; j < n && !new_topology; j++) {
6749
			if (cpumask_equal(doms_cur[i], doms_new[j])
6750
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6751 6752 6753
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6754
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6755 6756 6757 6758
match1:
		;
	}

6759 6760
	if (doms_new == NULL) {
		ndoms_cur = 0;
6761
		doms_new = &fallback_doms;
6762
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6763
		WARN_ON_ONCE(dattr_new);
6764 6765
	}

P
Paul Jackson 已提交
6766 6767
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6768
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6769
			if (cpumask_equal(doms_new[i], doms_cur[j])
6770
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6771 6772 6773
				goto match2;
		}
		/* no match - add a new doms_new */
6774
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6775 6776 6777 6778 6779
match2:
		;
	}

	/* Remember the new sched domains */
6780 6781
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6782
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6783
	doms_cur = doms_new;
6784
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6785
	ndoms_cur = ndoms_new;
6786 6787

	register_sched_domain_sysctl();
6788

6789
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6790 6791
}

6792 6793
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6794
/*
6795 6796 6797
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6798 6799 6800
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6801
 */
6802 6803
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6804
{
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6827
	case CPU_ONLINE:
6828
	case CPU_DOWN_FAILED:
6829
		cpuset_update_active_cpus(true);
6830
		break;
6831 6832 6833
	default:
		return NOTIFY_DONE;
	}
6834
	return NOTIFY_OK;
6835
}
6836

6837 6838
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6839
{
6840
	switch (action) {
6841
	case CPU_DOWN_PREPARE:
6842
		cpuset_update_active_cpus(false);
6843 6844 6845 6846 6847
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6848 6849 6850
	default:
		return NOTIFY_DONE;
	}
6851
	return NOTIFY_OK;
6852 6853
}

L
Linus Torvalds 已提交
6854 6855
void __init sched_init_smp(void)
{
6856 6857 6858
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6859
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6860

6861 6862
	sched_init_numa();

6863
	get_online_cpus();
6864
	mutex_lock(&sched_domains_mutex);
6865
	init_sched_domains(cpu_active_mask);
6866 6867 6868
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6869
	mutex_unlock(&sched_domains_mutex);
6870
	put_online_cpus();
6871

6872
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6873 6874
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6875 6876 6877 6878

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6879
	init_hrtick();
6880 6881

	/* Move init over to a non-isolated CPU */
6882
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6883
		BUG();
I
Ingo Molnar 已提交
6884
	sched_init_granularity();
6885
	free_cpumask_var(non_isolated_cpus);
6886

6887
	init_sched_rt_class();
L
Linus Torvalds 已提交
6888 6889 6890 6891
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6892
	sched_init_granularity();
L
Linus Torvalds 已提交
6893 6894 6895
}
#endif /* CONFIG_SMP */

6896 6897
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6898 6899 6900 6901 6902 6903 6904
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6905
#ifdef CONFIG_CGROUP_SCHED
6906 6907 6908 6909
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6910
struct task_group root_task_group;
6911
LIST_HEAD(task_groups);
6912
#endif
P
Peter Zijlstra 已提交
6913

6914
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6915

L
Linus Torvalds 已提交
6916 6917
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6918
	int i, j;
6919 6920 6921 6922 6923 6924 6925
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6926
#endif
6927
#ifdef CONFIG_CPUMASK_OFFSTACK
6928
	alloc_size += num_possible_cpus() * cpumask_size();
6929 6930
#endif
	if (alloc_size) {
6931
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6932 6933

#ifdef CONFIG_FAIR_GROUP_SCHED
6934
		root_task_group.se = (struct sched_entity **)ptr;
6935 6936
		ptr += nr_cpu_ids * sizeof(void **);

6937
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6938
		ptr += nr_cpu_ids * sizeof(void **);
6939

6940
#endif /* CONFIG_FAIR_GROUP_SCHED */
6941
#ifdef CONFIG_RT_GROUP_SCHED
6942
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6943 6944
		ptr += nr_cpu_ids * sizeof(void **);

6945
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6946 6947
		ptr += nr_cpu_ids * sizeof(void **);

6948
#endif /* CONFIG_RT_GROUP_SCHED */
6949 6950 6951 6952 6953 6954
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6955
	}
I
Ingo Molnar 已提交
6956

G
Gregory Haskins 已提交
6957 6958 6959 6960
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6961 6962 6963 6964
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6965
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6966
			global_rt_period(), global_rt_runtime());
6967
#endif /* CONFIG_RT_GROUP_SCHED */
6968

