core.c 194.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_internal.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

196
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
197 198
{
	int i;
199
	int neg = 0;
P
Peter Zijlstra 已提交
200

H
Hillf Danton 已提交
201
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
202 203 204 205
		neg = 1;
		cmp += 3;
	}

206
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208
			if (neg) {
P
Peter Zijlstra 已提交
209
				sysctl_sched_features &= ~(1UL << i);
210 211
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features |= (1UL << i);
213 214
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
215 216 217 218
			break;
		}
	}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
240
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
241 242
		return -EINVAL;

243
	*ppos += cnt;
P
Peter Zijlstra 已提交
244 245 246 247

	return cnt;
}

L
Li Zefan 已提交
248 249 250 251 252
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

253
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
254 255 256 257 258
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266 267 268
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
269
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
270

271 272 273 274 275 276
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

277 278 279 280 281 282 283 284
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
285
/*
P
Peter Zijlstra 已提交
286
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
287 288
 * default: 1s
 */
P
Peter Zijlstra 已提交
289
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
290

291
__read_mostly int scheduler_running;
292

P
Peter Zijlstra 已提交
293 294 295 296 297
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
298 299


L
Linus Torvalds 已提交
300

301
/*
302
 * __task_rq_lock - lock the rq @p resides on.
303
 */
304
static inline struct rq *__task_rq_lock(struct task_struct *p)
305 306
	__acquires(rq->lock)
{
307 308
	struct rq *rq;

309 310
	lockdep_assert_held(&p->pi_lock);

311
	for (;;) {
312
		rq = task_rq(p);
313
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
314
		if (likely(rq == task_rq(p)))
315
			return rq;
316
		raw_spin_unlock(&rq->lock);
317 318 319
	}
}

L
Linus Torvalds 已提交
320
/*
321
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
322
 */
323
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
325 326
	__acquires(rq->lock)
{
327
	struct rq *rq;
L
Linus Torvalds 已提交
328

329
	for (;;) {
330
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331
		rq = task_rq(p);
332
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
333
		if (likely(rq == task_rq(p)))
334
			return rq;
335 336
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
337 338 339
	}
}

A
Alexey Dobriyan 已提交
340
static void __task_rq_unlock(struct rq *rq)
341 342
	__releases(rq->lock)
{
343
	raw_spin_unlock(&rq->lock);
344 345
}

346 347
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
348
	__releases(rq->lock)
349
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
350
{
351 352
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
353 354 355
}

/*
356
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
357
 */
A
Alexey Dobriyan 已提交
358
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
359 360
	__acquires(rq->lock)
{
361
	struct rq *rq;
L
Linus Torvalds 已提交
362 363 364

	local_irq_disable();
	rq = this_rq();
365
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
366 367 368 369

	return rq;
}

P
Peter Zijlstra 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

398
	raw_spin_lock(&rq->lock);
399
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
400
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
402 403 404 405

	return HRTIMER_NORESTART;
}

406
#ifdef CONFIG_SMP
407 408 409 410
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
411
{
412
	struct rq *rq = arg;
413

414
	raw_spin_lock(&rq->lock);
415 416
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
417
	raw_spin_unlock(&rq->lock);
418 419
}

420 421 422 423 424
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427 428
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429

430
	hrtimer_set_expires(timer, time);
431 432 433 434

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
435
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 437
		rq->hrtick_csd_pending = 1;
	}
438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
452
		hrtick_clear(cpu_rq(cpu));
453 454 455 456 457 458
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

459
static __init void init_hrtick(void)
460 461 462
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
463 464 465 466 467 468
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
469
void hrtick_start(struct rq *rq, u64 delay)
470
{
471
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472
			HRTIMER_MODE_REL_PINNED, 0);
473
}
474

A
Andrew Morton 已提交
475
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
476 477
{
}
478
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
479

480
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
481
{
482 483
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
484

485 486 487 488
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
489

490 491
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
492
}
A
Andrew Morton 已提交
493
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

502 503 504
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
505
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
506

I
Ingo Molnar 已提交
507 508 509 510 511 512 513 514
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
515
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
516 517 518
{
	int cpu;

519
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
520

521
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
522 523
		return;

524
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
525 526 527 528 529 530 531 532 533 534 535

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

536
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
537 538 539 540
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

541
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
542 543
		return;
	resched_task(cpu_curr(cpu));
544
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
545
}
546

547
#ifdef CONFIG_NO_HZ_COMMON
548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

562
	rcu_read_lock();
563
	for_each_domain(cpu, sd) {
564 565 566 567 568 569
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
570
	}
571 572
unlock:
	rcu_read_unlock();
573 574
	return cpu;
}
575 576 577 578 579 580 581 582 583 584
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
585
static void wake_up_idle_cpu(int cpu)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
601 602

	/*
603 604 605
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
606
	 */
607
	set_tsk_need_resched(rq->idle);
608

609 610 611 612
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
613 614
}

615
static bool wake_up_full_nohz_cpu(int cpu)
616
{
617
	if (tick_nohz_full_cpu(cpu)) {
618 619 620 621 622 623 624 625 626 627 628
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
629
	if (!wake_up_full_nohz_cpu(cpu))
630 631 632
		wake_up_idle_cpu(cpu);
}

633
static inline bool got_nohz_idle_kick(void)
634
{
635 636
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
637 638
}

639
#else /* CONFIG_NO_HZ_COMMON */
640

641
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
642
{
643
	return false;
P
Peter Zijlstra 已提交
644 645
}

646
#endif /* CONFIG_NO_HZ_COMMON */
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
665

666
void sched_avg_update(struct rq *rq)
667
{
668 669 670
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
671 672 673 674 675 676
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
677 678 679
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
680 681
}

682
#else /* !CONFIG_SMP */
683
void resched_task(struct task_struct *p)
684
{
685
	assert_raw_spin_locked(&task_rq(p)->lock);
686
	set_tsk_need_resched(p);
687
}
688
#endif /* CONFIG_SMP */
689

690 691
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692
/*
693 694 695 696
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
697
 */
698
int walk_tg_tree_from(struct task_group *from,
699
			     tg_visitor down, tg_visitor up, void *data)
700 701
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
702
	int ret;
703

704 705
	parent = from;

706
down:
P
Peter Zijlstra 已提交
707 708
	ret = (*down)(parent, data);
	if (ret)
709
		goto out;
710 711 712 713 714 715 716
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
717
	ret = (*up)(parent, data);
718 719
	if (ret || parent == from)
		goto out;
720 721 722 723 724

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
725
out:
P
Peter Zijlstra 已提交
726
	return ret;
727 728
}

729
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
730
{
731
	return 0;
P
Peter Zijlstra 已提交
732
}
733 734
#endif

735 736
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
737 738 739
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
740 741 742 743
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
744
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
745
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
746 747
		return;
	}
748

749
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
750
	load->inv_weight = prio_to_wmult[prio];
751 752
}

753
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754
{
755
	update_rq_clock(rq);
I
Ingo Molnar 已提交
756
	sched_info_queued(p);
757
	p->sched_class->enqueue_task(rq, p, flags);
758 759
}

760
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
761
{
762
	update_rq_clock(rq);
763
	sched_info_dequeued(p);
764
	p->sched_class->dequeue_task(rq, p, flags);
765 766
}

767
void activate_task(struct rq *rq, struct task_struct *p, int flags)
768 769 770 771
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

772
	enqueue_task(rq, p, flags);
773 774
}

775
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

780
	dequeue_task(rq, p, flags);
781 782
}

783
static void update_rq_clock_task(struct rq *rq, s64 delta)
784
{
785 786 787 788 789 790 791 792
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
793
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
815 816
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
817
	if (static_key_false((&paravirt_steal_rq_enabled))) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

835 836
	rq->clock_task += delta;

837 838 839 840
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

873
/*
I
Ingo Molnar 已提交
874
 * __normal_prio - return the priority that is based on the static prio
875 876 877
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
878
	return p->static_prio;
879 880
}

881 882 883 884 885 886 887
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
888
static inline int normal_prio(struct task_struct *p)
889 890 891
{
	int prio;

892
	if (task_has_rt_policy(p))
893 894 895 896 897 898 899 900 901 902 903 904 905
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
906
static int effective_prio(struct task_struct *p)
907 908 909 910 911 912 913 914 915 916 917 918
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
919 920 921 922
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
923
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
924 925 926 927
{
	return cpu_curr(task_cpu(p)) == p;
}

928 929
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
930
				       int oldprio)
931 932 933
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
934 935 936 937
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
938 939
}

940
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
961
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
962 963 964
		rq->skip_clock_update = 1;
}

965 966 967 968 969 970 971
static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);

void register_task_migration_notifier(struct notifier_block *n)
{
	atomic_notifier_chain_register(&task_migration_notifier, n);
}

L
Linus Torvalds 已提交
972
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
973
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
974
{
975 976 977 978 979
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
980 981
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
982 983

#ifdef CONFIG_LOCKDEP
984 985 986 987 988
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
989
	 * see task_group().
990 991 992 993
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
994 995 996
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
997 998
#endif

999
	trace_sched_migrate_task(p, new_cpu);
1000

1001
	if (task_cpu(p) != new_cpu) {
1002 1003
		struct task_migration_notifier tmn;

1004 1005
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1006
		p->se.nr_migrations++;
1007
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008 1009 1010 1011 1012 1013

		tmn.task = p;
		tmn.from_cpu = task_cpu(p);
		tmn.to_cpu = new_cpu;

		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1014
	}
I
Ingo Molnar 已提交
1015 1016

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1017 1018
}

1019
struct migration_arg {
1020
	struct task_struct *task;
L
Linus Torvalds 已提交
1021
	int dest_cpu;
1022
};
L
Linus Torvalds 已提交
1023

1024 1025
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1026 1027 1028
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1029 1030 1031 1032 1033 1034 1035
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1042
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1043 1044
{
	unsigned long flags;
I
Ingo Molnar 已提交
1045
	int running, on_rq;
R
Roland McGrath 已提交
1046
	unsigned long ncsw;
1047
	struct rq *rq;
L
Linus Torvalds 已提交
1048

1049 1050 1051 1052 1053 1054 1055 1056
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1069 1070 1071
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1072
			cpu_relax();
R
Roland McGrath 已提交
1073
		}
1074

1075 1076 1077 1078 1079 1080
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1081
		trace_sched_wait_task(p);
1082
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1083
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1084
		ncsw = 0;
1085
		if (!match_state || p->state == match_state)
1086
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1087
		task_rq_unlock(rq, p, &flags);
1088

R
Roland McGrath 已提交
1089 1090 1091 1092 1093 1094
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1105

1106 1107 1108 1109 1110
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1111
		 * So if it was still runnable (but just not actively
1112 1113 1114 1115
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1116 1117 1118 1119
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1120 1121
			continue;
		}
1122

1123 1124 1125 1126 1127 1128 1129
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1130 1131

	return ncsw;
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1141
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1142 1143 1144 1145 1146
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1147
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1157
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1158
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1159

1160
#ifdef CONFIG_SMP
1161
/*
1162
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1163
 */
1164 1165
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1166 1167
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1168 1169
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1188
	}
1189

1190 1191
	for (;;) {
		/* Any allowed, online CPU? */
1192
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1193 1194 1195 1196 1197 1198
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1229 1230 1231 1232 1233
	}

	return dest_cpu;
}

1234
/*
1235
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1236
 */
1237
static inline
1238
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1239
{
1240
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1252
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1253
		     !cpu_online(cpu)))
1254
		cpu = select_fallback_rq(task_cpu(p), p);
1255 1256

	return cpu;
1257
}
1258 1259 1260 1261 1262 1263

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1264 1265
#endif

P
Peter Zijlstra 已提交
1266
static void
1267
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1268
{
P
Peter Zijlstra 已提交
1269
#ifdef CONFIG_SCHEDSTATS
1270 1271
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1282
		rcu_read_lock();
P
Peter Zijlstra 已提交
1283 1284 1285 1286 1287 1288
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1289
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1290
	}
1291 1292 1293 1294

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1295 1296 1297
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1298
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1299 1300

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1301
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1302 1303 1304 1305 1306 1307

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1308
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1309
	p->on_rq = 1;
1310 1311 1312 1313

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1314 1315
}

1316 1317 1318
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1319
static void
1320
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1321 1322
{
	check_preempt_curr(rq, p, wake_flags);
1323
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1324 1325 1326 1327 1328 1329

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1330
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1376
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1377
static void sched_ttwu_pending(void)
1378 1379
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1380 1381
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1382 1383 1384

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1385 1386 1387
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1388 1389 1390 1391 1392 1393 1394 1395
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1396 1397
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
	    && !tick_nohz_full_cpu(smp_processor_id()))
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1414
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1415
	sched_ttwu_pending();
1416 1417 1418 1419

