core.c 195.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
G
Glauber Costa 已提交
78 79 80
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
81

82
#include "sched.h"
83
#include "../workqueue_sched.h"
84

85
#define CREATE_TRACE_POINTS
86
#include <trace/events/sched.h>
87

88
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
89
{
90 91
	unsigned long delta;
	ktime_t soft, hard, now;
92

93 94 95 96 97 98
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
99

100 101 102 103 104 105 106 107
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

108 109
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
110

111
static void update_rq_clock_task(struct rq *rq, s64 delta);
112

113
void update_rq_clock(struct rq *rq)
114
{
115
	s64 delta;
116

117
	if (rq->skip_clock_update > 0)
118
		return;
119

120 121 122
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
123 124
}

I
Ingo Molnar 已提交
125 126 127
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
128 129 130 131

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
132
const_debug unsigned int sysctl_sched_features =
133
#include "features.h"
P
Peter Zijlstra 已提交
134 135 136 137 138 139 140 141
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

142
static __read_mostly char *sched_feat_names[] = {
143
#include "features.h"
P
Peter Zijlstra 已提交
144 145 146 147 148
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
149
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
150 151 152
{
	int i;

153
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
154 155 156
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
157
	}
L
Li Zefan 已提交
158
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
159

L
Li Zefan 已提交
160
	return 0;
P
Peter Zijlstra 已提交
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#ifdef HAVE_JUMP_LABEL

#define jump_label_key__true  jump_label_key_enabled
#define jump_label_key__false jump_label_key_disabled

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
	if (jump_label_enabled(&sched_feat_keys[i]))
		jump_label_dec(&sched_feat_keys[i]);
}

static void sched_feat_enable(int i)
{
	if (!jump_label_enabled(&sched_feat_keys[i]))
		jump_label_inc(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
193 194 195 196 197
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
198
	char *cmp;
P
Peter Zijlstra 已提交
199 200 201 202 203 204 205 206 207 208
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
209
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
210

H
Hillf Danton 已提交
211
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
212 213 214 215
		neg = 1;
		cmp += 3;
	}

216
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
217
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
218
			if (neg) {
P
Peter Zijlstra 已提交
219
				sysctl_sched_features &= ~(1UL << i);
220 221
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
222
				sysctl_sched_features |= (1UL << i);
223 224
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
225 226 227 228
			break;
		}
	}

229
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
230 231
		return -EINVAL;

232
	*ppos += cnt;
P
Peter Zijlstra 已提交
233 234 235 236

	return cnt;
}

L
Li Zefan 已提交
237 238 239 240 241
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

242
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
243 244 245 246 247
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
248 249 250 251 252 253 254 255 256 257
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
258
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
259

260 261 262 263 264 265
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

266 267 268 269 270 271 272 273
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
274
/*
P
Peter Zijlstra 已提交
275
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
276 277
 * default: 1s
 */
P
Peter Zijlstra 已提交
278
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
279

280
__read_mostly int scheduler_running;
281

P
Peter Zijlstra 已提交
282 283 284 285 286
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
287 288


L
Linus Torvalds 已提交
289

290
/*
291
 * __task_rq_lock - lock the rq @p resides on.
292
 */
293
static inline struct rq *__task_rq_lock(struct task_struct *p)
294 295
	__acquires(rq->lock)
{
296 297
	struct rq *rq;

298 299
	lockdep_assert_held(&p->pi_lock);

300
	for (;;) {
301
		rq = task_rq(p);
302
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
303
		if (likely(rq == task_rq(p)))
304
			return rq;
305
		raw_spin_unlock(&rq->lock);
306 307 308
	}
}

L
Linus Torvalds 已提交
309
/*
310
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
311
 */
312
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
313
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
314 315
	__acquires(rq->lock)
{
316
	struct rq *rq;
L
Linus Torvalds 已提交
317

318
	for (;;) {
319
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
320
		rq = task_rq(p);
321
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
322
		if (likely(rq == task_rq(p)))
323
			return rq;
324 325
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
326 327 328
	}
}

A
Alexey Dobriyan 已提交
329
static void __task_rq_unlock(struct rq *rq)
330 331
	__releases(rq->lock)
{
332
	raw_spin_unlock(&rq->lock);
333 334
}

335 336
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
337
	__releases(rq->lock)
338
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
339
{
340 341
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
342 343 344
}

/*
345
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
346
 */
A
Alexey Dobriyan 已提交
347
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
348 349
	__acquires(rq->lock)
{
350
	struct rq *rq;
L
Linus Torvalds 已提交
351 352 353

	local_irq_disable();
	rq = this_rq();
354
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
355 356 357 358

	return rq;
}

P
Peter Zijlstra 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

387
	raw_spin_lock(&rq->lock);
388
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
389
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
390
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
391 392 393 394

	return HRTIMER_NORESTART;
}

395
#ifdef CONFIG_SMP
396 397 398 399
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
400
{
401
	struct rq *rq = arg;
402

403
	raw_spin_lock(&rq->lock);
404 405
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
406
	raw_spin_unlock(&rq->lock);
407 408
}

409 410 411 412 413
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
414
void hrtick_start(struct rq *rq, u64 delay)
415
{
416 417
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
418

419
	hrtimer_set_expires(timer, time);
420 421 422 423

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
424
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
425 426
		rq->hrtick_csd_pending = 1;
	}
427 428 429 430 431 432 433 434 435 436 437 438 439 440
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
441
		hrtick_clear(cpu_rq(cpu));
442 443 444 445 446 447
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

448
static __init void init_hrtick(void)
449 450 451
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
452 453 454 455 456 457
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
458
void hrtick_start(struct rq *rq, u64 delay)
459
{
460
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
461
			HRTIMER_MODE_REL_PINNED, 0);
462
}
463

A
Andrew Morton 已提交
464
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
465 466
{
}
467
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
468

469
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
470
{
471 472
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
473

474 475 476 477
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
478

479 480
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
481
}
A
Andrew Morton 已提交
482
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
483 484 485 486 487 488 489 490
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

491 492 493
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
494
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
495

I
Ingo Molnar 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

509
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
510 511 512
{
	int cpu;

513
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
514

515
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
516 517
		return;

518
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
519 520 521 522 523 524 525 526 527 528 529

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

530
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
531 532 533 534
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

535
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
536 537
		return;
	resched_task(cpu_curr(cpu));
538
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
539
}
540 541

#ifdef CONFIG_NO_HZ
542 543 544 545 546 547 548 549 550 551 552 553 554 555
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

556
	rcu_read_lock();
557
	for_each_domain(cpu, sd) {
558 559 560 561 562 563
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
564
	}
565 566
unlock:
	rcu_read_unlock();
567 568
	return cpu;
}
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
595 596

	/*
597 598 599
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
600
	 */
601
	set_tsk_need_resched(rq->idle);
602

603 604 605 606
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
607 608
}

609
static inline bool got_nohz_idle_kick(void)
610
{
611 612
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
613 614
}

615
#else /* CONFIG_NO_HZ */
616

617
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
618
{
619
	return false;
P
Peter Zijlstra 已提交
620 621
}

622
#endif /* CONFIG_NO_HZ */
623

624
void sched_avg_update(struct rq *rq)
625
{
626 627 628
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
629 630 631 632 633 634
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
635 636 637
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
638 639
}

640
#else /* !CONFIG_SMP */
641
void resched_task(struct task_struct *p)
642
{
643
	assert_raw_spin_locked(&task_rq(p)->lock);
644
	set_tsk_need_resched(p);
645
}
646
#endif /* CONFIG_SMP */
647

648 649
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650
/*
651 652 653 654
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
655
 */
656
int walk_tg_tree_from(struct task_group *from,
657
			     tg_visitor down, tg_visitor up, void *data)
658 659
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
660
	int ret;
661

662 663
	parent = from;

664
down:
P
Peter Zijlstra 已提交
665 666
	ret = (*down)(parent, data);
	if (ret)
667
		goto out;
668 669 670 671 672 673 674
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
675
	ret = (*up)(parent, data);
676 677
	if (ret || parent == from)
		goto out;
678 679 680 681 682

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
683
out:
P
Peter Zijlstra 已提交
684
	return ret;
685 686
}

687
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
688
{
689
	return 0;
P
Peter Zijlstra 已提交
690
}
691 692
#endif

693
void update_cpu_load(struct rq *this_rq);
694

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743 744
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

745 746 747 748 749 750 751
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
752 753 754
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
755
 */
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
810 811 812
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
813
#endif /* CONFIG_64BIT */
814

815 816 817 818
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
819 820 821
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
822
	s64 delta;
823 824 825 826 827 828 829 830
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
831 832 833
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

834
	irq_time_write_begin();
835 836 837 838 839 840 841
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
842
		__this_cpu_add(cpu_hardirq_time, delta);
843
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844
		__this_cpu_add(cpu_softirq_time, delta);
845

846
	irq_time_write_end();
847 848
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
849
EXPORT_SYMBOL_GPL(account_system_vtime);
850

G
Glauber Costa 已提交
851 852 853 854
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
855
{
G
Glauber Costa 已提交
856 857
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
858

G
Glauber Costa 已提交
859 860 861 862
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

863
static void update_rq_clock_task(struct rq *rq, s64 delta)
864
{
865 866 867 868 869 870 871 872
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
873
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

915 916
	rq->clock_task += delta;

917 918 919 920
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
921 922
}

923
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 925
static int irqtime_account_hi_update(void)
{
926
	u64 *cpustat = kcpustat_this_cpu->cpustat;
927 928 929 930 931 932
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
933
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 935 936 937 938 939 940
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
941
	u64 *cpustat = kcpustat_this_cpu->cpustat;
942 943 944 945 946 947
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
948
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 950 951 952 953
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

954
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
955

956 957
#define sched_clock_irqtime	(0)

958
#endif
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

990
/*
I
Ingo Molnar 已提交
991
 * __normal_prio - return the priority that is based on the static prio
992 993 994
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
995
	return p->static_prio;
996 997
}

998 999 1000 1001 1002 1003 1004
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1005
static inline int normal_prio(struct task_struct *p)
1006 1007 1008
{
	int prio;

1009
	if (task_has_rt_policy(p))
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1023
static int effective_prio(struct task_struct *p)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1036 1037 1038 1039
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1040
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1041 1042 1043 1044
{
	return cpu_curr(task_cpu(p)) == p;
}

1045 1046
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1047
				       int oldprio)
1048 1049 1050
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1051 1052 1053 1054
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1055 1056
}

1057
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1078
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 1080 1081
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1082
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1083
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1084
{
1085 1086 1087 1088 1089
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1090 1091
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092 1093

#ifdef CONFIG_LOCKDEP
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1104 1105 1106
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1107 1108
#endif

1109
	trace_sched_migrate_task(p, new_cpu);
1110

1111 1112
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1113
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114
	}
I
Ingo Molnar 已提交
1115 1116

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1117 1118
}

1119
struct migration_arg {
1120
	struct task_struct *task;
L
Linus Torvalds 已提交
1121
	int dest_cpu;
1122
};
L
Linus Torvalds 已提交
1123

1124 1125
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1126 1127 1128
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1129 1130 1131 1132 1133 1134 1135
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1136 1137 1138 1139 1140 1141
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1142
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1143 1144
{
	unsigned long flags;
I
Ingo Molnar 已提交
1145
	int running, on_rq;
R
Roland McGrath 已提交
1146
	unsigned long ncsw;
1147
	struct rq *rq;
L
Linus Torvalds 已提交
1148

1149 1150 1151 1152 1153 1154 1155 1156
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1169 1170 1171
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1172
			cpu_relax();
R
Roland McGrath 已提交
1173
		}
1174

1175 1176 1177 1178 1179 1180
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1181
		trace_sched_wait_task(p);
1182
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1183
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1184
		ncsw = 0;
1185
		if (!match_state || p->state == match_state)
1186
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187
		task_rq_unlock(rq, p, &flags);
1188

R
Roland McGrath 已提交
1189 1190 1191 1192 1193 1194
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1205

1206 1207 1208 1209 1210
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1211
		 * So if it was still runnable (but just not actively
1212 1213 1214 1215
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1216 1217 1218 1219
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 1221
			continue;
		}
1222

1223 1224 1225 1226 1227 1228 1229
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1230 1231

	return ncsw;
L
Linus Torvalds 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1241
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1242 1243 1244 1245 1246
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1247
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1257
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1258
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1259

1260
#ifdef CONFIG_SMP
1261
/*
1262
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263
 */
1264 1265 1266
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 1268
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1269 1270

	/* Look for allowed, online CPU in same node. */
1271 1272 1273 1274 1275
	for_each_cpu_mask(dest_cpu, *nodemask) {
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1276
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277
			return dest_cpu;
1278
	}
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288
	for (;;) {
		/* Any allowed, online CPU? */
		for_each_cpu_mask(dest_cpu, *tsk_cpus_allowed(p)) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1319 1320 1321 1322 1323
	}

	return dest_cpu;
}

1324
/*
1325
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326
 */
1327
static inline
1328
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329
{
1330
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1342
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1343
		     !cpu_online(cpu)))
1344
		cpu = select_fallback_rq(task_cpu(p), p);
1345 1346

	return cpu;
1347
}
1348 1349 1350 1351 1352 1353

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1354 1355
#endif

P
Peter Zijlstra 已提交
1356
static void
1357
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1358
{
P
Peter Zijlstra 已提交
1359
#ifdef CONFIG_SCHEDSTATS
1360 1361
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372
		rcu_read_lock();
P
Peter Zijlstra 已提交
1373 1374 1375 1376 1377 1378
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1379
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1380
	}
1381 1382 1383 1384