D
Dhaval Giani 已提交
6969
#ifdef CONFIG_CGROUP_SCHED
6970 6971
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6972
	INIT_LIST_HEAD(&root_task_group.siblings);
6973
	autogroup_init(&init_task);
6974

D
Dhaval Giani 已提交
6975
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6976

6977 6978 6979 6980 6981 6982
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6983
	for_each_possible_cpu(i) {
6984
		struct rq *rq;
L
Linus Torvalds 已提交
6985 6986

		rq = cpu_rq(i);
6987
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6988
		rq->nr_running = 0;
6989 6990
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6991
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6992
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6993
#ifdef CONFIG_FAIR_GROUP_SCHED
6994
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6995
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6996
		/*
6997
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6998 6999 7000 7001
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7002
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7003 7004 7005
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7006
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7007 7008 7009
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7010
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7011
		 *
7012 7013
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7014
		 */
7015
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7016
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7017 7018 7019
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7020
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7021
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7022
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7023
#endif
L
Linus Torvalds 已提交
7024

I
Ingo Molnar 已提交
7025 7026
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7027 7028 7029

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7030
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7031
		rq->sd = NULL;
G
Gregory Haskins 已提交
7032
		rq->rd = NULL;
7033
		rq->cpu_power = SCHED_POWER_SCALE;
7034
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7035
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7036
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7037
		rq->push_cpu = 0;
7038
		rq->cpu = i;
7039
		rq->online = 0;
7040 7041
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7042 7043 7044

		INIT_LIST_HEAD(&rq->cfs_tasks);

7045
		rq_attach_root(rq, &def_root_domain);
7046
#ifdef CONFIG_NO_HZ_COMMON
7047
		rq->nohz_flags = 0;
7048
#endif
L
Linus Torvalds 已提交
7049
#endif
P
Peter Zijlstra 已提交
7050
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7051 7052 7053
		atomic_set(&rq->nr_iowait, 0);
	}

7054
	set_load_weight(&init_task);
7055

7056 7057 7058 7059
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7060
#ifdef CONFIG_RT_MUTEXES
7061
	plist_head_init(&init_task.pi_waiters);
7062 7063
#endif

L
Linus Torvalds 已提交
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7077 7078 7079

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7080 7081 7082 7083
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7084

7085
#ifdef CONFIG_SMP
7086
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7087 7088 7089
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7090
	idle_thread_set_boot_cpu();
7091 7092
#endif
	init_sched_fair_class();
7093

7094
	scheduler_running = 1;
L
Linus Torvalds 已提交
7095 7096
}

7097
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7098 7099
static inline int preempt_count_equals(int preempt_offset)
{
7100
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7101

A
Arnd Bergmann 已提交
7102
	return (nested == preempt_offset);
7103 7104
}

7105
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7106 7107 7108
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7109
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7110 7111
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7112 7113 7114 7115 7116
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7117 7118 7119 7120 7121 7122 7123
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7124 7125 7126 7127 7128

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7129 7130 7131 7132 7133
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7134 7135
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7136 7137
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7138
	int on_rq;
7139

P
Peter Zijlstra 已提交
7140
	on_rq = p->on_rq;
7141
	if (on_rq)
7142
		dequeue_task(rq, p, 0);
7143 7144
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7145
		enqueue_task(rq, p, 0);
7146 7147
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7148 7149

	check_class_changed(rq, p, prev_class, old_prio);
7150 7151
}

L
Linus Torvalds 已提交
7152 7153
void normalize_rt_tasks(void)
{
7154
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7155
	unsigned long flags;
7156
	struct rq *rq;
L
Linus Torvalds 已提交
7157

7158
	read_lock_irqsave(&tasklist_lock, flags);
7159
	do_each_thread(g, p) {
7160 7161 7162 7163 7164 7165
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7166 7167
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7168 7169 7170
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7171
#endif
I
Ingo Molnar 已提交
7172 7173 7174 7175 7176 7177 7178 7179

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7180
			continue;
I
Ingo Molnar 已提交
7181
		}
L
Linus Torvalds 已提交
7182

7183
		raw_spin_lock(&p->pi_lock);
7184
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7185

7186
		normalize_task(rq, p);
7187

7188
		__task_rq_unlock(rq);
7189
		raw_spin_unlock(&p->pi_lock);
7190 7191
	} while_each_thread(g, p);

7192
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7193 7194 7195
}

#endif /* CONFIG_MAGIC_SYSRQ */
7196

7197
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7198
/*
7199
 * These functions are only useful for the IA64 MCA handling, or kdb.
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7214
struct task_struct *curr_task(int cpu)
7215 7216 7217 7218
{
	return cpu_curr(cpu);
}