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1420 1421
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1422
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1423
	}
1424
	irq_exit();
1425 1426 1427 1428
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1429
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1430 1431
		smp_send_reschedule(cpu);
}
1432

1433
bool cpus_share_cache(int this_cpu, int that_cpu)
1434 1435 1436
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1437
#endif /* CONFIG_SMP */
1438

1439 1440 1441 1442
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1443
#if defined(CONFIG_SMP)
1444
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1445
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1446 1447 1448 1449 1450
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1451 1452 1453
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1454 1455 1456
}

/**
L
Linus Torvalds 已提交
1457
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1458
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1459
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1460
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465 1466 1467
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1468 1469
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1470
 */
1471 1472
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1473 1474
{
	unsigned long flags;
1475
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1476

1477
	smp_wmb();
1478
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1479
	if (!(p->state & state))
L
Linus Torvalds 已提交
1480 1481
		goto out;

1482
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1483 1484
	cpu = task_cpu(p);

1485 1486
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1487 1488

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1489
	/*
1490 1491
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1492
	 */
1493
	while (p->on_cpu)
1494
		cpu_relax();
1495
	/*
1496
	 * Pairs with the smp_wmb() in finish_lock_switch().
1497
	 */
1498
	smp_rmb();
L
Linus Torvalds 已提交
1499

1500
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1501
	p->state = TASK_WAKING;
1502

1503
	if (p->sched_class->task_waking)
1504
		p->sched_class->task_waking(p);
1505

1506
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1507 1508
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1509
		set_task_cpu(p, cpu);
1510
	}
L
Linus Torvalds 已提交
1511 1512
#endif /* CONFIG_SMP */

1513 1514
	ttwu_queue(p, cpu);
stat:
1515
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1516
out:
1517
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1518 1519 1520 1521

	return success;
}

T
Tejun Heo 已提交
1522 1523 1524 1525
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1526
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1527
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1528
 * the current task.
T
Tejun Heo 已提交
1529 1530 1531 1532 1533
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1534 1535 1536 1537
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1538 1539
	lockdep_assert_held(&rq->lock);

1540 1541 1542 1543 1544 1545
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1546
	if (!(p->state & TASK_NORMAL))
1547
		goto out;
T
Tejun Heo 已提交
1548

P
Peter Zijlstra 已提交
1549
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1550 1551
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1552
	ttwu_do_wakeup(rq, p, 0);
1553
	ttwu_stat(p, smp_processor_id(), 0);
1554 1555
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1569
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1570
{
1571 1572
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1573 1574 1575
}
EXPORT_SYMBOL(wake_up_process);

1576
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581 1582 1583
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1584 1585 1586 1587 1588
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1589 1590 1591
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1592 1593
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1594
	p->se.prev_sum_exec_runtime	= 0;
1595
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1596
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1597
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1598

1599 1600 1601 1602 1603 1604
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1605 1606 1607
	p->se.avg.runnable_avg_period = 0;
	p->se.avg.runnable_avg_sum = 0;
#endif
I
Ingo Molnar 已提交
1608
#ifdef CONFIG_SCHEDSTATS
1609
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1610
#endif
N
Nick Piggin 已提交
1611

P
Peter Zijlstra 已提交
1612
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1613

1614 1615 1616
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1617 1618 1619 1620

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1621
		p->mm->numa_next_reset = jiffies;
1622 1623 1624 1625 1626 1627
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1628
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1629 1630
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1631 1632
}

1633
#ifdef CONFIG_NUMA_BALANCING
1634
#ifdef CONFIG_SCHED_DEBUG
1635 1636 1637 1638 1639 1640 1641
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1642 1643 1644 1645 1646 1647
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1648
}
1649
#endif /* CONFIG_SCHED_DEBUG */
1650
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1651 1652 1653 1654

/*
 * fork()/clone()-time setup:
 */
1655
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1656
{
1657
	unsigned long flags;
I
Ingo Molnar 已提交
1658 1659 1660
	int cpu = get_cpu();

	__sched_fork(p);
1661
	/*
1662
	 * We mark the process as running here. This guarantees that
1663 1664 1665
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1666
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1667

1668 1669 1670 1671 1672
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1673 1674 1675 1676
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1677
		if (task_has_rt_policy(p)) {
1678
			p->policy = SCHED_NORMAL;
1679
			p->static_prio = NICE_TO_PRIO(0);
1680 1681 1682 1683 1684 1685
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1686

1687 1688 1689 1690 1691 1692
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1693

H
Hiroshi Shimamoto 已提交
1694 1695
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1696

P
Peter Zijlstra 已提交
1697 1698 1699
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1700 1701 1702 1703 1704 1705 1706
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1707
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1708
	set_task_cpu(p, cpu);
1709
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1710

1711
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1712
	if (likely(sched_info_on()))
1713
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1714
#endif
P
Peter Zijlstra 已提交
1715 1716
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1717
#endif
1718
#ifdef CONFIG_PREEMPT_COUNT
1719
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1720
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1721
#endif
1722
#ifdef CONFIG_SMP
1723
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1724
#endif
1725

N
Nick Piggin 已提交
1726
	put_cpu();
L
Linus Torvalds 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1736
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1737 1738
{
	unsigned long flags;
I
Ingo Molnar 已提交
1739
	struct rq *rq;
1740

1741
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1742 1743 1744 1745 1746 1747
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1748
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1749 1750
#endif

1751
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1752
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1753
	p->on_rq = 1;
1754
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1755
	check_preempt_curr(rq, p, WF_FORK);
1756
#ifdef CONFIG_SMP
1757 1758
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1759
#endif
1760
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1761 1762
}

1763 1764 1765
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1766
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1767
 * @notifier: notifier struct to register
1768 1769 1770 1771 1772 1773 1774 1775 1776
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1777
 * @notifier: notifier struct to unregister
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

1791
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1792 1793 1794 1795 1796 1797 1798 1799 1800
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

1801
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802 1803 1804
		notifier->ops->sched_out(notifier, next);
}

1805
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1817
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1818

1819 1820 1821
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1822
 * @prev: the current task that is being switched out
1823 1824 1825 1826 1827 1828 1829 1830 1831
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1832 1833 1834
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1835
{
1836
	trace_sched_switch(prev, next);
1837 1838
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1839
	fire_sched_out_preempt_notifiers(prev, next);
1840 1841 1842 1843
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1844 1845
/**
 * finish_task_switch - clean up after a task-switch
1846
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1847 1848
 * @prev: the thread we just switched away from.
 *
1849 1850 1851 1852
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1853 1854
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1855
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1856 1857 1858
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1859
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1860 1861 1862
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1863
	long prev_state;
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1869
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1870 1871
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1872
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1878
	prev_state = prev->state;
1879
	vtime_task_switch(prev);
1880
	finish_arch_switch(prev);
1881
	perf_event_task_sched_in(prev, current);
1882
	finish_lock_switch(rq, prev);
1883
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1884

1885
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1886 1887
	if (mm)
		mmdrop(mm);
1888
	if (unlikely(prev_state == TASK_DEAD)) {
1889 1890 1891
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1892
		 */
1893
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1894
		put_task_struct(prev);
1895
	}
1896 1897

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
1898 1899
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1915
		raw_spin_lock_irqsave(&rq->lock, flags);
1916 1917
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1918
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1919 1920 1921 1922 1923 1924

		rq->post_schedule = 0;
	}
}

#else
1925

1926 1927 1928 1929 1930 1931
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1932 1933
}

1934 1935
#endif

L
Linus Torvalds 已提交
1936 1937 1938 1939
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1940
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1941 1942
	__releases(rq->lock)
{
1943 1944
	struct rq *rq = this_rq();

1945
	finish_task_switch(rq, prev);
1946

1947 1948 1949 1950 1951
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1952

1953 1954 1955 1956
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1957
	if (current->set_child_tid)
1958
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1965
static inline void
1966
context_switch(struct rq *rq, struct task_struct *prev,
1967
	       struct task_struct *next)
L
Linus Torvalds 已提交
1968
{
I
Ingo Molnar 已提交
1969
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1970

1971
	prepare_task_switch(rq, prev, next);
1972

I
Ingo Molnar 已提交
1973 1974
	mm = next->mm;
	oldmm = prev->active_mm;
1975 1976 1977 1978 1979
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1980
	arch_start_context_switch(prev);
1981

1982
	if (!mm) {
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1989
	if (!prev->mm) {
L
Linus Torvalds 已提交
1990 1991 1992
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1993 1994 1995 1996 1997 1998 1999
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2000
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2001
#endif
L
Linus Torvalds 已提交
2002

2003
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2004 2005 2006
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2007 2008 2009 2010 2011 2012 2013
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2014 2015 2016
}

/*
2017
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2018 2019
 *
 * externally visible scheduler statistics: current number of runnable
2020
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2030
}
L
Linus Torvalds 已提交
2031 2032

unsigned long long nr_context_switches(void)
2033
{
2034 2035
	int i;
	unsigned long long sum = 0;
2036

2037
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2038
		sum += cpu_rq(i)->nr_switches;
2039

L
Linus Torvalds 已提交
2040 2041
	return sum;
}
2042

L
Linus Torvalds 已提交
2043 2044 2045
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2046

2047
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2048
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2049

L
Linus Torvalds 已提交
2050 2051
	return sum;
}
2052

2053
unsigned long nr_iowait_cpu(int cpu)
2054
{
2055
	struct rq *this = cpu_rq(cpu);
2056 2057
	return atomic_read(&this->nr_iowait);
}
2058

2059 2060 2061 2062 2063
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2064

2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2113 2114 2115 2116
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2133

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2149 2150 2151
/*
 * a1 = a0 * e + a * (1 - e)
 */
2152 2153 2154 2155 2156 2157 2158 2159 2160
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2161
#ifdef CONFIG_NO_HZ_COMMON
2162
/*
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2201 2202 2203
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2204 2205
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2206

2207
static inline int calc_load_write_idx(void)
2208
{
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2235 2236
	long delta;

2237 2238 2239 2240
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2241
	delta = calc_load_fold_active(this_rq);
2242 2243 2244 2245
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2246 2247
}

2248
void calc_load_exit_idle(void)
2249
{
2250 2251 2252 2253 2254 2255 2256
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2257 2258

	/*
2259 2260 2261
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2262
	 */
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2275 2276 2277

	return delta;
}
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2356
static void calc_global_nohz(void)
2357 2358 2359
{
	long delta, active, n;

2360 2361 2362 2363 2364 2365
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2366

2367 2368
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2369

2370 2371 2372
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2373

2374 2375
		calc_load_update += n * LOAD_FREQ;
	}
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2386
}
2387
#else /* !CONFIG_NO_HZ_COMMON */
2388

2389 2390
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2391

2392
#endif /* CONFIG_NO_HZ_COMMON */
2393 2394

/*
2395 2396
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2397
 */
2398
void calc_global_load(unsigned long ticks)
2399
{
2400
	long active, delta;
L
Linus Torvalds 已提交
2401

2402
	if (time_before(jiffies, calc_load_update + 10))
2403
		return;
L
Linus Torvalds 已提交
2404

2405 2406 2407 2408 2409 2410 2411
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2412 2413
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2414

2415 2416 2417
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2418

2419
	calc_load_update += LOAD_FREQ;
2420 2421

	/*
2422
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2423 2424
	 */
	calc_global_nohz();
2425
}
L
Linus Torvalds 已提交
2426

2427
/*
2428 2429
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2430 2431 2432
 */
static void calc_load_account_active(struct rq *this_rq)
{
2433
	long delta;
2434

2435 2436
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2437

2438 2439
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2440
		atomic_long_add(delta, &calc_load_tasks);
2441 2442

	this_rq->calc_load_update += LOAD_FREQ;
2443 2444
}

2445 2446 2447 2448
/*
 * End of global load-average stuff
 */

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2516
/*
I
Ingo Molnar 已提交
2517
 * Update rq->cpu_load[] statistics. This function is usually called every
2518 2519
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2520
 */
2521 2522
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2523
{
I
Ingo Molnar 已提交
2524
	int i, scale;
2525

I
Ingo Molnar 已提交
2526
	this_rq->nr_load_updates++;
2527

I
Ingo Molnar 已提交
2528
	/* Update our load: */
2529 2530
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2531
		unsigned long old_load, new_load;
2532

I
Ingo Molnar 已提交
2533
		/* scale is effectively 1 << i now, and >> i divides by scale */
2534