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1385 1386 1387
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1388
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1389 1390

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1391
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1392 1393 1394 1395 1396 1397

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1398
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1399
	p->on_rq = 1;
1400 1401 1402 1403

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1404 1405
}

1406 1407 1408
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1409
static void
1410
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1411
{
1412
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1413 1414 1415 1416 1417 1418 1419
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1420
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1466
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1467
static void sched_ttwu_pending(void)
1468 1469
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1470 1471
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1472 1473 1474

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1475 1476 1477
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1478 1479 1480 1481 1482 1483 1484 1485
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1486
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1503
	sched_ttwu_pending();
1504 1505 1506 1507

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1508 1509
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1510
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511
	}
1512
	irq_exit();
1513 1514 1515 1516
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1517
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 1519
		smp_send_reschedule(cpu);
}
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539

1540
bool cpus_share_cache(int this_cpu, int that_cpu)
1541 1542 1543
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1544
#endif /* CONFIG_SMP */
1545

1546 1547 1548 1549
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1550
#if defined(CONFIG_SMP)
1551
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 1554 1555 1556 1557
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1558 1559 1560
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1561 1562 1563
}

/**
L
Linus Torvalds 已提交
1564
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1565
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1566
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1567
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573 1574
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1575 1576
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1577
 */
1578 1579
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1580 1581
{
	unsigned long flags;
1582
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1583

1584
	smp_wmb();
1585
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1586
	if (!(p->state & state))
L
Linus Torvalds 已提交
1587 1588
		goto out;

1589
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1590 1591
	cpu = task_cpu(p);

1592 1593
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1594 1595

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1596
	/*
1597 1598
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1599
	 */
1600 1601 1602
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1603 1604 1605 1606 1607
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1608
		 */
1609
		if (ttwu_activate_remote(p, wake_flags))
1610
			goto stat;
1611
#else
1612
		cpu_relax();
1613
#endif
1614
	}
1615
	/*
1616
	 * Pairs with the smp_wmb() in finish_lock_switch().
1617
	 */
1618
	smp_rmb();
L
Linus Torvalds 已提交
1619

1620
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1621
	p->state = TASK_WAKING;
1622

1623
	if (p->sched_class->task_waking)
1624
		p->sched_class->task_waking(p);
1625

1626
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 1628
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1629
		set_task_cpu(p, cpu);
1630
	}
L
Linus Torvalds 已提交
1631 1632
#endif /* CONFIG_SMP */

1633 1634
	ttwu_queue(p, cpu);
stat:
1635
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1636
out:
1637
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1638 1639 1640 1641

	return success;
}

T
Tejun Heo 已提交
1642 1643 1644 1645
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1646
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1647
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648
 * the current task.
T
Tejun Heo 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1658 1659 1660 1661 1662 1663
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1664
	if (!(p->state & TASK_NORMAL))
1665
		goto out;
T
Tejun Heo 已提交
1666

P
Peter Zijlstra 已提交
1667
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1668 1669
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1670
	ttwu_do_wakeup(rq, p, 0);
1671
	ttwu_stat(p, smp_processor_id(), 0);
1672 1673
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1674 1675
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1687
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1688
{
1689
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1690 1691 1692
}
EXPORT_SYMBOL(wake_up_process);

1693
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1694 1695 1696 1697 1698 1699 1700
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1701 1702 1703 1704 1705
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1706 1707 1708
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1709 1710
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1711
	p->se.prev_sum_exec_runtime	= 0;
1712
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1713
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1714
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1715 1716

#ifdef CONFIG_SCHEDSTATS
1717
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1718
#endif
N
Nick Piggin 已提交
1719

P
Peter Zijlstra 已提交
1720
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1721

1722 1723 1724
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1725 1726 1727 1728 1729
}

/*
 * fork()/clone()-time setup:
 */
1730
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1731
{
1732
	unsigned long flags;
I
Ingo Molnar 已提交
1733 1734 1735
	int cpu = get_cpu();

	__sched_fork(p);
1736
	/*
1737
	 * We mark the process as running here. This guarantees that
1738 1739 1740
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1741
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1742

1743 1744 1745 1746 1747
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1748 1749 1750 1751
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1752
		if (task_has_rt_policy(p)) {
1753
			p->policy = SCHED_NORMAL;
1754
			p->static_prio = NICE_TO_PRIO(0);
1755 1756 1757 1758 1759 1760
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1761

1762 1763 1764 1765 1766 1767
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1768

H
Hiroshi Shimamoto 已提交
1769 1770
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1771

P
Peter Zijlstra 已提交
1772 1773 1774
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1775 1776 1777 1778 1779 1780 1781
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1782
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783
	set_task_cpu(p, cpu);
1784
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785

1786
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1787
	if (likely(sched_info_on()))
1788
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1789
#endif
P
Peter Zijlstra 已提交
1790 1791
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1792
#endif
1793
#ifdef CONFIG_PREEMPT_COUNT
1794
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1795
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1796
#endif
1797
#ifdef CONFIG_SMP
1798
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799
#endif
1800

N
Nick Piggin 已提交
1801
	put_cpu();
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1811
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1812 1813
{
	unsigned long flags;
I
Ingo Molnar 已提交
1814
	struct rq *rq;
1815

1816
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 1818 1819 1820 1821 1822
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1823
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 1825
#endif

1826
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1827
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1828
	p->on_rq = 1;
1829
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1830
	check_preempt_curr(rq, p, WF_FORK);
1831
#ifdef CONFIG_SMP
1832 1833
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1834
#endif
1835
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1836 1837
}

1838 1839 1840
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1841
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1842
 * @notifier: notifier struct to register
1843 1844 1845 1846 1847 1848 1849 1850 1851
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1852
 * @notifier: notifier struct to unregister
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1882
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1894
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1895

1896 1897 1898
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1899
 * @prev: the current task that is being switched out
1900 1901 1902 1903 1904 1905 1906 1907 1908
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1909 1910 1911
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1912
{
1913 1914
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1915
	fire_sched_out_preempt_notifiers(prev, next);
1916 1917
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1918
	trace_sched_switch(prev, next);
1919 1920
}

L
Linus Torvalds 已提交
1921 1922
/**
 * finish_task_switch - clean up after a task-switch
1923
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1924 1925
 * @prev: the thread we just switched away from.
 *
1926 1927 1928 1929
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1930 1931
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1932
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1933 1934 1935
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1936
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1937 1938 1939
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1940
	long prev_state;
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1946
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1947 1948
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1949
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1955
	prev_state = prev->state;
1956
	finish_arch_switch(prev);
1957 1958 1959
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960
	perf_event_task_sched_in(prev, current);
1961 1962 1963
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964
	finish_lock_switch(rq, prev);
1965
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1966

1967
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1968 1969
	if (mm)
		mmdrop(mm);
1970
	if (unlikely(prev_state == TASK_DEAD)) {
1971 1972 1973
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1974
		 */
1975
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1976
		put_task_struct(prev);
1977
	}
L
Linus Torvalds 已提交
1978 1979
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1995
		raw_spin_lock_irqsave(&rq->lock, flags);
1996 1997
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1998
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1999 2000 2001 2002 2003 2004

		rq->post_schedule = 0;
	}
}

#else
2005

2006 2007 2008 2009 2010 2011
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2012 2013
}

2014 2015
#endif

L
Linus Torvalds 已提交
2016 2017 2018 2019
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2020
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2021 2022
	__releases(rq->lock)
{
2023 2024
	struct rq *rq = this_rq();

2025
	finish_task_switch(rq, prev);
2026

2027 2028 2029 2030 2031
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2032

2033 2034 2035 2036
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2037
	if (current->set_child_tid)
2038
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2045
static inline void
2046
context_switch(struct rq *rq, struct task_struct *prev,
2047
	       struct task_struct *next)
L
Linus Torvalds 已提交
2048
{
I
Ingo Molnar 已提交
2049
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2050

2051
	prepare_task_switch(rq, prev, next);
2052

I
Ingo Molnar 已提交
2053 2054
	mm = next->mm;
	oldmm = prev->active_mm;
2055 2056 2057 2058 2059
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2060
	arch_start_context_switch(prev);
2061

2062
	if (!mm) {
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2069
	if (!prev->mm) {
L
Linus Torvalds 已提交
2070 2071 2072
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2073 2074 2075 2076 2077 2078 2079
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081
#endif
L
Linus Torvalds 已提交
2082 2083 2084 2085

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2086 2087 2088 2089 2090 2091 2092
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2110
}
L
Linus Torvalds 已提交
2111 2112

unsigned long nr_uninterruptible(void)
2113
{
L
Linus Torvalds 已提交
2114
	unsigned long i, sum = 0;
2115

2116
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2117
		sum += cpu_rq(i)->nr_uninterruptible;
2118 2119

	/*
L
Linus Torvalds 已提交
2120 2121
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2122
	 */
L
Linus Torvalds 已提交
2123 2124
	if (unlikely((long)sum < 0))
		sum = 0;
2125

L
Linus Torvalds 已提交
2126
	return sum;
2127 2128
}

L
Linus Torvalds 已提交
2129
unsigned long long nr_context_switches(void)
2130
{
2131 2132
	int i;
	unsigned long long sum = 0;
2133

2134
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2135
		sum += cpu_rq(i)->nr_switches;
2136

L
Linus Torvalds 已提交
2137 2138
	return sum;
}
2139

L
Linus Torvalds 已提交
2140 2141 2142
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2143

2144
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2145
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2146

L
Linus Torvalds 已提交
2147 2148
	return sum;
}
2149

2150
unsigned long nr_iowait_cpu(int cpu)
2151
{
2152
	struct rq *this = cpu_rq(cpu);
2153 2154
	return atomic_read(&this->nr_iowait);
}
2155

2156 2157 2158 2159 2160
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2161

2162

2163 2164 2165 2166 2167
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2184 2185 2186 2187 2188 2189 2190 2191 2192
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2193 2194 2195 2196 2197 2198 2199 2200
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2201
void calc_load_account_idle(struct rq *this_rq)
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2300
static void calc_global_nohz(void)
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
{
	long delta, active, n;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
2315
	 * It could be the one fold was all it took, we done!
2316
	 */
2317 2318
	if (time_before(jiffies, calc_load_update + 10))
		return;
2319

2320 2321 2322 2323 2324
	/*
	 * Catch-up, fold however many we are behind still
	 */
	delta = jiffies - calc_load_update - 10;
	n = 1 + (delta / LOAD_FREQ);
2325

2326 2327
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2328

2329 2330 2331
	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2332

2333
	calc_load_update += n * LOAD_FREQ;
2334
}
2335
#else
2336
void calc_load_account_idle(struct rq *this_rq)
2337 2338 2339 2340 2341 2342 2343
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2344

2345
static void calc_global_nohz(void)
2346 2347
{
}
2348 2349
#endif

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2363 2364 2365
}

/*
2366 2367
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2368
 */
2369
void calc_global_load(unsigned long ticks)
2370
{
2371
	long active;
L
Linus Torvalds 已提交
2372

2373
	if (time_before(jiffies, calc_load_update + 10))
2374
		return;
L
Linus Torvalds 已提交
2375

2376 2377
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2378

2379 2380 2381
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2382

2383
	calc_load_update += LOAD_FREQ;
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

	/*
	 * Account one period with whatever state we found before
	 * folding in the nohz state and ageing the entire idle period.
	 *
	 * This avoids loosing a sample when we go idle between 
	 * calc_load_account_active() (10 ticks ago) and now and thus
	 * under-accounting.
	 */
	calc_global_nohz();
2394
}
L
Linus Torvalds 已提交
2395

2396
/*
2397 2398
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2399 2400 2401
 */
static void calc_load_account_active(struct rq *this_rq)
{
2402
	long delta;
2403

2404 2405
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2406

2407 2408 2409
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2410
		atomic_long_add(delta, &calc_load_tasks);
2411 2412

	this_rq->calc_load_update += LOAD_FREQ;
2413 2414
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2482
/*
I
Ingo Molnar 已提交
2483
 * Update rq->cpu_load[] statistics. This function is usually called every
2484 2485
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2486
 */
2487
void update_cpu_load(struct rq *this_rq)
2488
{
2489
	unsigned long this_load = this_rq->load.weight;
2490 2491
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
2492
	int i, scale;
2493

I
Ingo Molnar 已提交
2494
	this_rq->nr_load_updates++;
2495

2496 2497 2498 2499 2500 2501 2502
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
2503
	/* Update our load: */
2504 2505
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2506
		unsigned long old_load, new_load;
2507

I
Ingo Molnar 已提交
2508
		/* scale is effectively 1 << i now, and >> i divides by scale */
2509

I
Ingo Molnar 已提交
2510
		old_load = this_rq->cpu_load[i];
2511
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2512
		new_load = this_load;
I
Ingo Molnar 已提交
2513 2514 2515 2516 2517 2518
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2519 2520 2521
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2522
	}
2523 2524

	sched_avg_update(this_rq);
2525 2526 2527 2528 2529
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
2530

2531
	calc_load_account_active(this_rq);
2532 2533
}

I
Ingo Molnar 已提交
2534
#ifdef CONFIG_SMP
2535

2536
/*
P
Peter Zijlstra 已提交
2537 2538
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2539
 */
P
Peter Zijlstra 已提交
2540
void sched_exec(void)
2541
{
P
Peter Zijlstra 已提交
2542
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2543
	unsigned long flags;
2544
	int dest_cpu;
2545