7219 7220 7221
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7222 7223 7224 7225 7226 7227
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7228 7229
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7230 7231 7232 7233 7234 7235 7236
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7237
void set_curr_task(int cpu, struct task_struct *p)
7238 7239 7240 7241 7242
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7243

D
Dhaval Giani 已提交
7244
#ifdef CONFIG_CGROUP_SCHED
7245 7246 7247
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7248 7249 7250 7251
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7252
	autogroup_free(tg);
7253 7254 7255 7256
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7257
struct task_group *sched_create_group(struct task_group *parent)
7258 7259 7260 7261 7262 7263 7264
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7265
	if (!alloc_fair_sched_group(tg, parent))
7266 7267
		goto err;

7268
	if (!alloc_rt_sched_group(tg, parent))
7269 7270
		goto err;

7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7282
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7283
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7284 7285 7286 7287 7288

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7289
	list_add_rcu(&tg->siblings, &parent->children);
7290
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7291 7292
}

7293
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7294
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7295 7296
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7297
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7298 7299
}

7300
/* Destroy runqueue etc associated with a task group */
7301
void sched_destroy_group(struct task_group *tg)
7302 7303 7304 7305 7306 7307
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7308
{
7309
	unsigned long flags;
7310
	int i;
S
Srivatsa Vaddagiri 已提交
7311

7312 7313
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7314
		unregister_fair_sched_group(tg, i);
7315 7316

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7317
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7318
	list_del_rcu(&tg->siblings);
7319
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7320 7321
}

7322
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7323 7324 7325
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7326 7327
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7328
{
P
Peter Zijlstra 已提交
7329
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7330 7331 7332 7333 7334 7335
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7336
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7337
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7338

7339
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7340
		dequeue_task(rq, tsk, 0);
7341 7342
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7343

P
Peter Zijlstra 已提交
7344 7345 7346 7347 7348 7349
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7350
#ifdef CONFIG_FAIR_GROUP_SCHED
7351 7352 7353
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7354
#endif
7355
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7356

7357 7358 7359
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7360
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7361

7362
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7363
}
D
Dhaval Giani 已提交
7364
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7365

7366
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7367 7368 7369
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7370
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7371

P
Peter Zijlstra 已提交
7372
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7373
}
7374 7375 7376 7377 7378 7379 7380
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7381

P
Peter Zijlstra 已提交
7382 7383
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7384
{
P
Peter Zijlstra 已提交
7385
	struct task_struct *g, *p;
7386

P
Peter Zijlstra 已提交
7387
	do_each_thread(g, p) {
7388
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7389 7390
			return 1;
	} while_each_thread(g, p);
7391

P
Peter Zijlstra 已提交
7392 7393
	return 0;
}
7394

P
Peter Zijlstra 已提交
7395 7396 7397 7398 7399
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7400

7401
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7402 7403 7404 7405 7406
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7407

P
Peter Zijlstra 已提交
7408 7409
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7410

P
Peter Zijlstra 已提交
7411 7412 7413
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7414 7415
	}

7416 7417 7418 7419 7420
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7421

7422 7423 7424
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7425 7426
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7427

P
Peter Zijlstra 已提交
7428
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7429

7430 7431 7432 7433 7434
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7435

7436 7437 7438
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7439 7440 7441
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7442

P
Peter Zijlstra 已提交
7443 7444 7445 7446
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7447

P
Peter Zijlstra 已提交
7448
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7449
	}
P
Peter Zijlstra 已提交
7450

P
Peter Zijlstra 已提交
7451 7452 7453 7454
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7455 7456
}

P
Peter Zijlstra 已提交
7457
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7458
{
7459 7460
	int ret;

P
Peter Zijlstra 已提交
7461 7462 7463 7464 7465 7466
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7467 7468 7469 7470 7471
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7472 7473
}

7474
static int tg_set_rt_bandwidth(struct task_group *tg,
7475
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7476
{
P
Peter Zijlstra 已提交
7477
	int i, err = 0;
P
Peter Zijlstra 已提交
7478 7479

	mutex_lock(&rt_constraints_mutex);
7480
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7481 7482
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7483
		goto unlock;
P
Peter Zijlstra 已提交
7484

7485
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7486 7487
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7488 7489 7490 7491

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7492
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7493
		rt_rq->rt_runtime = rt_runtime;
7494
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7495
	}
7496
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7497
unlock:
7498
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7499 7500 7501
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7502 7503
}

7504
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7505 7506 7507 7508 7509 7510 7511 7512
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7513
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7514 7515
}