I
Ingo Molnar 已提交
2535
		old_load = this_rq->cpu_load[i];
2536
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2537
		new_load = this_load;
I
Ingo Molnar 已提交
2538 2539 2540 2541 2542 2543
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2544 2545 2546
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2547
	}
2548 2549

	sched_avg_update(this_rq);
2550 2551
}

2552
#ifdef CONFIG_NO_HZ_COMMON
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2566 2567 2568 2569 2570 2571
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2572
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2573 2574 2575 2576
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2577
	 * bail if there's load or we're actually up-to-date.
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
2612
#endif /* CONFIG_NO_HZ_COMMON */
2613

2614 2615 2616
/*
 * Called from scheduler_tick()
 */
2617 2618
static void update_cpu_load_active(struct rq *this_rq)
{
2619
	/*
2620
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2621 2622 2623
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2624

2625
	calc_load_account_active(this_rq);
2626 2627
}

I
Ingo Molnar 已提交
2628
#ifdef CONFIG_SMP
2629

2630
/*
P
Peter Zijlstra 已提交
2631 2632
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2633
 */
P
Peter Zijlstra 已提交
2634
void sched_exec(void)
2635
{
P
Peter Zijlstra 已提交
2636
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2637
	unsigned long flags;
2638
	int dest_cpu;
2639

2640
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2641
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2642 2643
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2644

2645
	if (likely(cpu_active(dest_cpu))) {
2646
		struct migration_arg arg = { p, dest_cpu };
2647

2648 2649
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2650 2651
		return;
	}
2652
unlock:
2653
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2654
}
I
Ingo Molnar 已提交
2655

L
Linus Torvalds 已提交
2656 2657 2658
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2659
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2660 2661

EXPORT_PER_CPU_SYMBOL(kstat);
2662
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2663 2664

/*
2665
 * Return any ns on the sched_clock that have not yet been accounted in
2666
 * @p in case that task is currently running.
2667 2668
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2669
 */
2670 2671 2672 2673 2674 2675
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2676
		ns = rq->clock_task - p->se.exec_start;
2677 2678 2679 2680 2681 2682 2683
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2684
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2685 2686
{
	unsigned long flags;
2687
	struct rq *rq;
2688
	u64 ns = 0;
2689

2690
	rq = task_rq_lock(p, &flags);
2691
	ns = do_task_delta_exec(p, rq);
2692
	task_rq_unlock(rq, p, &flags);
2693

2694 2695
	return ns;
}
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2710
	task_rq_unlock(rq, p, &flags);
2711 2712 2713

	return ns;
}
2714

2715 2716 2717 2718 2719 2720 2721 2722
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2723
	struct task_struct *curr = rq->curr;
2724 2725

	sched_clock_tick();
I
Ingo Molnar 已提交
2726

2727
	raw_spin_lock(&rq->lock);
2728
	update_rq_clock(rq);
2729
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2730
	curr->sched_class->task_tick(rq, curr, 0);
2731
	raw_spin_unlock(&rq->lock);
2732

2733
	perf_event_task_tick();
2734

2735
#ifdef CONFIG_SMP
2736
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2737
	trigger_load_balance(rq, cpu);
2738
#endif
2739
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2740 2741
}

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
L
Linus Torvalds 已提交
2765
}
2766
#endif
L
Linus Torvalds 已提交
2767

2768
notrace unsigned long get_parent_ip(unsigned long addr)
2769 2770 2771 2772 2773 2774 2775 2776
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2777

2778 2779 2780
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2781
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2782
{
2783
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2784 2785 2786
	/*
	 * Underflow?
	 */
2787 2788
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2789
#endif
L
Linus Torvalds 已提交
2790
	preempt_count() += val;
2791
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2792 2793 2794
	/*
	 * Spinlock count overflowing soon?
	 */
2795 2796
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2797 2798 2799
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2800 2801 2802
}
EXPORT_SYMBOL(add_preempt_count);

2803
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2804
{
2805
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2806 2807 2808
	/*
	 * Underflow?
	 */
2809
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2810
		return;
L
Linus Torvalds 已提交
2811 2812 2813
	/*
	 * Is the spinlock portion underflowing?
	 */
2814 2815 2816
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2817
#endif
2818

2819 2820
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826 2827
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2828
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2829
 */
I
Ingo Molnar 已提交
2830
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2831
{
2832 2833 2834
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2835 2836
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2837

I
Ingo Molnar 已提交
2838
	debug_show_held_locks(prev);
2839
	print_modules();
I
Ingo Molnar 已提交
2840 2841
	if (irqs_disabled())
		print_irqtrace_events(prev);
2842
	dump_stack();
2843
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2844
}
L
Linus Torvalds 已提交
2845

I
Ingo Molnar 已提交
2846 2847 2848 2849 2850
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2851
	/*
I
Ingo Molnar 已提交
2852
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2853 2854 2855
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2856
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2857
		__schedule_bug(prev);
2858
	rcu_sleep_check();
I
Ingo Molnar 已提交
2859

L
Linus Torvalds 已提交
2860 2861
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2862
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2863 2864
}

P
Peter Zijlstra 已提交
2865
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2866
{
2867
	if (prev->on_rq || rq->skip_clock_update < 0)
2868
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2869
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2870 2871
}

I
Ingo Molnar 已提交
2872 2873 2874 2875
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2876
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2877
{
2878
	const struct sched_class *class;
I
Ingo Molnar 已提交
2879
	struct task_struct *p;
L
Linus Torvalds 已提交
2880 2881

	/*
I
Ingo Molnar 已提交
2882 2883
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2884
	 */
2885
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2886
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2887 2888
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2889 2890
	}

2891
	for_each_class(class) {
2892
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2893 2894 2895
		if (p)
			return p;
	}
2896 2897

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2898
}
L
Linus Torvalds 已提交
2899

I
Ingo Molnar 已提交
2900
/*
2901
 * __schedule() is the main scheduler function.
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2936
 */
2937
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2938 2939
{
	struct task_struct *prev, *next;
2940
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2941
	struct rq *rq;
2942
	int cpu;
I
Ingo Molnar 已提交
2943

2944 2945
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2946 2947
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2948
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2949 2950 2951
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2952

2953
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2954
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2955

2956
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2957

2958
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2959
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2960
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2961
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2962
		} else {
2963 2964 2965
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2966
			/*
2967 2968 2969
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2979
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2980 2981
	}

2982
	pre_schedule(rq, prev);
2983

I
Ingo Molnar 已提交
2984
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2985 2986
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2987
	put_prev_task(rq, prev);
2988
	next = pick_next_task(rq);
2989 2990
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2991 2992 2993 2994 2995 2996

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2997
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2998
		/*
2999 3000 3001 3002
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3003 3004 3005
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3006
	} else
3007
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3008

3009
	post_schedule(rq);
L
Linus Torvalds 已提交
3010

3011
	sched_preempt_enable_no_resched();
3012
	if (need_resched())
L
Linus Torvalds 已提交
3013 3014
		goto need_resched;
}
3015

3016 3017
static inline void sched_submit_work(struct task_struct *tsk)
{
3018
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3019 3020 3021 3022 3023 3024 3025 3026 3027
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3028
asmlinkage void __sched schedule(void)
3029
{
3030 3031 3032
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3033 3034
	__schedule();
}
L
Linus Torvalds 已提交
3035 3036
EXPORT_SYMBOL(schedule);

3037
#ifdef CONFIG_CONTEXT_TRACKING
3038 3039 3040 3041 3042 3043 3044 3045
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
3046
	user_exit();
3047
	schedule();
3048
	user_enter();
3049 3050 3051
}
#endif

3052 3053 3054 3055 3056 3057 3058
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3059
	sched_preempt_enable_no_resched();
3060 3061 3062 3063
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
3064 3065
#ifdef CONFIG_PREEMPT
/*
3066
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3067
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3068 3069
 * occur there and call schedule directly.
 */
3070
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3071 3072
{
	struct thread_info *ti = current_thread_info();
3073

L
Linus Torvalds 已提交
3074 3075
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3076
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3077
	 */
N
Nick Piggin 已提交
3078
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3079 3080
		return;

3081
	do {
3082
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3083
		__schedule();
3084
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3085

3086 3087 3088 3089 3090
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3091
	} while (need_resched());
L
Linus Torvalds 已提交
3092 3093 3094 3095
}
EXPORT_SYMBOL(preempt_schedule);

/*
3096
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102 3103
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3104
	enum ctx_state prev_state;
3105

3106
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3107 3108
	BUG_ON(ti->preempt_count || !irqs_disabled());

3109 3110
	prev_state = exception_enter();

3111 3112 3113
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3114
		__schedule();
3115 3116
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3117

3118 3119 3120 3121 3122
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3123
	} while (need_resched());
3124 3125

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3126 3127 3128 3129
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3130
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3131
			  void *key)
L
Linus Torvalds 已提交
3132
{
P
Peter Zijlstra 已提交
3133
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3134 3135 3136 3137
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3138 3139
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3140 3141 3142
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3143
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3144 3145
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3146
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3147
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3148
{
3149
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3150

3151
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3152 3153
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3154
		if (curr->func(curr, mode, wake_flags, key) &&
3155
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3165
 * @key: is directly passed to the wakeup function
3166 3167 3168
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3169
 */
3170
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3171
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3184
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3185
{
3186
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3187
}
3188
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3189

3190 3191 3192 3193
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3194
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3195

L
Linus Torvalds 已提交
3196
/**
3197
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3198 3199 3200
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3201
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207 3208
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3209 3210 3211
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3212
 */
3213 3214
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3215 3216
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3217
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3218 3219 3220 3221 3222

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3223
		wake_flags = 0;
L
Linus Torvalds 已提交
3224 3225

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3226
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3227 3228
	spin_unlock_irqrestore(&q->lock, flags);
}
3229 3230 3231 3232 3233 3234 3235 3236 3237
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3238 3239
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3240 3241 3242 3243 3244 3245 3246 3247
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3248 3249 3250
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3251
 */
3252
void complete(struct completion *x)
L
Linus Torvalds 已提交
3253 3254 3255 3256 3257
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3258
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3259 3260 3261 3262
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3263 3264 3265 3266 3267
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3268 3269 3270
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3271
 */
3272
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3273 3274 3275 3276 3277
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3278
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3279 3280 3281 3282
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3283
static inline long __sched
3284 3285
do_wait_for_common(struct completion *x,
		   long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3286 3287 3288 3289
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3290
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3291
		do {
3292
			if (signal_pending_state(state, current)) {
3293 3294
				timeout = -ERESTARTSYS;
				break;
3295 3296
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3297
			spin_unlock_irq(&x->wait.lock);
3298
			timeout = action(timeout);
L
Linus Torvalds 已提交
3299
			spin_lock_irq(&x->wait.lock);
3300
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3301
		__remove_wait_queue(&x->wait, &wait);
3302 3303
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3304 3305
	}
	x->done--;
3306
	return timeout ?: 1;
L
Linus Torvalds 已提交
3307 3308
}

3309 3310 3311
static inline long __sched
__wait_for_common(struct completion *x,
		  long (*action)(long), long timeout, int state)
L
Linus Torvalds 已提交
3312 3313 3314 3315
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3316
	timeout = do_wait_for_common(x, action, timeout, state);
L
Linus Torvalds 已提交
3317
	spin_unlock_irq(&x->wait.lock);
3318 3319
	return timeout;
}
L
Linus Torvalds 已提交
3320

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, schedule_timeout, timeout, state);
}

static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
	return __wait_for_common(x, io_schedule_timeout, timeout, state);
}

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3343
void __sched wait_for_completion(struct completion *x)
3344 3345
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3346
}
3347
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3348

3349 3350 3351 3352 3353 3354 3355 3356
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3357 3358 3359
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3360
 */
3361
unsigned long __sched
3362
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3363
{
3364
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3365
}
3366
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3367

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
/**
 * wait_for_completion_io: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout. The caller is accounted as waiting
 * for IO.
 */
void __sched wait_for_completion_io(struct completion *x)
{
	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);

/**
 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible. The caller is accounted as waiting for IO.
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
 */
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);

3401 3402 3403 3404 3405 3406
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3407 3408
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3409
 */
3410
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3411
{
3412 3413 3414 3415
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3416
}
3417
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3418

3419 3420 3421 3422 3423 3424 3425
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3426 3427 3428
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3429
 */
3430
long __sched
3431 3432
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3433
{
3434
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3435
}
3436
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3437

3438 3439 3440 3441 3442 3443
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3444 3445
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3446
 */
M
Matthew Wilcox 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3456 3457 3458 3459 3460 3461 3462 3463
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3464 3465 3466
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3467
 */
3468
long __sched
3469 3470 3471 3472 3473 3474 3475
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3490
	unsigned long flags;
3491 3492
	int ret = 1;