2546
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2547
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2548 2549
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2550

2551
	if (likely(cpu_active(dest_cpu))) {
2552
		struct migration_arg arg = { p, dest_cpu };
2553

2554 2555
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2556 2557
		return;
	}
2558
unlock:
2559
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2560
}
I
Ingo Molnar 已提交
2561

L
Linus Torvalds 已提交
2562 2563 2564
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2565
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2566 2567

EXPORT_PER_CPU_SYMBOL(kstat);
2568
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2569 2570

/*
2571
 * Return any ns on the sched_clock that have not yet been accounted in
2572
 * @p in case that task is currently running.
2573 2574
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2575
 */
2576 2577 2578 2579 2580 2581
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2582
		ns = rq->clock_task - p->se.exec_start;
2583 2584 2585 2586 2587 2588 2589
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2590
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2591 2592
{
	unsigned long flags;
2593
	struct rq *rq;
2594
	u64 ns = 0;
2595

2596
	rq = task_rq_lock(p, &flags);
2597
	ns = do_task_delta_exec(p, rq);
2598
	task_rq_unlock(rq, p, &flags);
2599

2600 2601
	return ns;
}
2602

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2616
	task_rq_unlock(rq, p, &flags);
2617 2618 2619

	return ns;
}
2620

2621 2622 2623 2624 2625
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2626 2627
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2657 2658 2659 2660
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2661
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2662
 */
2663 2664
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2665
{
2666
	int index;
L
Linus Torvalds 已提交
2667

2668
	/* Add user time to process. */
2669 2670
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2671
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2672

2673
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2674

L
Linus Torvalds 已提交
2675
	/* Add user time to cpustat. */
2676
	task_group_account_field(p, index, (__force u64) cputime);
2677

2678 2679
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2680 2681
}

2682 2683 2684 2685
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2686
 * @cputime_scaled: cputime scaled by cpu frequency
2687
 */
2688 2689
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2690
{
2691
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2692

2693
	/* Add guest time to process. */
2694 2695
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2696
	account_group_user_time(p, cputime);
2697
	p->gtime += cputime;
2698

2699
	/* Add guest time to cpustat. */
2700
	if (TASK_NICE(p) > 0) {
2701 2702
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2703
	} else {
2704 2705
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2706
	}
2707 2708
}

2709 2710 2711 2712 2713 2714 2715 2716 2717
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2718
			cputime_t cputime_scaled, int index)
2719 2720
{
	/* Add system time to process. */
2721 2722
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2723 2724 2725
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2726
	task_group_account_field(p, index, (__force u64) cputime);
2727 2728 2729 2730 2731

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2732 2733 2734 2735 2736
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2737
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2738 2739
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2740
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2741
{
2742
	int index;
L
Linus Torvalds 已提交
2743

2744
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2745
		account_guest_time(p, cputime, cputime_scaled);
2746 2747
		return;
	}
2748

L
Linus Torvalds 已提交
2749
	if (hardirq_count() - hardirq_offset)
2750
		index = CPUTIME_IRQ;
2751
	else if (in_serving_softirq())
2752
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2753
	else
2754
		index = CPUTIME_SYSTEM;
2755

2756
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2757 2758
}

2759
/*
L
Linus Torvalds 已提交
2760
 * Account for involuntary wait time.
2761
 * @cputime: the cpu time spent in involuntary wait
2762
 */
2763
void account_steal_time(cputime_t cputime)
2764
{
2765
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2766

2767
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2768 2769
}

L
Linus Torvalds 已提交
2770
/*
2771 2772
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2773
 */
2774
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2775
{
2776
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2777
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2778

2779
	if (atomic_read(&rq->nr_iowait) > 0)
2780
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2781
	else
2782
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2783 2784
}

G
Glauber Costa 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2804 2805
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2832
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2833

G
Glauber Costa 已提交
2834 2835 2836
	if (steal_account_process_tick())
		return;

2837
	if (irqtime_account_hi_update()) {
2838
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2839
	} else if (irqtime_account_si_update()) {
2840
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2841 2842 2843 2844 2845 2846 2847
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2848
					CPUTIME_SOFTIRQ);
2849 2850 2851 2852 2853 2854 2855 2856
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2857
					CPUTIME_SYSTEM);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2869
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2870 2871 2872
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2873
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2874 2875 2876 2877 2878 2879 2880 2881

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2882
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2883 2884
	struct rq *rq = this_rq();

2885 2886 2887 2888 2889
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2890 2891 2892
	if (steal_account_process_tick())
		return;

2893
	if (user_tick)
2894
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2895
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2896
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2897 2898
				    one_jiffy_scaled);
	else
2899
		account_idle_time(cputime_one_jiffy);
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2918 2919 2920 2921 2922 2923

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2924
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2925 2926
}

2927 2928
#endif

2929 2930 2931 2932
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2933
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2934
{
2935 2936
	*ut = p->utime;
	*st = p->stime;
2937 2938
}

2939
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2940
{
2941 2942 2943 2944 2945 2946
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
2947 2948
}
#else
2949 2950

#ifndef nsecs_to_cputime
2951
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2952 2953
#endif

2954
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2955
{
2956
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2957 2958 2959 2960

	/*
	 * Use CFS's precise accounting:
	 */
2961
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2962 2963

	if (total) {
2964
		u64 temp = (__force u64) rtime;
2965

2966 2967 2968
		temp *= (__force u64) utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2969 2970
	} else
		utime = rtime;
2971

2972 2973 2974
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
2975
	p->prev_utime = max(p->prev_utime, utime);
2976
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2977

2978 2979
	*ut = p->prev_utime;
	*st = p->prev_stime;
2980 2981
}

2982 2983 2984 2985
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2986
{
2987 2988 2989
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
2990

2991
	thread_group_cputime(p, &cputime);
2992

2993
	total = cputime.utime + cputime.stime;
2994
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2995

2996
	if (total) {
2997
		u64 temp = (__force u64) rtime;
2998

2999 3000 3001
		temp *= (__force u64) cputime.utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
3002 3003 3004 3005
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
3006
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3007 3008 3009

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3010 3011 3012
}
#endif

3013 3014 3015 3016 3017 3018 3019 3020
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3021
	struct task_struct *curr = rq->curr;
3022 3023

	sched_clock_tick();
I
Ingo Molnar 已提交
3024

3025
	raw_spin_lock(&rq->lock);
3026
	update_rq_clock(rq);
3027
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3028
	curr->sched_class->task_tick(rq, curr, 0);
3029
	raw_spin_unlock(&rq->lock);
3030

3031
	perf_event_task_tick();
3032

3033
#ifdef CONFIG_SMP
3034
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3035
	trigger_load_balance(rq, cpu);
3036
#endif
L
Linus Torvalds 已提交
3037 3038
}

3039
notrace unsigned long get_parent_ip(unsigned long addr)
3040 3041 3042 3043 3044 3045 3046 3047
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3048

3049 3050 3051
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3052
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3053
{
3054
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3055 3056 3057
	/*
	 * Underflow?
	 */
3058 3059
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3060
#endif
L
Linus Torvalds 已提交
3061
	preempt_count() += val;
3062
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3063 3064 3065
	/*
	 * Spinlock count overflowing soon?
	 */
3066 3067
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3068 3069 3070
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3071 3072 3073
}
EXPORT_SYMBOL(add_preempt_count);

3074
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3075
{
3076
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3077 3078 3079
	/*
	 * Underflow?
	 */
3080
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3081
		return;
L
Linus Torvalds 已提交
3082 3083 3084
	/*
	 * Is the spinlock portion underflowing?
	 */
3085 3086 3087
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3088
#endif
3089

3090 3091
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3092 3093 3094 3095 3096 3097 3098
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3099
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3100
 */
I
Ingo Molnar 已提交
3101
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3102
{
3103 3104 3105
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3106 3107
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3108

I
Ingo Molnar 已提交
3109
	debug_show_held_locks(prev);
3110
	print_modules();
I
Ingo Molnar 已提交
3111 3112
	if (irqs_disabled())
		print_irqtrace_events(prev);
3113
	dump_stack();
I
Ingo Molnar 已提交
3114
}
L
Linus Torvalds 已提交
3115

I
Ingo Molnar 已提交
3116 3117 3118 3119 3120
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3121
	/*
I
Ingo Molnar 已提交
3122
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3123 3124 3125
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3126
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3127
		__schedule_bug(prev);
3128
	rcu_sleep_check();
I
Ingo Molnar 已提交
3129

L
Linus Torvalds 已提交
3130 3131
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3132
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3133 3134
}

P
Peter Zijlstra 已提交
3135
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3136
{
3137
	if (prev->on_rq || rq->skip_clock_update < 0)
3138
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3139
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3140 3141
}

I
Ingo Molnar 已提交
3142 3143 3144 3145
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3146
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3147
{
3148
	const struct sched_class *class;
I
Ingo Molnar 已提交
3149
	struct task_struct *p;
L
Linus Torvalds 已提交
3150 3151

	/*
I
Ingo Molnar 已提交
3152 3153
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3154
	 */
3155
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3156
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3157 3158
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3159 3160
	}

3161
	for_each_class(class) {
3162
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3163 3164 3165
		if (p)
			return p;
	}
3166 3167

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3168
}
L
Linus Torvalds 已提交
3169

I
Ingo Molnar 已提交
3170
/*
3171
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3172
 */
3173
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3174 3175
{
	struct task_struct *prev, *next;
3176
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3177
	struct rq *rq;
3178
	int cpu;
I
Ingo Molnar 已提交
3179

3180 3181
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3182 3183
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3184
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3185 3186 3187
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3188

3189
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3190
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3191

3192
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3193

3194
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3195
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3196
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3197
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3198
		} else {
3199 3200 3201
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3202
			/*
3203 3204 3205
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3215
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3216 3217
	}

3218
	pre_schedule(rq, prev);
3219

I
Ingo Molnar 已提交
3220
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3221 3222
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3223
	put_prev_task(rq, prev);
3224
	next = pick_next_task(rq);
3225 3226
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3227 3228 3229 3230 3231 3232

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3233
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3234
		/*
3235 3236 3237 3238
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3239 3240 3241
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3242
	} else
3243
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3244

3245
	post_schedule(rq);
L
Linus Torvalds 已提交
3246

3247
	sched_preempt_enable_no_resched();
3248
	if (need_resched())
L
Linus Torvalds 已提交
3249 3250
		goto need_resched;
}
3251

3252 3253
static inline void sched_submit_work(struct task_struct *tsk)
{
3254
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3255 3256 3257 3258 3259 3260 3261 3262 3263
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3264
asmlinkage void __sched schedule(void)
3265
{
3266 3267 3268
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3269 3270
	__schedule();
}
L
Linus Torvalds 已提交
3271 3272
EXPORT_SYMBOL(schedule);

3273 3274 3275 3276 3277 3278 3279
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3280
	sched_preempt_enable_no_resched();
3281 3282 3283 3284
	schedule();
	preempt_disable();
}

3285
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3286

3287 3288 3289
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3290
		return false;
3291 3292

	/*
3293 3294 3295 3296
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3297
	 */
3298
	barrier();
3299

3300
	return owner->on_cpu;
3301
}
3302

3303 3304 3305 3306 3307 3308 3309 3310
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3311

3312
	rcu_read_lock();
3313 3314
	while (owner_running(lock, owner)) {
		if (need_resched())
3315
			break;
3316

3317
		arch_mutex_cpu_relax();
3318
	}
3319
	rcu_read_unlock();
3320

3321
	/*
3322 3323 3324
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3325
	 */
3326
	return lock->owner == NULL;
3327 3328 3329
}
#endif

L
Linus Torvalds 已提交
3330 3331
#ifdef CONFIG_PREEMPT
/*
3332
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3333
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3334 3335
 * occur there and call schedule directly.
 */
3336
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3337 3338
{
	struct thread_info *ti = current_thread_info();
3339

L
Linus Torvalds 已提交
3340 3341
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3342
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3343
	 */
N
Nick Piggin 已提交
3344
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3345 3346
		return;

3347
	do {
3348
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3349
		__schedule();
3350
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3351

3352 3353 3354 3355 3356
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3357
	} while (need_resched());
L
Linus Torvalds 已提交
3358 3359 3360 3361
}
EXPORT_SYMBOL(preempt_schedule);

/*
3362
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3363 3364 3365 3366 3367 3368 3369
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3370

3371
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3372 3373
	BUG_ON(ti->preempt_count || !irqs_disabled());

3374 3375 3376
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3377
		__schedule();
3378 3379
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3380

3381 3382 3383 3384 3385
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3386
	} while (need_resched());
L
Linus Torvalds 已提交
3387 3388 3389 3390
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3391
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3392
			  void *key)
L
Linus Torvalds 已提交
3393
{
P
Peter Zijlstra 已提交
3394
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3395 3396 3397 3398
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3399 3400
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3401 3402 3403
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3404
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3405 3406
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3407
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3408
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3409
{
3410
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3411

3412
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3413 3414
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3415
		if (curr->func(curr, mode, wake_flags, key) &&
3416
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3426
 * @key: is directly passed to the wakeup function
3427 3428 3429
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3430
 */
3431
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3432
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3445
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3446
{
3447
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3448
}
3449
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3450

3451 3452 3453 3454
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3455
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3456

L
Linus Torvalds 已提交
3457
/**
3458
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3459 3460 3461
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3462
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3463 3464 3465 3466 3467 3468 3469
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3470 3471 3472
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3473
 */
3474 3475
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3476 3477
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3478
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3479 3480 3481 3482 3483