7516
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7517 7518 7519
{
	u64 rt_runtime_us;

7520
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7521 7522
		return -1;

7523
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7524 7525 7526
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7527

7528
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7529 7530 7531 7532 7533 7534
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7535 7536 7537
	if (rt_period == 0)
		return -EINVAL;

7538
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7539 7540
}

7541
static long sched_group_rt_period(struct task_group *tg)
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7552
	u64 runtime, period;
7553 7554
	int ret = 0;

7555 7556 7557
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7558 7559 7560 7561 7562 7563 7564 7565
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7566

7567
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7568
	read_lock(&tasklist_lock);
7569
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7570
	read_unlock(&tasklist_lock);
7571 7572 7573 7574
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7575

7576
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7577 7578 7579 7580 7581 7582 7583 7584
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7585
#else /* !CONFIG_RT_GROUP_SCHED */
7586 7587
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7588 7589 7590
	unsigned long flags;
	int i;

7591 7592 7593
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7594 7595 7596 7597 7598 7599 7600
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7601
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7602 7603 7604
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7605
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7606
		rt_rq->rt_runtime = global_rt_runtime();
7607
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7608
	}
7609
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7610

7611 7612
	return 0;
}
7613
#endif /* CONFIG_RT_GROUP_SCHED */
7614

7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7634
int sched_rt_handler(struct ctl_table *table, int write,
7635
		void __user *buffer, size_t *lenp,
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7646
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7663

7664
#ifdef CONFIG_CGROUP_SCHED
7665 7666

/* return corresponding task_group object of a cgroup */
7667
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7668
{
7669 7670
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7671 7672
}

7673
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7674
{
7675
	struct task_group *tg, *parent;
7676

7677
	if (!cgrp->parent) {
7678
		/* This is early initialization for the top cgroup */
7679
		return &root_task_group.css;
7680 7681
	}

7682 7683
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7684 7685 7686 7687 7688 7689
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7703
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7704
{
7705
	struct task_group *tg = cgroup_tg(cgrp);
7706 7707 7708 7709

	sched_destroy_group(tg);
}

7710 7711 7712 7713 7714 7715 7716
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7717
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7718
				 struct cgroup_taskset *tset)
7719
{
7720 7721 7722
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7723
#ifdef CONFIG_RT_GROUP_SCHED
7724 7725
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7726
#else
7727 7728 7729
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7730
#endif
7731
	}
7732 7733
	return 0;
}
7734

7735
static void cpu_cgroup_attach(struct cgroup *cgrp,
7736
			      struct cgroup_taskset *tset)
7737
{
7738 7739 7740 7741
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7742 7743
}

7744
static void
7745 7746
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7759
#ifdef CONFIG_FAIR_GROUP_SCHED
7760
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7761
				u64 shareval)
7762
{
7763
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7764 7765
}

7766
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7767
{
7768
	struct task_group *tg = cgroup_tg(cgrp);
7769

7770
	return (u64) scale_load_down(tg->shares);
7771
}
7772 7773

#ifdef CONFIG_CFS_BANDWIDTH
7774 7775
static DEFINE_MUTEX(cfs_constraints_mutex);

7776 7777 7778
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7779 7780
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7781 7782
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7783
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7784
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7805 7806 7807 7808 7809
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7810
	runtime_enabled = quota != RUNTIME_INF;
7811 7812
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7813 7814 7815
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7816

P
Paul Turner 已提交
7817
	__refill_cfs_bandwidth_runtime(cfs_b);
7818 7819 7820 7821 7822 7823
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7824 7825 7826 7827
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7828
		struct rq *rq = cfs_rq->rq;
7829 7830

		raw_spin_lock_irq(&rq->lock);
7831
		cfs_rq->runtime_enabled = runtime_enabled;
7832
		cfs_rq->runtime_remaining = 0;
7833

7834
		if (cfs_rq->throttled)
7835
			unthrottle_cfs_rq(cfs_rq);
7836 7837
		raw_spin_unlock_irq(&rq->lock);
	}
7838 7839
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7840

7841
	return ret;
7842 7843 7844 7845 7846 7847
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7848
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7861
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7862 7863
		return -1;

7864
	quota_us = tg->cfs_bandwidth.quota;
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7875
	quota = tg->cfs_bandwidth.quota;
7876 7877 7878 7879 7880 7881 7882 7883

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7884
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7944
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7945 7946 7947 7948 7949
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7950
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7971
	int ret;
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7983 7984 7985 7986 7987
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7988
}
7989 7990 7991 7992 7993

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7994
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7995 7996 7997 7998 7999 8000 8001