3493
	spin_lock_irqsave(&x->wait.lock, flags);
3494 3495 3496 3497
	if (!x->done)
		ret = 0;
	else
		x->done--;
3498
	spin_unlock_irqrestore(&x->wait.lock, flags);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3513
	unsigned long flags;
3514 3515
	int ret = 1;

3516
	spin_lock_irqsave(&x->wait.lock, flags);
3517 3518
	if (!x->done)
		ret = 0;
3519
	spin_unlock_irqrestore(&x->wait.lock, flags);
3520 3521 3522 3523
	return ret;
}
EXPORT_SYMBOL(completion_done);

3524 3525
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3526
{
I
Ingo Molnar 已提交
3527 3528 3529 3530
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3531

3532
	__set_current_state(state);
L
Linus Torvalds 已提交
3533

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3548 3549 3550
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3551
long __sched
I
Ingo Molnar 已提交
3552
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3553
{
3554
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3555 3556 3557
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3558
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3559
{
3560
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3561 3562 3563
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3564
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3565
{
3566
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3567 3568 3569
}
EXPORT_SYMBOL(sleep_on_timeout);

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3582
void rt_mutex_setprio(struct task_struct *p, int prio)
3583
{
3584
	int oldprio, on_rq, running;
3585
	struct rq *rq;
3586
	const struct sched_class *prev_class;
3587 3588 3589

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3590
	rq = __task_rq_lock(p);
3591

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3610
	trace_sched_pi_setprio(p, prio);
3611
	oldprio = p->prio;
3612
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3613
	on_rq = p->on_rq;
3614
	running = task_current(rq, p);
3615
	if (on_rq)
3616
		dequeue_task(rq, p, 0);
3617 3618
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3619 3620 3621 3622 3623 3624

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3625 3626
	p->prio = prio;

3627 3628
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3629
	if (on_rq)
3630
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3631

P
Peter Zijlstra 已提交
3632
	check_class_changed(rq, p, prev_class, oldprio);
3633
out_unlock:
3634
	__task_rq_unlock(rq);
3635 3636
}
#endif
3637
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3638
{
I
Ingo Molnar 已提交
3639
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3640
	unsigned long flags;
3641
	struct rq *rq;
L
Linus Torvalds 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3654
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3655
	 */
3656
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3657 3658 3659
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3660
	on_rq = p->on_rq;
3661
	if (on_rq)
3662
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3663 3664

	p->static_prio = NICE_TO_PRIO(nice);
3665
	set_load_weight(p);
3666 3667 3668
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3669

I
Ingo Molnar 已提交
3670
	if (on_rq) {
3671
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3672
		/*
3673 3674
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3675
		 */
3676
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3677 3678 3679
			resched_task(rq->curr);
	}
out_unlock:
3680
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3681 3682 3683
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3684 3685 3686 3687 3688
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3689
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3690
{
3691 3692
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3693

3694
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3695 3696 3697
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3707
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3708
{
3709
	long nice, retval;
L
Linus Torvalds 已提交
3710 3711 3712 3713 3714 3715

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3716 3717
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3718 3719 3720
	if (increment > 40)
		increment = 40;

3721
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3722 3723 3724 3725 3726
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3727 3728 3729
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3748
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3749 3750 3751 3752 3753 3754 3755 3756
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3757
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3758 3759 3760
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3761
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3762 3763 3764 3765 3766 3767 3768

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3783 3784 3785 3786 3787 3788
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3789
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3790 3791 3792 3793 3794 3795 3796 3797
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3798
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3799
{
3800
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3801 3802 3803
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3804 3805
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3806 3807 3808
{
	p->policy = policy;
	p->rt_priority = prio;
3809 3810 3811
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3812 3813 3814 3815
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3816
	set_load_weight(p);
L
Linus Torvalds 已提交
3817 3818
}

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3829 3830
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3831 3832 3833 3834
	rcu_read_unlock();
	return match;
}

3835
static int __sched_setscheduler(struct task_struct *p, int policy,
3836
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3837
{
3838
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3839
	unsigned long flags;
3840
	const struct sched_class *prev_class;
3841
	struct rq *rq;
3842
	int reset_on_fork;
L
Linus Torvalds 已提交
3843

3844 3845
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3846 3847
recheck:
	/* double check policy once rq lock held */
3848 3849
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3850
		policy = oldpolicy = p->policy;
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3861 3862
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3863 3864
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3865 3866
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3867
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3868
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3869
		return -EINVAL;
3870
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3871 3872
		return -EINVAL;

3873 3874 3875
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3876
	if (user && !capable(CAP_SYS_NICE)) {
3877
		if (rt_policy(policy)) {
3878 3879
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3890

I
Ingo Molnar 已提交
3891
		/*
3892 3893
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3894
		 */
3895 3896 3897 3898
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3899

3900
		/* can't change other user's priorities */
3901
		if (!check_same_owner(p))
3902
			return -EPERM;
3903 3904 3905 3906

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3907
	}
L
Linus Torvalds 已提交
3908

3909
	if (user) {
3910
		retval = security_task_setscheduler(p);
3911 3912 3913 3914
		if (retval)
			return retval;
	}

3915 3916 3917
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3918
	 *
L
Lucas De Marchi 已提交
3919
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3920 3921
	 * runqueue lock must be held.
	 */
3922
	rq = task_rq_lock(p, &flags);
3923

3924 3925 3926 3927
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3928
		task_rq_unlock(rq, p, &flags);
3929 3930 3931
		return -EINVAL;
	}

3932 3933 3934 3935 3936
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3937
		task_rq_unlock(rq, p, &flags);
3938 3939 3940
		return 0;
	}

3941 3942 3943 3944 3945 3946 3947
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3948 3949
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3950
			task_rq_unlock(rq, p, &flags);
3951 3952 3953 3954 3955
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3956 3957 3958
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3959
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3960 3961
		goto recheck;
	}
P
Peter Zijlstra 已提交
3962
	on_rq = p->on_rq;
3963
	running = task_current(rq, p);
3964
	if (on_rq)
3965
		dequeue_task(rq, p, 0);
3966 3967
	if (running)
		p->sched_class->put_prev_task(rq, p);
3968

3969 3970
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3971
	oldprio = p->prio;
3972
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3973
	__setscheduler(rq, p, policy, param->sched_priority);
3974

3975 3976
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3977
	if (on_rq)
3978
		enqueue_task(rq, p, 0);
3979

P
Peter Zijlstra 已提交
3980
	check_class_changed(rq, p, prev_class, oldprio);
3981
	task_rq_unlock(rq, p, &flags);
3982

3983 3984
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3985 3986
	return 0;
}
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3997
		       const struct sched_param *param)
3998 3999 4000
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4001 4002
EXPORT_SYMBOL_GPL(sched_setscheduler);

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4015
			       const struct sched_param *param)
4016 4017 4018 4019
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4020 4021
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4022 4023 4024
{
	struct sched_param lparam;
	struct task_struct *p;
4025
	int retval;
L
Linus Torvalds 已提交
4026 4027 4028 4029 4030

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4031 4032 4033

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4034
	p = find_process_by_pid(pid);
4035 4036 4037
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4038

L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4048 4049
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4050
{
4051 4052 4053 4054
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4055 4056 4057 4058 4059 4060 4061 4062
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4063
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068 4069 4070 4071
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4072
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4073
{
4074
	struct task_struct *p;
4075
	int retval;
L
Linus Torvalds 已提交
4076 4077

	if (pid < 0)
4078
		return -EINVAL;
L
Linus Torvalds 已提交
4079 4080

	retval = -ESRCH;
4081
	rcu_read_lock();
L
Linus Torvalds 已提交
4082 4083 4084 4085
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4086 4087
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4088
	}
4089
	rcu_read_unlock();
L
Linus Torvalds 已提交
4090 4091 4092 4093
	return retval;
}

/**
4094
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4095 4096 4097
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4098
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4099 4100
{
	struct sched_param lp;
4101
	struct task_struct *p;
4102
	int retval;
L
Linus Torvalds 已提交
4103 4104

	if (!param || pid < 0)
4105
		return -EINVAL;
L
Linus Torvalds 已提交
4106

4107
	rcu_read_lock();
L
Linus Torvalds 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4118
	rcu_read_unlock();
L
Linus Torvalds 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4128
	rcu_read_unlock();
L
Linus Torvalds 已提交
4129 4130 4131
	return retval;
}

4132
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4133
{
4134
	cpumask_var_t cpus_allowed, new_mask;
4135 4136
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4137

4138
	get_online_cpus();
4139
	rcu_read_lock();
L
Linus Torvalds 已提交
4140 4141 4142

	p = find_process_by_pid(pid);
	if (!p) {
4143
		rcu_read_unlock();
4144
		put_online_cpus();
L
Linus Torvalds 已提交
4145 4146 4147
		return -ESRCH;
	}

4148
	/* Prevent p going away */
L
Linus Torvalds 已提交
4149
	get_task_struct(p);
4150
	rcu_read_unlock();
L
Linus Torvalds 已提交
4151

4152 4153 4154 4155
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4156 4157 4158 4159 4160 4161 4162 4163
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4164
	retval = -EPERM;
E
Eric W. Biederman 已提交
4165 4166 4167 4168 4169 4170 4171 4172
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4173

4174
	retval = security_task_setscheduler(p);
4175 4176 4177
	if (retval)
		goto out_unlock;

4178 4179
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4180
again:
4181
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4182

P
Paul Menage 已提交
4183
	if (!retval) {
4184 4185
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4186 4187 4188 4189 4190
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4191
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4192 4193 4194
			goto again;
		}
	}
L
Linus Torvalds 已提交
4195
out_unlock:
4196 4197 4198 4199
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4200
	put_task_struct(p);
4201
	put_online_cpus();
L
Linus Torvalds 已提交
4202 4203 4204 4205
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4206
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4207
{
4208 4209 4210 4211 4212
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4222 4223
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4224
{
4225
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4226 4227
	int retval;

4228 4229
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4230

4231 4232 4233 4234 4235
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4236 4237
}

4238
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4239
{
4240
	struct task_struct *p;
4241
	unsigned long flags;
L
Linus Torvalds 已提交
4242 4243
	int retval;

4244
	get_online_cpus();
4245
	rcu_read_lock();
L
Linus Torvalds 已提交
4246 4247 4248 4249 4250 4251

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4252 4253 4254 4255
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4256
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4257
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4258
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4259 4260

out_unlock:
4261
	rcu_read_unlock();
4262
	put_online_cpus();
L
Linus Torvalds 已提交
4263

4264
	return retval;
L
Linus Torvalds 已提交
4265 4266 4267 4268 4269 4270 4271 4272
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4273 4274
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4275 4276
{
	int ret;
4277
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4278

A
Anton Blanchard 已提交
4279
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4280 4281
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4282 4283
		return -EINVAL;

4284 4285
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4286

4287 4288
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4289
		size_t retlen = min_t(size_t, len, cpumask_size());
4290 4291

		if (copy_to_user(user_mask_ptr, mask, retlen))
4292 4293
			ret = -EFAULT;
		else
4294
			ret = retlen;
4295 4296
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4297

4298
	return ret;
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4304 4305
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4306
 */
4307
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4308
{
4309
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4310

4311
	schedstat_inc(rq, yld_count);
4312
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4319
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4320
	do_raw_spin_unlock(&rq->lock);
4321
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4322 4323 4324 4325 4326 4327

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4328 4329 4330 4331 4332
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4333
static void __cond_resched(void)
L
Linus Torvalds 已提交
4334
{
4335
	add_preempt_count(PREEMPT_ACTIVE);
4336
	__schedule();
4337
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4338 4339
}

4340
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4341
{
P
Peter Zijlstra 已提交
4342
	if (should_resched()) {
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347
		__cond_resched();
		return 1;
	}
	return 0;
}
4348
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4349 4350

/*
4351
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4352 4353
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4354
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4355 4356 4357
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4358
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4359
{
P
Peter Zijlstra 已提交
4360
	int resched = should_resched();
J
Jan Kara 已提交
4361 4362
	int ret = 0;

4363 4364
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4365
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4366
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4367
		if (resched)
N
Nick Piggin 已提交
4368 4369 4370
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4371
		ret = 1;
L
Linus Torvalds 已提交
4372 4373
		spin_lock(lock);
	}
J
Jan Kara 已提交
4374
	return ret;
L
Linus Torvalds 已提交
4375
}
4376
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4377

4378
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4379 4380 4381
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4382
	if (should_resched()) {
4383
		local_bh_enable();
L
Linus Torvalds 已提交
4384 4385 4386 4387 4388 4389
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4390
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4391 4392 4393 4394