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3484
		wake_flags = 0;
L
Linus Torvalds 已提交
3485 3486

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3487
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3488 3489
	spin_unlock_irqrestore(&q->lock, flags);
}
3490 3491 3492 3493 3494 3495 3496 3497 3498
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3499 3500
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3501 3502 3503 3504 3505 3506 3507 3508
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3509 3510 3511
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3512
 */
3513
void complete(struct completion *x)
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3519
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3520 3521 3522 3523
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3524 3525 3526 3527 3528
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3529 3530 3531
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3532
 */
3533
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3539
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3540 3541 3542 3543
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3544 3545
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3546 3547 3548 3549
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3550
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3551
		do {
3552
			if (signal_pending_state(state, current)) {
3553 3554
				timeout = -ERESTARTSYS;
				break;
3555 3556
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3557 3558 3559
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3560
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3561
		__remove_wait_queue(&x->wait, &wait);
3562 3563
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3564 3565
	}
	x->done--;
3566
	return timeout ?: 1;
L
Linus Torvalds 已提交
3567 3568
}

3569 3570
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3571 3572 3573 3574
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3575
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3576
	spin_unlock_irq(&x->wait.lock);
3577 3578
	return timeout;
}
L
Linus Torvalds 已提交
3579

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3590
void __sched wait_for_completion(struct completion *x)
3591 3592
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3593
}
3594
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3595

3596 3597 3598 3599 3600 3601 3602 3603
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3604 3605 3606
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3607
 */
3608
unsigned long __sched
3609
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3610
{
3611
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3612
}
3613
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3614

3615 3616 3617 3618 3619 3620
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3621 3622
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3623
 */
3624
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3625
{
3626 3627 3628 3629
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3630
}
3631
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3632

3633 3634 3635 3636 3637 3638 3639
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3640 3641 3642
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3643
 */
3644
long __sched
3645 3646
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3647
{
3648
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3649
}
3650
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3651

3652 3653 3654 3655 3656 3657
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3658 3659
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3660
 */
M
Matthew Wilcox 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3670 3671 3672 3673 3674 3675 3676 3677
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3678 3679 3680
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3681
 */
3682
long __sched
3683 3684 3685 3686 3687 3688 3689
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3704
	unsigned long flags;
3705 3706
	int ret = 1;

3707
	spin_lock_irqsave(&x->wait.lock, flags);
3708 3709 3710 3711
	if (!x->done)
		ret = 0;
	else
		x->done--;
3712
	spin_unlock_irqrestore(&x->wait.lock, flags);
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3727
	unsigned long flags;
3728 3729
	int ret = 1;

3730
	spin_lock_irqsave(&x->wait.lock, flags);
3731 3732
	if (!x->done)
		ret = 0;
3733
	spin_unlock_irqrestore(&x->wait.lock, flags);
3734 3735 3736 3737
	return ret;
}
EXPORT_SYMBOL(completion_done);

3738 3739
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3740
{
I
Ingo Molnar 已提交
3741 3742 3743 3744
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3745

3746
	__set_current_state(state);
L
Linus Torvalds 已提交
3747

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3762 3763 3764
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3765
long __sched
I
Ingo Molnar 已提交
3766
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3767
{
3768
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3769 3770 3771
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3772
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3773
{
3774
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3775 3776 3777
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3778
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3779
{
3780
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3781 3782 3783
}
EXPORT_SYMBOL(sleep_on_timeout);

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3796
void rt_mutex_setprio(struct task_struct *p, int prio)
3797
{
3798
	int oldprio, on_rq, running;
3799
	struct rq *rq;
3800
	const struct sched_class *prev_class;
3801 3802 3803

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3804
	rq = __task_rq_lock(p);
3805

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3824
	trace_sched_pi_setprio(p, prio);
3825
	oldprio = p->prio;
3826
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3827
	on_rq = p->on_rq;
3828
	running = task_current(rq, p);
3829
	if (on_rq)
3830
		dequeue_task(rq, p, 0);
3831 3832
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3833 3834 3835 3836 3837 3838

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3839 3840
	p->prio = prio;

3841 3842
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3843
	if (on_rq)
3844
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3845

P
Peter Zijlstra 已提交
3846
	check_class_changed(rq, p, prev_class, oldprio);
3847
out_unlock:
3848
	__task_rq_unlock(rq);
3849 3850
}
#endif
3851
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3852
{
I
Ingo Molnar 已提交
3853
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3854
	unsigned long flags;
3855
	struct rq *rq;
L
Linus Torvalds 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3868
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3869
	 */
3870
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3871 3872 3873
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3874
	on_rq = p->on_rq;
3875
	if (on_rq)
3876
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3877 3878

	p->static_prio = NICE_TO_PRIO(nice);
3879
	set_load_weight(p);
3880 3881 3882
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3883

I
Ingo Molnar 已提交
3884
	if (on_rq) {
3885
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3886
		/*
3887 3888
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3889
		 */
3890
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3891 3892 3893
			resched_task(rq->curr);
	}
out_unlock:
3894
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3895 3896 3897
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3898 3899 3900 3901 3902
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3903
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3904
{
3905 3906
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3907

3908
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3909 3910 3911
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3921
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3922
{
3923
	long nice, retval;
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928 3929

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3930 3931
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3932 3933 3934
	if (increment > 40)
		increment = 40;

3935
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3936 3937 3938 3939 3940
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3941 3942 3943
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3962
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3963 3964 3965 3966 3967 3968 3969 3970
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3971
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3972 3973 3974
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3975
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3976 3977 3978 3979 3980 3981 3982

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3997 3998 3999 4000 4001 4002
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4003
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4004 4005 4006 4007 4008 4009 4010 4011
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4012
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4013
{
4014
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4015 4016 4017
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4018 4019
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4020 4021 4022
{
	p->policy = policy;
	p->rt_priority = prio;
4023 4024 4025
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4026 4027 4028 4029
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4030
	set_load_weight(p);
L
Linus Torvalds 已提交
4031 4032
}

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4043 4044 4045 4046 4047
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
4048 4049 4050 4051
	rcu_read_unlock();
	return match;
}

4052
static int __sched_setscheduler(struct task_struct *p, int policy,
4053
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4054
{
4055
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4056
	unsigned long flags;
4057
	const struct sched_class *prev_class;
4058
	struct rq *rq;
4059
	int reset_on_fork;
L
Linus Torvalds 已提交
4060

4061 4062
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4063 4064
recheck:
	/* double check policy once rq lock held */
4065 4066
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4067
		policy = oldpolicy = p->policy;
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4078 4079
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4080 4081
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4082 4083
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4084
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4085
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4086
		return -EINVAL;
4087
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4088 4089
		return -EINVAL;

4090 4091 4092
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4093
	if (user && !capable(CAP_SYS_NICE)) {
4094
		if (rt_policy(policy)) {
4095 4096
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4107

I
Ingo Molnar 已提交
4108
		/*
4109 4110
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4111
		 */
4112 4113 4114 4115
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4116

4117
		/* can't change other user's priorities */
4118
		if (!check_same_owner(p))
4119
			return -EPERM;
4120 4121 4122 4123

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4124
	}
L
Linus Torvalds 已提交
4125

4126
	if (user) {
4127
		retval = security_task_setscheduler(p);
4128 4129 4130 4131
		if (retval)
			return retval;
	}

4132 4133 4134
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4135
	 *
L
Lucas De Marchi 已提交
4136
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4137 4138
	 * runqueue lock must be held.
	 */
4139
	rq = task_rq_lock(p, &flags);
4140

4141 4142 4143 4144
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4145
		task_rq_unlock(rq, p, &flags);
4146 4147 4148
		return -EINVAL;
	}

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4160 4161 4162 4163 4164 4165 4166
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4167 4168
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4169
			task_rq_unlock(rq, p, &flags);
4170 4171 4172 4173 4174
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4175 4176 4177
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4178
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4179 4180
		goto recheck;
	}
P
Peter Zijlstra 已提交
4181
	on_rq = p->on_rq;
4182
	running = task_current(rq, p);
4183
	if (on_rq)
4184
		dequeue_task(rq, p, 0);
4185 4186
	if (running)
		p->sched_class->put_prev_task(rq, p);
4187

4188 4189
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4190
	oldprio = p->prio;
4191
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4192
	__setscheduler(rq, p, policy, param->sched_priority);
4193

4194 4195
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4196
	if (on_rq)
4197
		enqueue_task(rq, p, 0);
4198

P
Peter Zijlstra 已提交
4199
	check_class_changed(rq, p, prev_class, oldprio);
4200
	task_rq_unlock(rq, p, &flags);
4201

4202 4203
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4204 4205
	return 0;
}
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4216
		       const struct sched_param *param)
4217 4218 4219
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4220 4221
EXPORT_SYMBOL_GPL(sched_setscheduler);

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4234
			       const struct sched_param *param)
4235 4236 4237 4238
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4239 4240
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4241 4242 4243
{
	struct sched_param lparam;
	struct task_struct *p;
4244
	int retval;
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4250 4251 4252

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4253
	p = find_process_by_pid(pid);
4254 4255 4256
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4257

L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4267 4268
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4269
{
4270 4271 4272 4273
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279 4280 4281
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4282
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4291
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4292
{
4293
	struct task_struct *p;
4294
	int retval;
L
Linus Torvalds 已提交
4295 4296

	if (pid < 0)
4297
		return -EINVAL;
L
Linus Torvalds 已提交
4298 4299

	retval = -ESRCH;
4300
	rcu_read_lock();
L
Linus Torvalds 已提交
4301 4302 4303 4304
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4305 4306
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4307
	}
4308
	rcu_read_unlock();
L
Linus Torvalds 已提交
4309 4310 4311 4312
	return retval;
}

/**
4313
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4314 4315 4316
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4317
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4318 4319
{
	struct sched_param lp;
4320
	struct task_struct *p;
4321
	int retval;
L
Linus Torvalds 已提交
4322 4323

	if (!param || pid < 0)
4324
		return -EINVAL;
L
Linus Torvalds 已提交
4325

4326
	rcu_read_lock();
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4337
	rcu_read_unlock();
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4347
	rcu_read_unlock();
L
Linus Torvalds 已提交
4348 4349 4350
	return retval;
}

4351
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4352
{
4353
	cpumask_var_t cpus_allowed, new_mask;
4354 4355
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4356

4357
	get_online_cpus();
4358
	rcu_read_lock();
L
Linus Torvalds 已提交
4359 4360 4361

	p = find_process_by_pid(pid);
	if (!p) {
4362
		rcu_read_unlock();
4363
		put_online_cpus();
L
Linus Torvalds 已提交
4364 4365 4366
		return -ESRCH;
	}

4367
	/* Prevent p going away */
L
Linus Torvalds 已提交
4368
	get_task_struct(p);
4369
	rcu_read_unlock();
L
Linus Torvalds 已提交
4370

4371 4372 4373 4374 4375 4376 4377 4378
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4379
	retval = -EPERM;
4380
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4381 4382
		goto out_unlock;

4383
	retval = security_task_setscheduler(p);
4384 4385 4386
	if (retval)
		goto out_unlock;

4387 4388
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4389
again:
4390
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4391

P
Paul Menage 已提交
4392
	if (!retval) {
4393 4394
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4395 4396 4397 4398 4399
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4400
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4401 4402 4403
			goto again;
		}
	}
L
Linus Torvalds 已提交
4404
out_unlock:
4405 4406 4407 4408
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4409
	put_task_struct(p);
4410
	put_online_cpus();
L
Linus Torvalds 已提交
4411 4412 4413 4414
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4415
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4416
{
4417 4418 4419 4420 4421
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4431 4432
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4433
{
4434
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4435 4436
	int retval;

4437 4438
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4439

4440 4441 4442 4443 4444
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4445 4446
}

4447
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4448
{
4449
	struct task_struct *p;
4450
	unsigned long flags;
L
Linus Torvalds 已提交
4451 4452
	int retval;

4453
	get_online_cpus();
4454
	rcu_read_lock();
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4461 4462 4463 4464
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4465
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4466
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4467
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4468 4469

out_unlock:
4470
	rcu_read_unlock();
4471
	put_online_cpus();
L
Linus Torvalds 已提交
4472

4473
	return retval;
L
Linus Torvalds 已提交
4474 4475 4476 4477 4478 4479 4480 4481
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4482 4483
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4484 4485
{
	int ret;
4486
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4487

A
Anton Blanchard 已提交
4488
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4489 4490
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4491 4492
		return -EINVAL;

4493 4494
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4495

4496 4497
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4498
		size_t retlen = min_t(size_t, len, cpumask_size());
4499 4500

		if (copy_to_user(user_mask_ptr, mask, retlen))
4501 4502
			ret = -EFAULT;
		else
4503
			ret = retlen;
4504 4505
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4506

4507
	return ret;
L
Linus Torvalds 已提交
4508 4509 4510 4511 4512
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4513 4514
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4515
 */
4516
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4517
{
4518
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4519

4520
	schedstat_inc(rq, yld_count);
4521
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4522 4523 4524 4525 4526 4527

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4528
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4529
	do_raw_spin_unlock(&rq->lock);
4530
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4531 4532 4533 4534 4535 4536

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4537 4538 4539 4540 4541
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4542
static void __cond_resched(void)
L
Linus Torvalds 已提交
4543
{
4544
	add_preempt_count(PREEMPT_ACTIVE);
4545
	__schedule();
4546
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4547 4548
}

4549
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4550
{
P
Peter Zijlstra 已提交
4551
	if (should_resched()) {
L
Linus Torvalds 已提交
4552 4553 4554 4555 4556
		__cond_resched();
		return 1;
	}
	return 0;
}
4557
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4558 4559