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
8002
#endif /* CONFIG_CFS_BANDWIDTH */
8003
#endif /* CONFIG_FAIR_GROUP_SCHED */
8004

8005
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8006
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8007
				s64 val)
P
Peter Zijlstra 已提交
8008
{
8009
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8010 8011
}

8012
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8013
{
8014
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8015
}
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8027
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8028

8029
static struct cftype cpu_files[] = {
8030
#ifdef CONFIG_FAIR_GROUP_SCHED
8031 8032
	{
		.name = "shares",
8033 8034
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8035
	},
8036
#endif
8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8048 8049 8050 8051
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8052
#endif
8053
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8054
	{
P
Peter Zijlstra 已提交
8055
		.name = "rt_runtime_us",
8056 8057
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8058
	},
8059 8060
	{
		.name = "rt_period_us",
8061 8062
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8063
	},
8064
#endif
8065
	{ }	/* terminate */
8066 8067 8068
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8069
	.name		= "cpu",
8070 8071
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8072 8073
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8074 8075
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8076
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8077
	.subsys_id	= cpu_cgroup_subsys_id,
8078
	.base_cftypes	= cpu_files,
8079 8080 8081
	.early_init	= 1,
};

8082
#endif	/* CONFIG_CGROUP_SCHED */
8083 8084 8085 8086 8087 8088 8089 8090 8091 8092

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8093 8094
struct cpuacct root_cpuacct;

8095
/* create a new cpu accounting group */
8096
static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8097
{
8098
	struct cpuacct *ca;
8099

8100 8101 8102 8103
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8104
	if (!ca)
8105
		goto out;
8106 8107

	ca->cpuusage = alloc_percpu(u64);
8108 8109 8110
	if (!ca->cpuusage)
		goto out_free_ca;

8111 8112 8113
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8114

8115
	return &ca->css;
8116

8117
out_free_cpuusage:
8118 8119 8120 8121 8122
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8123 8124 8125
}

/* destroy an existing cpu accounting group */
8126
static void cpuacct_css_free(struct cgroup *cgrp)
8127
{
8128
	struct cpuacct *ca = cgroup_ca(cgrp);
8129

8130
	free_percpu(ca->cpustat);
8131 8132 8133 8134
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8135 8136
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8137
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8138 8139 8140 8141 8142 8143
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8144
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8145
	data = *cpuusage;
8146
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8147 8148 8149 8150 8151 8152 8153 8154 8155
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8156
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8157 8158 8159 8160 8161

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8162
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8163
	*cpuusage = val;
8164
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8165 8166 8167 8168 8169
#else
	*cpuusage = val;
#endif
}

8170
/* return total cpu usage (in nanoseconds) of a group */
8171
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8172
{
8173
	struct cpuacct *ca = cgroup_ca(cgrp);
8174 8175 8176
	u64 totalcpuusage = 0;
	int i;

8177 8178
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8179 8180 8181 8182

	return totalcpuusage;
}

8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8195 8196
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8197 8198 8199 8200 8201

out:
	return err;
}

8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8217 8218 8219 8220 8221 8222
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8223
			      struct cgroup_map_cb *cb)
8224 8225
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8226 8227
	int cpu;
	s64 val = 0;
8228

8229 8230 8231 8232
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8233
	}
8234 8235
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8236

8237 8238 8239 8240 8241 8242
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8243
	}
8244 8245 8246 8247

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8248 8249 8250
	return 0;
}

8251 8252 8253
static struct cftype files[] = {
	{
		.name = "usage",
8254 8255
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8256
	},
8257 8258 8259 8260
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8261 8262 8263 8264
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8265
	{ }	/* terminate */
8266 8267 8268 8269 8270 8271 8272
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8273
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8274 8275
{
	struct cpuacct *ca;
8276
	int cpu;
8277

L
Li Zefan 已提交
8278
	if (unlikely(!cpuacct_subsys.active))
8279 8280
		return;

8281
	cpu = task_cpu(tsk);
8282 8283 8284

	rcu_read_lock();

8285 8286
	ca = task_ca(tsk);

8287
	for (; ca; ca = parent_ca(ca)) {
8288
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8289 8290
		*cpuusage += cputime;
	}
8291 8292

	rcu_read_unlock();
8293 8294 8295 8296
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
8297 8298
	.css_alloc = cpuacct_css_alloc,
	.css_free = cpuacct_css_free,
8299
	.subsys_id = cpuacct_subsys_id,
8300
	.base_cftypes = files,
8301 8302
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8303 8304 8305 8306 8307 8308

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}