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419 4420
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4421 4422 4423 4424
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4425 4426
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4427 4428 4429 4430
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4431 4432 4433 4434
 * Returns:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4435 4436 4437 4438 4439 4440
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4441
	int yielded = 0;
4442 4443 4444 4445 4446 4447

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4448 4449 4450 4451 4452 4453 4454 4455 4456
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4457 4458 4459 4460 4461 4462 4463
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4464
		goto out_unlock;
4465 4466

	if (curr->sched_class != p->sched_class)
4467
		goto out_unlock;
4468 4469

	if (task_running(p_rq, p) || p->state)
4470
		goto out_unlock;
4471 4472

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4473
	if (yielded) {
4474
		schedstat_inc(rq, yld_count);
4475 4476 4477 4478 4479 4480 4481
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4482

4483
out_unlock:
4484
	double_rq_unlock(rq, p_rq);
4485
out_irq:
4486 4487
	local_irq_restore(flags);

4488
	if (yielded > 0)
4489 4490 4491 4492 4493 4494
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4495
/*
I
Ingo Molnar 已提交
4496
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4497 4498 4499 4500
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4501
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4502

4503
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4504
	atomic_inc(&rq->nr_iowait);
4505
	blk_flush_plug(current);
4506
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4507
	schedule();
4508
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4509
	atomic_dec(&rq->nr_iowait);
4510
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4511 4512 4513 4514 4515
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4516
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4517 4518
	long ret;

4519
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4520
	atomic_inc(&rq->nr_iowait);
4521
	blk_flush_plug(current);
4522
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4523
	ret = schedule_timeout(timeout);
4524
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4525
	atomic_dec(&rq->nr_iowait);
4526
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4537
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4547
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4548
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4562
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4572
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4573
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4587
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4588
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4589
{
4590
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4591
	unsigned int time_slice;
4592 4593
	unsigned long flags;
	struct rq *rq;
4594
	int retval;
L
Linus Torvalds 已提交
4595 4596 4597
	struct timespec t;

	if (pid < 0)
4598
		return -EINVAL;
L
Linus Torvalds 已提交
4599 4600

	retval = -ESRCH;
4601
	rcu_read_lock();
L
Linus Torvalds 已提交
4602 4603 4604 4605 4606 4607 4608 4609
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4610 4611
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4612
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4613

4614
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4615
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4616 4617
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4618

L
Linus Torvalds 已提交
4619
out_unlock:
4620
	rcu_read_unlock();
L
Linus Torvalds 已提交
4621 4622 4623
	return retval;
}

4624
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4625

4626
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4627 4628
{
	unsigned long free = 0;
4629
	int ppid;
4630
	unsigned state;
L
Linus Torvalds 已提交
4631 4632

	state = p->state ? __ffs(p->state) + 1 : 0;
4633
	printk(KERN_INFO "%-15.15s %c", p->comm,
4634
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4635
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4636
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4637
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4638
	else
P
Peter Zijlstra 已提交
4639
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4640 4641
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4642
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4643
	else
P
Peter Zijlstra 已提交
4644
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4645 4646
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4647
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4648
#endif
4649 4650 4651
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4652
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4653
		task_pid_nr(p), ppid,
4654
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4655

4656
	print_worker_info(KERN_INFO, p);
4657
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4658 4659
}

I
Ingo Molnar 已提交
4660
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4661
{
4662
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4663

4664
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4665 4666
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4667
#else
P
Peter Zijlstra 已提交
4668 4669
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4670
#endif
4671
	rcu_read_lock();
L
Linus Torvalds 已提交
4672 4673 4674
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4675
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4676 4677
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4678
		if (!state_filter || (p->state & state_filter))
4679
			sched_show_task(p);
L
Linus Torvalds 已提交
4680 4681
	} while_each_thread(g, p);

4682 4683
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4684 4685 4686
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4687
	rcu_read_unlock();
I
Ingo Molnar 已提交
4688 4689 4690
	/*
	 * Only show locks if all tasks are dumped:
	 */
4691
	if (!state_filter)
I
Ingo Molnar 已提交
4692
		debug_show_all_locks();
L
Linus Torvalds 已提交
4693 4694
}

I
Ingo Molnar 已提交
4695 4696
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4697
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4698 4699
}

4700 4701 4702 4703 4704 4705 4706 4707
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4708
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4709
{
4710
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4711 4712
	unsigned long flags;

4713
	raw_spin_lock_irqsave(&rq->lock, flags);
4714

I
Ingo Molnar 已提交
4715
	__sched_fork(idle);
4716
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4717 4718
	idle->se.exec_start = sched_clock();

4719
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4731
	__set_task_cpu(idle, cpu);
4732
	rcu_read_unlock();
L
Linus Torvalds 已提交
4733 4734

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4735 4736
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4737
#endif
4738
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4739 4740

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4741
	task_thread_info(idle)->preempt_count = 0;
4742

I
Ingo Molnar 已提交
4743 4744 4745 4746
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4747
	ftrace_graph_init_idle_task(idle, cpu);
4748
	vtime_init_idle(idle);
4749 4750 4751
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4752 4753
}

L
Linus Torvalds 已提交
4754
#ifdef CONFIG_SMP
4755 4756 4757 4758
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4759 4760

	cpumask_copy(&p->cpus_allowed, new_mask);
4761
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4762 4763
}

L
Linus Torvalds 已提交
4764 4765 4766
/*
 * This is how migration works:
 *
4767 4768 4769 4770 4771 4772
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4773
 *    it and puts it into the right queue.
4774 4775
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4776 4777 4778 4779 4780 4781 4782 4783
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4784
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4785 4786
 * call is not atomic; no spinlocks may be held.
 */
4787
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4788 4789
{
	unsigned long flags;
4790
	struct rq *rq;
4791
	unsigned int dest_cpu;
4792
	int ret = 0;
L
Linus Torvalds 已提交
4793 4794

	rq = task_rq_lock(p, &flags);
4795

4796 4797 4798
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4799
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4800 4801 4802 4803
		ret = -EINVAL;
		goto out;
	}

4804
	do_set_cpus_allowed(p, new_mask);
4805

L
Linus Torvalds 已提交
4806
	/* Can the task run on the task's current CPU? If so, we're done */
4807
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4808 4809
		goto out;

4810
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4811
	if (p->on_rq) {
4812
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4813
		/* Need help from migration thread: drop lock and wait. */
4814
		task_rq_unlock(rq, p, &flags);
4815
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4816 4817 4818 4819
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4820
	task_rq_unlock(rq, p, &flags);
4821

L
Linus Torvalds 已提交
4822 4823
	return ret;
}
4824
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4825 4826

/*
I
Ingo Molnar 已提交
4827
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4828 4829 4830 4831 4832 4833
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4834 4835
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4836
 */
4837
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4838
{
4839
	struct rq *rq_dest, *rq_src;
4840
	int ret = 0;
L
Linus Torvalds 已提交
4841

4842
	if (unlikely(!cpu_active(dest_cpu)))
4843
		return ret;
L
Linus Torvalds 已提交
4844 4845 4846 4847

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4848
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4849 4850 4851
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4852
		goto done;
L
Linus Torvalds 已提交
4853
	/* Affinity changed (again). */
4854
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4855
		goto fail;
L
Linus Torvalds 已提交
4856

4857 4858 4859 4860
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4861
	if (p->on_rq) {
4862
		dequeue_task(rq_src, p, 0);
4863
		set_task_cpu(p, dest_cpu);
4864
		enqueue_task(rq_dest, p, 0);
4865
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4866
	}
L
Linus Torvalds 已提交
4867
done:
4868
	ret = 1;
L
Linus Torvalds 已提交
4869
fail:
L
Linus Torvalds 已提交
4870
	double_rq_unlock(rq_src, rq_dest);
4871
	raw_spin_unlock(&p->pi_lock);
4872
	return ret;
L
Linus Torvalds 已提交
4873 4874 4875
}

/*
4876 4877 4878
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4879
 */
4880
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4881
{
4882
	struct migration_arg *arg = data;
4883

4884 4885 4886 4887
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4888
	local_irq_disable();
4889
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4890
	local_irq_enable();
L
Linus Torvalds 已提交
4891
	return 0;
4892 4893
}

L
Linus Torvalds 已提交
4894
#ifdef CONFIG_HOTPLUG_CPU
4895

4896
/*
4897 4898
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4899
 */
4900
void idle_task_exit(void)
L
Linus Torvalds 已提交
4901
{
4902
	struct mm_struct *mm = current->active_mm;
4903

4904
	BUG_ON(cpu_online(smp_processor_id()));
4905

4906 4907 4908
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4909 4910 4911
}

/*
4912 4913 4914 4915 4916
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4917
 */
4918
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4919
{
4920 4921 4922
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4923 4924
}

4925
/*
4926 4927 4928 4929 4930 4931
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4932
 */
4933
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4934
{
4935
	struct rq *rq = cpu_rq(dead_cpu);
4936 4937
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4938 4939

	/*
4940 4941 4942 4943 4944 4945 4946
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4947
	 */
4948
	rq->stop = NULL;
4949

I
Ingo Molnar 已提交
4950
	for ( ; ; ) {
4951 4952 4953 4954 4955
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4956
			break;
4957

4958
		next = pick_next_task(rq);
4959
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4960
		next->sched_class->put_prev_task(rq, next);
4961

4962 4963 4964 4965 4966 4967 4968
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4969
	}
4970

4971
	rq->stop = stop;
4972
}
4973

L
Linus Torvalds 已提交
4974 4975
#endif /* CONFIG_HOTPLUG_CPU */

4976 4977 4978
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4979 4980
	{
		.procname	= "sched_domain",
4981
		.mode		= 0555,
4982
	},
4983
	{}
4984 4985 4986
};

static struct ctl_table sd_ctl_root[] = {
4987 4988
	{
		.procname	= "kernel",
4989
		.mode		= 0555,
4990 4991
		.child		= sd_ctl_dir,
	},
4992
	{}
4993 4994 4995 4996 4997
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4998
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4999 5000 5001 5002

	return entry;
}

5003 5004
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5005
	struct ctl_table *entry;
5006

5007 5008 5009
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5010
	 * will always be set. In the lowest directory the names are
5011 5012 5013
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5014 5015
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5016 5017 5018
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5019 5020 5021 5022 5023

	kfree(*tablep);
	*tablep = NULL;
}

5024
static int min_load_idx = 0;
5025
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5026

5027
static void
5028
set_table_entry(struct ctl_table *entry,
5029
		const char *procname, void *data, int maxlen,
5030 5031
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5032 5033 5034 5035 5036 5037
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5038 5039 5040 5041 5042

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5043 5044 5045 5046 5047
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5048
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5049

5050 5051 5052
	if (table == NULL)
		return NULL;

5053
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5054
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5055
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5056
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5057
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5058
		sizeof(int), 0644, proc_dointvec_minmax, true);
5059
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5060
		sizeof(int), 0644, proc_dointvec_minmax, true);
5061
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5062
		sizeof(int), 0644, proc_dointvec_minmax, true);
5063
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5064
		sizeof(int), 0644, proc_dointvec_minmax, true);
5065
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5066
		sizeof(int), 0644, proc_dointvec_minmax, true);
5067
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5068
		sizeof(int), 0644, proc_dointvec_minmax, false);
5069
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5070
		sizeof(int), 0644, proc_dointvec_minmax, false);
5071
	set_table_entry(&table[9], "cache_nice_tries",
5072
		&sd->cache_nice_tries,
5073
		sizeof(int), 0644, proc_dointvec_minmax, false);
5074
	set_table_entry(&table[10], "flags", &sd->flags,
5075
		sizeof(int), 0644, proc_dointvec_minmax, false);
5076
	set_table_entry(&table[11], "name", sd->name,
5077
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5078
	/* &table[12] is terminator */
5079 5080 5081 5082

	return table;
}

5083
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5084 5085 5086 5087 5088 5089 5090 5091 5092
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5093 5094
	if (table == NULL)
		return NULL;
5095 5096 5097 5098 5099

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5100
		entry->mode = 0555;
5101 5102 5103 5104 5105 5106 5107 5108
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5109
static void register_sched_domain_sysctl(void)
5110
{
5111
	int i, cpu_num = num_possible_cpus();
5112 5113 5114
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5115 5116 5117
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5118 5119 5120
	if (entry == NULL)
		return;

5121
	for_each_possible_cpu(i) {
5122 5123
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5124
		entry->mode = 0555;
5125
		entry->child = sd_alloc_ctl_cpu_table(i);
5126
		entry++;
5127
	}
5128 5129

	WARN_ON(sd_sysctl_header);
5130 5131
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5132