/*
4560
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4561 4562
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4563
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4564 4565 4566
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4567
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4568
{
P
Peter Zijlstra 已提交
4569
	int resched = should_resched();
J
Jan Kara 已提交
4570 4571
	int ret = 0;

4572 4573
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4574
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4575
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4576
		if (resched)
N
Nick Piggin 已提交
4577 4578 4579
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4580
		ret = 1;
L
Linus Torvalds 已提交
4581 4582
		spin_lock(lock);
	}
J
Jan Kara 已提交
4583
	return ret;
L
Linus Torvalds 已提交
4584
}
4585
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4586

4587
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4588 4589 4590
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4591
	if (should_resched()) {
4592
		local_bh_enable();
L
Linus Torvalds 已提交
4593 4594 4595 4596 4597 4598
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4599
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4600 4601 4602 4603

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4622 4623 4624 4625 4626 4627 4628 4629
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4630 4631 4632 4633
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4634 4635
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4670
	if (yielded) {
4671
		schedstat_inc(rq, yld_count);
4672 4673 4674 4675 4676 4677
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4678 4679 4680 4681 4682 4683 4684
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4685
	}
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4698
/*
I
Ingo Molnar 已提交
4699
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4700 4701 4702 4703
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4704
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4705

4706
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4707
	atomic_inc(&rq->nr_iowait);
4708
	blk_flush_plug(current);
4709
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4710
	schedule();
4711
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4712
	atomic_dec(&rq->nr_iowait);
4713
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4719
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4720 4721
	long ret;

4722
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4723
	atomic_inc(&rq->nr_iowait);
4724
	blk_flush_plug(current);
4725
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4726
	ret = schedule_timeout(timeout);
4727
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4728
	atomic_dec(&rq->nr_iowait);
4729
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4740
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4741 4742 4743 4744 4745 4746 4747 4748 4749
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4750
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4751
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4765
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4775
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4776
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4790
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4791
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4792
{
4793
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4794
	unsigned int time_slice;
4795 4796
	unsigned long flags;
	struct rq *rq;
4797
	int retval;
L
Linus Torvalds 已提交
4798 4799 4800
	struct timespec t;

	if (pid < 0)
4801
		return -EINVAL;
L
Linus Torvalds 已提交
4802 4803

	retval = -ESRCH;
4804
	rcu_read_lock();
L
Linus Torvalds 已提交
4805 4806 4807 4808 4809 4810 4811 4812
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4813 4814
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4815
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4816

4817
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4818
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4819 4820
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4821

L
Linus Torvalds 已提交
4822
out_unlock:
4823
	rcu_read_unlock();
L
Linus Torvalds 已提交
4824 4825 4826
	return retval;
}

4827
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4828

4829
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4830 4831
{
	unsigned long free = 0;
4832
	unsigned state;
L
Linus Torvalds 已提交
4833 4834

	state = p->state ? __ffs(p->state) + 1 : 0;
4835
	printk(KERN_INFO "%-15.15s %c", p->comm,
4836
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4837
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4838
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4839
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4840
	else
P
Peter Zijlstra 已提交
4841
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4842 4843
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4844
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4845
	else
P
Peter Zijlstra 已提交
4846
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4847 4848
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4849
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4850
#endif
P
Peter Zijlstra 已提交
4851
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4852
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4853
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4854

4855
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4856 4857
}

I
Ingo Molnar 已提交
4858
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4859
{
4860
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4861

4862
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4863 4864
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4865
#else
P
Peter Zijlstra 已提交
4866 4867
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4868
#endif
4869
	rcu_read_lock();
L
Linus Torvalds 已提交
4870 4871 4872
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4873
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4874 4875
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4876
		if (!state_filter || (p->state & state_filter))
4877
			sched_show_task(p);
L
Linus Torvalds 已提交
4878 4879
	} while_each_thread(g, p);

4880 4881
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4882 4883 4884
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4885
	rcu_read_unlock();
I
Ingo Molnar 已提交
4886 4887 4888
	/*
	 * Only show locks if all tasks are dumped:
	 */
4889
	if (!state_filter)
I
Ingo Molnar 已提交
4890
		debug_show_all_locks();
L
Linus Torvalds 已提交
4891 4892
}

I
Ingo Molnar 已提交
4893 4894
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4895
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4896 4897
}

4898 4899 4900 4901 4902 4903 4904 4905
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4906
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4907
{
4908
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4909 4910
	unsigned long flags;

4911
	raw_spin_lock_irqsave(&rq->lock, flags);
4912

I
Ingo Molnar 已提交
4913
	__sched_fork(idle);
4914
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4915 4916
	idle->se.exec_start = sched_clock();

4917
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4929
	__set_task_cpu(idle, cpu);
4930
	rcu_read_unlock();
L
Linus Torvalds 已提交
4931 4932

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4933 4934
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4935
#endif
4936
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4937 4938

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4939
	task_thread_info(idle)->preempt_count = 0;
4940

I
Ingo Molnar 已提交
4941 4942 4943 4944
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4945
	ftrace_graph_init_idle_task(idle, cpu);
4946 4947 4948
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4949 4950
}

L
Linus Torvalds 已提交
4951
#ifdef CONFIG_SMP
4952 4953 4954 4955
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4956 4957 4958

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4959 4960
}

L
Linus Torvalds 已提交
4961 4962 4963
/*
 * This is how migration works:
 *
4964 4965 4966 4967 4968 4969
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4970
 *    it and puts it into the right queue.
4971 4972
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977 4978 4979 4980
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4981
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4982 4983
 * call is not atomic; no spinlocks may be held.
 */
4984
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4985 4986
{
	unsigned long flags;
4987
	struct rq *rq;
4988
	unsigned int dest_cpu;
4989
	int ret = 0;
L
Linus Torvalds 已提交
4990 4991

	rq = task_rq_lock(p, &flags);
4992

4993 4994 4995
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4996
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4997 4998 4999 5000
		ret = -EINVAL;
		goto out;
	}

5001
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5002 5003 5004 5005
		ret = -EINVAL;
		goto out;
	}

5006
	do_set_cpus_allowed(p, new_mask);
5007

L
Linus Torvalds 已提交
5008
	/* Can the task run on the task's current CPU? If so, we're done */
5009
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5010 5011
		goto out;

5012
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5013
	if (p->on_rq) {
5014
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5015
		/* Need help from migration thread: drop lock and wait. */
5016
		task_rq_unlock(rq, p, &flags);
5017
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5018 5019 5020 5021
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
5022
	task_rq_unlock(rq, p, &flags);
5023

L
Linus Torvalds 已提交
5024 5025
	return ret;
}
5026
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5027 5028

/*
I
Ingo Molnar 已提交
5029
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5036 5037
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5038
 */
5039
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5040
{
5041
	struct rq *rq_dest, *rq_src;
5042
	int ret = 0;
L
Linus Torvalds 已提交
5043

5044
	if (unlikely(!cpu_active(dest_cpu)))
5045
		return ret;
L
Linus Torvalds 已提交
5046 5047 5048 5049

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

5050
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
5051 5052 5053
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5054
		goto done;
L
Linus Torvalds 已提交
5055
	/* Affinity changed (again). */
5056
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
5057
		goto fail;
L
Linus Torvalds 已提交
5058

5059 5060 5061 5062
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
5063
	if (p->on_rq) {
5064
		dequeue_task(rq_src, p, 0);
5065
		set_task_cpu(p, dest_cpu);
5066
		enqueue_task(rq_dest, p, 0);
5067
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5068
	}
L
Linus Torvalds 已提交
5069
done:
5070
	ret = 1;
L
Linus Torvalds 已提交
5071
fail:
L
Linus Torvalds 已提交
5072
	double_rq_unlock(rq_src, rq_dest);
5073
	raw_spin_unlock(&p->pi_lock);
5074
	return ret;
L
Linus Torvalds 已提交
5075 5076 5077
}

/*
5078 5079 5080
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5081
 */
5082
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5083
{
5084
	struct migration_arg *arg = data;
5085

5086 5087 5088 5089
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5090
	local_irq_disable();
5091
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5092
	local_irq_enable();
L
Linus Torvalds 已提交
5093
	return 0;
5094 5095
}

L
Linus Torvalds 已提交
5096
#ifdef CONFIG_HOTPLUG_CPU
5097

5098
/*
5099 5100
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5101
 */
5102
void idle_task_exit(void)
L
Linus Torvalds 已提交
5103
{
5104
	struct mm_struct *mm = current->active_mm;
5105

5106
	BUG_ON(cpu_online(smp_processor_id()));
5107

5108 5109 5110
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5120
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5121
{
5122
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5123 5124 5125 5126 5127

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5128
/*
5129
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5130
 */
5131
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5132
{
5133 5134
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5135 5136
}

5137
/*
5138 5139 5140 5141 5142 5143
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5144
 */
5145
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5146
{
5147
	struct rq *rq = cpu_rq(dead_cpu);
5148 5149
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5150 5151

	/*
5152 5153 5154 5155 5156 5157 5158
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5159
	 */
5160
	rq->stop = NULL;
5161

5162 5163 5164
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5165
	for ( ; ; ) {
5166 5167 5168 5169 5170
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5171
			break;
5172

5173
		next = pick_next_task(rq);
5174
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5175
		next->sched_class->put_prev_task(rq, next);
5176

5177 5178 5179 5180 5181 5182 5183
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5184
	}
5185

5186
	rq->stop = stop;
5187
}
5188

L
Linus Torvalds 已提交
5189 5190
#endif /* CONFIG_HOTPLUG_CPU */

5191 5192 5193
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5194 5195
	{
		.procname	= "sched_domain",
5196
		.mode		= 0555,
5197
	},
5198
	{}
5199 5200 5201
};

static struct ctl_table sd_ctl_root[] = {
5202 5203
	{
		.procname	= "kernel",
5204
		.mode		= 0555,
5205 5206
		.child		= sd_ctl_dir,
	},
5207
	{}
5208 5209 5210 5211 5212
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5213
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5214 5215 5216 5217

	return entry;
}

5218 5219
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5220
	struct ctl_table *entry;
5221

5222 5223 5224
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5225
	 * will always be set. In the lowest directory the names are
5226 5227 5228
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5229 5230
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5231 5232 5233
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5234 5235 5236 5237 5238

	kfree(*tablep);
	*tablep = NULL;
}

5239
static void
5240
set_table_entry(struct ctl_table *entry,
5241
		const char *procname, void *data, int maxlen,
5242
		umode_t mode, proc_handler *proc_handler)
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5254
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5255

5256 5257 5258
	if (table == NULL)
		return NULL;

5259
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5260
		sizeof(long), 0644, proc_doulongvec_minmax);
5261
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5262
		sizeof(long), 0644, proc_doulongvec_minmax);
5263
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5264
		sizeof(int), 0644, proc_dointvec_minmax);
5265
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5266
		sizeof(int), 0644, proc_dointvec_minmax);
5267
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5268
		sizeof(int), 0644, proc_dointvec_minmax);
5269
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5270
		sizeof(int), 0644, proc_dointvec_minmax);
5271
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5272
		sizeof(int), 0644, proc_dointvec_minmax);
5273
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5274
		sizeof(int), 0644, proc_dointvec_minmax);
5275
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5276
		sizeof(int), 0644, proc_dointvec_minmax);
5277
	set_table_entry(&table[9], "cache_nice_tries",
5278 5279
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5280
	set_table_entry(&table[10], "flags", &sd->flags,
5281
		sizeof(int), 0644, proc_dointvec_minmax);
5282 5283 5284
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5285 5286 5287 5288

	return table;
}

5289
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5290 5291 5292 5293 5294 5295 5296 5297 5298
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5299 5300
	if (table == NULL)
		return NULL;
5301 5302 5303 5304 5305

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5306
		entry->mode = 0555;
5307 5308 5309 5310 5311 5312 5313 5314
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5315
static void register_sched_domain_sysctl(void)
5316
{
5317
	int i, cpu_num = num_possible_cpus();
5318 5319 5320
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5321 5322 5323
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5324 5325 5326
	if (entry == NULL)
		return;

5327
	for_each_possible_cpu(i) {
5328 5329
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5330
		entry->mode = 0555;
5331
		entry->child = sd_alloc_ctl_cpu_table(i);
5332
		entry++;
5333
	}
5334 5335

	WARN_ON(sd_sysctl_header);
5336 5337
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5338

5339
/* may be called multiple times per register */
5340 5341
static void unregister_sched_domain_sysctl(void)
{
5342 5343
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5344
	sd_sysctl_header = NULL;
5345 5346
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5347
}
5348
#else
5349 5350 5351 5352
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5353 5354 5355 5356
{
}
#endif

5357 5358 5359 5360 5361
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5362
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5382
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5383 5384 5385 5386
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5387 5388 5389 5390
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5391 5392
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5393
{
5394
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5395
	unsigned long flags;
5396
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5397

5398
	switch (action & ~CPU_TASKS_FROZEN) {
5399

L
Linus Torvalds 已提交
5400
	case CPU_UP_PREPARE:
5401
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5402
		break;
5403

L
Linus Torvalds 已提交
5404
	case CPU_ONLINE:
5405
		/* Update our root-domain */
5406
		raw_spin_lock_irqsave(&rq->lock, flags);
5407
		if (rq->rd) {
5408
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5409 5410

			set_rq_online(rq);
5411
		}
5412
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5413
		break;
5414

L
Linus Torvalds 已提交
5415
#ifdef CONFIG_HOTPLUG_CPU
5416
	case CPU_DYING:
5417
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5418
		/* Update our root-domain */
5419
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5420
		if (rq->rd) {
5421
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5422
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5423
		}
5424 5425
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5426
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5427 5428 5429

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5430
		break;
L
Linus Torvalds 已提交
5431 5432
#endif
	}
5433 5434 5435

	update_max_interval();

L
Linus Torvalds 已提交
5436 5437 5438
	return NOTIFY_OK;
}

5439 5440 5441
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5442
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5443
 */
5444
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5445
	.notifier_call = migration_call,
5446
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5447 5448
};

5449 5450 5451 5452
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5453
	case CPU_STARTING:
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5474
static int __init migration_init(void)
L
Linus Torvalds 已提交
5475 5476
{
	void *cpu = (void *)(long)smp_processor_id();
5477
	int err;
5478

5479
	/* Initialize migration for the boot CPU */
5480 5481
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5482 5483
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5484

5485 5486 5487 5488
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5489
	return 0;
L
Linus Torvalds 已提交
5490
}
5491
early_initcall(migration_init);
L
Linus Torvalds 已提交
5492 5493 5494
#endif

#ifdef CONFIG_SMP
5495

5496 5497
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5498
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5499

5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5510
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5511
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5512
{
I
Ingo Molnar 已提交
5513
	struct sched_group *group = sd->groups;
5514
	char str[256];
L
Linus Torvalds 已提交
5515

R
Rusty Russell 已提交
5516
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5517
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5518 5519 5520 5521

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5522
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5523
		if (sd->parent)
P
Peter Zijlstra 已提交
5524 5525
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5526
		return -1;
N
Nick Piggin 已提交
5527 5528
	}

P
Peter Zijlstra 已提交
5529
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5530

5531
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5532 5533
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5534
	}
5535
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5536 5537
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5538
	}
L
Linus Torvalds 已提交
5539

I
Ingo Molnar 已提交
5540
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5541
	do {
I
Ingo Molnar 已提交
5542
		if (!group) {
P
Peter Zijlstra 已提交
5543 5544
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5545 5546 5547
			break;
		}

5548
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5549 5550 5551
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5552 5553
			break;
		}
L
Linus Torvalds 已提交
5554

5555
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5556 5557
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5558 5559
			break;
		}
L
Linus Torvalds 已提交
5560

5561
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5562 5563
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5564 5565
			break;
		}
L
Linus Torvalds 已提交
5566

5567
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5568

R
Rusty Russell 已提交
5569
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5570

P
Peter Zijlstra 已提交
5571
		printk(KERN_CONT " %s", str);
5572
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5573
			printk(KERN_CONT " (cpu_power = %d)",
5574
				group->sgp->power);
5575
		}
L
Linus Torvalds 已提交
5576

I
Ingo Molnar 已提交
5577 5578
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5579
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5580

5581
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5582
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5583

5584 5585
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5586 5587
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5588 5589
	return 0;
}
L
Linus Torvalds 已提交
5590

I
Ingo Molnar 已提交
5591 5592 5593
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5594

5595 5596 5597
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5598 5599 5600 5601
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5602

I
Ingo Molnar 已提交
5603 5604 5605
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5606
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5607
			break;
L
Linus Torvalds 已提交
5608 5609
		level++;
		sd = sd->parent;
5610
		if (!sd)
I
Ingo Molnar 已提交
5611 5612
			break;
	}
L
Linus Torvalds 已提交
5613
}
5614
#else /* !CONFIG_SCHED_DEBUG */
5615
# define sched_domain_debug(sd, cpu) do { } while (0)
5616
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5617

5618
static int sd_degenerate(struct sched_domain *sd)
5619
{
5620
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5621 5622 5623 5624 5625 5626
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5627 5628 5629
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5630 5631 5632 5633 5634
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5635
	if (sd->flags & (SD_WAKE_AFFINE))
5636 5637 5638 5639 5640
		return 0;

	return 1;
}

5641 5642
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5643 5644 5645 5646 5647 5648
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5649
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5650 5651 5652 5653 5654 5655 5656
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5657 5658 5659
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5660 5661
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5662 5663 5664 5665 5666 5667 5668
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5669
static void free_rootdomain(struct rcu_head *rcu)
5670
{
5671
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5672

5673
	cpupri_cleanup(&rd->cpupri);
5674 5675 5676 5677 5678 5679
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5680 5681
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5682
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5683 5684
	unsigned long flags;

5685
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5686 5687

	if (rq->rd) {
I
Ingo Molnar 已提交
5688
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5689

5690
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5691
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5692

5693
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5694

I
Ingo Molnar 已提交
5695 5696 5697 5698 5699 5700 5701
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5702 5703 5704 5705 5706
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5707
	cpumask_set_cpu(rq->cpu, rd->span);
5708
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5709
		set_rq_online(rq);
G
Gregory Haskins 已提交
5710

5711
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5712 5713

	if (old_rd)
5714
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5715 5716
}

5717
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5718 5719 5720
{
	memset(rd, 0, sizeof(*rd));

5721
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5722
		goto out;
5723
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5724
		goto free_span;
5725
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5726
		goto free_online;
5727

5728
	if (cpupri_init(&rd->cpupri) != 0)
5729
		goto free_rto_mask;
5730
	return 0;
5731

5732 5733
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5734 5735 5736 5737
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5738
out:
5739
	return -ENOMEM;
G
Gregory Haskins 已提交
5740 5741
}

5742 5743 5744 5745 5746 5747
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5748 5749
static void init_defrootdomain(void)
{
5750
	init_rootdomain(&def_root_domain);
5751

G
Gregory Haskins 已提交
5752 5753 5754
	atomic_set(&def_root_domain.refcount, 1);
}

5755
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5756 5757 5758 5759 5760 5761 5762
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5763
	if (init_rootdomain(rd) != 0) {
5764 5765 5766
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5767 5768 5769 5770

	return rd;
}

5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5790 5791 5792
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5793 5794 5795 5796 5797 5798 5799 5800

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5801
		kfree(sd->groups->sgp);
5802
		kfree(sd->groups);
5803
	}
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5818 5819 5820 5821 5822 5823 5824
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5825
 * two cpus are in the same cache domain, see cpus_share_cache().
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
	if (sd)
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5843
/*
I
Ingo Molnar 已提交
5844
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5845 5846
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5847 5848
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5849
{
5850
	struct rq *rq = cpu_rq(cpu);
5851 5852 5853
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5854
	for (tmp = sd; tmp; ) {
5855 5856 5857
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5858

5859
		if (sd_parent_degenerate(tmp, parent)) {
5860
			tmp->parent = parent->parent;
5861 5862
			if (parent->parent)
				parent->parent->child = tmp;
5863
			destroy_sched_domain(parent, cpu);
5864 5865
		} else
			tmp = tmp->parent;
5866 5867
	}

5868
	if (sd && sd_degenerate(sd)) {
5869
		tmp = sd;
5870
		sd = sd->parent;
5871
		destroy_sched_domain(tmp, cpu);
5872 5873 5874
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5875

5876
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5877

G
Gregory Haskins 已提交
5878
	rq_attach_root(rq, rd);
5879
	tmp = rq->sd;
N
Nick Piggin 已提交
5880
	rcu_assign_pointer(rq->sd, sd);
5881
	destroy_sched_domains(tmp, cpu);
5882 5883

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5884 5885 5886
}

/* cpus with isolated domains */
5887
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5888 5889 5890 5891

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5892
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5893
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5894 5895 5896
	return 1;
}

I
Ingo Molnar 已提交
5897
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5898

5899
#ifdef CONFIG_NUMA
5900

5901 5902 5903 5904 5905
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5906
 * Find the next node to include in a given scheduling domain. Simply
5907 5908 5909 5910
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
5911
static int find_next_best_node(int node, nodemask_t *used_nodes)
5912
{
5913
	int i, n, val, min_val, best_node = -1;
5914 5915 5916

	min_val = INT_MAX;

5917
	for (i = 0; i < nr_node_ids; i++) {
5918
		/* Start at @node */
5919
		n = (node + i) % nr_node_ids;
5920 5921 5922 5923 5924

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
5925
		if (node_isset(n, *used_nodes))
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

5937 5938
	if (best_node != -1)
		node_set(best_node, *used_nodes);
5939 5940 5941 5942 5943 5944
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
5945
 * @span: resulting cpumask
5946
 *
I
Ingo Molnar 已提交
5947
 * Given a node, construct a good cpumask for its sched_domain to span. It
5948 5949 5950
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
5951
static void sched_domain_node_span(int node, struct cpumask *span)
5952
{
5953
	nodemask_t used_nodes;
5954
	int i;
5955

5956
	cpumask_clear(span);
5957
	nodes_clear(used_nodes);
5958

5959
	cpumask_or(span, span, cpumask_of_node(node));
5960
	node_set(node, used_nodes);
5961 5962

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5963
		int next_node = find_next_best_node(node, &used_nodes);
5964 5965
		if (next_node < 0)
			break;
5966
		cpumask_or(span, span, cpumask_of_node(next_node));
5967 5968
	}
}
5969 5970 5971 5972 5973 5974 5975 5976 5977

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
5978 5979 5980 5981 5982

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
5983
#endif /* CONFIG_NUMA */
5984

5985 5986 5987 5988 5989
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5990
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5991

5992 5993 5994
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5995
	struct sched_group_power **__percpu sgp;
5996 5997
};

5998
struct s_data {
5999
	struct sched_domain ** __percpu sd;
6000 6001 6002
	struct root_domain	*rd;
};

6003 6004
enum s_alloc {
	sa_rootdomain,
6005
	sa_sd,
6006
	sa_sd_storage,
6007 6008 6009
	sa_none,
};

6010 6011 6012
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6013 6014
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

6015 6016
#define SDTL_OVERLAP	0x01

6017
struct sched_domain_topology_level {
6018 6019
	sched_domain_init_f init;
	sched_domain_mask_f mask;
6020
	int		    flags;
6021
	struct sd_data      data;
6022 6023
};

6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6043
				GFP_KERNEL, cpu_to_node(cpu));
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6082
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6083
{
6084 6085
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6086

6087 6088
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6089

6090
	if (sg) {
6091
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6092
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6093
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6094
	}
6095 6096

	return cpu;
6097 6098
}

6099
/*
6100 6101 6102
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6103 6104
 *
 * Assumes the sched_domain tree is fully constructed
6105
 */
6106 6107
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6108
{
6109 6110 6111
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6112
	struct cpumask *covered;
6113
	int i;
6114

6115 6116 6117 6118 6119 6120
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6121 6122 6123
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6124
	cpumask_clear(covered);
6125

6126 6127 6128 6129
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6130

6131 6132
		if (cpumask_test_cpu(i, covered))
			continue;
6133

6134
		cpumask_clear(sched_group_cpus(sg));
6135
		sg->sgp->power = 0;
6136

6137 6138 6139
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6140

6141 6142 6143
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6144

6145 6146 6147 6148 6149 6150 6151
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6152 6153

	return 0;
6154
}
6155

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6168
	struct sched_group *sg = sd->groups;
6169

6170 6171 6172 6173 6174 6175
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6176

6177 6178
	if (cpu != group_first_cpu(sg))
		return;
6179

6180
	update_group_power(sd, cpu);
6181
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6182 6183
}

6184 6185 6186
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6187 6188
}

6189 6190 6191 6192 6193
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6194 6195 6196 6197 6198 6199
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6200 6201 6202 6203 6204 6205 6206 6207 6208
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6222 6223 6224
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6225

6226
static int default_relax_domain_level = -1;
6227
int sched_domain_level_max;
6228 6229 6230

static int __init setup_relax_domain_level(char *str)
{
6231 6232 6233
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6234
	if (val < sched_domain_level_max)
6235 6236
		default_relax_domain_level = val;

6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6255
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6256 6257
	} else {
		/* turn on idle balance on this domain */
6258
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6259 6260 6261
	}
}

6262 6263 6264
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6265 6266 6267 6268 6269
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6270 6271
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6272 6273
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6274
	case sa_sd_storage:
6275
		__sdt_free(cpu_map); /* fall through */
6276 6277 6278 6279
	case sa_none:
		break;
	}
}
6280

6281 6282 6283
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6284 6285
	memset(d, 0, sizeof(*d));

6286 6287
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6288 6289 6290
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6291
	d->rd = alloc_rootdomain();
6292
	if (!d->rd)
6293
		return sa_sd;
6294 6295
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6296

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6309
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6310
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6311 6312

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6313
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6314 6315
}

6316 6317
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6318
{
6319
	return topology_thread_cpumask(cpu);
6320
}
6321
#endif
6322

6323 6324 6325
/*
 * Topology list, bottom-up.
 */
6326
static struct sched_domain_topology_level default_topology[] = {
6327 6328
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6329
#endif
6330
#ifdef CONFIG_SCHED_MC
6331
	{ sd_init_MC, cpu_coregroup_mask, },
6332
#endif
6333 6334 6335 6336 6337
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
6338
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6339
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
6340
#endif
6341 6342 6343 6344 6345
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6362 6363 6364 6365
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6366 6367 6368
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6369
			struct sched_group_power *sgp;
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
6384 6385 6386 6387 6388 6389 6390

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6406 6407 6408
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
6409
			kfree(*per_cpu_ptr(sdd->sd, j));
6410
			kfree(*per_cpu_ptr(sdd->sg, j));
6411
			kfree(*per_cpu_ptr(sdd->sgp, j));
6412 6413 6414
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
6415
		free_percpu(sdd->sgp);
6416 6417 6418
	}
}