5133
/* may be called multiple times per register */
5134 5135
static void unregister_sched_domain_sysctl(void)
{
5136 5137
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5138
	sd_sysctl_header = NULL;
5139 5140
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5141
}
5142
#else
5143 5144 5145 5146
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5147 5148 5149 5150
{
}
#endif

5151 5152 5153 5154 5155
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5156
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5176
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5177 5178 5179 5180
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5181 5182 5183 5184
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5185 5186
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5187
{
5188
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5189
	unsigned long flags;
5190
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5191

5192
	switch (action & ~CPU_TASKS_FROZEN) {
5193

L
Linus Torvalds 已提交
5194
	case CPU_UP_PREPARE:
5195
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5196
		break;
5197

L
Linus Torvalds 已提交
5198
	case CPU_ONLINE:
5199
		/* Update our root-domain */
5200
		raw_spin_lock_irqsave(&rq->lock, flags);
5201
		if (rq->rd) {
5202
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5203 5204

			set_rq_online(rq);
5205
		}
5206
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5207
		break;
5208

L
Linus Torvalds 已提交
5209
#ifdef CONFIG_HOTPLUG_CPU
5210
	case CPU_DYING:
5211
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5212
		/* Update our root-domain */
5213
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5214
		if (rq->rd) {
5215
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5216
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5217
		}
5218 5219
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5220
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5221
		break;
5222

5223
	case CPU_DEAD:
5224
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5225
		break;
L
Linus Torvalds 已提交
5226 5227
#endif
	}
5228 5229 5230

	update_max_interval();

L
Linus Torvalds 已提交
5231 5232 5233
	return NOTIFY_OK;
}

5234 5235 5236
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5237
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5238
 */
5239
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5240
	.notifier_call = migration_call,
5241
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5242 5243
};

5244 5245 5246 5247
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5248
	case CPU_STARTING:
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5269
static int __init migration_init(void)
L
Linus Torvalds 已提交
5270 5271
{
	void *cpu = (void *)(long)smp_processor_id();
5272
	int err;
5273

5274
	/* Initialize migration for the boot CPU */
5275 5276
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5277 5278
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5279

5280 5281 5282 5283
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5284
	return 0;
L
Linus Torvalds 已提交
5285
}
5286
early_initcall(migration_init);
L
Linus Torvalds 已提交
5287 5288 5289
#endif

#ifdef CONFIG_SMP
5290

5291 5292
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5293
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5294

5295
static __read_mostly int sched_debug_enabled;
5296

5297
static int __init sched_debug_setup(char *str)
5298
{
5299
	sched_debug_enabled = 1;
5300 5301 5302

	return 0;
}
5303 5304 5305 5306 5307 5308
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5309

5310
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5311
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5312
{
I
Ingo Molnar 已提交
5313
	struct sched_group *group = sd->groups;
5314
	char str[256];
L
Linus Torvalds 已提交
5315

R
Rusty Russell 已提交
5316
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5317
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5318 5319 5320 5321

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5322
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5323
		if (sd->parent)
P
Peter Zijlstra 已提交
5324 5325
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5326
		return -1;
N
Nick Piggin 已提交
5327 5328
	}

P
Peter Zijlstra 已提交
5329
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5330

5331
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5332 5333
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5334
	}
5335
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5336 5337
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5338
	}
L
Linus Torvalds 已提交
5339

I
Ingo Molnar 已提交
5340
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5341
	do {
I
Ingo Molnar 已提交
5342
		if (!group) {
P
Peter Zijlstra 已提交
5343 5344
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5345 5346 5347
			break;
		}

5348 5349 5350 5351 5352 5353
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5354 5355 5356
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5357 5358
			break;
		}
L
Linus Torvalds 已提交
5359

5360
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5361 5362
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5363 5364
			break;
		}
L
Linus Torvalds 已提交
5365

5366 5367
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5368 5369
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5370 5371
			break;
		}
L
Linus Torvalds 已提交
5372

5373
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5374

R
Rusty Russell 已提交
5375
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5376

P
Peter Zijlstra 已提交
5377
		printk(KERN_CONT " %s", str);
5378
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5379
			printk(KERN_CONT " (cpu_power = %d)",
5380
				group->sgp->power);
5381
		}
L
Linus Torvalds 已提交
5382

I
Ingo Molnar 已提交
5383 5384
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5385
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5386

5387
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5388
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5389

5390 5391
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5392 5393
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5394 5395
	return 0;
}
L
Linus Torvalds 已提交
5396

I
Ingo Molnar 已提交
5397 5398 5399
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5400

5401
	if (!sched_debug_enabled)
5402 5403
		return;

I
Ingo Molnar 已提交
5404 5405 5406 5407
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5408

I
Ingo Molnar 已提交
5409 5410 5411
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5412
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5413
			break;
L
Linus Torvalds 已提交
5414 5415
		level++;
		sd = sd->parent;
5416
		if (!sd)
I
Ingo Molnar 已提交
5417 5418
			break;
	}
L
Linus Torvalds 已提交
5419
}
5420
#else /* !CONFIG_SCHED_DEBUG */
5421
# define sched_domain_debug(sd, cpu) do { } while (0)
5422 5423 5424 5425
static inline bool sched_debug(void)
{
	return false;
}
5426
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5427

5428
static int sd_degenerate(struct sched_domain *sd)
5429
{
5430
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5431 5432 5433 5434 5435 5436
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5437 5438 5439
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5440 5441 5442 5443 5444
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5445
	if (sd->flags & (SD_WAKE_AFFINE))
5446 5447 5448 5449 5450
		return 0;

	return 1;
}

5451 5452
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5453 5454 5455 5456 5457 5458
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5459
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5460 5461 5462 5463 5464 5465 5466
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5467 5468 5469
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5470 5471
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5472 5473 5474 5475 5476 5477 5478
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5479
static void free_rootdomain(struct rcu_head *rcu)
5480
{
5481
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5482

5483
	cpupri_cleanup(&rd->cpupri);
5484 5485 5486 5487 5488 5489
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5490 5491
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5492
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5493 5494
	unsigned long flags;

5495
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5496 5497

	if (rq->rd) {
I
Ingo Molnar 已提交
5498
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5499

5500
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5501
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5502

5503
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5504

I
Ingo Molnar 已提交
5505 5506 5507 5508 5509 5510 5511
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5512 5513 5514 5515 5516
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5517
	cpumask_set_cpu(rq->cpu, rd->span);
5518
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5519
		set_rq_online(rq);
G
Gregory Haskins 已提交
5520

5521
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5522 5523

	if (old_rd)
5524
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5525 5526
}

5527
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5528 5529 5530
{
	memset(rd, 0, sizeof(*rd));

5531
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5532
		goto out;
5533
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5534
		goto free_span;
5535
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5536
		goto free_online;
5537

5538
	if (cpupri_init(&rd->cpupri) != 0)
5539
		goto free_rto_mask;
5540
	return 0;
5541

5542 5543
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5544 5545 5546 5547
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5548
out:
5549
	return -ENOMEM;
G
Gregory Haskins 已提交
5550 5551
}

5552 5553 5554 5555 5556 5557
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5558 5559
static void init_defrootdomain(void)
{
5560
	init_rootdomain(&def_root_domain);
5561

G
Gregory Haskins 已提交
5562 5563 5564
	atomic_set(&def_root_domain.refcount, 1);
}

5565
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5566 5567 5568 5569 5570 5571 5572
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5573
	if (init_rootdomain(rd) != 0) {
5574 5575 5576
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5577 5578 5579 5580

	return rd;
}

5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5600 5601 5602
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5603 5604 5605 5606 5607 5608 5609 5610

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5611
		kfree(sd->groups->sgp);
5612
		kfree(sd->groups);
5613
	}
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5628 5629 5630 5631 5632 5633 5634
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5635
 * two cpus are in the same cache domain, see cpus_share_cache().
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5646
	if (sd)
5647 5648 5649 5650 5651 5652
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5653
/*
I
Ingo Molnar 已提交
5654
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5655 5656
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5657 5658
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5659
{
5660
	struct rq *rq = cpu_rq(cpu);
5661 5662 5663
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5664
	for (tmp = sd; tmp; ) {
5665 5666 5667
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5668

5669
		if (sd_parent_degenerate(tmp, parent)) {
5670
			tmp->parent = parent->parent;
5671 5672
			if (parent->parent)
				parent->parent->child = tmp;
5673
			destroy_sched_domain(parent, cpu);
5674 5675
		} else
			tmp = tmp->parent;
5676 5677
	}

5678
	if (sd && sd_degenerate(sd)) {
5679
		tmp = sd;
5680
		sd = sd->parent;
5681
		destroy_sched_domain(tmp, cpu);
5682 5683 5684
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5685

5686
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5687

G
Gregory Haskins 已提交
5688
	rq_attach_root(rq, rd);
5689
	tmp = rq->sd;
N
Nick Piggin 已提交
5690
	rcu_assign_pointer(rq->sd, sd);
5691
	destroy_sched_domains(tmp, cpu);
5692 5693

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5694 5695 5696
}

/* cpus with isolated domains */
5697
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5698 5699 5700 5701

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5702
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5703
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5704 5705 5706
	return 1;
}

I
Ingo Molnar 已提交
5707
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5708

5709 5710 5711 5712 5713
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5714 5715 5716
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5717
	struct sched_group_power **__percpu sgp;
5718 5719
};

5720
struct s_data {
5721
	struct sched_domain ** __percpu sd;
5722 5723 5724
	struct root_domain	*rd;
};

5725 5726
enum s_alloc {
	sa_rootdomain,
5727
	sa_sd,
5728
	sa_sd_storage,
5729 5730 5731
	sa_none,
};

5732 5733 5734
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5735 5736
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5737 5738
#define SDTL_OVERLAP	0x01

5739
struct sched_domain_topology_level {
5740 5741
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5742
	int		    flags;
5743
	int		    numa_level;
5744
	struct sd_data      data;
5745 5746
};

P
Peter Zijlstra 已提交
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5803 5804 5805 5806 5807 5808
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5809
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5810
				GFP_KERNEL, cpu_to_node(cpu));
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5824
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5825 5826 5827
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5828 5829 5830 5831 5832 5833
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5834

P
Peter Zijlstra 已提交
5835 5836 5837 5838 5839
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5840
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5841
		    group_balance_cpu(sg) == cpu)
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5861
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5862
{
5863 5864
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5865

5866 5867
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5868

5869
	if (sg) {
5870
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5871
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5872
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5873
	}
5874 5875

	return cpu;
5876 5877
}

5878
/*
5879 5880 5881
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5882 5883
 *
 * Assumes the sched_domain tree is fully constructed
5884
 */
5885 5886
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5887
{
5888 5889 5890
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5891
	struct cpumask *covered;
5892
	int i;
5893

5894 5895 5896 5897 5898 5899
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5900 5901 5902
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5903
	cpumask_clear(covered);
5904

5905 5906 5907 5908
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5909

5910 5911
		if (cpumask_test_cpu(i, covered))
			continue;
5912

5913
		cpumask_clear(sched_group_cpus(sg));
5914
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5915
		cpumask_setall(sched_group_mask(sg));
5916

5917 5918 5919
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5920

5921 5922 5923
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5924

5925 5926 5927 5928 5929 5930 5931
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5932 5933

	return 0;
5934
}
5935

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5948
	struct sched_group *sg = sd->groups;
5949

5950 5951 5952 5953 5954 5955
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5956

P
Peter Zijlstra 已提交
5957
	if (cpu != group_balance_cpu(sg))
5958
		return;
5959

5960
	update_group_power(sd, cpu);
5961
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5962 5963
}

5964 5965 5966
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5967 5968
}

5969 5970 5971 5972 5973
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5974 5975 5976 5977 5978 5979
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5980 5981 5982 5983 5984 5985 5986 5987 5988
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5989 5990 5991 5992 5993 5994 5995 5996 5997
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5998 5999 6000
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6001

6002
static int default_relax_domain_level = -1;
6003
int sched_domain_level_max;
6004 6005 6006

static int __init setup_relax_domain_level(char *str)
{
6007 6008
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6009

6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6028
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6029 6030
	} else {
		/* turn on idle balance on this domain */
6031
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6032 6033 6034
	}
}

6035 6036 6037
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6038 6039 6040 6041 6042
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6043 6044
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6045 6046
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6047
	case sa_sd_storage:
6048
		__sdt_free(cpu_map); /* fall through */
6049 6050 6051 6052
	case sa_none:
		break;
	}
}
6053

6054 6055 6056
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6057 6058
	memset(d, 0, sizeof(*d));

6059 6060
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6061 6062 6063
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6064
	d->rd = alloc_rootdomain();
6065
	if (!d->rd)
6066
		return sa_sd;
6067 6068
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6069

6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6082
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6083
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6084 6085

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6086
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6087 6088
}

6089 6090
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6091
{
6092
	return topology_thread_cpumask(cpu);
6093
}
6094
#endif
6095

6096 6097 6098
/*
 * Topology list, bottom-up.
 */
6099
static struct sched_domain_topology_level default_topology[] = {
6100 6101
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6102
#endif
6103
#ifdef CONFIG_SCHED_MC
6104
	{ sd_init_MC, cpu_coregroup_mask, },
6105
#endif
6106 6107 6108 6109
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6110 6111 6112 6113 6114
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6115 6116 6117 6118 6119 6120 6121 6122 6123
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6124
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6142
		.imbalance_pct		= 125,
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6262
		}
6263 6264 6265 6266 6267 6268

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6269 6270 6271 6272 6273
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6274
	 * The sched_domains_numa_distance[] array includes the actual distance
6275 6276 6277
	 * numbers.
	 */

6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6304
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6305 6306 6307 6308 6309 6310
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6311
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6343 6344

	sched_domains_numa_levels = level;
6345
}
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6393 6394 6395 6396 6397
}
#else
static inline void sched_init_numa(void)
{
}
6398 6399 6400 6401 6402 6403 6404

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6405 6406
#endif /* CONFIG_NUMA */

6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6423 6424 6425 6426
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6427 6428 6429
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6430
			struct sched_group_power *sgp;
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6444 6445
			sg->next = sg;

6446
			*per_cpu_ptr(sdd->sg, j) = sg;
6447

P
Peter Zijlstra 已提交
6448
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6449 6450 6451 6452 6453
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6482 6483
		}
		free_percpu(sdd->sd);
6484
		sdd->sd = NULL;
6485
		free_percpu(sdd->sg);
6486
		sdd->sg = NULL;
6487
		free_percpu(sdd->sgp);
6488
		sdd->sgp = NULL;
6489 6490 6491
	}
}

6492 6493
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6494
		struct sched_domain_attr *attr, struct sched_domain *child,
6495 6496
		int cpu)
{
6497
	struct sched_domain *sd = tl->init(tl, cpu);
6498
	if (!sd)
6499
		return child;
6500 6501

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6502 6503 6504
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6505
		child->parent = sd;
6506
	}
6507
	sd->child = child;
6508
	set_domain_attribute(sd, attr);
6509 6510 6511 6512

	return sd;
}

6513 6514 6515 6516
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6517 6518
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6519 6520
{
	enum s_alloc alloc_state = sa_none;
6521
	struct sched_domain *sd;
6522
	struct s_data d;
6523
	int i, ret = -ENOMEM;
6524

6525 6526 6527
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6528

6529
	/* Set up domains for cpus specified by the cpu_map. */
6530
	for_each_cpu(i, cpu_map) {
6531 6532
		struct sched_domain_topology_level *tl;

6533
		sd = NULL;
6534
		for (tl = sched_domain_topology; tl->init; tl++) {
6535
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6536 6537
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6538 6539
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6540
		}
6541

6542 6543 6544
		while (sd->child)
			sd = sd->child;

6545
		*per_cpu_ptr(d.sd, i) = sd;
6546 6547 6548 6549 6550 6551
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6552 6553 6554 6555 6556 6557 6558
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6559
		}
6560
	}
6561

L
Linus Torvalds 已提交
6562
	/* Calculate CPU power for physical packages and nodes */
6563 6564 6565
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6566

6567 6568
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6569
			init_sched_groups_power(i, sd);
6570
		}
6571
	}
6572

L
Linus Torvalds 已提交
6573
	/* Attach the domains */
6574
	rcu_read_lock();
6575
	for_each_cpu(i, cpu_map) {
6576
		sd = *per_cpu_ptr(d.sd, i);
6577
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6578
	}
6579
	rcu_read_unlock();
6580

6581
	ret = 0;
6582
error:
6583
	__free_domain_allocs(&d, alloc_state, cpu_map);
6584
	return ret;
L
Linus Torvalds 已提交
6585
}
P
Paul Jackson 已提交
6586

6587
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6588
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6589 6590
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6591 6592 6593

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6594 6595
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6596
 */
6597
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6598

6599 6600 6601 6602 6603 6604
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6605
{
6606
	return 0;
6607 6608
}

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6634
/*
I
Ingo Molnar 已提交
6635
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6636 6637
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6638
 */
6639
static int init_sched_domains(const struct cpumask *cpu_map)
6640
{
6641 6642
	int err;

6643
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6644
	ndoms_cur = 1;
6645
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6646
	if (!doms_cur)
6647 6648
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6649
	err = build_sched_domains(doms_cur[0], NULL);
6650
	register_sched_domain_sysctl();
6651 6652

	return err;
6653 6654 6655 6656 6657 6658
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6659
static void detach_destroy_domains(const struct cpumask *cpu_map)
6660 6661 6662
{
	int i;

6663
	rcu_read_lock();
6664
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6665
		cpu_attach_domain(NULL, &def_root_domain, i);
6666
	rcu_read_unlock();
6667 6668
}

6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6685 6686
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6687
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6688 6689 6690
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6691
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6692 6693 6694
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6695 6696 6697
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6698 6699 6700 6701 6702 6703
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6704
 *
6705
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6706 6707
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6708
 *
P
Paul Jackson 已提交
6709 6710
 * Call with hotplug lock held
 */
6711
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6712
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6713
{
6714
	int i, j, n;
6715
	int new_topology;
P
Paul Jackson 已提交
6716

6717
	mutex_lock(&sched_domains_mutex);
6718

6719 6720 6721
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6722 6723 6724
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6725
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6726 6727 6728

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6729
		for (j = 0; j < n && !new_topology; j++) {
6730
			if (cpumask_equal(doms_cur[i], doms_new[j])
6731
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6732 6733 6734
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6735
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6736 6737 6738 6739
match1:
		;
	}

6740 6741
	if (doms_new == NULL) {
		ndoms_cur = 0;
6742
		doms_new = &fallback_doms;
6743
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6744
		WARN_ON_ONCE(dattr_new);
6745 6746
	}

P
Paul Jackson 已提交
6747 6748
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6749
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6750
			if (cpumask_equal(doms_new[i], doms_cur[j])
6751
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6752 6753 6754
				goto match2;
		}
		/* no match - add a new doms_new */
6755
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6756 6757 6758 6759 6760
match2:
		;
	}

	/* Remember the new sched domains */
6761 6762
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6763
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6764
	doms_cur = doms_new;
6765
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6766
	ndoms_cur = ndoms_new;
6767 6768

	register_sched_domain_sysctl();
6769

6770
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6771 6772
}

6773 6774
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6775
/*
6776 6777 6778
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6779 6780 6781
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6782
 */
6783 6784
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6785
{
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6808
	case CPU_ONLINE:
6809
	case CPU_DOWN_FAILED:
6810
		cpuset_update_active_cpus(true);
6811
		break;
6812 6813 6814
	default:
		return NOTIFY_DONE;
	}
6815
	return NOTIFY_OK;
6816
}
6817

6818 6819
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6820
{
6821
	switch (action) {
6822
	case CPU_DOWN_PREPARE:
6823
		cpuset_update_active_cpus(false);
6824 6825 6826 6827 6828
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6829 6830 6831
	default:
		return NOTIFY_DONE;
	}
6832
	return NOTIFY_OK;
6833 6834
}

L
Linus Torvalds 已提交
6835 6836
void __init sched_init_smp(void)
{
6837 6838 6839
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6840
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6841

6842 6843
	sched_init_numa();

6844
	get_online_cpus();
6845
	mutex_lock(&sched_domains_mutex);
6846
	init_sched_domains(cpu_active_mask);
6847 6848 6849
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6850
	mutex_unlock(&sched_domains_mutex);
6851
	put_online_cpus();
6852

6853
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6854 6855
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6856 6857 6858 6859

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6860
	init_hrtick();
6861 6862

	/* Move init over to a non-isolated CPU */
6863
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6864
		BUG();
I
Ingo Molnar 已提交
6865
	sched_init_granularity();
6866
	free_cpumask_var(non_isolated_cpus);
6867

6868
	init_sched_rt_class();
L
Linus Torvalds 已提交
6869 6870 6871 6872
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6873
	sched_init_granularity();
L
Linus Torvalds 已提交
6874 6875 6876
}
#endif /* CONFIG_SMP */

6877 6878
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6879 6880 6881 6882 6883 6884 6885
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6886
#ifdef CONFIG_CGROUP_SCHED
6887 6888 6889 6890
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6891
struct task_group root_task_group;
6892
LIST_HEAD(task_groups);
6893
#endif
P
Peter Zijlstra 已提交
6894

6895
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6896

L
Linus Torvalds 已提交
6897 6898
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6899
	int i, j;
6900 6901 6902 6903 6904 6905 6906
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6907
#endif
6908
#ifdef CONFIG_CPUMASK_OFFSTACK
6909
	alloc_size += num_possible_cpus() * cpumask_size();
6910 6911
#endif
	if (alloc_size) {
6912
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6913 6914

#ifdef CONFIG_FAIR_GROUP_SCHED
6915
		root_task_group.se = (struct sched_entity **)ptr;
6916 6917
		ptr += nr_cpu_ids * sizeof(void **);

6918
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6919
		ptr += nr_cpu_ids * sizeof(void **);
6920

6921
#endif /* CONFIG_FAIR_GROUP_SCHED */
6922
#ifdef CONFIG_RT_GROUP_SCHED
6923
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6924 6925
		ptr += nr_cpu_ids * sizeof(void **);

6926
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6927 6928
		ptr += nr_cpu_ids * sizeof(void **);

6929
#endif /* CONFIG_RT_GROUP_SCHED */
6930 6931
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6932
			per_cpu(load_balance_mask, i) = (void *)ptr;
6933 6934 6935
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6936
	}
I
Ingo Molnar 已提交
6937

G
Gregory Haskins 已提交
6938 6939 6940 6941
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6942 6943 6944 6945
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6946
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6947
			global_rt_period(), global_rt_runtime());
6948
#endif /* CONFIG_RT_GROUP_SCHED */
6949

D
Dhaval Giani 已提交
6950
#ifdef CONFIG_CGROUP_SCHED
6951 6952
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6953
	INIT_LIST_HEAD(&root_task_group.siblings);
6954
	autogroup_init(&init_task);
6955

D
Dhaval Giani 已提交
6956
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6957

6958
	for_each_possible_cpu(i) {
6959
		struct rq *rq;
L
Linus Torvalds 已提交
6960 6961

		rq = cpu_rq(i);
6962
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6963
		rq->nr_running = 0;
6964 6965
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6966
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6967
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6968
#ifdef CONFIG_FAIR_GROUP_SCHED
6969
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6970
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6971
		/*
6972
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6973 6974 6975 6976
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6977
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6978 6979 6980
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6981
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6982 6983 6984
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6985
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6986
		 *
6987 6988
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6989
		 */
6990
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6991
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6992 6993 6994
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6995
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6996
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6997
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6998
#endif
L
Linus Torvalds 已提交
6999

I
Ingo Molnar 已提交
7000 7001
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7002 7003 7004

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7005
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7006
		rq->sd = NULL;
G
Gregory Haskins 已提交
7007
		rq->rd = NULL;
7008
		rq->cpu_power = SCHED_POWER_SCALE;
7009
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7010
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7011
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7012
		rq->push_cpu = 0;
7013
		rq->cpu = i;
7014
		rq->online = 0;
7015 7016
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7017 7018 7019

		INIT_LIST_HEAD(&rq->cfs_tasks);

7020
		rq_attach_root(rq, &def_root_domain);
7021
#ifdef CONFIG_NO_HZ_COMMON
7022
		rq->nohz_flags = 0;
7023
#endif
7024 7025 7026
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7027
#endif
P
Peter Zijlstra 已提交
7028
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7029 7030 7031
		atomic_set(&rq->nr_iowait, 0);
	}

7032
	set_load_weight(&init_task);
7033

7034 7035 7036 7037
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7038
#ifdef CONFIG_RT_MUTEXES
7039
	plist_head_init(&init_task.pi_waiters);
7040 7041
#endif

L
Linus Torvalds 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7055 7056 7057

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7058 7059 7060 7061
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7062

7063
#ifdef CONFIG_SMP
7064
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7065 7066 7067
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7068
	idle_thread_set_boot_cpu();
7069 7070
#endif
	init_sched_fair_class();
7071

7072
	scheduler_running = 1;
L
Linus Torvalds 已提交
7073 7074
}

7075
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7076 7077
static inline int preempt_count_equals(int preempt_offset)
{
7078
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7079

A
Arnd Bergmann 已提交
7080
	return (nested == preempt_offset);
7081 7082
}

7083
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7084 7085 7086
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7087
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7088 7089
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7090 7091 7092 7093 7094
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7095 7096 7097 7098 7099 7100 7101
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7102 7103 7104 7105 7106

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7107 7108 7109 7110 7111
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7112 7113
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7114 7115
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7116
	int on_rq;
7117

P
Peter Zijlstra 已提交
7118
	on_rq = p->on_rq;
7119
	if (on_rq)
7120
		dequeue_task(rq, p, 0);
7121 7122
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7123
		enqueue_task(rq, p, 0);
7124 7125
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7126 7127

	check_class_changed(rq, p, prev_class, old_prio);
7128 7129
}

L
Linus Torvalds 已提交
7130 7131
void normalize_rt_tasks(void)
{
7132
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7133
	unsigned long flags;
7134
	struct rq *rq;
L
Linus Torvalds 已提交
7135

7136
	read_lock_irqsave(&tasklist_lock, flags);
7137
	do_each_thread(g, p) {
7138 7139 7140 7141 7142 7143
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7144 7145
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7146 7147 7148
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7149
#endif
I
Ingo Molnar 已提交
7150 7151 7152 7153 7154 7155 7156 7157

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7158
			continue;
I
Ingo Molnar 已提交
7159
		}
L
Linus Torvalds 已提交
7160

7161
		raw_spin_lock(&p->pi_lock);
7162
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7163

7164
		normalize_task(rq, p);
7165

7166
		__task_rq_unlock(rq);
7167
		raw_spin_unlock(&p->pi_lock);
7168 7169
	} while_each_thread(g, p);

7170
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7171 7172 7173
}

#endif /* CONFIG_MAGIC_SYSRQ */
7174

7175
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7176
/*
7177
 * These functions are only useful for the IA64 MCA handling, or kdb.
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7192
struct task_struct *curr_task(int cpu)
7193 7194 7195 7196
{
	return cpu_curr(cpu);
}

7197 7198 7199
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7200 7201 7202 7203 7204 7205
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7206 7207
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7208 7209 7210 7211 7212 7213 7214
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7215
void set_curr_task(int cpu, struct task_struct *p)
7216 7217 7218 7219 7220
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7221

D
Dhaval Giani 已提交
7222
#ifdef CONFIG_CGROUP_SCHED
7223 7224 7225
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7226 7227 7228 7229
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7230
	autogroup_free(tg);
7231 7232 7233 7234
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7235
struct task_group *sched_create_group(struct task_group *parent)
7236 7237 7238 7239 7240 7241 7242
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7243
	if (!alloc_fair_sched_group(tg, parent))
7244 7245
		goto err;

7246
	if (!alloc_rt_sched_group(tg, parent))
7247 7248
		goto err;

7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7260
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7261
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7262 7263 7264 7265 7266

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7267
	list_add_rcu(&tg->siblings, &parent->children);
7268
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7269 7270
}

7271
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7272
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7273 7274
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7275
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7276 7277
}

7278
/* Destroy runqueue etc associated with a task group */
7279
void sched_destroy_group(struct task_group *tg)
7280 7281 7282 7283 7284 7285
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7286
{
7287
	unsigned long flags;
7288
	int i;
S
Srivatsa Vaddagiri 已提交
7289

7290 7291
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7292
		unregister_fair_sched_group(tg, i);
7293 7294

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7295
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7296
	list_del_rcu(&tg->siblings);
7297
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7298 7299
}

7300
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7301 7302 7303
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7304 7305
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7306
{
P
Peter Zijlstra 已提交
7307
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7308 7309 7310 7311 7312 7313
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7314
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7315
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7316

7317
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7318
		dequeue_task(rq, tsk, 0);
7319 7320
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7321

P
Peter Zijlstra 已提交
7322 7323 7324 7325 7326 7327
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7328
#ifdef CONFIG_FAIR_GROUP_SCHED
7329 7330 7331
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7332
#endif
7333
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7334

7335 7336 7337
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7338
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7339

7340
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7341
}
D
Dhaval Giani 已提交
7342
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7343

7344
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7345 7346 7347
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7348
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7349

P
Peter Zijlstra 已提交
7350
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7351
}
7352 7353 7354 7355 7356 7357 7358
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7359

P
Peter Zijlstra 已提交
7360 7361
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7362
{
P
Peter Zijlstra 已提交
7363
	struct task_struct *g, *p;
7364

P
Peter Zijlstra 已提交
7365
	do_each_thread(g, p) {
7366
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7367 7368
			return 1;
	} while_each_thread(g, p);
7369

P
Peter Zijlstra 已提交
7370 7371
	return 0;
}
7372

P
Peter Zijlstra 已提交
7373 7374 7375 7376 7377
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7378

7379
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7380 7381 7382 7383 7384
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7385

P
Peter Zijlstra 已提交
7386 7387
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7388

P
Peter Zijlstra 已提交
7389 7390 7391
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7392 7393
	}

7394 7395 7396 7397 7398
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7399

7400 7401 7402
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7403 7404
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7405

P
Peter Zijlstra 已提交
7406
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7407

7408 7409 7410 7411 7412
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7413

7414 7415 7416
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7417 7418 7419
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7420

P
Peter Zijlstra 已提交
7421 7422 7423 7424
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7425

P
Peter Zijlstra 已提交
7426
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7427
	}
P
Peter Zijlstra 已提交
7428

P
Peter Zijlstra 已提交
7429 7430 7431 7432
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7433 7434
}

P
Peter Zijlstra 已提交
7435
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7436
{
7437 7438
	int ret;

P
Peter Zijlstra 已提交
7439 7440 7441 7442 7443 7444
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7445 7446 7447 7448 7449
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7450 7451
}

7452
static int tg_set_rt_bandwidth(struct task_group *tg,
7453
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7454
{
P
Peter Zijlstra 已提交
7455
	int i, err = 0;
P
Peter Zijlstra 已提交
7456 7457

	mutex_lock(&rt_constraints_mutex);
7458
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7459 7460
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7461
		goto unlock;
P
Peter Zijlstra 已提交
7462

7463
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7464 7465
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7466 7467 7468 7469

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7470
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7471
		rt_rq->rt_runtime = rt_runtime;
7472
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7473
	}
7474
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7475
unlock:
7476
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7477 7478 7479
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7480 7481
}

7482
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7483 7484 7485 7486 7487 7488 7489 7490
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7491
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7492 7493
}

7494
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7495 7496 7497
{
	u64 rt_runtime_us;

7498
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7499 7500
		return -1;

7501
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7502 7503 7504
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7505

7506
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7507 7508 7509 7510 7511 7512
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7513 7514 7515
	if (rt_period == 0)
		return -EINVAL;

7516
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7517 7518
}

7519
static long sched_group_rt_period(struct task_group *tg)
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7530
	u64 runtime, period;
7531 7532
	int ret = 0;

7533 7534 7535
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7536 7537 7538 7539 7540 7541 7542 7543
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7544

7545
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7546
	read_lock(&tasklist_lock);
7547
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7548
	read_unlock(&tasklist_lock);
7549 7550 7551 7552
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7553

7554
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7555 7556 7557 7558 7559 7560 7561 7562
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7563
#else /* !CONFIG_RT_GROUP_SCHED */
7564 7565
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7566 7567 7568
	unsigned long flags;
	int i;

7569 7570 7571
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7572 7573 7574 7575 7576 7577 7578
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7579
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7580 7581 7582
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7583
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7584
		rt_rq->rt_runtime = global_rt_runtime();
7585
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7586
	}
7587
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7588

7589 7590
	return 0;
}
7591
#endif /* CONFIG_RT_GROUP_SCHED */
7592

7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611
int sched_rr_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
	if (!ret && write) {
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
	}
	mutex_unlock(&mutex);
	return ret;
}

7612
int sched_rt_handler(struct ctl_table *table, int write,
7613
		void __user *buffer, size_t *lenp,
7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7624
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7641

7642
#ifdef CONFIG_CGROUP_SCHED
7643 7644

/* return corresponding task_group object of a cgroup */
7645
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7646
{
7647 7648
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7649 7650
}

7651
static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7652
{
7653
	struct task_group *tg, *parent;
7654

7655
	if (!cgrp->parent) {
7656
		/* This is early initialization for the top cgroup */
7657
		return &root_task_group.css;
7658 7659
	}

7660 7661
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7662 7663 7664 7665 7666 7667
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680
static int cpu_cgroup_css_online(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *parent;

	if (!cgrp->parent)
		return 0;

	parent = cgroup_tg(cgrp->parent);
	sched_online_group(tg, parent);
	return 0;
}

7681
static void cpu_cgroup_css_free(struct cgroup *cgrp)
7682
{
7683
	struct task_group *tg = cgroup_tg(cgrp);
7684 7685 7686 7687

	sched_destroy_group(tg);
}

7688 7689 7690 7691 7692 7693 7694
static void cpu_cgroup_css_offline(struct cgroup *cgrp)
{
	struct task_group *tg = cgroup_tg(cgrp);

	sched_offline_group(tg);
}

7695
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7696
				 struct cgroup_taskset *tset)
7697
{
7698 7699 7700
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7701
#ifdef CONFIG_RT_GROUP_SCHED
7702 7703
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7704
#else
7705 7706 7707
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7708
#endif
7709
	}
7710 7711
	return 0;
}
7712

7713
static void cpu_cgroup_attach(struct cgroup *cgrp,
7714
			      struct cgroup_taskset *tset)
7715
{
7716 7717 7718 7719
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7720 7721
}

7722
static void
7723 7724
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7737
#ifdef CONFIG_FAIR_GROUP_SCHED
7738
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7739
				u64 shareval)
7740
{
7741
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7742 7743
}

7744
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7745
{
7746
	struct task_group *tg = cgroup_tg(cgrp);
7747

7748
	return (u64) scale_load_down(tg->shares);
7749
}
7750 7751

#ifdef CONFIG_CFS_BANDWIDTH
7752 7753
static DEFINE_MUTEX(cfs_constraints_mutex);

7754 7755 7756
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7757 7758
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7759 7760
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7761
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7762
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7783 7784 7785 7786 7787
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7788
	runtime_enabled = quota != RUNTIME_INF;
7789 7790
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7791 7792 7793
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7794

P
Paul Turner 已提交
7795
	__refill_cfs_bandwidth_runtime(cfs_b);
7796 7797 7798 7799 7800 7801
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7802 7803 7804 7805
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7806
		struct rq *rq = cfs_rq->rq;
7807 7808

		raw_spin_lock_irq(&rq->lock);
7809
		cfs_rq->runtime_enabled = runtime_enabled;
7810
		cfs_rq->runtime_remaining = 0;
7811

7812
		if (cfs_rq->throttled)
7813
			unthrottle_cfs_rq(cfs_rq);
7814 7815
		raw_spin_unlock_irq(&rq->lock);
	}
7816 7817
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7818

7819
	return ret;
7820 7821 7822 7823 7824 7825
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7826
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7839
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7840 7841
		return -1;

7842
	quota_us = tg->cfs_bandwidth.quota;
7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7853
	quota = tg->cfs_bandwidth.quota;
7854 7855 7856 7857 7858 7859 7860 7861

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7862
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7922
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7923 7924 7925 7926 7927
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7928
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7949
	int ret;
7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7961 7962 7963 7964 7965
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7966
}
7967 7968 7969 7970 7971

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7972
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7973 7974 7975 7976 7977 7978 7979

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7980
#endif /* CONFIG_CFS_BANDWIDTH */
7981
#endif /* CONFIG_FAIR_GROUP_SCHED */
7982

7983
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7984
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7985
				s64 val)
P
Peter Zijlstra 已提交
7986
{
7987
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7988 7989
}

7990
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7991
{
7992
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7993
}
7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8005
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8006

8007
static struct cftype cpu_files[] = {
8008
#ifdef CONFIG_FAIR_GROUP_SCHED
8009 8010
	{
		.name = "shares",
8011 8012
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8013
	},
8014
#endif
8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8026 8027 8028 8029
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8030
#endif
8031
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8032
	{
P
Peter Zijlstra 已提交
8033
		.name = "rt_runtime_us",
8034 8035
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8036
	},
8037 8038
	{
		.name = "rt_period_us",
8039 8040
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8041
	},
8042
#endif
8043
	{ }	/* terminate */
8044 8045 8046
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8047
	.name		= "cpu",
8048 8049
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8050 8051
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8052 8053
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8054
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8055
	.subsys_id	= cpu_cgroup_subsys_id,
8056
	.base_cftypes	= cpu_files,
8057 8058 8059
	.early_init	= 1,
};

8060
#endif	/* CONFIG_CGROUP_SCHED */
8061

8062 8063 8064 8065 8066
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}