6419 6420
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6421
		struct sched_domain_attr *attr, struct sched_domain *child,
6422 6423
		int cpu)
{
6424
	struct sched_domain *sd = tl->init(tl, cpu);
6425
	if (!sd)
6426
		return child;
6427 6428 6429

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6430 6431 6432
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6433
		child->parent = sd;
6434
	}
6435
	sd->child = child;
6436 6437 6438 6439

	return sd;
}

6440 6441 6442 6443
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6444 6445
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6446 6447
{
	enum s_alloc alloc_state = sa_none;
6448
	struct sched_domain *sd;
6449
	struct s_data d;
6450
	int i, ret = -ENOMEM;
6451

6452 6453 6454
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6455

6456
	/* Set up domains for cpus specified by the cpu_map. */
6457
	for_each_cpu(i, cpu_map) {
6458 6459
		struct sched_domain_topology_level *tl;

6460
		sd = NULL;
6461
		for (tl = sched_domain_topology; tl->init; tl++) {
6462
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6463 6464
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6465 6466
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6467
		}
6468

6469 6470 6471
		while (sd->child)
			sd = sd->child;

6472
		*per_cpu_ptr(d.sd, i) = sd;
6473 6474 6475 6476 6477 6478
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6479 6480 6481 6482 6483 6484 6485
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6486
		}
6487
	}
6488

L
Linus Torvalds 已提交
6489
	/* Calculate CPU power for physical packages and nodes */
6490 6491 6492
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6493

6494 6495
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6496
			init_sched_groups_power(i, sd);
6497
		}
6498
	}
6499

L
Linus Torvalds 已提交
6500
	/* Attach the domains */
6501
	rcu_read_lock();
6502
	for_each_cpu(i, cpu_map) {
6503
		sd = *per_cpu_ptr(d.sd, i);
6504
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6505
	}
6506
	rcu_read_unlock();
6507

6508
	ret = 0;
6509
error:
6510
	__free_domain_allocs(&d, alloc_state, cpu_map);
6511
	return ret;
L
Linus Torvalds 已提交
6512
}
P
Paul Jackson 已提交
6513

6514
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6515
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6516 6517
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6518 6519 6520

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6521 6522
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6523
 */
6524
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6525

6526 6527 6528 6529 6530 6531
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6532
{
6533
	return 0;
6534 6535
}

6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6561
/*
I
Ingo Molnar 已提交
6562
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6563 6564
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6565
 */
6566
static int init_sched_domains(const struct cpumask *cpu_map)
6567
{
6568 6569
	int err;

6570
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6571
	ndoms_cur = 1;
6572
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6573
	if (!doms_cur)
6574 6575
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6576
	dattr_cur = NULL;
6577
	err = build_sched_domains(doms_cur[0], NULL);
6578
	register_sched_domain_sysctl();
6579 6580

	return err;
6581 6582 6583 6584 6585 6586
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6587
static void detach_destroy_domains(const struct cpumask *cpu_map)
6588 6589 6590
{
	int i;

6591
	rcu_read_lock();
6592
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6593
		cpu_attach_domain(NULL, &def_root_domain, i);
6594
	rcu_read_unlock();
6595 6596
}

6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6613 6614
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6615
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6616 6617 6618
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6619
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6620 6621 6622
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6623 6624 6625
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6626 6627 6628 6629 6630 6631
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6632
 *
6633
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6634 6635
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6636
 *
P
Paul Jackson 已提交
6637 6638
 * Call with hotplug lock held
 */
6639
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6640
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6641
{
6642
	int i, j, n;
6643
	int new_topology;
P
Paul Jackson 已提交
6644

6645
	mutex_lock(&sched_domains_mutex);
6646

6647 6648 6649
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6650 6651 6652
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6653
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6654 6655 6656

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6657
		for (j = 0; j < n && !new_topology; j++) {
6658
			if (cpumask_equal(doms_cur[i], doms_new[j])
6659
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6660 6661 6662
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6663
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6664 6665 6666 6667
match1:
		;
	}

6668 6669
	if (doms_new == NULL) {
		ndoms_cur = 0;
6670
		doms_new = &fallback_doms;
6671
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6672
		WARN_ON_ONCE(dattr_new);
6673 6674
	}

P
Paul Jackson 已提交
6675 6676
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6677
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6678
			if (cpumask_equal(doms_new[i], doms_cur[j])
6679
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6680 6681 6682
				goto match2;
		}
		/* no match - add a new doms_new */
6683
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6684 6685 6686 6687 6688
match2:
		;
	}

	/* Remember the new sched domains */
6689 6690
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6691
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6692
	doms_cur = doms_new;
6693
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6694
	ndoms_cur = ndoms_new;
6695 6696

	register_sched_domain_sysctl();
6697

6698
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6699 6700
}

6701
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6702
static void reinit_sched_domains(void)
6703
{
6704
	get_online_cpus();
6705 6706 6707 6708

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

6709
	rebuild_sched_domains();
6710
	put_online_cpus();
6711 6712 6713 6714
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
6715
	unsigned int level = 0;
6716

6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6728 6729 6730
		return -EINVAL;

	if (smt)
6731
		sched_smt_power_savings = level;
6732
	else
6733
		sched_mc_power_savings = level;
6734

6735
	reinit_sched_domains();
6736

6737
	return count;
6738 6739 6740
}

#ifdef CONFIG_SCHED_MC
6741 6742 6743
static ssize_t sched_mc_power_savings_show(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
6744
{
6745
	return sprintf(buf, "%u\n", sched_mc_power_savings);
6746
}
6747 6748
static ssize_t sched_mc_power_savings_store(struct device *dev,
					    struct device_attribute *attr,
6749
					    const char *buf, size_t count)
6750 6751 6752
{
	return sched_power_savings_store(buf, count, 0);
}
6753 6754 6755
static DEVICE_ATTR(sched_mc_power_savings, 0644,
		   sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6756 6757 6758
#endif

#ifdef CONFIG_SCHED_SMT
6759 6760 6761
static ssize_t sched_smt_power_savings_show(struct device *dev,
					    struct device_attribute *attr,
					    char *buf)
6762
{
6763
	return sprintf(buf, "%u\n", sched_smt_power_savings);
6764
}
6765 6766
static ssize_t sched_smt_power_savings_store(struct device *dev,
					    struct device_attribute *attr,
6767
					     const char *buf, size_t count)
6768 6769 6770
{
	return sched_power_savings_store(buf, count, 1);
}
6771
static DEVICE_ATTR(sched_smt_power_savings, 0644,
6772
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
6773 6774 6775
		   sched_smt_power_savings_store);
#endif

6776
int __init sched_create_sysfs_power_savings_entries(struct device *dev)
A
Adrian Bunk 已提交
6777 6778 6779 6780 6781
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
6782
		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
A
Adrian Bunk 已提交
6783 6784 6785
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
6786
		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
A
Adrian Bunk 已提交
6787 6788 6789
#endif
	return err;
}
6790
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6791

L
Linus Torvalds 已提交
6792
/*
6793 6794 6795
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6796
 */
6797 6798
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6799
{
6800
	switch (action & ~CPU_TASKS_FROZEN) {
6801
	case CPU_ONLINE:
6802
	case CPU_DOWN_FAILED:
6803
		cpuset_update_active_cpus();
6804
		return NOTIFY_OK;
6805 6806 6807 6808
	default:
		return NOTIFY_DONE;
	}
}
6809

6810 6811
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6812 6813 6814 6815 6816
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6817 6818 6819 6820 6821
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6822 6823
void __init sched_init_smp(void)
{
6824 6825 6826
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6827
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6828

6829
	get_online_cpus();
6830
	mutex_lock(&sched_domains_mutex);
6831
	init_sched_domains(cpu_active_mask);
6832 6833 6834
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6835
	mutex_unlock(&sched_domains_mutex);
6836
	put_online_cpus();
6837

6838 6839
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6840 6841 6842 6843

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6844
	init_hrtick();
6845 6846

	/* Move init over to a non-isolated CPU */
6847
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6848
		BUG();
I
Ingo Molnar 已提交
6849
	sched_init_granularity();
6850
	free_cpumask_var(non_isolated_cpus);
6851

6852
	init_sched_rt_class();
L
Linus Torvalds 已提交
6853 6854 6855 6856
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6857
	sched_init_granularity();
L
Linus Torvalds 已提交
6858 6859 6860
}
#endif /* CONFIG_SMP */

6861 6862
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6863 6864 6865 6866 6867 6868 6869
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6870 6871
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6872
#endif
P
Peter Zijlstra 已提交
6873

6874
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6875

L
Linus Torvalds 已提交
6876 6877
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6878
	int i, j;
6879 6880 6881 6882 6883 6884 6885
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6886
#endif
6887
#ifdef CONFIG_CPUMASK_OFFSTACK
6888
	alloc_size += num_possible_cpus() * cpumask_size();
6889 6890
#endif
	if (alloc_size) {
6891
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6892 6893

#ifdef CONFIG_FAIR_GROUP_SCHED
6894
		root_task_group.se = (struct sched_entity **)ptr;
6895 6896
		ptr += nr_cpu_ids * sizeof(void **);

6897
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6898
		ptr += nr_cpu_ids * sizeof(void **);
6899

6900
#endif /* CONFIG_FAIR_GROUP_SCHED */
6901
#ifdef CONFIG_RT_GROUP_SCHED
6902
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6903 6904
		ptr += nr_cpu_ids * sizeof(void **);

6905
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6906 6907
		ptr += nr_cpu_ids * sizeof(void **);

6908
#endif /* CONFIG_RT_GROUP_SCHED */
6909 6910 6911 6912 6913 6914
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6915
	}
I
Ingo Molnar 已提交
6916

G
Gregory Haskins 已提交
6917 6918 6919 6920
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6921 6922 6923 6924
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6925
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6926
			global_rt_period(), global_rt_runtime());
6927
#endif /* CONFIG_RT_GROUP_SCHED */
6928

D
Dhaval Giani 已提交
6929
#ifdef CONFIG_CGROUP_SCHED
6930 6931
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6932
	INIT_LIST_HEAD(&root_task_group.siblings);
6933
	autogroup_init(&init_task);
6934

D
Dhaval Giani 已提交
6935
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6936

6937 6938 6939 6940 6941 6942
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6943
	for_each_possible_cpu(i) {
6944
		struct rq *rq;
L
Linus Torvalds 已提交
6945 6946

		rq = cpu_rq(i);
6947
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6948
		rq->nr_running = 0;
6949 6950
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6951
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6952
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6953
#ifdef CONFIG_FAIR_GROUP_SCHED
6954
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6955
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6956
		/*
6957
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6958 6959 6960 6961
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6962
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6963 6964 6965
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6966
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6967 6968 6969
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6970
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6971
		 *
6972 6973
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6974
		 */
6975
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6976
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6977 6978 6979
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6980
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6981
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6982
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6983
#endif
L
Linus Torvalds 已提交
6984

I
Ingo Molnar 已提交
6985 6986
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6987 6988 6989

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6990
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6991
		rq->sd = NULL;
G
Gregory Haskins 已提交
6992
		rq->rd = NULL;
6993
		rq->cpu_power = SCHED_POWER_SCALE;
6994
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6995
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6996
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6997
		rq->push_cpu = 0;
6998
		rq->cpu = i;
6999
		rq->online = 0;
7000 7001
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7002 7003 7004

		INIT_LIST_HEAD(&rq->cfs_tasks);

7005
		rq_attach_root(rq, &def_root_domain);
7006
#ifdef CONFIG_NO_HZ
7007
		rq->nohz_flags = 0;
7008
#endif
L
Linus Torvalds 已提交
7009
#endif
P
Peter Zijlstra 已提交
7010
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7011 7012 7013
		atomic_set(&rq->nr_iowait, 0);
	}

7014
	set_load_weight(&init_task);
7015

7016 7017 7018 7019
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7020
#ifdef CONFIG_RT_MUTEXES
7021
	plist_head_init(&init_task.pi_waiters);
7022 7023
#endif

L
Linus Torvalds 已提交
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7037 7038 7039

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7040 7041 7042 7043
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7044

7045
#ifdef CONFIG_SMP
7046
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7047 7048 7049
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7050 7051
#endif
	init_sched_fair_class();
7052

7053
	scheduler_running = 1;
L
Linus Torvalds 已提交
7054 7055
}

7056
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7057 7058
static inline int preempt_count_equals(int preempt_offset)
{
7059
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7060

A
Arnd Bergmann 已提交
7061
	return (nested == preempt_offset);
7062 7063
}

7064
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7065 7066 7067
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7068
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7069 7070
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7071 7072 7073 7074 7075
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7076 7077 7078 7079 7080 7081 7082
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7083 7084 7085 7086 7087

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7088 7089 7090 7091 7092
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7093 7094
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7095 7096
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7097
	int on_rq;
7098

P
Peter Zijlstra 已提交
7099
	on_rq = p->on_rq;
7100
	if (on_rq)
7101
		dequeue_task(rq, p, 0);
7102 7103
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7104
		enqueue_task(rq, p, 0);
7105 7106
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7107 7108

	check_class_changed(rq, p, prev_class, old_prio);
7109 7110
}

L
Linus Torvalds 已提交
7111 7112
void normalize_rt_tasks(void)
{
7113
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7114
	unsigned long flags;
7115
	struct rq *rq;
L
Linus Torvalds 已提交
7116

7117
	read_lock_irqsave(&tasklist_lock, flags);
7118
	do_each_thread(g, p) {
7119 7120 7121 7122 7123 7124
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7125 7126
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7127 7128 7129
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7130
#endif
I
Ingo Molnar 已提交
7131 7132 7133 7134 7135 7136 7137 7138

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7139
			continue;
I
Ingo Molnar 已提交
7140
		}
L
Linus Torvalds 已提交
7141

7142
		raw_spin_lock(&p->pi_lock);
7143
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7144

7145
		normalize_task(rq, p);
7146

7147
		__task_rq_unlock(rq);
7148
		raw_spin_unlock(&p->pi_lock);
7149 7150
	} while_each_thread(g, p);

7151
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7152 7153 7154
}

#endif /* CONFIG_MAGIC_SYSRQ */
7155

7156
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7157
/*
7158
 * These functions are only useful for the IA64 MCA handling, or kdb.
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7173
struct task_struct *curr_task(int cpu)
7174 7175 7176 7177
{
	return cpu_curr(cpu);
}

7178 7179 7180
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7181 7182 7183 7184 7185 7186
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7187 7188
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7189 7190 7191 7192 7193 7194 7195
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7196
void set_curr_task(int cpu, struct task_struct *p)
7197 7198 7199 7200 7201
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7202

D
Dhaval Giani 已提交
7203
#ifdef CONFIG_CGROUP_SCHED
7204 7205 7206
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7207 7208 7209 7210
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7211
	autogroup_free(tg);
7212 7213 7214 7215
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7216
struct task_group *sched_create_group(struct task_group *parent)
7217 7218 7219 7220 7221 7222 7223 7224
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7225
	if (!alloc_fair_sched_group(tg, parent))
7226 7227
		goto err;

7228
	if (!alloc_rt_sched_group(tg, parent))
7229 7230
		goto err;

7231
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7232
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7233 7234 7235 7236 7237

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7238
	list_add_rcu(&tg->siblings, &parent->children);
7239
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7240

7241
	return tg;
S
Srivatsa Vaddagiri 已提交
7242 7243

err:
P
Peter Zijlstra 已提交
7244
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7245 7246 7247
	return ERR_PTR(-ENOMEM);
}

7248
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7249
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7250 7251
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7252
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7253 7254
}

7255
/* Destroy runqueue etc associated with a task group */
7256
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7257
{
7258
	unsigned long flags;
7259
	int i;
S
Srivatsa Vaddagiri 已提交
7260

7261 7262
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7263
		unregister_fair_sched_group(tg, i);
7264 7265

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7266
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7267
	list_del_rcu(&tg->siblings);
7268
	spin_unlock_irqrestore(&task_group_lock, flags);
7269 7270

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7271
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7272 7273
}

7274
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7275 7276 7277
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7278 7279
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7280 7281 7282 7283 7284 7285 7286
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7287
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7288
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7289

7290
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7291
		dequeue_task(rq, tsk, 0);
7292 7293
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7294

P
Peter Zijlstra 已提交
7295
#ifdef CONFIG_FAIR_GROUP_SCHED
7296 7297 7298
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7299
#endif
7300
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7301

7302 7303 7304
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7305
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7306

7307
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7308
}
D
Dhaval Giani 已提交
7309
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7310

7311
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7312 7313 7314
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7315
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7316

P
Peter Zijlstra 已提交
7317
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7318
}
7319 7320 7321 7322 7323 7324 7325
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7326

P
Peter Zijlstra 已提交
7327 7328
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7329
{
P
Peter Zijlstra 已提交
7330
	struct task_struct *g, *p;
7331

P
Peter Zijlstra 已提交
7332
	do_each_thread(g, p) {
7333
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7334 7335
			return 1;
	} while_each_thread(g, p);
7336

P
Peter Zijlstra 已提交
7337 7338
	return 0;
}
7339

P
Peter Zijlstra 已提交
7340 7341 7342 7343 7344
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7345

7346
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7347 7348 7349 7350 7351
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7352

P
Peter Zijlstra 已提交
7353 7354
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7355

P
Peter Zijlstra 已提交
7356 7357 7358
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7359 7360
	}

7361 7362 7363 7364 7365
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7366

7367 7368 7369
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7370 7371
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7372

P
Peter Zijlstra 已提交
7373
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7374

7375 7376 7377 7378 7379
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7380

7381 7382 7383
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7384 7385 7386
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7387

P
Peter Zijlstra 已提交
7388 7389 7390 7391
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7392

P
Peter Zijlstra 已提交
7393
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7394
	}
P
Peter Zijlstra 已提交
7395

P
Peter Zijlstra 已提交
7396 7397 7398 7399
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7400 7401
}

P
Peter Zijlstra 已提交
7402
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7403
{
7404 7405
	int ret;

P
Peter Zijlstra 已提交
7406 7407 7408 7409 7410 7411
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7412 7413 7414 7415 7416
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7417 7418
}

7419
static int tg_set_rt_bandwidth(struct task_group *tg,
7420
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7421
{
P
Peter Zijlstra 已提交
7422
	int i, err = 0;
P
Peter Zijlstra 已提交
7423 7424

	mutex_lock(&rt_constraints_mutex);
7425
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7426 7427
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7428
		goto unlock;
P
Peter Zijlstra 已提交
7429

7430
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7431 7432
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7433 7434 7435 7436

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7437
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7438
		rt_rq->rt_runtime = rt_runtime;
7439
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7440
	}
7441
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7442
unlock:
7443
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7444 7445 7446
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7447 7448
}

7449 7450 7451 7452 7453 7454 7455 7456 7457
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7458
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7459 7460
}

P
Peter Zijlstra 已提交
7461 7462 7463 7464
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7465
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7466 7467
		return -1;

7468
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7469 7470 7471
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7472 7473 7474 7475 7476 7477 7478 7479

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7480 7481 7482
	if (rt_period == 0)
		return -EINVAL;

7483
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7497
	u64 runtime, period;
7498 7499
	int ret = 0;

7500 7501 7502
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7503 7504 7505 7506 7507 7508 7509 7510
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7511

7512
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7513
	read_lock(&tasklist_lock);
7514
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7515
	read_unlock(&tasklist_lock);
7516 7517 7518 7519
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7530
#else /* !CONFIG_RT_GROUP_SCHED */
7531 7532
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7533 7534 7535
	unsigned long flags;
	int i;

7536 7537 7538
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7539 7540 7541 7542 7543 7544 7545
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7546
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7547 7548 7549
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7550
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7551
		rt_rq->rt_runtime = global_rt_runtime();
7552
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7553
	}
7554
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7555

7556 7557
	return 0;
}
7558
#endif /* CONFIG_RT_GROUP_SCHED */
7559 7560

int sched_rt_handler(struct ctl_table *table, int write,
7561
		void __user *buffer, size_t *lenp,
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7572
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7589

7590
#ifdef CONFIG_CGROUP_SCHED
7591 7592

/* return corresponding task_group object of a cgroup */
7593
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7594
{
7595 7596
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7597 7598 7599
}

static struct cgroup_subsys_state *
7600
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7601
{
7602
	struct task_group *tg, *parent;
7603

7604
	if (!cgrp->parent) {
7605
		/* This is early initialization for the top cgroup */
7606
		return &root_task_group.css;
7607 7608
	}

7609 7610
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7611 7612 7613 7614 7615 7616
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
7617 7618
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7619
{
7620
	struct task_group *tg = cgroup_tg(cgrp);
7621 7622 7623 7624

	sched_destroy_group(tg);
}

7625 7626
static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
7627
{
7628 7629 7630
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7631
#ifdef CONFIG_RT_GROUP_SCHED
7632 7633
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7634
#else
7635 7636 7637
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7638
#endif
7639
	}
7640 7641
	return 0;
}
7642

7643 7644
static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
			      struct cgroup_taskset *tset)
7645
{
7646 7647 7648 7649
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7650 7651
}

7652
static void
7653 7654
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7667
#ifdef CONFIG_FAIR_GROUP_SCHED
7668
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7669
				u64 shareval)
7670
{
7671
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7672 7673
}

7674
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7675
{
7676
	struct task_group *tg = cgroup_tg(cgrp);
7677

7678
	return (u64) scale_load_down(tg->shares);
7679
}
7680 7681

#ifdef CONFIG_CFS_BANDWIDTH
7682 7683
static DEFINE_MUTEX(cfs_constraints_mutex);

7684 7685 7686
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7687 7688
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7689 7690
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7691
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7692
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7713 7714 7715 7716 7717
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7718
	runtime_enabled = quota != RUNTIME_INF;
7719 7720
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7721 7722 7723
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7724

P
Paul Turner 已提交
7725
	__refill_cfs_bandwidth_runtime(cfs_b);
7726 7727 7728 7729 7730 7731
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7732 7733 7734 7735
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7736
		struct rq *rq = cfs_rq->rq;
7737 7738

		raw_spin_lock_irq(&rq->lock);
7739
		cfs_rq->runtime_enabled = runtime_enabled;
7740
		cfs_rq->runtime_remaining = 0;
7741

7742
		if (cfs_rq->throttled)
7743
			unthrottle_cfs_rq(cfs_rq);
7744 7745
		raw_spin_unlock_irq(&rq->lock);
	}
7746 7747
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7748

7749
	return ret;
7750 7751 7752 7753 7754 7755
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7756
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7769
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7770 7771
		return -1;

7772
	quota_us = tg->cfs_bandwidth.quota;
7773 7774 7775 7776 7777 7778 7779 7780 7781 7782
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7783
	quota = tg->cfs_bandwidth.quota;
7784 7785 7786 7787 7788 7789 7790 7791

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7792
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7852
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7853 7854 7855 7856 7857
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7858
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7879
	int ret;
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7891 7892 7893 7894 7895
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7896
}
7897 7898 7899 7900 7901

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7902
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7903 7904 7905 7906 7907 7908 7909

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7910
#endif /* CONFIG_CFS_BANDWIDTH */
7911
#endif /* CONFIG_FAIR_GROUP_SCHED */
7912

7913
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7914
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7915
				s64 val)
P
Peter Zijlstra 已提交
7916
{
7917
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7918 7919
}

7920
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7921
{
7922
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7923
}
7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7935
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7936

7937
static struct cftype cpu_files[] = {
7938
#ifdef CONFIG_FAIR_GROUP_SCHED
7939 7940
	{
		.name = "shares",
7941 7942
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7943
	},
7944
#endif
7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7956 7957 7958 7959
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7960
#endif
7961
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7962
	{
P
Peter Zijlstra 已提交
7963
		.name = "rt_runtime_us",
7964 7965
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7966
	},
7967 7968
	{
		.name = "rt_period_us",
7969 7970
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7971
	},
7972
#endif
7973 7974 7975 7976
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7977
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7978 7979 7980
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7981 7982 7983
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7984 7985
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7986
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7987 7988
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7989 7990 7991
	.early_init	= 1,
};

7992
#endif	/* CONFIG_CGROUP_SCHED */
7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8005
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8006
{
8007
	struct cpuacct *ca;
8008

8009 8010 8011 8012
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8013
	if (!ca)
8014
		goto out;
8015 8016

	ca->cpuusage = alloc_percpu(u64);
8017 8018 8019
	if (!ca->cpuusage)
		goto out_free_ca;

8020 8021 8022
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8023

8024
	return &ca->css;
8025

8026
out_free_cpuusage:
8027 8028 8029 8030 8031
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8032 8033 8034
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8035
static void
8036
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8037
{
8038
	struct cpuacct *ca = cgroup_ca(cgrp);
8039

8040
	free_percpu(ca->cpustat);
8041 8042 8043 8044
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8045 8046
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8047
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8048 8049 8050 8051 8052 8053
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8054
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8055
	data = *cpuusage;
8056
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8057 8058 8059 8060 8061 8062 8063 8064 8065
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8066
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8067 8068 8069 8070 8071

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8072
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8073
	*cpuusage = val;
8074
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8075 8076 8077 8078 8079
#else
	*cpuusage = val;
#endif
}

8080
/* return total cpu usage (in nanoseconds) of a group */
8081
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8082
{
8083
	struct cpuacct *ca = cgroup_ca(cgrp);
8084 8085 8086
	u64 totalcpuusage = 0;
	int i;

8087 8088
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8089 8090 8091 8092

	return totalcpuusage;
}

8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8105 8106
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8107 8108 8109 8110 8111

out:
	return err;
}

8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8127 8128 8129 8130 8131 8132
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8133
			      struct cgroup_map_cb *cb)
8134 8135
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8136 8137
	int cpu;
	s64 val = 0;
8138

8139 8140 8141 8142
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8143
	}
8144 8145
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8146

8147 8148 8149 8150 8151 8152
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8153
	}
8154 8155 8156 8157

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8158 8159 8160
	return 0;
}

8161 8162 8163
static struct cftype files[] = {
	{
		.name = "usage",
8164 8165
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8166
	},
8167 8168 8169 8170
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8171 8172 8173 8174
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8175 8176
};

8177
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8178
{
8179
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8180 8181 8182 8183 8184 8185 8186
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8187
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8188 8189
{
	struct cpuacct *ca;
8190
	int cpu;
8191

L
Li Zefan 已提交
8192
	if (unlikely(!cpuacct_subsys.active))
8193 8194
		return;

8195
	cpu = task_cpu(tsk);
8196 8197 8198

	rcu_read_lock();

8199 8200
	ca = task_ca(tsk);

8201
	for (; ca; ca = parent_ca(ca)) {
8202
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8203 8204
		*cpuusage += cputime;
	}
8205 8206

	rcu_read_unlock();
8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */